N

N

Minimum Disturbance Rerouting to Optimize
Bandwidth Usage
Huy Duong, Brigitte Jaumard, David Coudert

» To cite this version:

Huy Duong, Brigitte Jaumard, David Coudert. Minimum Disturbance Rerouting to Optimize Band-
width Usage. ONDM 2021 - International Conference on Optical Network Design and Modeling, Jun
2021, Gothenburg, Sweden. pp.1-6, 10.23919/ONDM51796.2021.9492388 . hal-03311598

HAL Id: hal-03311598
https://inria.hal.science/hal-03311598

Submitted on 1 Aug 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/hal-03311598
https://hal.archives-ouvertes.fr

Minimum Disturbance Rerouting to Optimize Bandwidth Usage

Huy Duong!, Brigitte Jaumard?, and David Coudert?

ICentre de Recherche Informatique de Montréal (CRIM), Montréal, Qc, Canada
2Department of Computer Science and Software Engineering, Concordia University,
Montreal (QC) Canada
3Université Cote d’Azur, Inria, CNRS, 13S, France

Abstract

Dynamic traffic leads to bandwidth fragmentation, which drastically reduces network
performance, resulting in increased blocking rate and reduced bandwidth usage. When
rerouting traffic flows at Layer 3 of an optical network, network operators are interested in
minimizing the disturbances in order to satisfy their Service Level Agreements. Therefore,
they turn to the Make-Before-Break (MBB) paradigm.

In this paper, we revisit MBB rerouting with the objective of identifying the reroute
sequence planning that minimizes the number of reroutes in order to minimize the resource
usage. We propose a Dantzig-Wolfe decomposition mathematical model to solve this com-
plex rerouting problem. We instigate how multiple or parallel rerouting reduces the overall
minimum number of rerouting events (shortest makespan), and achieve the best resource
usage. Numerical results bring interesting insights on that question and show a computa-
tional time reduction by about one order of magnitude over the state of the art.

Keywords: Network reconfiguration, rerouting, reoptimization, make-before-break.

1 Introduction

Network resource fragmentation is incurred by dynamic traffic and reduces network efficiency
[1]. As part of the resource reallocation by rerouting, many studies have looked at optical
path (lightpath) rerouting, both in the context of routing and wavelength allocation (RWA) [2]
and routing and spectrum allocation (RSA) [3], or IP / VPN rerouting to overcome failures.
However, very few authors have studied rerouting at the IP layer (or Layer 3) for the sole purpose
of overcoming fragmentation, optimizing the network resources and increasing the throughput.
The latter problem was studied in the 90s in the context of MPLS rerouting, see, e.g., [4] or
[5], but then no recent study has been devoted to it, despite a few unanswered questions, and
a renewed interest in the context of 5G network slicing. Indeed, network slicing provides a key
functionality in 5G networks, and offers flexibility in creating customized virtual networks and
supporting different services on a common physical infrastructure [6].

To reroute a connection, the network operator first finds a new route for this connection.
To prevent the traffic disruption that occurs when the connection is switched to a new route
after the termination of the current route, network operators favor the use of the make-before-
break (MBB) paradigm. With MBB, the connection is switched to the new route before the
termination of the current route, thus avoiding disruptions.

Recent advances for MBB rerouting [7, 8| enable to significantly improve upon the state of
the art on the size of solved instances. However, these proposals did not consider the parallel

and multiple MBB rerouting, i.e., the ability to reroute multiple connections in parallel or to
reroute a connection more than once, which could help to further reduce the use of network
resources. This approach has only been considered in few studies and the state of the art is the
model proposed in [4].

In this paper, we propose an optimization model that takes into account both parallel and
multiple MBB rerouting for a capacitated network. We then present decomposition methods
based on column generation algorithms to solve this model. The numerical results show that
our algorithm is remarkably faster and provides better solutions than [§].

The paper is organized as follows. Section 2 contains the literature review. After a concise
problem statement, we propose a decomposition model in Section 3, and its solution process
in Section 4. Numerical results are presented in Section 5. Conclusions are drawn in the last
section

2 Literature Review

Several studies have been devoted to network reconfiguration with the minimum number of
disruptions, following the strategy of migrating from a legacy ineffective provisioning to a given
pre-computed optimized /optimal one. As a result, it usually prevents the existence of a strategy
using only MBB due to the presence of dependency cycles, also called deadlocks [9]. In order
to find a rerouting strategy, authors have then proposed to use the Break-Before-Make (BBM)
paradigm sparingly to allow temporary interruption of connection requests, and so to break
dependency cycles. For instance, Jose and Somani [10] propose heuristics for minimizing the
total number of BBMs used in the rerouting strategy, and Cohen et al. [11] and Solano [12]
provide scalable exact algorithms to minimize the concurrent number of BBMs and investigate
tradeoffs between these two conflicting objectives.

To further reduce the total or concurrent number of BBMs, Kadohata et al. [13] propose to
use spare wavelengths to reroute a connection request to a temporary route rather than using
a BBM. For example, assume that the current connection k needs to be rerouted from path
p to path p’, but such a rerouting cannot be MBB due to resource dependence. Then one
unavoidable BBM rerouting is performed. However, using an intermediate reroute, it may be
possible to reroute £ under the MBB paradigm. For instance, assume that there exists a path
p”" such that the reroutings from p to p” and from p” to p’ satisfy the MBB condition. In other
words, one BBM can be avoided at the expense of performing two MBBs. This idea is similar
to multiple rerouting for capacity reoptimization.

The idea of the second direction is to compute the best provisioning that is reachable from
the legacy provisioning by a sequence of connection reroutings with no disruption, i.e., under the
so-called MBB paradigm. While many studies have investigated the first direction, this second
direction has received very little attention [4, 7].

3 Problem Statement

3.1 Notations

We consider a network represented by a directed multi-graph G = (V, L), where V is the set of
nodes (indexed by v) and L is the set of fiber links (indexed by ¢). Different links may exist
between two nodes in order to model different logical links, with, e.g., different types of traffic.
We denote w™(v) (resp. wt(v)) the set of incoming (resp. outgoing) links of node v € V. Let
Cy denote the transport capacity of link /.

Let K be the set of connection requests (indexed by k). Connection request k € K is
characterized by its source sg, its destination dj, and its bandwidth requirement b;. In what
follows, we call rerouting operation the action of rerouting a connection request k£ € K, and
rerouting event the action of either performing a single rerouting operation, or a set of parallel
rerouting operations. A reoptimization event is an ordered sequence of rerouting events, and so
of rerouting operations. Let T" be the set of rerouting events, indexed by t.

A life-line configuration (or LL config. for short) for request k, denoted by -, is defined by
an ordered sequence of rerouting operations of a connection k, which is characterized by:

e)/ is 1 if k is rerouted at rerouting event ¢, 0 otherwise.

o o), is 1 if k uses link £ at the end of rerouting event ¢.

¢ §), = a), | — a}, is the difference in usage of link ¢ between the begin of rerouting event ¢
and its end.

e z}, is 1 if k does not use link ¢ after rerouting event ¢t — 1 and uses link ¢ after rerouting
event ¢.

Denote by I'y the set of all feasible life-line configurations for connection £ € K with at most
RMY™ rerouting operations.
3.2 Multiple Parallel MBB Reoptimization Model

Assuming that all feasible life-line configurations are enumerated, the multiple parallel MBB
reoptimization model (MUL PAR_RO) is defined formally by the following decomposition math-
ematical model.

We first define its parameters:

e R = limit on the total number of rerouting operations.
e Rl = limit on the number of parallel rerouting operations at a rerouting event.
e R™Y" = limit on the number of rerouting operations for connection k.

INIT

e a;)" = liflink ¢ € L is used in the initial routing of connection request k£ € K, 0 otherwise.

o O = k;{ brpayy" = initial load of link £ € L.

It also uses the following variables:
o y, = 1 if life-line v € ' is selected, 0 otherwise.

e C} = bandwidth usage on link ¢ € L after rerouting event ¢t € 7.

Minimize

> (1)

leL

subject to:

>N Ny, <Rl teT (2)

keK ~el'y,

> QN <R ®)

~vel' teT

Sy <l keK (4)

Y€l

ct <, (elteT (5)

CéNIT _ Z bka}f}” el (6)
keK

G+ Y Y N O feLer g
keK vel'y

Crl+ > N Ny, <Cf LELLET (8)
keK vely,

Ct>0 teLteT (9)

yy € {0,1} ke K,yeTy (10)

The objective (1) is to minimize the capacity usage at the end of the reoptimization event.
Constraints (2) prevent the selection of more than R/l rerouting operations at each rerouting
event. Constraints (3) restrict the total number of rerouting operations of the whole reoptimiza-
tion event. In case one does not want to restrict the number of parallel rerouting operations
per rerouting event, Rl is set to infinite and Constraints (2) are removed from the model. Note
that, in case RM"" = oo, |T'| < |K| is an upper bound on the number of rerouting operations.

Constraints (4) ensure that a connection request has at most one life-line. Constraints (5)
make sure that transport capacities are never exceeded after any rerouting event.

Constraints (6) specifies the initial bandwidth usage of each link. Constraints (7) ensure
that the bandwidth which is needed on link ¢ for the "make" part does not exceed its capacity
at rerouting event ¢t. Note that if the old and new routes of a connection go through a same link,
reserved capacity on that link is not duplicated. Constraints (8) update the bandwidth usage
on link ¢ after rerouting event ¢. Constraints (9)-(10) define the domain of the variables.

4 Solution Process

4.1 Life-Line Pricing Algorithm - cpp

We use a column generation algorithm to solve the linear relaxation of Model (1)-(10) (see, e.g.,
[14] if not familiar with column generation techniques). It results in decomposing the original
problem into a Restricted Master Problem (RMP), i.e., Model (1)-(10) with a very restricted
number of variables, and one or several pricing problems (PPs), which are solved alternately.
The process continues until the optimality condition is satisfied, i.e., all the so-called reduced
costs (or equivalently, the optimal values of the objective functions of the pricing problems) are
positive. An e-optimal solution is derived by solving exactly the ILP model associated with the
last RMP, with ¢ defined as follows:

€= (2ILP - Z::P) /Z:lﬂ (11>

where 27, and Z;» denote the optimal LP value and the optimal ILP value of the last RMP,
respectively.

We now describe the pricing problem model. As the parameters of a life-line configura-
tion become variables in the pricing problem, we do not change their names (slight abuse of
notations).

Let ugz) <0, ug’) <0, u,(f) <0, ug) < 0, and ug) < 0 be the dual values of Constraints
(2),(3), (4), (7), and (8) respectively.

Variables:

e «y; is 1 if the routing of connection k uses link £ € L at the end of rerouting event ¢, 0
otherwise.

e)\, is 1 if t is a rerouting event, i.e. if a rerouting operation occurs, 0 otherwise.

o x4 is 1 if link £ € L is used at the end of rerouting event ¢ but was not used at ¢t — 1, 0
otherwise.

e Jp is 1if link £ € L is used at ¢ but not at t — 1, —1 if it was used at ¢t — 1 and is no longer
used, and 0 if its usage is unchanged.

e p! > 0 encodes the relative position of vertex v € V in the path at ¢t. It is used for the
elimination of subtours.

Objective (reduced cost):

[PPg] =min Gpp, = — Z(u?) +u®)N — u,(:l)

teT
7
“SUNT wil b — Y0 S bl Aedee (12)
(el teT (el teT
Subject to:
-1 fv=s
Z Qo — Z Oy — 1 ifv= dk
tew™(v) tewt (v) 0 otherwise
teT,veV (13)
Y anc<i teT,veV (14)
LewT (v)
ag = agy" telL (15)
> A < RV (16)
teT
At >y, g —ay, teT,lecl (17)
Top = gy — gy g teT,lel (18)
To < Nt teT,tel (19)
PP teT (20)
Lel
S =0y —Qpy g teT,lel (21)
Py >pu+ 1+ Vi —1) teT,(u,v) €L (22)

Domains of the variables:

ay € {0,1} teTU{0},LeL (23)
M € {0,1} teT (24)
xp € {0,1}, teT,lel (25)
o € {—1,0,1} teT,tel (26)
pl >0 teT,veV. (27)

The objective function (12) is quadratic. However, the first quadratic term Aizgy can be
equivalently rewritten xp thanks to Constraints (19), and the second quadratic term Ay can
be equivalently rewritten dy; thanks to the combination of Constraints (17) and Constraints (21).

The overall set of Constraints (13)-(26) describes the life-line of request k.

Constraints (13) are flow conservation constraints defining a path for each connection after
each rerouting event, while avoiding loops along the path thanks to Constraints (14). Con-
straints (15) specify the links that are used in the initial routing of request k. Constraint (16)
limits the number of rerouting operations on the life-line of connection k. Constraints (17)-(20)
identify rerouting operations and consequently rerouting events. Let us first assume that Ay = 0.
Then, Constraints (17) ensure that the links used at t—1 are still used at ¢, and Constraints (18)-
(19) prevent from using new links at ¢. Hence, the routing at ¢ — 1 and ¢ are the same. Assume
now that a rerouting operation occurs at ¢, that is Ay = 1. Constraints (20) ensure that at least
one variable xy is set to 1, thus enabling (7) to use at ¢ a link ¢ that was not used at ¢t — 1 with
Constraints (19) (ii) to stop using at ¢ some links that were used at ¢t — 1 with Constraints (17).
On the other hand, if either a link is no longer used at ¢, or a link is used at ¢ but was not used
at t — 1, Constraints (18)-(19) identify that a rerouting event occurs at ¢ and set variable \; to
1. If no new link is used at t, Constraints (20) force variable \; to 0, Constraints (17) force to
continue using at ¢ the links that were used at ¢ — 1, and so the paths at ¢ — 1 and ¢ are the
same. Constraints (21) encode in Jy the changes in link usage. Constraints (22) prevent the
selection of cycles. Finally, Constraints (23)-(27) define the domains of the variables.

4.2 Solution Process of Non-Multiple (Single) Rerouting per Connection

When RMY" = 1, each connection k € K can be rerouted at most once, and so, at most one A;
can be one. As in Duong et al. [8], we can decompose the compact pricing problem into a set
of pricing problems PP}} in which A\; = 1. We then get:

_ - 7
Gop = mintey = —u - max (u? + 0@ 4 e; brugy e + e; by 9a) (29)

Assuming \; = 1, Constraints (17) and (19) become redundant for the selected ¢, and can
therefore be eliminated. The simplified pricing problem PP}} with single rerouting per connection
can be written as follows.

_ . _ 2 4
(PP = Chy = min e = —ut”) — u® —)
8 7 8
+ D brug ol = b > (ufy wa + ufy) an) (29)
leL lel

subject to:

—1 ifv=sy

Y an— Y ap={ 1 ifv=dy veV (30)
tew=(v) Lew™ (v) 0 otherwise

Y an<i veV (31)
LewT (v)
Tpp > g — 0 teLly:oy =0 (32)
Tpp > o — 1 telg:ap =1 (33)
> ay>1 (34)
teL
Po > pu+ 14+ |V|(ag: —1) (u,v) =¢ €L (35)
ag €{0,1}, x4 €{0,1} {elL (36)
po >0 vev. (37)

Note that in this pricing problem, when ¢t — 1 = 0, we have ay;_1 = ap,".

Proposition 1. If we are looking for only negative optimal objective value (reduced cost), pricing
problem PP} can be reduced to a shortest path problem with non negative weights.

Proof. Firstly, we show that variables x can be eliminated. Let

(8) 'f INIT: 1
ug)(S) = {u%) L u® %f afN’fT 0 (38)
Ugy T Uy W ag =

and consider the following model.

Clppsn = Min Clppsn = —u§2) — u® - u,(f) + Zbkugf)a}jf — Z Ug)(g)bkaﬁ,t (39)
lel LeL

subject to Constraints (30)-(37)
We will prove that the model using Objective (39) is equivalent to the original pricing model
of PP} using Objective (29). To do that, we first prove the two following claims.

(i) The feasible regions of these models are equal. This claim is trivial because these problems
have the same sets of constraints.

(ii) The optimal solutions of these models are equal. This claim will be proved if the two
following statements are true:

(ii-a) ¢&

> * .
ppSR = CCPPSR,

kt kt

(ii-b) 3(2’,a’) € {(30) — (37)} :C?‘:P?ﬁ = Cppin (7',).

To prove statement (ii-a), we must show that it is true for any valid assignment of the
variables, that is:
V(z',) Copst (',) > Clppsn (o,). (40)

Since ug) < 0 and ug) < 0, this statement holds if

vieL - ug)fﬂét - “éf)aét 2 _ug)(g)a;%

7

is true, and so equivalently, if the following statement is true.

Vle L ugt)acgt + ug)a& < u‘,(Z)@)a}t.

Indeed,

e If / € L is such that af) , = 0, we have by Constraints (32) that z, > «aj,. Since u() <,
we get ug)xzt + ugf)agt < ug) oy + uéf)azt, and Equation (38) sets ug)(g) = ug) + ug).

e If £ € L is such that a) , = 1, we have by Constraints (33) that x}, > aj, — 1. Since zj, €

{0,1} and ug) < 0, we therefore have ug):z:gt < 0. Since Equation (38) sets ug)(g) = ugf),

we can conclude that “1(275)33& + ug) agt < ul(%)(s) Q-

We now prove statement (ii-b). Let z* and a* be the optimal solution corresponding to cc;PZR.
t
We show that if o/ = o*, and 2’ such that

a0
z, = 0 ifag,=1 ’ (41)
ap, ifa),=0

then ¢c% CChpsn = CCppit (o, %) = Copgn (', 2').
First, we need to show that o/ and a’ are a feasible solution of (30)-(37). Clearly, o/ satisfies
(30)—(31) because o/ = a*. Furthermore, Constraints (32)-(33) are satisfied by o/ and 2’ because

they hold in all cases of £ € L. Indeed, we have
e If / € L is such that a})'}" = 0, then we have zj, = o, = o, > o/, — 0.
o If £ € L is such that ap;" = 1, then we have xj, = 0> aj, — 1 (as aj, € {0,1}).

Note that we only consider the original pricing when @;PZR < 0. In that case, there has to
t
exist one ¢ € L such that a};" = 0 and o, > 0. Otherwise, o, = apy forall le L (the only

feasible path in this case), then
(2)

@ pSR = —ut U(
Pt

DoV s0 = Chegn = Coppan > 0,
this contradicts the assumption that E;Pi;; < 0. Overall, it concludes that, in this case, Constraint
(34) is satisfied by z'.

When ¢c} s > 0, it implies €5 > 0, so the pricing problem cannot generate improving
configuration fotr the restricted master problem.

We now show that the objective values are equal. Note that CCppst does not depend on z*,
and so is computed with o* only. Now, we show that

vVl e L ug)(g)a}ft = ug)x’ft + uéf)azt. (42)

This holds trivially by the combination of (38) and (41).
To this end, we observe that variables can be removed from the simplified problem and it
becomes a shortest path problem with non negative weights. O

5 Numerical Results

5.1 Data Sets

We use the instances resulting from the simulation performed in [8] on a network with 32
nodes and 250 directed links, which corresponds approximately to a Ciena customer network.
Connection requests had Poisson arrivals based on a traffic matrix and random durations drawn
from a common exponential distribution. Each connection had a Weibull distributed bandwidth
with a coefficient of variation of 0.3. A load factor parameter was used to globally vary the
connection arrival rates: the corresponding equilibrium connection states represent a range of
congestion levels from light to heavy.

All experiments are run with Scientific Linux release 7.9 (Nitrogen), Intel(R) Xeon(R) CPU
E7-4890 v2 @ 2.80GHz, 15 cores per socket, 2 threads per core, and 1056 GB of RAM.

5.2 Regular Multiple Parallel Rerouting CG Performance

We now evaluate the performances of the CPP algorithm in data instances with 12 nodes.

In Table 1, we report experiments when at most one rerouting operation is allowed per
request (RM"" = 1) while the number of rerouting operations per rerouting event is unlimited.
The average gap of the CPP algorithm over 10 reoptimization events is 1.3%. It shows that the
proposed algorithm is close to the optimal solution in this setting. We also observe that the
time required to solve the last ILP problem is negligible in the overall resolution time of the
CPP algorithm, meaning that the difficult task of the proposed algorithm is the generation of
life-lines.

Table 1: cpp Algo. Performance, T =5, R =15, Rl = 0o, RM" =1, |V| = 12, |L| = 52

Scenarios | |K| |e (%) |+# LP LLs|ILP cpPU (s) Zup # rerouting op. | # ILP LLs | Init BW 25 CPU (s)
1 168 1.9 637 0.1 165,765 11 11 176,879 | 162,721.0 | 65.3
2 184 0.5 338 0.0 180,652 15 15 197,224 | 179,751.0 | 32.6
3 190 1.3 381 0.0 179538 15 15 196,782 | 177,264.1 | 37.2
4 191 3.7 653 0.1 189,029 12 12 200,844 | 182,311.4 | 55.4
5 180 0.1 321 0.0 175989 15 15 196,493 | 175.751.4 | 48.7
6 181 0.9 386 0.0 172824 9 9 182,751 | 171.357.0 | 39.1
7 177 0.6 509 0.1 171347 15 15 188,211 | 170.345.0 | 44.2
8 184 0.6 449 0.0 178,750 12 12 191574 | 177.726.0 | 524
9 180 2.5 649 0.1 184,146 13 13 202182 | 179,693.9 | 62.7
10 167 0.5 382 0.0 168583 15 15 190894 167677.6 43.5

Average |180.2| 1.3 470.5 0.1 176662.3 13.2 13.2 192383.4 | 174459.8 | 48.1

In Table 2, we report experiments when two rerouting operations are allowed per request
(i.e., RM" = 2) and the number of rerouting operations per rerouting event is unlimited. Before
solving the last ILP problem of this case, we use the solutions of the experiments with RM"" = 1
as additional columns to generated columns. The rows in Table 2 where the number of routing
operations is larger than the number of selected life-line configurations (# ILP LLs) indicate
that there are connections that are rerouted twice in the solution.

In Table 2, we compute the bandwidth usage gain when we can reroute a connection at most
twice. Gain is not significant (less than 1%) when we allow 2 reroutings per connection for small
networks (about 10 nodes), as connections are often initially routed on their shortest paths or
close to shortest paths. So, there is very limited room for improvement. Note that, for the fifth
rerouting event, the gain is negative. It is because the gap of the fifth rerouting event of Table
2 (0.2%) is worse than the corresponding event of Table 1 (0.1%).

When the number of allowed rerouting operations per request is increased, it leads to more
difficult problem and takes more time to converge, as demonstrated by the significant difference

of the number of generated life-lines ("# LP LLs" column) and total CPU time between Tables 1
and 2.

Table 2: cpp Algo. Performance, T =5, R =15, Rl = 0o, RM"" =2, |V| =12, |L| = 52

Scenarios | |K| |e (%) |+# LP LLs | ILP cpU (s) Zie Gain | # rerouting op. | # ILP LLs | Init BW 2 CPU (s)
1 168 1.4 2,114 0.3 164,923 842 13 12 176,879 | 162,721.0 | 188.7
2 184 0.1 1,854 0.3 179,939 713 15 15 197,224 | 179,751.0 | 523.4
3 190 0.9 2,027 0.3 178,927 611 15 15 196,782 | 177,264.1 | 500.7
4 191 2.7 2,624 0.4 187,175 | 1,854 14 14 200,844 | 182,311.4 | 377.1
5 180 0.2 984 0.2 176,029 -40 15 15 196,493 | 175,751.4 | 124.1
6 181 0.6 1,500 0.3 172,447 377 11 10 182,751 | 171,357.0 | 163.9
7 177 0.6 1,882 0.3 171,347 0 15 15 188,211 | 170,345.0 | 230.4
8 184 0.6 2,042 0.4 178,750 0 14 13 191,574 | 177,726.0 | 237.8
9 180 2.4 3,007 0.7 184,091 55 15 15 202,182 | 179,693.9 | 533.3
10 167 0.2 1,755 0.3 167,986 597 15 15 190,894 | 167,677.6 | 648.9

Average | 180.2| 1.0 1978.9 0.4 176161.4 | 500.9 14.2 13.9 192383.4 | 174459.8 | 352.8

5.3 Non-multiple Rerouting Algorithm

In this section, we evaluate the performance of the CPP algorithm when it is specialized for the
particular case where each connection is allowed to be rerouted at most once, i.e., RM" = 1.
As aforementioned in Section 4.2, the life-line generation pricing problem can be solved by
decomposing it into a set of simple non-negative weighted shortest path problems, which can be
solved using Dijkstra’s algorithm.

In the first part of Table 3, we report average performance of specialized CPP algorithm over
10 reoptimization events for each traffic intensity (load) with 7' = 20, R = 400, R™"* = 1 and
Rl = 20. The reported performance parameters are as in Table 1 and Table 2. Besides, in this
table, "BW reduction" column reports reduced portions of bandwidth requirements before and
after rerouting events using proposed CPP algorithm (i.e., %) In the second part of
Table 3, the similar results in [8] are recalled for the case where the total number of rerouting
operations is 150.

We observe that the CPU times of non-multiple rerouting algorithm is about one order of
magnitude smaller than the algorithm of [8], as we use a much smaller number of rerouting
events (7" = 20 instead of T'= 150 in [8]), while preserving a comparable accuracy to that of [8].

Table 3: Non-multiple Rerouting Algorithm’s Performance (7" = 20, R = 400, RM"" = 1
Rl =20, |V| =32, |L| = 250)

CPP algorithm Duong et al. [8] (150 allowed rerouting operations)

Load | # LP LLs | # ILP LLs | ¢ (%) | cpU (s) | BW reduction (%) || # Gen. config. | In sol. config. | e (%) | CPU (min.)
0.5 863.6 71.9 2.2 90.6 7.8 3,465.1 63.5 2.2 89.1
0.6 1313.6 154.5 4.7 1324 17.6 3,669.5 139.2 2.7 316.3
0.7 1624.3 198.6 5.5 178.6 22.7 2,782.4 147.2 2.3 235.0
0.8 1634.1 218.4 5.0 201.3 24.5 2,798.7 145.9 2.6 230.5
0.9 1728.1 233.5 4.9 207.1 26.1 2,804.2 147.9 2.8 263.5
1 1816.3 247.2 3.9 221.2 26.7 2,806.2 147.5 2.3 264.6

We report the reduction of the overall bandwidth requirements after each reoptimization
event for the two extreme loading factors, i.e., 0.5 and 1.0, see Figure 1.

6 Conclusions

We have proposed a new model for flow rerouting with the Make-Before-Break paradigm at Layer
3 in optical networks. It generalizes the previous MBB rerouting problem, not yet discussed in

10

Load 0.5 Load 1.0

12.0% 29.0%
10.0% 28.0%
£ 8.0% £ 27.0%
oo oo
26.0%
Z >
£ 6.0% 2
e 8 25.0%
S 4.0% ?
© 0 © 24.0%
2.0% 23.0%
0.0% 22.0%
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Reoptimization event Reoptimization event

Figure 1: Reduction (%) of capacity requirement for load factors 0.5 and 1.

literature, i.e., with multiple rerouting operations per connection and parallel rerouting opera-
tions per rerouting event, while minimizing the overall number of rerouting in order to minimize
the number of disturbance.

In addition, this modeling leads to an efficient algorithm to solve the specific case of one
rerouting operation per connection: we can perform up to 400 rerouting operations in about 5
minutes, while the model of [8] was only scalable for 150 rerouting operations requiring about
one hour.

Acknowledgments

B. Jaumard has been supported by a Concordia University Research Chair (Tier I) and by an
NSERC (Natural Sciences and Engineering Research Council of Canada) grant. H. Duong was
supported by a MITACS & Ciena Converge Fellowship. D. Coudert has been supported by
the French National Research Agency (ANR), through the UCAFP! Investments in the Future
project with the reference number ANR-15-IDEX-0001, and the Inria associated-team project
EfDyNet.

References

[1] B. C. Chatterjee, S. Ba, and E. Oki, “Fragmentation problems and management approaches
in elastic optical networks: A survey,” IEEE Communications Surveys € Tutorials, vol. 20,
no. 1, pp. 183 — 210, 2020.

[2] B. Jaumard, H. Pouya, and D. Coudert, “Wavelength defragmentation for seamless migra-
tion,” Journal of Lightwave Technology, vol. 37, no. 17, pp. 4382 — 4393, 2019.

[3] P. Soumplis, K. Christodoulopoulos, and E. Varvarigos, “Dynamic connection establishment
and network re-optimization in flexible optical networks,” Photonic Network Communica-
tion, vol. 29, pp. 307 — 321, June 2015.

[4] O. Klopfenstein, “Rerouting tunnels for MPLS network resource optimization,” Furopean
Journal of Operational Research, vol. 188(1), pp. 293 — 312, 2008.

[5] B. Jozsa and M. Makai, “On the solution of reroute sequence planning problem in MPLS
networks,” Computer Networks, vol. 42, pp. 199 — 210, June 2003.

11

[6]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

S. Mandelli, M. Andrews, S. Borst, and S. Klein, “Satisfying network slicing constraints
via 5G MAC scheduling,” in IEEE Annual Joint Conference of the IEEE Computer and
Communications Societies - INFOCOM, 2019, pp. 2332-2340.

B. Jaumard, H. Quang Duong, R. Armolavicius, T. Morris, and P. Djukic, “Efficient real-
time scalable make-before-break network re-routing,” IEEE/OSA Journal of Optical Com-
munications and Networking, vol. 11, p. 52, 03 2019.

H. Duong, B. Jaumard, D. Coudert, and R. Armolavicius, “Efficient Make Before Break Ca-
pacity Defragmentation,” in IEEE International Conference on High Performance Switching
and Routing - HPSR, Bucharest, Romania, June 2018, pp. 1-6.

L. Maggi, P. Poirion, and J. Leguay, ‘Reroute backward to better break deadlocks,” in IEEE
International Conference on Cloud Networking (CloudNet), Prague, Czech Republic, 2017,

pp. 1 — 6.

N. Jose and A. K. Somani, “Connection rerouting/network reconfiguration,” in Proceedings
of IEEE/VDE Workshop on Design of Reliable Communication Networks - DRCN, 2003,
pp- 23-30.

N. Cohen, D. Coudert, D. Mazauric, N. Nepomuceno, and N. Nisse, “Tradeoffs in pro-
cess strategy games with application in the WDM reconfiguration problem,”
Computer Science, vol. 412, no. 35, pp. 46754687, 2011.

Theoretical

F. Solano, “Analyzing two conflicting objectives of the WDM lightpath reconfiguration
problem,” in IEEE Global Telecommunications Conference - GLOBECOM, Nov. 2009, pp.
1-7.

A. Kadohata, A. Hirano, F. Inuzuka, A. Watanabe, and O. Ishida, “Wavelength path re-
configuration design in transparent optical WDM networks,” IEEE/OSA Journal of Optical
Communications and Networking, vol. 5, no. 7, pp. 751 — 761, July 2013.

V. Chvatal, Linear Programming. Freeman, 1983.

12

