
1

EXA2PRO: A Framework for High Development
Productivity on Heterogeneous Computing Systems
Lazaros Papadopoulos, Dimitrios Soudris, Christoph Kessler, August Ernstsson, Johan Ahlqvist, Nikos Vasilas,

Athanasios I. Papadopoulos, Panos Seferlis, Charles Prouveur, Matthieu Haefele, Samuel Thibault,
Athanasios Salamanis, Theodoros Ioakimidis, Dionysios Kehagias

Abstract—Programming upcoming exascale computing sys-
tems is expected to be a major challenge. New programming
models are required to improve programmability, by hiding the
complexity of these systems from application developers. The
EXA2PRO programming framework aims at improving devel-
opers’ productivity for applications that target heterogeneous
computing systems. It is based on advanced programming models
and abstractions that encapsulate low-level platform-specific
optimizations and it is supported by a runtime that handles
application deployment on heterogeneous nodes. It supports a
wide variety of platforms and accelerators (CPU, GPU, FPGA-
based Data-Flow Engines), allowing developers to efficiently
exploit heterogeneous computing systems, thus enabling more
HPC applications to reach exascale computing. The EXA2PRO
framework was evaluated using four HPC applications from
different domains. By applying the EXA2PRO framework, the
applications were automatically deployed and evaluated on a
variety of computing architectures, enabling developers to obtain
performance results on accelerators, test scalability on MPI
clusters and productively investigate the degree by which each
application can efficiently use different types of hardware re-
sources.

Index Terms—programming models, skeleton programming,
task-based runtime systems, programming productivity, hetero-
geneous systems, exascale computing

I. INTRODUCTION

The building of exascale computing systems is a huge
investment both financially and in terms of scientific effort.
Therefore, it is beneficial to enable more applications to access
these systems, or at least, promote their transition towards
the exascale computing direction. Towards this end, advanced
programming models and environments are needed that will
assist developers in addressing critical challenges in terms of

L. Papadopoulos and D. Soudris are with the Department of Electrical and
Computer Engineering, National Technical University of Athens, Greece. E-
mail: lpapadop@microlab.ntua.gr, dsoudris@microlab.ntua.gr.

C. Kessler, A. Ernstsson and J. Ahlqvist are with the Dept. of Computer
and Information Science, Linköping University, Linköping, Sweden. E-mail:
christoph.kessler@liu.se, august.ernstsson@liu.se, johah956@student.liu.se.

N. Vasilas, A.I. Papadopoulos and P. Seferlis are with the Chemical Process
and Energy Resources Institute, Centre for Research and Technology Hellas,
Thessaloniki, Greece. E-Mail: spapadopoulos@certh.gr.

C. Prouveur is with Maison de la Simulation, CEA, CNRS, France. Email:
charles.prouveur@cea.fr.

M. Haefele is with Université de Pau et des Pays de l’Adour, Pau, France.
Email: matthieu.haefele@univ-pau.fr.

S. Thibault is with the Bordeaux University, Bordeaux, France. E-Mail:
samuel.thibault@u-bordeaux.fr.

A. Salamanis, T. Ioakimidis and D. Kehagias are with the Information Tech-
nologies Institute, Centre for Research and Technology Hellas, Thessaloniki,
Greece. Email: asal@iti.gr, theioak@iti.gr, diok@iti.gr.

efficient application deployment, such as maintaining devel-
opment productivity in the heterogeneous exascale computing
environments.

EXA2PRO is a framework developed in the context of the
EXA2PRO H2020 EU project [1] and its goal is to allow the
transition of more HPC applications to exascale computing, by
focusing on development productivity. More specifically, the
EXA2PRO framework allows developers to evaluate applica-
tions across a variety of different architectures and therefore,
to efficiently exploit accelerators, such as GPUs and FPGAs.
Thus, EXA2PRO lowers the barrier of access and enables more
HPC applications to exploit the exascale computing systems,
by hiding their complexity from application developers.

The EXA2PRO framework combines the skeleton program-
ming model with a multi-backend approach to enable porta-
bility and programmability across a variety of architectures.
It provides high-level software abstractions (skeletons, multi-
variant components), through the SkePU tool, that implement
data parallel computational patterns commonly found in HPC
applications (map, mapreduce, stencil, etc.), which are auto-
matically generated for various backends (OpenMP, CUDA,
OpenCL, etc.). The framework encapsulates all low-level
tuning and optimization tasks to allow developers to focus
on application programming and to automatically evaluate
applications across different architectures, instead of manually
optimizing and porting to accelerators, thus greatly increas-
ing development productivity. Additionally, the EXA2PRO
framework makes advanced programming models more ac-
cessible to application developers. EXA2PRO supports the
data-flow programming model and MPI through its runtime
system, allowing developers to efficiently exploit large-scale
heterogeneous computing systems, by hiding their complexity.
More specifically, the EXA2PRO framework integrates the
StarPU runtime system, which can be used either as another
EXA2PRO backend or it can be used in cases in which
the skeletons may not fit the overall software design of the
application and StarPU task-based programming model maybe
simpler to apply (even if much more involved in terms of lines
of code and expressiveness complexity).

The purpose of this work is to highlight the key features of
the EXA2PRO framework and to evaluate and demonstrate its
development productivity features, based on a set of scientific
applications that need to be evaluated in more complex archi-
tectures and target their transition to exascale computing. The
main contributions are the following:

• We present the EXA2PRO framework, which enables

2

the evaluation of applications in heterogeneous exascale
computing systems 1.

• We demonstrate the use of EXA2PRO in a variety of
applications, which target the transition to exascale com-
puting systems and show how the multi-backend feature
of EXA2PRO can improve the development productivity.

The rest of the paper is organized as follows: Section II
describes the related work. The EXA2PRO framework and its
components are presented in Section III. The evaluation results
are analyzed and discussed in Section IV. Finally, in Section V
we draw conclusions.

II. RELATED WORK

The EPEEC programming framework has similar goals as
EXA2PRO [2], which also targets heterogeneous exascale
supercomputers. A programming framework, developed in the
context of the EPIGRAM-HS project, addresses heterogeneity
challenges both in terms of acceleration (GPUs, FPGAs) and
in terms or memory (HBM, NVM) [3]. The ASPIDE project
develops a programming framework tailored to Big Data
applications deployed on exascale computing systems [4]. Pro-
gramming models and runtimes for exascale are developed in
the context of the US Exascale Computing Project, such as en-
hancements of the MPI standard for a task-based programming
model [5]. Kokkos provides high-level abstractions for parallel
loop executions, which are mapped to a runtime for achieving
performance across various architectures [6]. Although the
above libraries and frameworks have similar goals, they focus
on different aspects of the programmability of the exascale
computing systems, utilize different programming models and
attempt to address different exascale computing challenges.
The EXA2PRO framework focuses on the programmability
of heterogeneous systems and integrates programming models
that are different from the aforementioned models: skeleton
programming in EXA2PRO is used to implement data-parallel
patterns and the data-flow programming model is used to
support FPGA-based data-flow engines (DFE) [7]. The goal
is to enable the transition of more HPC applications towards
the exascale computing direction.

OpenACC is an API that targets programmability and
portability across diverse architectures and it is based on
compiler directives [8]. OpenACC, as well as SYCL and
other programming models can be considered complementary
to EXA2PRO. However, SkePU skeletons are more high-
level and more powerful, as their implementations are not
constrained by the given loop nest structure in an OpenACC
source program.

Among libraries exposing a task-based programming model,
OmpSs [9] PaRSEC [10] and DTD (Dynamic Task Dis-
covery) also provide support for heterogeneous accelerator-
based and distributed systems, and support for dynamic task
scheduling to some extent. In comparison, the EXA2PRO
runtime, StarPU [11], reaches more advanced task scheduling,
by achieving compromises between task acceleration, data
transfer cost, and energy cost. Its pluggable task scheduling

1A docker and a singularity container of the framework are available on
the EXA2PRO website: https://exa2pro.eu/#developers

interface allows to integrate state-of-the-art heuristics (e.g.
HEFT, HeteroPrio).

III. EXA2PRO FRAMEWORK

The EXA2PRO framework is based on a set of advanced
programming models, supported by a toolflow that allows
developers to evaluate applications across a variety of architec-
tures and to efficiently exploit accelerators, such as GPUs and
FPGAs, thus supporting the transition of applications to ex-
ascale computing through increased development productivity.
Its software stack is shown in Fig. 1. The EXA2PRO high-
level programming model is based on a set of skeletons, multi-
variant components, smart containers and other APIs. To apply
the EXA2PRO framework to an application, developers are
expected to replace the algorithmic pattern of the application
with the EXA2PRO high-level programming interface.

The most important features of the EXA2PRO framework
are the following:

• It provides a simple sequential API for several common
parallel algorithmic patterns

• The EXA2PRO tools automatically generate optimized
and tunable implementations for a variety of heteroge-
neous systems (implementation variants). Users may pro-
vide custom implementations (multi-variant components).

• Suboptimal variants are manually or automatically dis-
carded, while the ones expected to provide better results
are forwarded to the EXA2PRO runtime system

• The EXA2PRO runtime system provides optimized vari-
ant selection, scheduling and data transfers to accelerators

The EXA2PRO framework hides the complexity and the
low-level implementation details of large-scale heterogeneous
systems from application developers. It encapsulates accelera-
tor code optimizations, scheduling decisions, synchronization
issues, data transfer optimization and other low-level tasks.
Thus, by providing high-level software abstractions for parallel
patterns widely used in HPC applications, the EXA2PRO
framework gives the opportunity to more applications to access
complex large-scale computing systems.

Fig. 1. Overview of the EXA2PRO Programming API and Framework Stack

3

Fig. 2. The EXA2PRO ”gearbox”: Execution platforms/modes and imple-
mentation selection

A. EXA2PRO High-Level Programming Model

At the top level, an EXA2PRO application consists of zero
or more multi-variant components, i.e., modularized functions
considered for possible execution on an accelerator, and of
outer code (Fig. 1). Outer code is CPU code which might
also contain explicit parallelization constructs (e.g., MPI) and
skeleton calls, see Section III-B). The components may have
different, user-provided implementation variants for different
programming and execution platforms in a heterogeneous
system (e.g., OpenMP for CPU, CUDA and OpenCL for GPU,
etc.), i.e., inner code, and are annotated with metadata e.g.
about their dependencies and deployment. The EXA2PRO
framework synthesizes an executable application from the
components and outer code, which will be free to select
among implementation variants at runtime (see the selection
transitions in the ”gearbox” in Fig. 2), depending on the
current execution context (such as operand sizes and loca-
tions), and supported by the EXA2PRO runtime system. Also
skeleton calls allow to select statically or (automatically) at
runtime2 among their implementations, which are provided by
the SkePU skeleton framework instead.

The SkePU programming interface and implementation is
inherently based on modern C++, especially on template
metaprogramming and variadic templates, and user functions
must be written in C++. But SkePU also offers a prototype
FORTRAN API for access to SkePU data-containers from
FORTRAN code, and the SkePU pre-compiler can automat-
ically generate FORTRAN wrapper functions for skeleton
instance invocation.

B. SkePU

Skeletons are closely related to so-called (parallel) algorith-
mic patterns [14]; in fact, skeletons implement patterns. Multi-
backend skeletons are portable skeletons that realize data-
parallel patterns such as map, reduce, scan, stencil etc., and
that have internally optimized implementations for different
resources (CPU, GPU, ...) of heterogeneous parallel systems.

2In node-level SkePU, dynamic selection of the expected best implemen-
tation based on skeleton call operand sizes and locations can be done in
SkePU itself after off-line training [12], [13]; in cluster-level SkePU and for
multi-variant components, automated performance modeling and selection are
delegated to the runtime system (Sect. III-E).

In EXA2PRO, we developed the third generation of the
skeleton programming framework SkePU [15], which is avail-
able both stand-alone as SkePU-3 [16] but also integrated into
the EXA2PRO high-level programming model. Compared to
SkePU-2 [17], new skeletons and data-container types have
been added, the programming interface has been stream-
lined and the memory consistency model for the smart data-
containers has been relaxed. SkePU-3 is available as open-
source under a modified BSD license [16].

SkePU [15], [16] provides a single, sequential-like pro-
gramming interface extending modern C++ with data-parallel
skeletons, see Tables I–II. For each skeleton, implementation
variants (backends) for sequential C++, OpenMP, CUDA (for
Nvidia GPUs) and OpenCL (for all GPUs) are available,
and also multi-GPU and hybrid CPU-GPU code can be
selected [18]. In EXA2PRO, an additional backend for the
MPI bindings of StarPU has been developed. (Access to
further platforms such as FPGA accelerator cards can be
achieved indirectly via SkePUs interoperability with multi-
variant components, which are described in Section III-C.)

TABLE I
SKEPU SKELETON DESCRIPTIONS. FOR API PROPERTIES SEE TABLE II.

Skeleton Description
Map Element-wise 1D–4D transformation of arbitrary arity
MapPairs Generic 2D Cartesian-product style computation, arbitrary arity
MapOverlap 1D–4D convolution with arbitrary per-dim. stencil radius
Reduce Generic reduction
Scan Generic prefix-sums computation
MapReduce Fusion of Map and Reduce
MapPairsReduce Fusion of MapPairs and row-wise or column-wise Reduce

Table I gives short descriptions of the current data-parallel
skeletons in SkePU, and the interface properties (such as sup-
ported arity, dimensionality of operands and special operand
access patterns) are summarized in Table II; for detailed
descriptions and illustrations for all skeletons we refer to
[15]. In a co-design effort, based on feedback by project
partners developing and porting HPC applications to the new
programming model, SkePU has been extended with new
skeletons such as MapPairs (generalized Cartesian-product
style computation pattern, supporting a variadic number of
vector operands in each dimension) and MapPairsReduce
(fused MapPairs with subsequent row-wise or column-wise
reduction), and its programming interface has been generalized
and streamlined, such as multi-valued return from all Map-
based skeletons and user functions (as known from Python)
and a streamlined interface for the MapOverlap (stencil pat-
tern) skeleton. Minor improvements include optional dynamic
scheduling in the OpenMP backend of most skeletons.

User functions are problem-specific functions that can be
plugged as code parameters into skeletons at instantiation.
They must be side-effect-free C++ functions with restricted
C++ features (in fact, they are basically C functions with
container access proxy objects (see Sec. III-D and the example
in Fig. 3) because they must be translatable into platform-
specific code with limited or no C++ support, in particular for
OpenCL. For the same reason, library functions called from
user functions must be portable, i.e., exist on all supported tar-
get platforms, or explicitly implemented as user functions too.

4

TABLE II
SKEPU-3 SKELETONS WITH INTERFACE PROPERTIES AND CURRENTLY PROVIDED BACKENDS (• SUPPORTED, PARTLY SUPPORTED, ◦ UNDER WORK)

Skeleton Out Args El.-wise In Args Proxy Uniform Index Special Access Node-Level SkePU Backends Cluster-Level SkePU Backends
Arity / Dim. Arity / Dim. In Args In Args Avail. Proxies Supported Seq. OpenMP CUDA OpenCL MPI+OpenMP MPI+CUDA

Map Variadic / 1D-4D Variadic / 1D-4D Variadic Variadic Yes MatRow, MatCol • • • • • •
MapPairs Variadic / 2D Variadic(x2) / 1D Variadic Variadic Yes MatRow, MatCol • • • • • •
MapOverlap 1 / 1D-4D 1 / 1D-4D Variadic Variadic Yes Region • • • • ◦
Reduce 1 / 0D-1D 1 / 1D-4D — — — — • • • • • •
Scan 1 / 1D 1 / 1D — — — — • • • • • ◦
MapReduce Variadic / 0D Variadic / 1D-2D Variadic Variadic Yes MatRow, MatCol • • • • • ◦
MapPairsReduce Variadic / 1D Variadic(x2) / 1D Variadic Variadic Yes MatRow, MatCol • • ◦ • • ◦

In-line definition of user functions in skeleton instantiations
using C++ lambda functions is supported.

Cluster support in SkePU comes in two different (mutually
exclusive) flavors:

• Outer MPI (also known as MPI+SkePU) applications use
SkePU only at node-level and let the programmer use
ordinary MPI calls for explicit inter-node communication,
duly framed by skepu::external guards (explained
later in this paragraph) to preserve sequential semantics
and guarantee memory consistency for communicated
operands that are managed by SkePU data-containers. For
skeleton calls in outer MPI code, the MPI backend of the
skeleton is disabled.

• Inner MPI applications have MPI-free, plain sequential-
looking SkePU source code where all cluster-level paral-
lelism is exploited by the SkePU MPI backend working
on distributed data-containers, hence all communication
is implicit.

As an illustrating example, Fig. 3 shows an excerpt
of a brain modeling simulation code in SkePU (see also
Sect. IV-C). It is a time-driven simulator, in which each
neuron accumulates the interaction of adjacent neurons
and then updates its current state. The user function
SimulateNeuron_Skepu is used in an instantiation (line
29) of the Map skeleton, here with no (<0>) element-wise ac-
cessed operands. The user function takes as its main operands
a weight matrix m and the state vector, prepared for random
access with the Mat access proxy (alternatively, row-wide
random access with MatRow), resp. Vec access proxy in the
user function; see Sect. III-D for SkePU data-container and
access proxy types).

The skeleton instance is called in line 48. By default, SkePU
selects the most parallel backend, but here the user explicitly
prescribes a backend (line 31) passed in as a command-line
argument string, which is set in the spec object attached
to the skeleton instance SimulateTimestepPerNeuron.
Alternatively, the selection autotuning mechanism of SkePU
could be used.

As illustrated in the example code snippet in Fig. 3,
SkePU programs have three different code scopes: manag-
ed scope (user functions, with restricted functionality due
to strong portability requirements), unmanaged scope (code
outside skepu::external, where data-containers can be
defined and skeletons be instantiated and called), and ex-
ternal scope (guarded code within skepu::external.
skepu::external is used to frame I/O and MPI operations

1 #include <skepu>
2 ...
3

4 / / d e f i n i t i o n o f a u s e r f u n c t i o n :
5 State SimulateNeuron_Skepu (
6 skepu::Index1D row,
7 const skepu::Mat<float> m, / / Matr ix , random a c c e s s
8 const skepu::Vec<State> state, / / Vec tor , random a c c e s s
9 const skepu::Vec<Constants> constants,

10 float time, float dt)
11 {
12 size_t const i = row.i; / / g e t c o n t e x t f o r i −t h neuron
13 State const & statePrev = state(i); / / c u r r e n t s t a t e
14 float iGapTotal = 0; / / i n t e r a c t i o n w i t h o t h e r neurons
15 for (size_t j = 0; j < m.cols; j++)
16 iGapTotal += fGap(m(i,j), statePrev.v, state(j).v);
17 / / c a l c u l a t e t h e n e x t s t a t e o f t h e neuron :
18 State stateNext = InnerDynamics_Integrate(
19 constants(i), statePrev, iGapTotal, time, dt);
20 return stateNext;
21 }
22

23 int main(int argc, char *argv[])
24 { ...
25 auto spec = skepu::BackendSpec{ / / s e l e c t by u s e r :
26 skepu::Backend::typeFromString(argv[5])};
27

28 / / i n s t a n t i a t e Map s k e l e t o n t o b u i l d a ” f u n c t i o n ”:
29 auto SimulateTimestepPerNeuron skepu::Map<0>(
30 SimulateNeuron_Skepu);
31 SimulateTimestepPerNeuron.setBackend(spec);
32 ...
33

34 / / data −c o n t a i n e r s f o r t h e da ta s e t s o f t h e problem :
35 skepu::Vector<State> state(neurons), state2(neurons);
36 skepu::Vector<Constants> constants(neurons);
37 skepu::Matrix<float> weight_matrix(neurons, neurons);
38 ...
39 / / f o r b u f f e r swapping , use p o i n t e r s t o c o n t a i n e r s :
40 auto *pOne = &state;
41 auto *pTwo = &state2;
42 ...
43

44 / / run t h e s i m u l a t i o n :
45 for (int t = 0; t < steps; t++) {
46 float time = t * dt; / / t i m e p o i n t i n s i m u l a t i o n
47 / / c a l l t h e s k e l e t o n i n s t a n c e :
48 SimulateTimestepPerNeuron(*pTwo, weight_matrix,
49 *pOne, constants, time, dt);
50 std::swap(pOne, pTwo); / / swap t h e b u f f e r s
51 }
52 ...
53

54 / / o u t p u t :
55 if (write_to_file) {
56 skepu::external(skepu::read(*pOne), [&]
57 { ...
58 for (size_t i = 0; i < neurons; i++)
59 fprintf(..., "%+03.6f\t", State((*pOne)(i)).v);
60 });
61 }
62 }

Fig. 3. Excerpt of the brain modeling simulation code in SkePU.

5

Fig. 4. Principle of interoperability between SkePU skeleton code and ComPU
multi-variant components, using the x2p equivalents of the skepu data-
container types.

that access data managed by data-containers to make sure
that, given the weak memory consistency model of SkePU-
3 in non-managed code, data to be communicated is valid in
main memory. The last part in Fig. 3 (lines 54–61) illustrates
this: For the data-container list in the optional read argument
of skepu::external, SkePU makes sure to flush any
possibly software-cached elements of these data-containers
back to main memory, as some may still reside (only) in
device memory after being written by a skeleton call (which
is in general, such as here, statically unknown). For details we
refer to [15].

Where a skeleton does not fit well, e.g. for a parallel loop
with irregular, indirect access pattern through a permutation
index vector, an overly general skeleton such as a Map<0>
with an access proxy for a random-access operand instead
of an element-wise (or, e.g., row-wise) accessed operand has
to be used, which leads to higher communication volume for
distributed memory (GPU, cluster) execution and also prevents
execution on accelerators where the indirectly accessed data-
container does not fit in device memory in its entirety.

C. Multi-Variant Components

Multi-variant components are modularized, user-provided
functions that may have multiple, user-provided implemen-
tation variants written using different programming models
such as C++, OpenMP, CUDA, OpenCL or MAXJ (i.e. the
programming model of DFEs), and that are annotated with
metadata in an XML based annotation framework to sup-
port target platform-specific code generation and deployment.
EXA2PRO extends this concept from earlier work [19] by
adding new target platform types (MPI, Maxeler DFE) and
meta-modeling new function properties such as operand access
patterns. The deployment toolchain for this is called ComPU.

EXA2PRO multi-variant components are interoperable with
SkePU skeleton instances as they work on the same data-
container types (Sec. III-D), see also Fig. 4 for an illustration
of SkePU-ComPU interoperability, and provide a flexible
escape mechanism for cases where SkePU skeletons do not
fit (well) a computation’s structure.

D. Smart data-containers and access proxies

Smart data-containers are high-level STL-based generic
abstractions for array-based data structures passed as operands
to and from calls to skeletons and multi-variant components.
We call them ”smart” as they can transparently perform run-
time optimizations for data transfer [20], [21], data locality

[22] and memory management. In EXA2PRO (and SkePU-
3), currently four such data-containers are supported for 1D
to 4D data abstractions: Vector<...> (generic 1D vector type
similar to STL std::vector), Matrix<...> (generic dense
matrix), Tensor3<...> and Tensor4<...> (generic 3D and
4D dense tensor, respectively).

In addition, there are a number of different container
access proxies that are to be used in managed scope and
that encode different access patterns, which help SkePU to
reduce communication effort. For example, the most generic
Mat<...> container access proxy allows for random access to
any element of a Matrix<...> operand passed to a skele-
ton instance call, while the more specific MatRow<...> and
MatCol<...> access proxies allow random access only within
one row or column of a Matrix<...> operand respectively.
For pure element-wise access, no container proxy is needed at
all on the user function side. For details see [15].

E. Runtime System: StarPU
EXA2PRO leverages the StarPU [11] task-based runtime

system. StarPU aims at providing optimized application exe-
cution over large clusters of heterogeneous systems, such as
composed of CPUs, GPUs and FPGAs. It uses a task-based
programming paradigm which captures high-level information
from the application, and allows its scheduler to be very well
informed of the computation performed by the application.

The fundamental model of the StarPU runtime system is
the submission of a Directed Acyclic Graph (DAG) of tasks.
This is expressed thanks to the notions of data, codelet, and
tasks. The dependencies between tasks can be set explicitly,
or inferred from the data dependencies for the convenience of
the programmer.

In the context of the EXA2PRO framework, StarPU is
used as the execution backend for the composition framework.
SkePU automatically generates, from the skeleton-based ap-
plication, a source code that leverages the StarPU interface to
submit a task graph. For each task, it provides StarPU with the
different implementation variants for the different architectures
available on the target platform (CPU, GPU, DFE, ...), by
gathering them in a codelet (i.e. the collection of functions
which achieve the same computation, thus various implemen-
tations variants for the computation). Similarly, the different
implementation variants provided by the application in the
multi-variant components are exposed in StarPU codelets.

From the description of the task graph by SkePU and the
composition framework, the StarPU runtime system orches-
trates the execution of tasks among the different execution
units and memory locations. Since it has a complete vision
over the data and the tasks to be computed, it is able to
provide the application with a flurry of features without further
effort from the application programmer, such as optimized task
scheduling or data transfer overlapping.

IV. EVALUATION

The EXA2PRO framework was applied to four HPC appli-
cations: CO2 capture process design and control, a supercapa-
citor simulator (Metalwalls), a neural simulator (brain model-
ing) and an Ordinary Differential Equations (ODE) solver. The

6

TABLE III
APPLICATIONS USED TO EVALUATE THE EXA2PRO FRAMEWORK AND COMPUTING SYSTEMS SPECIFICATIONS

Application Motivation EXA2PRO tool(s) applied Metrics Computing Systems CPU/GPU/DFE Specs

CO2 capture

(i) Parallelize calculations of CO2
capture process model
(ii) Evaluate OpenMP, CUDA and
StarPU-MPI

(i) SkePU: Map skeleton
(ii) StarPU: (through SkePU
StarPU-MPI support)

(i) Speedup on single node
compared to original
(ii) Scalability

(i) Local cluster: Xeon E-2174G
(4 cores @3.8GHz), NVIDIA Quadro P620
(ii) ARIS: Xeon E5-2680v2 (20 cores @2.8GHz)
(iii) Piz Daint: Xeon E5-2690v3
(12 cores @2.6GHz), NVidia Tesla P100

Metalwalls

(i) Evaluate SkePU, StarPU
and DFE implementations
(ii) Evaluate scalability
through SkePU, StarPU

SkePU: MapPairsReduce
StarPU

Speedup, scalability
and Perf./Watt compared
to original

(i) Intel Haswell E5-2660v3
(12 cores @2.6GHz), Maxeler DFE Max5C
(ii) Piz Daint: Xeon E5-2690v3
(12 cores @2.6GHz), NVidia Tesla P100

Brain
Modeling

Evaluate OpenMP, GPU and
StarPU-MPI implementations

SkePU: Map skeleton
with MatRow access proxy

(i) Execution time on single
node compared to original
(ii) Scalability

(i) Local Cluster: 2x Intel Xeon Gold 6138
(40 cores @2GHz) NVidia Tesla V100 GPU
(ii) Tetralith cluster: 2x Xeon Gold 6130
(2x16 cores @2.1GHz)

ODE solver
Evaluate SkePU with an iterative
data-parallel application with a
long dependence chain

SkePU: Map, Reduce,
MapReduce, MapOverlap

(i) Speedup on single node
(ii) Scalability

Tetralith cluster: 2x Xeon Gold 6130
(2x16 cores @2.1GHz)

applications were selected based on the following two criteria:
i) To belong to different application domains ii) To be HPC
applications currently deployed in HPC clusters, which aim
at evaluation on heterogenous large-scale computing systems.
Specific tools of the EXA2PRO framework were applied to
each application, based on each application requirements, as
shown on Table III.

A. CO2 capture process design and control

This application pertains to the design of efficient and robust
CO2 capture systems. The employed CO2 capture process
models and overall design optimization approach are described
in [23]. The goal was to test for the first time advanced
programming models, to evaluate the application on hetero-
geneous systems and large number of nodes and to assess
its scalability and speedup. The size of the solved problems
ranges from 4× 104 to 4× 106 algebraic equations, whereas
tests are performed in up to 1000 CPU threads and to GPUs in
a local cluster, the ARIS and Piz Daint supercomputers. The
Map skeleton of SkePU is used as illustrated in Fig. 5, where
it is compared to the original, sequential code.

In the CO2 capture case, the core operation ported to SkePU
is represented by the non-linear system of algebraic equations
that are used to model the chemical process system [23]. The
ported functions are used in a sequence of two calculation
stages. In the first stage, the functions are used within a con-
strained optimization problem formulation, to determine the
optimum solution under steady-state operation. In the second
stage, the Karush-Kuhn-Tucker optimality conditions [24] are
used to transform the problem into an equivalent algebraic for-
mulation [25]. This is used as part of a homotopy-continuation
method that employs a predictor-corrector numerical technique
to identify an optimum solution under external variability,
within a control structure. In both stages, the equality and
inequality constraints of the constrained optimization problem
and their gradients are implemented in SkePU. The algorithms
used in the two stages are IPOPT [26] and PITCON [27].
The former calls the functions in SkePU to calculate the
Hessian and to perform the Newton step for the solution of
the nonlinear equations.

Fig. 6(a) depicts the speedup based on the total execution
time, using SkePU parallel backends over single-core execu-
tion, to evaluate the CO2 capture model for an increasing
model size. The total execution time comprises the times for
the following tasks: (a) The time to create-allocate a SkePU
vector to store the output. (b) The call to the SkePU skeleton
(c) The SkePU flush operation to make sure that the vector’s
elements are valid in main memory. In contrast with (a) and
(b), this task has an impact only when a GPU backend is used.

Fig. 6(b) shows the time performance of each task that
makes up the total time reported in Fig. 6(a). The total time
used in the speedup bar for OpenMP is the sum of the time
for the OpenMP call task (orange line) and the time for the
SkePU vector create task (blue line). The total time used in
the speedup bar for CUDA is the sum of the time for the
CUDA call task (green line), the time for the CUDA flush task
(red line) and the time for the SkePU vector create task (blue
line). The OpenCL case is not discussed as the performance
is similar to that of CUDA.

In the OpenMP case, when the mathematical model com-
prises fewer equations, the total time is mainly due to the
OpenMP call task (orange line), with the SkePU vector create
task having a much smaller contribution. When the number
of equations increases, the OpenMP call task is still slower
but the vector create task has a significant contribution to the
overall time. This behavior leads to an increase in the total
time, which is reflected in the reduction of the speedup shown
in Fig. 6(a). In the CUDA case, it appears from Fig. 6(b)
that for fewer equations the total time is dominated by the
CUDA call task (green line). As the number of equations
increases, there is an intense change (increase) in the slope
of the CUDA skeleton call task (green line), indicating the
additional effort needed to solve a problem of larger size.
The similar execution time between CUDA and OpenMP at
or above 400 × 103 equations, is due to the very efficient
CPU of the local cluster, as opposed to its less efficient GPU
(see also Fig. 7(c)). The speedup is considerably higher for a
larger number of equations, because the larger problem size
is executed considerably faster in the GPU, compared to the
single CPU. This is despite that the actual CUDA call time
increases as the number of equations increases.

7

1 ! O r i g i n a l k e r n e l :
2 ...
3 type(Modules) :: m(MODEL_SIZE)
4

5 ! D e c l a r a t i o n o f v a r i a b l e s v , e , pr , coe f , hv
6 ...
7

8 do i = 1, MODEL_SIZE
9 ! Core o p e r a t i o n s o f CO2 c a p t u r e model

10 get_variables(jvar(i, ABS_TOP), &
11 jfeed(i, ABS_TOP), x, v)
12 get_enthalpy(v, e)
13 lagrange(v%leng, v%presbot, coef, pr)
14 get_helper_variables(v, pr%prescp, hv)
15 ev_f(v, e, pr, coef, hv, m(i)%f_abs_top)
16 ... ! For o t h e r modules i n t h e p r o c e s s
17 end do
18 ...

1 / / EXA2PRO a p p l i e d t o t h e k e r n e l :
2 #include <skepu>
3 ...
4 Modules co2_model_skepu(/ / d e f i n i t i o n o f u s e r f u n c t i o n
5 skepu::Index1D index,
6 const skepu::Vec<int> jvar,
7 const skepu::Vec<Feed> jfeed,
8 const skepu::Vec<Vars> vars)
9 {

10 Modules m;
11 Feed feed_ = jfeed.data[index.i];
12 const Vars vars_ = vars.data[index.i];
13

14 / / D e c l a r a t i o n o f v a r i a b l e s v , e , pr , coe f , hv
15 ...
16

17 int jvar_ = jvar.data[ABS_TOP];
18 int *jfeed_ = &feed_.abs_top[0];
19 / / Core o p e r a t i o n s o f CO2 c a p t u r e model
20 get_variables(jvar_, jfeed_, vars_.x, &v);
21 get_enthalpy(&v, &e);
22 lagrange(v.leng, v.presbot, &coef, &pr);
23 get_helper_variables(&v, pr.prescp, &hv);
24 ev_f(&v, &e, &pr, &coef, &hv, &m.f_abs_top[0]);
25

26 ... / / For o t h e r modules i n t h e p r o c e s s
27 return m;
28 }
29 ...
30 extern "C" void x2p_skepu(
31 const int n, const double x[],
32 const int m, double f[])
33 {
34 skepu::Vector<Modules> vector(MODEL_SIZE);
35 / / i n s t a n t i a t e Map s k e l e t o n t o b u i l d a ” f u n c t i o n ”
36 auto calculate = skepu::Map<0>(co2_model_skepu);
37

38 / / c a l l t h e s k e l e t o n i n s t a n c e
39 calculate(vector, jvar_skepu_vec(),
40 jfeed_skepu_vec(), vars_skepu_vec(n, x));
41

42 vector.flush();
43 copy_skepu_vector_to_fortran(vector, f);
44 }

Fig. 5. Original and EXA2PRO CO2 capture code.

Fig. 7(a) shows that when only the call task is considered,
speedup is observed due to the use of SkePU in both the
OpenMP and CUDA cases. The same pattern also appears in
Fig. 7(b), but Piz Daint enables higher speedup, especially for
the CUDA case and large number of equations. The reason, is
that, as shown in Fig. 7(c), the Piz Daint GPU (Tesla P100)
is much faster than the local cluster GPU (Quadro P620).

Fig. 7(d) shows the execution time, in a log-log graph, of
1000 simulations of a CO2 capture process model consisting
of 4× 108 equations for an increasing number of CPU cores
and up to 64 nodes. Overall, the method scales nicely up to
200 cores as it is near to the ideal line. However, as the number

40 400 4000

Number of CO2 model equations (x103)

0

1

2

3

4

Sp
ee

du
p

(a)
OpenMP
OpenCL
CUDA

101 102 103 104

Number of CO2 model equations (x103)

10−6

10−5

10−4

10−3

10−2

10−1

Ti
m

e
[s

]

(b)

SkePU create
OpenMP call
CUDA call
CUDA flush

Fig. 6. CO2 capture: (a) Speedup using SkePU for various backends on a
single node, considering all tasks of Fig. 5 , (b) Break down of time for tasks
create of SkePU vector, call with OpenMP, call with CUDA and flush with
CUDA. (Results on Local Cluster (single node) for both figures).

40 400 4000
0

2

4

Sp
ee

du
p

(a)

40 400 4000

Number of CO2 model equations (x103)

0

20

40

60

Sp
ee

du
p

(b) OpenMP
CUDA

102 103 104

Number of CO2 model equations (x103)

10−6

10−5

10−4

10−3

10−2

10−1

Ti
m

e
[s

]

(c)

CPU Piz Daint
GPU Piz Daint

CPU Cluster
GPU Cluster

1 10 100 1000
cores

102

103

104

Ti
m

e
[s

]

(d)

Theoretical
SkePU-StarPU MPI

Fig. 7. CO2 capture: (a) Speedup when only the call task is considered in all
cases. (Local Cluster) (b) Speedup for increasing number of equations when
only the call task is considered (Piz Daint). (c) Execution time on CPUs and
GPUs of Piz Daint and Local Cluster (d) Execution time on ARIS using
SkePU-StarPU MPI backend for multiple MPI nodes.

of cores increases, and a fixed workload is distributed to the
parallel cores, the task size per core decreases. In this respect,
the application does not scale above 200 cores, since the task
size becomes lower than 1ms and the runtime overhead per
task, as explained in earlier works [28], has significant impact
on the execution time. Therefore, even if we run experiments
above 1000 cores, no speedup is expected. The model of the
CO2 capture process is flexible and enables the representation
of phenomena at different levels of fidelity. The considered
range of equations represents typical models of medium to
higher fidelity, exhibiting significant speedup and scalability
compared to the original implementation.

The effort of applying SkePU to the CO2 capture was per-
formed by a senior engineer, already familiar with the appli-
cation, that required about 2 weeks of training on EXA2PRO
and 4 weeks of development.

B. Supercapacitor simulation

Metalwalls is a classical molecular dynamic code dedicated
to the accurate simulation of electrochemical systems like su-
percapacitors, devices able to store energy under electrostatic
form. The typical simulated system is made of two carbon

8

1 / / O r i g i n a l k e r n e l :
2 double V[num_atoms], z[num_atoms], q[num_atoms];
3 for (i = 0; i < num_atoms; i++) {
4 vi = 0.0;
5 for (int j = 0; j < num_atoms; j++) {
6 zij = z[j] - z[i];
7 pot_ij = exp(-zij*zij;) + zij*erf(zij));
8 V[i] = V[i] - q[j] * pot_ij;
9 }

10 }

1 / / SkePU−i z e d code :
2 [[skepu::userfunction]]
3 real_t map_function(skepu::Index2D i, const real_t zi,

const real_t zj, skepu::Vec<real_t> q){
4 real_t zij = zi - zj;
5 real_t qj = q[i.col];
6 return - qj * (exp(-zij*zij) + zij*erf(zij));
7 }
8

9 [[skepu::userfunction]]
10 real_t plus (real_t a, real_t b) { return a + b; }
11

12 auto pairs2reduce = skepu::MapPairsReduce(map_function,
plus);

13 pairs2reduce.setReduceMode(skepu::ReduceMode::RowWise);
14 pairs2reduce(V,z, z, q);

Fig. 8. Original and SkePU-ized code for the serial version of a single kernel
of Metalwalls.

electrodes immersed in an ionic liquid. At each time step,
the simulation computes with a matrix-free conjugate gradient
the charge density on electrodes such that they conserve a
constant potential which is the heart of the mini-app studied
in this paper. Details on the code and references to the model
can be found in [29].

The motivation of using EXA2PRO for this application is
to evaluate the programming effort to rewrite its compute
intensive part and measure to which extent the original good
performance can be retrieved with SkePU, StarPU and MaxJ
(i.e. the programming model of DFEs).

The original code is written in Fortran 90 and is parallelized
with MPI. With the introduction of OpenACC directives, a
single GPU version is also available. Fig. 8 shows how its
serial version has been rewritten in the SkePU framework
with a single MapPairReduce. The code complexity is similar
to serial code while enabling its parallel execution on CPU
and GPU. In order to maximize data locality, the original
implementation computes by blocks the contribution, of each
atom pairs, to the electrostatic potential V , instead of span-
ning the whole atoms array on both loops as shown here.
Blocks are then distributed among the different MPI ranks
to enable parallel computations on cores and nodes. As there
is no data distribution, all ranks have all data and a single
MPI Allreduce aggregates all contributions and updates all
ranks. The StarPU porting introduces a shared memory level
of parallelization. It turns each block computation into a task
and the runtime distributes them on the different cores within
a node. Finally, the DFE implementation required to rethink
completely the algorithm in order to match FPGA constraints.
All initialisation and setup phases were left untouched, but
the roughly 2K lines of C++ for the computationally intensive
kernels have been rewritten in the MaxJ language, compiled
with the Maxeler toolchain and linked with the original code
as a dynamic library.

Original
MPI

Original
OpenAcc MaxJ

Intel Haswell
E5-2660 v3

(12 cores @ 2.6 Ghz)
NVidia P100 Maxeler

Max5C

Original
MPI

Original
OpenAcc MaxJNative

StarPU SkePU

Intel Haswell
E5-2660 v3

(12 cores @ 2.6 Ghz)
NVidia
P100

Maxeler
Max5C

Fig. 9. Metalwalls: Comparison of software technologies on Metalwalls in
terms of execution time (top left), performance per Watt (top right), multi-
node speedup (bottom left) and multi-node time to solution on Piz Daint.

These implementations have been evaluated on the test-case
used in production in [30] that contains 42490 electrode atoms.
In the context of material science for supercapacitors, this is
a large test case. It is however small considering computing
platform capabilities and is thus a limiting factor for extreme
scalability.

Fig. 9 top left shows the speedup in execution time of the
different programming models on different architectures. The
native StarPU implementation outperforms the original MPI by
only 10%. The expected gains coming from the shared mem-
ory level introduced are consumed by the scheduler overhead.
The relative small tasks size submitted amplifies this overhead
and the regular behaviour of the application allows the static
distribution within MPI to balance efficiently the load. As a
result, the application does not benefit so much from StarPU.
The SkePU implementation degrades performance by nearly
a factor three. Data locality of the generated implementation
cannot compete yet with the original optimised version. The
DFE implementation is 20x faster than the original CPU
version but 2x slower than the original GPU version. This very
large discrepancy with CPU can be explained by the fact that
the application is mostly compute bound. Thus, the computing
power of both devices can be efficiently leveraged and time
to solution of the DFE implementation is behind the GPU but
still competitive. Fig. 9 top right shows the performance per
Watt behaviour of these implementations. The 50W TDP to
operate the FPGA compared to 250W TDP of a GPU makes
it more than two times more efficient in terms of performance
per watt. This factor is above 50 if we compare to the CPU
and makes FPGA a relevant device for the exascale era. Fig. 9
bottom left shows the multi node speedup normalized to the
original pure MPI version. All versions scales very well up
to 32 nodes (384 cores). Finally, Fig. 9 bottom right shows
execution times and the ordering of Fig. 9 top left is respected.

In terms of programming effort, the compute intensive part
of the application (2000 LOC in total) was successfully ported
to SkePU and StarPU programming models in about two

9

weeks. The resulting code base of the StarPU implementation
(650 additional LOC) has a higher complexity compared
to the original MPI implementation, while the SkePU one
(450 specific LOC that replaces original kernels) is much
simpler and slightly shorter as it is very close to a serial
implementation. Earlier works that evaluate the complexity of
StarPU implementations can be found in the literature [28].
The DFE porting with MaxJ took however between eight
and twelve months. The differences in approach and learning
environment are the main reasons for this large gap and
the resulting implementation (925 specific LOC that replaces
original kernels) is even more complex than the original MPI
one. Despite such a discrepancy, the time needed to obtain an
efficient FPGA implementation is still much lower compared
to the development of a low level VHDL implementation.

C. Brain Modeling

The Brain Modeling application is a time-driven simulator
of biophysically detailed, Extended Hodgkin-Huxley (eHH)
models of individual neurons [31] and supports the entire Neu-
roML standard [32]. It is a ground-up new design that focuses
on supporting large-scale networks on HPC infrastructures. It
can be considered an electrical circuit, in which the non-linear
dynamics require step-by-step simulation and the continues in-
teraction between the neurons requires communication at each
step. Therefore, at each step, for each neuron the following are
applied: i) Accumulation of interaction of each neuron with
its adjacent neurons (coupling strength between each neuron
pair is defined in a weight matrix) and ii) Simulation progress
considering internal dynamics and inter-neuron currents.

We applied SkePU in the brain modeling application, to
target multiple parallelization platforms, including single-node
OpenMP and OpenCL GPU, and multi-node MPI+OpenMP,
without substantial changes to the original algorithm. Since the
acceleration platforms incur additional development overhead,
the EXA2PRO porting features enable rapid evaluation of the
application on different architectures.

The Map skeleton uses an input data container, to produce
an output element for each one in the input containers,
based on a user function. This skeleton fit well with the
main computational pattern of the brain modeling application,
because within each simulation step, each neuron’s state can
be advanced independently. The memory pattern is similar to
matrix-vector multiplication. The user function provided to
the Map skeleton produces each neuron’s updated state, using
present data and a weight matrix.

A code snippet about how the Map skeleton was applied to
the original brain modeling application, is shown in Fig.3. The
original application code is OpenMP-enabled and was used
as performance baseline. The derived SkePU implementations
were evaluated in terms of performance and scalability.

Evaluation results of SkePU GPU and SkePU OpenMP
under 80 threads, on a single node (Intel Xeon with 2x20
H/T cores) are shown in Fig. 10. SkePU GPU implemen-
tation significantly outperforms the corresponding OpenMP.
Additionally, the SkePU OpenMP implementation provides
slightly higher performance than the original for network

0

1

2

3

4

5

6

7

8

10K 20K 30K 40K

Sp
e

e
d

u
p

 c
o

m
p

ar
e

d
 t

o
 o

ri
gi

n
al

Problem size (number of neurons)

SkePU-OpenMP SkePU-GPU

Fig. 10. Brain modeling: Speedup on Local Cluster (single node) of SkePU-
OpenMP and SkePU-GPU compared to original OpenMP implementation.

Fig. 11. Brain modeling: Execution time on Tetralith with 32-core CPU nodes,
for three versions of the SkePU port of the Brain simulation with Outer MPI
(red), Inner MPI with Mat access proxy (Fig. 3, brown), and Inner MPI with
MatRow container access proxy (yellow), the latter of which scales better for
multiple MPI nodes. For comparison, we show the time of a handwritten MPI
code (green, with same access pattern as MatRow) and the ideal scaling line
extrapolating single-core performance of the handwritten code.

sizes 30K or higher, due to the fact that SkePU uses more
aggressive defaults in OpenMP tuning parameters than the
original implementation. Finally, experiments showed that
CPU performance is lower when using less than 80 threads
for the CPU implementation, for almost all input sizes. In the
10K test case, slightly higher speedup can be achieved with a
lower number of threads (about 8% with 40 SkePU threads).

Fig. 11 shows the execution time of 200 time steps of
three SkePU versions of the brain simulation application
with 90, 000 neurons and dense connectivity pattern on up
to 32 nodes of the Tetralith cluster at NSC Linköping. The
Inner MPI version using the most generic Mat container
access proxy scales poorly, due to the excessive coherence
communication volume required for this access pattern. The
Outer MPI version (with hand-written MPI code and not using
StarPU) has lower overhead for up to 4 nodes but shows worse
scaling behavior than the Inner MPI version with the more
specific MatRow container access proxy.

The technical work of applying the EXA2PRO program-
ming model in the brain modeling application was performed
by an experienced engineer who was familiar with the original
application. The training time required to get familiar with
SkePU was about 2 weeks and one week was required to apply
SkePU. The EXA2PRO-specific LOC added to the original
application were about 50.

10

Fig. 12. Execution time (secs) of the SkePU 3 port of Variant A of the
Embedded Runge-Kutta ODE solver implementation in the Libsolve library
[33], solving the Brusselator 2D-MIX problem for system size 3000×3000
on up to 32 nodes of Tetralith, using the MPI+OpenMP backend of SkePU.

D. ODE Solver

Libsolve3 [33] is a library of general-purpose Runge-Kutta
solvers for ODE integration. We consider variant A of the
embedded RK solver algorithm from libsolve with 7 stage
vectors (DOPRI5) and adaptive step size control, integrating
the 2D Brusselator equation which describes the reaction of
two chemical substances.

The solver core uses 9 different skeleton instances, of
type Map, Reduce, and MapReduce for the BLAS-like
operations calculating the stage vectors in the solver core, and
MapOverlap for the function evaluations. For system size
N = 3000 and initial step size H = 1, the solver iterates
over 4,441 time steps and performs 244,353 calls to skeleton
instances in total (including the initialization phase), of which
31,089 calls are function evaluations with MapOverlap.
Most skeleton calls for a time step are dependent on each
other, and each time step depends on the previous one.

Fig. 12 shows SkePU 3 performance results for the embed-
ded ODE solver A from Libsolve solving the Brusselator 2D-
MIX problem with 7 stage vectors for the above settings on
the Tetralith cluster, using the MPI+OpenMP cluster backend
of SkePU on up to 32 nodes with 32 cores each, with one
MPI rank per node using 31 OpenMP threads per rank (one
core is used by the StarPU-MPI management thread).

For a novice SkePU programmer familiar with the appli-
cation code base, we estimate about 2 weeks of training time
and 1 week of SkePU-ization time. Overall, the solver core has
about 200 LOC for the time step loop (and 320 LOC including
initialization and function evaluation), which is about the same
code size as the original sequential code (180 LOC).

E. Discussion

In this subsection we summarize the main observations by
the analysis of evaluation results.

Application developers were able to explore a variety
of heterogeneous architectures, by using the single-source
multi-backend feature of EXA2PRO: CO2 capture and Brain
modeling were evaluated on CPU, GPU and MPI clusters,
while Metalwalls on CPU, DFEs and MPI cluster. Therefore,
developers were able to investigate application performance
(and energy consumption in some cases, such as Metalwalls)
on different computing systems and accelerators. For example,

3Libsolve repository: https://github.com/UBT-AI2/rk

the CO2 capture application was deployed and evaluated for
the first time on a GPU. The most interesting observations
from the evaluation of each application on different architec-
tures, having the corresponding native code as baseline, are
shown on Table IV.

In most cases, developers used the backend implementa-
tions of computations already provided by the framework,
thus improving development productivity significantly. The
only exception is the MaxJ implementation in Metalwalls,
which was manually provided, since MaxJ support by SkePU
skeletons is still limited. However, in the CO2 capture case,
the evaluation on GPU would not be initially considered a
viable option, due to the very high programming effort of
developing an OpenCL or CUDA port. However, after apply-
ing the EXA2PRO framework, the evaluation on GPU was
performed automatically, since the SkePU already provides
a GPU backend for Map skeleton (Fig. 7). (The available
skeletons and the corresponding backends, already provided
by the EXA2PRO framework are shown in Table II).

The data-flow programming model applied to Metal-
walls provided promising results. The DFE implementa-
tion outperforms the corresponding GPU in terms of per-
formance/watt, as shown in Fig. 9, showing that data-flow
can be a relevant model for exascale computing. However,
the programming effort required to port the application to
a DFE is relatively high. (As mentioned in the previous
section, it is almost 12 months). Reducing the amount of
programming effort needed will encourage more application
developers to evaluate the data-flow programming model and
exploit the DFE accelerators. The EXA2PRO framework al-
ready supports DFE accelerators though the runtime system.
However, support will be extended to SkePU, as well, to
further increase data-flow programming model support and
development productivity.

Based on the experiences collected by the application de-
velopers who applied the EXA2PRO framework to the four
applications, the effort to apply the framework mainly
depends on the following two factors: (i) Assuming that
developers are familiar with the application source code, the
extent by which the original application provides well-isolated
computation kernels, significantly affects the development
time required to apply the EXA2PRO high-level programming
interface. (ii) The extent by which the EXA2PRO tools (e.g.
SkePU) support the application computation algorithms affects
the amount of co-design that will be required between the
EXA2PRO tools and the applications to enable the efficient
use of the framework.

When the application algorithm matches one or more of
the skeletons of Table II, EXA2PRO can be applied with
relatively limited effort. Table IV shows the training, the
development effort and the EXA2PRO-specific LOC for each
one of the applications used for evaluation. It is important
to highlight that development effort to manually port an
application to each one of the backends of Table IV is normally
higher than applying EXA2PRO. Many BLAS routines can be
expressed by SkePU skeletons. We are currently adding BLAS
support for dense matrices atop SkePU, which will additionally
reduce the LOC count as the used skeletons need no longer be

11

TABLE IV
CUMULATIVE EVALUATION RESULTS AND PROGRAMMING EFFORT TO APPLY THE EXA2PRO FRAMEWORK TO EACH APPLICATION

CO2 capture Metalwalls Brain modeling ODE solver
Native application
vs. EXA2PRO

Up to 3x higher speedup
for OpenMP compared to GPU

2.6x higher perf/watt
on DFEs SkePU 4x slower (i) 7x higher exec. time on GPU

(ii) better scaling behavior
Scaling to
32× 32 cores

Training time 2 weeks 2 months 1 week (est.) weeks (est.) 2 weeks
Developing time 4 weeks 12 months 2 weeks (est.) week (est.) 1 week
EXA2PRO-specific LOC ∼100 925 450 ∼50 ∼20

instantiated explicitly, for example in the libsolve ODE solver
which uses BLAS1 and BLAS2 functionality.

When the EXA2PRO skeletons do not match the computa-
tional pattern of the application, multi-variant components can
be developed, as explained in Section III, and/or StarPU can
be directly applied. However, the programming effort in these
cases is often much higher. Finally, the EXA2PRO website
contains a lot of relevant training material [1] to make the
framework more accessible to developers.

With respect to the complexity of the EXA2PRO application
versions, evaluation results show that the use of EXA2PRO
generally results in fewer LOC, since the EXA2PRO tools
encapsulate the platform specific implementations. For exam-
ple, the CO2 capture, application developers reported 36-64%
fewer lines code compared to manually developed CUDA,
OpenCL and MPI versions of the application. Similarly,
Metalwalls developers stated that EXA2PRO Metalwalls code
is simpler and shorter (Section IV-B), resulting in a more
maintainable codebase.

Exascale computing systems are expected to consist of
heterogeneous nodes. Developers who adopted the EXA2PRO
framework evaluated applications across a variety of different
architectures and efficiently exploited accelerators, such as
GPUs, FPGAs and more complex computing architectures
compared to the ones in which they were originally de-
ployed. Thus, EXA2PRO allows applications to grow and
to exploit more complex systems with limited programming
effort, contributing to the transition of applications to exascale
computing.

V. CONCLUSION

The complexity of exascale systems, including heterogene-
ity aspects, pushes for more effective programming models.
The EXA2PRO framework aims at improving application
developers’ productivity, by lowering the barrier of access to
exascale computing systems to the scientific community and
industry. In this work, we applied the EXA2PRO framework to
four applications and demonstrated how it can be used to au-
tomatically deploy and evaluate applications to a wide variety
of heterogeneous clusters. Thus, the EXA2PRO framework, by
hiding platform-specific details from developers, contributes to
allowing more applications to move towards the direction of
exascale computing systems.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their insightful comments and suggestions.

We thank Mahder Gebremedhin for help with the imple-
mentation of the Mercurium extensions, Suejb Memeti and

Stavroula Zouzoula for help with the implementation of the
ComPU extensions and Sotirios Panagiotou for help with the
brain modeling application.

This work was supported by computational time granted
from i) the National Infrastructures for Research and Technol-
ogy S.A. (GRNET) in the National HPC facility - ARIS - un-
der project EXACO2, ii) NSC Linköping and SNIC (Tetralith)
under projects SNIC 2016/5-6 and SNIC 2020/13-113, and iii)
PRACE (Piz-Daint) under project pr114 ”EXA2PRO”.

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme, under grant
agreement No. 801015 (EXA2PRO, https://exa2pro.eu/).

REFERENCES

[1] “EXA2PRO,” https://exa2pro.eu/, [online; accessed 2021-01-29].
[2] “EPEEC,” https://epeec-project.eu/publications, [online; accessed 2021-

01-29].
[3] “EPIGRAM-HS,” https://epigram-hs.eu/, [online; accessed 2021-01-29].
[4] “ASPIDE,” https://www.aspide-project.eu/, [online; accessed 2021-01-

29].
[5] “MPI/MPICH extensions by ECP,” https://cutt.ly/wkwUr5I, [online;

accessed 2021-01-29].
[6] H. C. Edwards and D. Sunderland, “Kokkos array performance-portable

manycore programming model,” in Proceedings of the 2012 Interna-
tional Workshop on Programming Models and Applications for Multi-
cores and Manycores, 2012, pp. 1–10.

[7] N. Voss, T. Becker, O. Mencer, and G. Gaydadjiev, “Rapid development
of Gzip with MaxJ,” in International Symposium on Applied Reconfig-
urable Computing. Springer, 2017, pp. 60–71.

[8] S. Wienke, P. Springer, C. Terboven, and D. an Mey, “OpenACC—first
experiences with real-world applications,” in Euro-Par 2012 Parallel
Processing. Springer, 2012, pp. 859–870.

[9] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Mar-
torell, and J. Planas, “Ompss: a proposal for programming heterogeneous
multi-core architectures,” Parallel Processing Letters, vol. 21, no. 02, pp.
173–193, 2011.

[10] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Hérault, and J. Don-
garra, “PaRSEC: A programming paradigm exploiting heterogeneity for
enhancing scalability,” Computing in Science and Engineering, vol. 15,
no. 6, pp. 36–45, Nov. 2013.

[11] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU:
A unified platform for task scheduling on heterogeneous multicore
architectures,” Concurrency and Computation: Practice and Experience,
Special Issue: Euro-Par 2009, vol. 23, pp. 187–198, Feb. 2011.

[12] U. Dastgeer, L. Li, and C. Kessler, “Adaptive implementation selection
in the SkePU skeleton programming library,” in Advanced Parallel
Processing Technologies. Springer, 2013, pp. 170–183.

[13] A. Ernstsson and C. Kessler, “Multi-variant user functions for platform-
aware skeleton programming,” in Proc. of ParCo-2019 conference,
Prague, Sep. 2019, in: I. Foster et al. (Eds.), Parallel Computing:
Technology Trends, series: Advances in Parallel Computing, vol. 36,
IOS press, Mar. 2020, pp. 475–484.

[14] T. G. Mattsson, B. A. Sanders, and B. L. Massingill, Patterns for parallel
programming. Addison-Wesley, 2005.

[15] A. Ernstsson, J. Ahlqvist, S. Zouzoula, and C. Kessler, “SkePU 3:
Portable high-level programming of heterogeneous systems and HPC
clusters,” Int. Journal of Parallel Programming, May 2021.

[16] C. Kessler et al., “SkePU: Autotunable multi-backend skeleton pro-
gramming framework for multicore CPU and multi-GPU systems,”
https://skepu.github.io, 2020.

12

[17] A. Ernstsson, L. Li, and C. Kessler, “SkePU 2: Flexible and type-safe
skeleton programming for heterogeneous parallel systems,” International
Journal of Parallel Programming, vol. 46, pp. 62–80, 2018.

[18] T. Öhberg, A. Ernstsson, and C. Kessler, “Hybrid CPU–GPU execution
support in the skeleton programming framework SkePU,” The Journal
of Supercomputing, Mar 2019.

[19] U. Dastgeer, L. Li, and C. Kessler, “The PEPPHER composition tool:
performance-aware composition for GPU-based systems,” Computing,
vol. 96, no. 12, pp. 1195–1211, 2013.

[20] J. Enmyren and C. W. Kessler, “SkePU: A multi-backend skeleton
programming library for multi-GPU systems,” in Proceedings of the
fourth international workshop on High-level parallel programming and
applications. ACM, 2010, pp. 5–14.

[21] U. Dastgeer and C. Kessler, “Smart containers and skeleton program-
ming for GPU-based systems,” Intern. Journal of Parallel Programming,
vol. 44, no. 3, pp. 506–530, 2016.

[22] A. Ernstsson and C. Kessler, “Extending smart containers for data
locality-aware skeleton programming,” Concurrency and Computation:
Practice and Experience, vol. 31, no. 5, p. e5003, 2019.

[23] T. Damartzis, A. I. Papadopoulos, and P. Seferlis, “Optimum synthesis
of solvent-based post-combustion co2 capture flowsheets through a gen-
eralized modeling framework,” Clean Technologies and Environmental
Policy, vol. 16, no. 7, pp. 1363–1380, 2014.

[24] L. Biegler, Nonlinear Programming: Concepts, Algorithms, and Appli-
cations to Chemical Processes, ser. MOS-SIAM Series on Optimization.
Society for Industrial and Applied Mathematics, 2010.

[25] P. Seferlis and J. Grievink, “Process design and control structure screen-
ing based on economic and state controllability criteria,” Computers &
Chemical Engineering, vol. 25, pp. 177–188, 01 2001.

[26] A. Wächter and L. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Mathematical programming, vol. 106, pp. 25–57, 03 2006.

[27] W. C. Rheinboldt and J. V. Burkardt, “A locally parameterized contin-
uation process,” ACM Trans. Math. Software, vol. 9, no. 2, 1983.

[28] G. Tzanos, V. Soni, C. Prouveur, M. Haefele, S. Zouzoula, L. Pa-
padopoulos, S. Thibault, N. Vandenbergen, D. Pleiter, and D. Soudris,
“Applying StarPU runtime system to scientific applications: Experiences
and lessons learned.” Zenodo, Nov. 2020.

[29] A. Marin-Laflèche et al., “MetalWalls: A classical molecular dynam-
ics software dedicated to the simulation of electrochemical systems,”
Journal of Open Source Software, vol. 53, no. 5, pp. 178–183, 2020.

[30] T. Méndez-Morales, N. Ganfoud, Z. Li, M. Haefele, B. Rotenberg,
and M. Salanne, “Performance of microporous carbon electrodes for
supercapacitors: Comparing graphene with disordered materials,” Energy
Storage Materials, vol. 17, pp. 88–92, 2019.

[31] E. Lewis, “Neuroelectric potentials derived from an extended version
of the Hodgkin-Huxley model,” Journal of theoretical biology, vol. 10,
no. 1, pp. 125–158, 1966.

[32] R. C. Cannon, P. Gleeson, S. Crook, G. Ganapathy, B. Marin, E. Piasini,
and R. A. Silver, “LEMS: a language for expressing complex biological
models in concise and hierarchical form and its use in underpinning
NeuroML 2,” Frontiers in neuroinformatics, vol. 8, p. 79, 2014.

[33] M. Korch and T. Rauber, “Optimizing locality and scalability of em-
bedded Runge-Kutta solvers using block-based pipelining,” J. Parallel
Distributed Comput., vol. 66, no. 3, pp. 444–468, 2006.

Lazaros Papadopoulos is a senior research asso-
ciate at the Microprocessors and Digital Systems
Lab of the School of Electrical and Computer Engi-
neering of National Technical University of Athens,
Greece. He received his PhD in 2015. His research
interests include techniques and methodologies for
memory management optimizations. and high-level
programming models.

Dimitrios Soudris Prof. Dimitrios Soudris received
his Diploma in Electrical Engineering from the Uni-
versity of Patras, Greece, in 1987. He is currently
working as Professor in School of ECE of National
Technical University of Athens, Greece. His re-
search interests include reconfigurable architectures,
network-on-chip architectures and low-power VLSI
design.

Christoph Kessler is a Professor for Computer
Science at Linköping University, Sweden, where he
leads the Programming Environment Laboratory’s
research group on compiler technology and parallel
computing. His research interests include parallel
programming, compiler technology, code genera-
tion, optimization algorithms, and software compo-
sition/synthesis.

August Ernstsson is a final-year PhD student at the
Department of Computer and Information Science
(IDA) of Linköping University, Sweden. He received
his Masters degree in Computer Engineering in 2016
and his Licentiate degree in Computer Science in
2020 from Linköping University. He is the main
developer of the SkePU programming framework
since 2016. His main research interests are in high-
level parallel programming interface design targeting
multi-core heterogeneous systems and clusters. His
recent work concerns how modern C++ can be

leveraged and adapted to fit this purpose.

Johan Ahlqvist is a research assistant in the SkePU
development team at the Department of Computer
and Information Science (IDA) of Linköping Uni-
versity, Sweden. His research interests are in parallel
computing, advanced C++ and compiler technology.
He has developed the cluster backend for SkePU
atop StarPU-MPI and the SkePU plug-in to the
Mercurium framework.

Nikos Vasilas holds an MEng in Mechanical Engi-
neering and an MSc in Theoretical Informatics, Sys-
tems and Control Theory from the Aristotle Univer-
sity of Thessaloniki. He is a Research Associate at
the Chemical Process and Energy Resources Institute
(CPERI) of the Centre for Research & Technology
Hellas (CERTH), Greece.

Athanasios I. Papadopoulos holds an MEng in
Chemical Engineering from the Aristotle Univer-
sity of Thessaloniki, Greece and a PhD in Process
Systems Engineering from the University of Surrey,
UK. He is a Principal Research Scientist at the
Chemical Process and Energy Resources Institute
(CPERI) of the Centre for Research & Technology
Hellas (CERTH). His expertise is in the areas of
sustainable materials and process design, design of
reactive separation and renewable energy systems,
CO2 capture and utilization processes, heat-to-power

and heat-to-cooling cycles.

Panos Seferlis is a Professor at the School of Me-
chanical Engineering in the Machine Dynamics Lab-
oratory of the Aristotle University of Thessaloniki,
Greece. Since 1999, he has been collaborating in
various research fields at the Chemical Process and
Energy Resources Institute (CPERI) of the Centre
for Research & Technology Hellas (CERTH).

13

Charles Prouveur is a research Engineer in scien-
tific computing at the Centre national de la recherche
scientifique (CNRS), France.

Matthieu Haefele , PhD in computer is a CNRS
research engineer since 2014 at the Laboratory
of Mathematics and its Applications (LMAP) at
Université de Pau et des Pays de l’Adour, Pau,
France. With his expertise in HPC, he gives support
to mathematicians and physicists to use efficiently
supercomputers as well as producing maintainable
code.

Samuel Thibault is an Assistant Professor at the
University of Bordeaux, France. His researches re-
volve around task and data transfer scheduling in
parallel and distributed runtime systems. He is cur-
rently focused on the design of the StarPU runtime,
and more particularly its scheduling heuristics for
heterogeneous architectures and for distributed sys-
tems.

Athanasios Salamanis is a research scientist and
senior lead software engineer at the Centre for
Research & Technology Hellas (CERTH). His main
research interests include high performance com-
puting, big data analytics, time series forecasting,
machine learning and deep learning.

Theodoros Ioakimidis is a research associate at
the Information Technologies Institute (ITI) of the
Centre for Research and Technology (CERTH).

Dionysios Kehagias received his Diploma and Ph.D.
degrees in Electrical and Computer Engineering
from the Aristotle University of Thessaloniki, Thes-
saloniki, Greece, in 1999 and 2006, respectively.
He is currently a Principal Researcher with the
Information Technologies Institute of the Centre
for Research and Technology Hellas (CERTH). His
research interests include time-series analysis and
forecasting, big data analytics, machine learning and
algorithms for software engineering.

