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Hypotheses in Limited Data Scenarios

Imran Sheikh, Emmanuel Vincent, Irina Illina

Université de Lorraine, CNRS, Inria, Loria
F-54000 Nancy, France

Abstract

Training domain-specific automatic speech recognition (ASR) systems requires a

suitable amount of data comprising the target domain. In several scenarios, such

as early development stages, privacy-critical applications, or under-resourced

languages, only a limited amount of in-domain speech data and an even smaller

amount of manual text transcriptions, if any, are available. This motivates

the study of ASR language model (LM) training on a limited amount of in-

domain speech data. Early works have attempted training of n-gram LMs from

ASR N-best lists and lattices but training and adaptation of recurrent neural

network (RNN) LMs from ASR transcripts has not received attention. In this

work, we study training and adaptation of RNN LMs using alternate, uncertain

ASR hypotheses embedded in ASR confusion networks obtained from target

domain speech data. We explore different methods for training the RNN LMs

to deal with the uncertain input sequences. The first method extends the cross-

entropy objective into a Kullback–Leibler (KL) divergence based training loss,

the second method formulates a training loss based on a hidden Markov model

(HMM), and the third method performs training on paths sampled from the

confusion networks. These methods are applied to limited data setups including

telephone and meeting conversation datasets. Performance is evaluated under
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two settings wherein no manual transcriptions or a small amount of manual

transcriptions are available to aid the training. Moreover, a model adaptation

setting is also evaluated wherein the RNN LM is pre-trained on an out-of-domain

conversational corpus. Overall, the sampling method for training RNN LMs on

ASR confusion networks performs the best, and results in up to 12% relative

reduction in perplexity on the meeting dataset as compared to training on ASR

1-best hypotheses, without any manual transcriptions. However, the perplexity

reductions do not translate into equivalent WER reductions. A detailed analysis

of the perplexity reductions obtained by the different methods is performed in

order to understand this effect.

Keywords: automatic speech recognition; language models; recurrent neural

networks; confusion networks

1. Introduction

Automatic speech recognition (ASR) is now available as easy-to-integrate

commercial APIs (Kim et al., 2019) as well as open-source platforms (Rizk,

2019). A typical commercial ASR solution is powered by an acoustic model

(AM) and a language model (LM), which are trained on large amounts of speech5

data collected from end users and on large amounts of text data including the

corresponding manual text transcriptions. Open-source ASR alternatives are

backed by AMs and LMs trained on publicly contributed corpora of read speech

or monologues instead (Ardila et al., 2020; Pratap et al., 2020). While AMs are

portable across different application domains, such as travel, shopping, med-10

ical, etc., LMs that do not match the target domain result in a poor ASR

performance. Hence, training or adaptation of LMs on in-domain data remains

essential for application-specific ASR systems (Bellegarda, 2004).

Existing ASR LM adaptation approaches can be grouped into three overlap-

ping categories; viz. (a) combination of out-of-domain and in-domain texts or15

LMs (Pusateri et al., 2019; Huang et al., 2020), (b) adaptation of LMs to in-

domain text or features (Tam and Schultz, 2009; Deena et al., 2016; Gangireddy
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et al., 2016; Li et al., 2018), and (c) combination and optimization of multi-

domain LMs to the target domain (Ballinger et al., 2010; Irie et al., 2018; Raju

et al., 2018). Some of these approaches rely on offline training (Pusateri et al.,20

2019; Huang et al., 2020; Deena et al., 2016; Irie et al., 2018), while others per-

form a dynamic adaptation during test (Tam and Schultz, 2009; Ballinger et al.,

2010; Gangireddy et al., 2016; Li et al., 2018). The offline training approaches

have been tried with training text comprising manually verified transcriptions of

hundreds of hours of speech from the target domain and sometimes additional25

text from other domains. Such manually verified text resources are scarce or

even unavailable for most languages or applications. Moreover, in several use

cases, the amount of in-domain speech data may be limited too. This is the

case for instance in the early development stages of a new application where

data is elicited from developers or beta-testers, for privacy-critical applications30

where no data is collected from the end users, or for under-resourced languages

where the amount of data collected from the end users increases slowly over

time. Exploiting such limited data is therefore crucial. This motivates us to

study training and adaptation of LMs from a limited amount (25–50 hours) of

in-domain speech data.35

Early works have demonstrated that ASR transcriptions of spoken utter-

ances can be successfully used for adaptation of traditional n-gram LMs (Niesler

and Willett, 2002; Bacchiani and Roark, 2003; Tur and Stolcke, 2007). Going

beyond the 1-best ASR transcripts, prior works have used web search and re-

trieval methods to augment LM training data (Langzhou Chen et al., 2003;40

Meng et al., 2010; Lecorvé et al., 2012), filtering of ASR transcripts based on

confidence scores (Haznedaroglu and Arslan, 2014; Xie and Chen, 2013) and,

more interestingly, training from ASR N-best lists and lattices (Bacchiani et al.,

2006; Kuznetsov et al., 2016; Levit et al., 2018). Apart from these works on

n-gram LMs, discriminative LMs have relied on ASR decoded hypotheses (Xu45

et al., 2009; Çelebi et al., 2012). However, training and adaptation of modern

recurrent neural network (RNN) LMs from ASR transcripts has not received

attention. The limited prior works along this direction have studied test time
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adaptation (Gangireddy et al., 2016; Li et al., 2018) or contextualisation (Deena

et al., 2016) of RNN LMs based on 1-best ASR transcripts.50

We explore training and adaptation of RNN LMs using alternate, uncertain

ASR hypotheses obtained from target domain speech data. ASR outputs in

the form of lattices and confusion networks (a.k.a. sausages) (Xu et al., 2011)

carry information on competing ASR hypotheses, and often contain alternate

hypotheses which have lower error rates compared to the 1-best ASR transcript.55

Early works have shown their effectiveness in intent classification (Hakkani-

Tür et al., 2006; Yang and Liu, 2015) and machine translation (Zhang and

Kikui, 2006; Matusov et al., 2005) tasks. More recent works on these tasks have

extended RNNs to ASR lattices (Ladhak et al., 2016; Sperber et al., 2017; Huang

and Chen, 2020) and confusion networks (Jagfeld and Vu, 2017; Pal et al., 2020).60

These works follow an encoder-decoder architecture, in which an encoder RNN

first encodes the ASR lattice or confusion network into a vector representation.

The encoded representation is then fed to the decoder to classify the intent or

to generate the translated text. In contrast to these tasks, training RNN LMs

on ASR decoded lattices or confusion networks of unlabeled speech does not65

have a completely certain, or manually verified, target to guide the training.

In this work, we propose three different methods to learn RNN LMs from

ASR confusion networks, with the motivation to exploit the uncertainties cap-

tured in ASR confusion networks. The first method extends the cross-entropy

objective into a Kullback–Leibler (KL) divergence based training loss function,70

the second method formulates a training loss based on a hidden Markov model

(HMM), and the third method performs cross-entropy based training on paths

sampled from the confusion networks.1 We apply these methods to limited data

setups including telephone and meeting conversation datasets. Performance is

evaluated in two settings wherein no manual transcriptions or a small amount75

of manual transcriptions are available to aid the training. Moreover, we also

1While we present and evaluate these methods on ASR confusion networks, the methods

can be extended to ASR lattices.
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evaluate these methods in a model adaptation setting wherein the RNN LM is

pre-trained on an out-of-domain conversational corpus.

The rest of the paper is organised as follows. Section 2 starts with a formu-

lation of standard RNN LMs followed by an introduction and description of the80

three proposed methods for training RNN LMs using ASR confusion networks.

The experimental setup used to evaluate the proposed methods is described in

Section 3. Section 4 presents a detailed discussion on the performance of the

different RNN LM training methods under different settings. This is followed

by a conclusion in Section 5.85

2. Learning RNN LMs from uncertain word sequences

RNN LMs have led to state-of-the-art lexicon based ASR systems (Mikolov

et al., 2010; Sundermeyer et al., 2015). Likewise, they help to achieve the best

performance with state-of-the-art lexicon free end-to-end ASR systems (Tosh-

niwal et al., 2018). In particular, RNN LMs with long short-term memory90

(LSTM) (Hochreiter and Schmidhuber, 1997) or gated recurrent unit (GRU)

(Cho et al., 2014) layers are most commonly used in ASR. In the following, we

first present training of RNN LMs on usual text transcriptions and then describe

the proposed methods to train RNN LMs on ASR confusion networks. For the

sake of legibility, we use notations similar to those for classical RNN LMs. The95

underlying operations can easily be extended to LSTM- and GRU-based LMs.

2.1. Training on usual text transcriptions

Given a text corpus containing word sequences W = (w1, w2, ...wt, ..., wN ),

the goal of LM training is to learn a model distribution Q(.) that is as close as

possible to the empirical distribution P (.) of the corpus. This can be achieved

by minimizing the cross-entropy

H(P,Q) = −
∑
W

P (W ) logQ(W ). (1)
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An RNN LM consisting of L recurrent layers with weight matrices {θlin, θlhid, θout}

works as follows2:

hlt = σ(θlhid h
l
t−1 + θlin x

l
t)

q(wt+1|hLt ) = softmax(θout h
L
t )

(2)

(3)

where x1
t is the word embedding vector of the t-th word wt, h

l
t is the l-th layer

hidden state vector which encodes the history or context until t and xlt = hl−1
t

for l > 1, and σ is the non-linear function applied at every layer in the RNN.

The softmax function estimates the vector of history dependent word-level LM

probabilities q(wt+1|hLt ). During RNN LM training, the objective is to learn

the set of parameters Θ = {θlin, θlhid, θout} that minimizes the cross-entropy loss.

If the (t + 1)-th word in the observed training sequence is wt+1 = vj , where

vj denotes the j-th word in the LM vocabulary, then the empirical distribution

P (.) satisfies p(wt+1 = vj |w1, w2, ..., wt) = 1 and p(wt+1 = vk|w1, w2, ..., wt) =

0 ∀k 6= j. Hence, expressing both P (.) and Q(.) via the chain rule, the sum of

sequence-level costs in (1) simplifies into a sum of word-level costs:

Θ̂ = arg min
Θ

∑
t

− log q(wt+1 = vj |hLt ) (4)

where q(wt+1 = vj |hLt ) is the j-th element of the vector q(wt+1|hLt ).

2.2. Training on ASR confusion networks

Figure 1 shows the graphical representation of an ASR confusion network.100

The confusion network consists of a sequence of confusion bins, where each bin

contains one or more arcs that represent alternative word hypotheses. Each arc

in a bin has an associated posterior probability or score, implying that some

word hypotheses are more likely than others.

A typical RNN LM, as defined above, cannot be trained on uncertain word

sequences since it assumes a single word input x1
t at each step t in (2) and a

single word output vj at step t + 1 in (4). Prior works have trained RNNs on

2The bias vectors of the RNN are excluded for the sake of legibility.
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Figure 1: Graphical representation of an ASR confusion network (bottom) and the corre-

sponding reference transcription (top).

ASR confusion networks for classification tasks (Jagfeld and Vu, 2017; Pal et al.,

2020). Following these works, we can adopt the solution to compute one hidden

state vector h1
t,i corresponding to each arc i in each confusion bin and then to

pool over the hidden state vectors as follows:

h1
t,i = σ(θ1

hid h
1
t−1 + θ1

in x
1
t,i)

h1
t = pooli(h

1
t,i)

(5)

(6)

where average, weighted-sum or even attention based pooling can be used. The105

hidden states of the following layers l > 1, if any, and the output probabilities

are then computed as in (2) and (3).

However, the RNN LM training loss function must also be updated to handle

the multiple output arcs wt+1,j possible at the next step t+ 1. This is the main

problem with training RNN LM on confusion networks, or other decoder graphs110

with alternative hypotheses, and it remains unaddressed in the literature. We

propose three different methods to address the RNN LM training objective. It

must be noted that our methods only modify the training process and the loss

function. Interestingly, the forward propagation through the RNN as well as

the loss functions of each of these methods simplify back to those of a standard115

RNN LM when each confusion bin involves a single word hypothesis. Thus,

computation of the LM probabilities on a simple word sequence remains identical

to the standard RNN LM.

7



2.2.1. From cross-entropy to KL divergence

The cross-entropy between the LM distribution Q and the empirical distri-

bution P of the corpus, formulated in (1), can be re-written as

H(P,Q) = H(P ) +DKL(P ||Q) (7)

where H(P ) is the entropy of P and DKL(P ||Q) is the KL divergence of Q from

P . This leads us to the plausibility of using a KL divergence based loss function

for training RNN LMs on ASR confusion networks. A training objective which

aims to minimize the KL divergence between the RNN LM predictions q(wt+1 =

vj |hLt ) and the confusion bin posteriors p(wt+1 = vj |S) can be formulated as

Θ̂ = arg min
Θ

∑
t

DKL

(
p(wt+1|S) || q(wt+1|hLt )

)
= arg min

Θ

∑
t

∑
vj∈V

p(wt+1 = vj |S) log
p(wt+1 = vj |S)

q(wt+1 = vj |hLt )

(8)

(9)

where V denotes the RNN LM vocabulary and S denotes the observed speech120

signal which led to the confusion bin posteriors. Interestingly, Huang and Chen

(2020) have shown that pre-training a bidirectional LSTM-RNN classifier with

a KL divergence loss function can improve the performance on intent and dialog

act classification tasks. This further motivates us to evaluate the effectiveness

of RNN LMs trained on ASR confusion networks using the KL divergence loss.125

2.2.2. A hidden Markov model formulation

The KL divergence based training method discussed above tries to bring

the model predictions close to the posteriors associated with the alternative

ASR hypotheses, during each training iteration. In contrast, a probabilistic

training method can explicitly take into account the uncertainty in the training130

sequences along with their degree of uncertainty. Aiming for such a method, we

draw inspiration from the hidden Markov model (HMM) (Rabiner and Juang,

1986) which can model the probability distribution of a hidden sequence given

a sequence of noisy or uncertain observations (Gales and Young, 2007; Ozerov

et al., 2013).135
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ot+1ot

wt+1wt

Figure 2: First order hidden Markov model.

When learning LMs from ASR confusion networks, one can imagine that the

confusion bins are the sequence of observations and the HMM state transition

probabilities correspond to the LM probabilities. For instance, the first order

HMM, as depicted in Figure 2, would be equivalent to a bi-gram LM. The

total probability of the observations O = o1, o2, ..., ot, ..., oT can be obtained by

summing over all possible hidden state sequences as

p(O|Θ) =
∑
W

p(O|W ) p(W )

=
∑

vi,vj∈V

∏
t

p(wt+1 = vj |wt = vi) p(ot+1|wt+1 = vj)

(10)

(11)

where V denotes the bi-gram LM vocabulary and 1 ≤ i, j ≤ |V |. The total

probability can be efficiently computed using the forward algorithm (Rabiner

and Juang, 1986) as

αt+1(vj) =
∑
vi∈V

αt(v
i) p(wt+1 = vj |wt = vi) p(ot+1|wt+1 = vj)

p(O|Θ) =
∑
vj∈V

αT (vj).

(12)

(13)

In the case when the training data itself gives an indication of the hidden state

via the posterior probability p(wt+1 = vj |ot+1), we can apply Bayes rule and

express the state observation likelihood as

p(ot+1|wt+1 = vj) = p(wt+1 = vj |ot+1)
p(ot+1)

p(wt+1 = vj)
. (14)

The evidence p(ot+1) can be treated as constant and the prior p(wt+1 = vj)

can be estimated by averaging p(wt+1 = vj |ot+1) over entire training dataset.
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Accordingly, the HMM forward probability equation (12) can be rewritten (up

to a multiplicative constant) as

αt+1(vj) =
∑
vi∈V

αt(v
i) p(wt+1 = vj |wt = vi)

p(wt+1 = vj |ot+1)

p(wt+1 = vj)
. (15)

The above HMM forward probability equation (15) can be extended to RNN

LMs on ASR confusion networks. The RNN LMs compute next word probabil-

ities q(wt+1 = vj |hLt ) based on the long history or context in the hidden states

of the RNN, as in (3), as opposed to the bi-gram transitions in HMM. Thus, the

forward probability computation in an HMM based RNN LM can be expressed

as3

αt+1(vj) =
∑
vi∈V

αt(v
i) q(wt+1 = vj |hLt )

p(wt+1 = vj |S)

p(wt+1 = vj)
(16)

where p(wt+1 = vj) is obtained by averaging p(wt+1 = vj |S) over the entire

training dataset. It should be noted that the above forward probability equation

(16) scales the model predictions q(wt+1 = vj |hLt ) by the posterior probabilities

in the confusion bin p(wt+1 = vj |S), thus taking into account the uncertainty in

the training sequences. Finally, the forward probability can be used to formulate

the RNN LM training objective as

Θ̂ = arg min
Θ

− log
∑
vj∈V

αT (vj). (17)

Although the HMM based formulation simplifies the computation of the RNN

LM probabilities over all possible paths in the ASR confusion network, replacing

the bigram probability with the RNN LM probability violates the first order

HMM assumption.

3In the special case when the RNN LM has a single layer (L = 1), the term hL
t can be

replaced by h1
t,i and the approximation induced by the pooling of hidden states in (6) can

be avoided using the forward algorithm. However, in our experiments we found that pooling

resulted in a better performance.
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2.2.3. Sampling based approach140

The RNN LMs based on KL divergence loss and HMM formulation, discussed

in the previous sections, account for all the competing hypotheses from an ASR

confusion network in each forward-backward propagation of the RNN. Another

alternative to account for the competing hypotheses is to sample one path at a

time from the ASR confusion network for each forward-backward propagation.

To sample a complete path W̄ , one arc w̄t can be sampled at a time based on

the posterior probabilities of the arcs in each confusion bin as

w̄t ∼ p(wt|ot). (18)

It must be noted that sampling based on the posterior probabilities implicitly

accounts for the uncertainty in the ASR hypotheses. Given a sampled path from

the confusion network, the RNN LM can be trained with the standard cross

entropy objective in (4). Each training epoch sees one possible path from the

ASR confusion network of each utterance. The random path for each utterance145

is redrawn at each epoch.

The sampling based approach can be seen as a data augmentation approach

for training the RNN LM. In Section 2.3.1, we recall a work on data noising in

RNN LMs and show a correspondence between our sampling based approach for

training from ASR confusion networks and data noising. Furthermore, the data150

noising scheme is evaluated along with our sampling method in the experiments.

2.3. Data noising and smoothing in RNN LMs

One of the problems with learning LMs from limited amount of training

data is the ability to handle rare and unseen sequences. Traditional n-gram

LMs cope with this problem through discounting and smoothing techniques,155

the most popular one in ASR LMs being modified interpolated Kneser-Ney

smoothing (Chen and Goodman, 1996). RNN LMs partly address this problem

through distributed word representations and without explicitly dealing with

word counts. However, overfitting due to data sparsity remains and hence RNN

11



LMs use standard neural network regularisation methods like dropout (Srivas-160

tava et al., 2014) to alleviate this problem. In contrast, data noising and implicit

augmentation methods can be more effective for RNN LMs.

2.3.1. Bigram Kneser-Ney noising (KNN) in RNN LMs

Xie et al. (2017) have presented a theoretical correspondence between data

noising and smoothing. They showed that data noising motivated by bigram

Kneser-Ney smoothing results in more effective RNN LMs, as compared to blank

noising (word dropout), unigram noising (word replacement) and other regular-

isation methods. Bigram Kneser-Ney noising (KNN) in RNN LMs applies noise

to an input-output token pair x = wt, y = wt+1 with some noising probability

γ. The token pair is replaced with the noised versions x̄, ȳ as

x̄ ∼ Categorical(ρ)

ȳ ∼ Categorical(ρ)

(19)

where ρ is the proposal distribution. Denoting N1+(vj , •) and N1+(•, vj) as

the number of distinct bigrams beginning and ending with a word vj from the

vocabulary (Chen and Goodman, 1996), respectively, the noising probability γ

and the proposal distribution ρ are obtained as

γ ← γ0
N1+(vj , •)
c(vj)

ρ ∝ N1+(•, vj)

(20)

(21)

where c(vj) denotes the total count of vocabulary word vj in the corpus, and

0 ≤ γ0 ≤ 1 is the noising hyper-parameter which is chosen empirically based165

on performance on the held out development set. The choice of γ is motivated

by absolute discounting and encourages noising of unigrams that precede many

possible other tokens. At the same time it discourages noising of common uni-

grams. ρ proposes unigrams that complete a large number of bigrams. It should

also be noted that the input-output token pair is noised at each step t.170
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2.3.2. Sampling from ASR confusion networks as data noising

Our sampling based approach to train RNN LMs from ASR confusion net-

works, as discussed in Section 2.2.3, samples word alternatives from the com-

peting arcs in each ASR confusion bin. Apart from the bigram KN noising

scheme, Xie et al. (2017) discussed the unigram noising scheme which samples

word alternatives based on unigram statistics. We see a connection between

our sampling approach and their unigram noising scheme. We can state that

the data noising criterion in (19) remains unchanged but the noising probability

and proposal distribution for our sampling approach translate into

γ = 1

ρ = p(wt|ot)

(22)

(23)

following (18). In other words, the posteriors in a confusion network bin form

a time-varying proposal distribution for noising.

We evaluate bigram KN noising (KNN) in our experiments in order to:

• demonstrate that sampling from ASR confusion networks is better than175

using bigram KNN along with 1-best ASR hypotheses, and

• evaluate whether bigram KNN results in additional improvements over

sampling from ASR confusion networks.

2.4. Computational complexity of the training methods

We present a brief note on the computational complexity of the three meth-

ods to train RNN LMs from ASR confusion networks. We first formulate the

complexity of a typical RNN LM trained on text transcriptions. The computa-

tions in an RNN LM are mainly dominated by the products between the vector

representations corresponding to each word position (i.e., x1
t or hlt) and the re-

spective RNN weight matrices. Let us consider an RNN LM with a vocabulary

of size V , L RNN layers, and hidden state vectors and input-output embeddings

of dimension H. Given a word sequence of length T , the computational cost of

13



the forward pass is in the order of

f(H,V, T ) ≈ (HHL+HV )T

= O(HV T ) : HL� V. (24)

180

In the case of the KL divergence method for training RNN LMs from ASR

confusion networks, hidden state vectors in the first RNN layer are computed for

each arc in a confusion bin (see (5)). Computations for the remaining RNN lay-

ers remain unchanged. Denoting as A the average number of arcs in a confusion

bin, the computational cost of the forward pass is in the order of

f(H,V, T ) ≈ (HHA+HH(L− 1) +HV )T

≈ (HH(A+ L− 1) +HV )T

= O(HV T ) : H(A+ L− 1)� V. (25)

The HMM based method for training RNN LMs from ASR confusion net-

works involves a similar RNN forward pass as that in the KL divergence based

training method, differing mainly in the loss computation. The training loss

includes the forward probability computation, as shown in (16). This brings185

an additional computational complexity of O(TV 2) in the HMM based training

method. The computational complexity of the sampling based training method

is the same as a typical RNN LM trained on a text sequence. It should be noted

that the computational complexity of the backward pass for each of the RNN

LM training methods is similar to that of the forward pass.190

3. Experimental setup

We evaluate the proposed methods for training RNN LMs on ASR confu-

sion networks on two conversational speech datasets extracted from the AMI

and Verbmobil corpora. As detailed in the following, the conversations from

these two datasets significantly differ in their characteristics. This enables us to195

present a more thorough evaluation of the training methods.
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3.1. Datasets

To simulate realistic limited data scenarios, the datasets are split into four

disjoint subsets: a bigger split representing speech without manual transcrip-

tions, a relatively smaller split containing speech with manual transcriptions, a200

development set and a test set. Table 1 presents the two datasets and their splits

used in our evaluation setup. A brief description of these datasets is presented

in the following.

Table 1: Datasets and splits.

Verbmobil English

conversation (VM)

dataset

AMI scenario-only

meeting dataset

Split hours tokens hours tokens

Training manually labeled 5.23 18 k 9.48 90 k

Training unlabeled 19.36 80 k 37.24 387 k

Development 2.14 7.5 k 9.77 100 k

Test 3.88 15 k 10.34 105 k

3.1.1. Verbmobil English conversations

The Verbmobil corpus (Burger et al., 2000) includes about 25 hours of En-205

glish conversations wherein the two participants negotiate and agree upon an

appointment schedule and/or travel plan. We have split the entire Verbmobil

English speech corpus into four splits, ensuring that there are no overlapping

speakers or conversations across the four splits. We consider ∼5 hours of the

Verbmobil corpus as a labeled training set and ∼19 hours as an unlabeled train-210

ing set. The development and test sets consist of ∼2 and ∼4 hours of speech,

respectively. The average length of a turn in these dialogues is 20 words.

3.1.2. AMI scenario-only meetings

The AMI meeting corpus (Renals et al., 2007) has a scenario-only meeting

subset in which the participants play different roles in a design project. We215
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use the original scenario-only meeting subset4 and split its training part SA

into two sub-parts representing the labeled and unlabeled training sets. Specif-

ically, meetings ES2010, ES2016, IS1005, IS1007, TS3010, TS3011 of SA form

our labeled training set and the remaining meetings of SA form our unlabeled

training set. The development part SB and evaluation part SC of the original220

scenario-only meetings are used as our development and test sets, respectively.

The average length of a turn in these meeting conversations is 8 words.

3.2. Evaluation settings

The methods for training RNN LMs on ASR confusion networks are eval-

uated in three different settings. These settings represent practical language225

model training scenarios wherein:

• in-domain speech data is unlabeled and limited, and/or

• a small amount of manually transcribed in-domain speech is available,

and/or

• a good amount of out-of-domain text transcriptions is available.230

3.2.1. Without and with manual labeled training data

In the first evaluation setting, the RNN LM is trained only on the ASR

1-best hypotheses or the ASR confusion networks obtained from the unlabeled

in-domain speech data available for training. This setting represents the practi-

cal situation wherein no manual transcriptions of in-domain speech are available235

for training. The second setting represents the situation wherein a small amount

of manually labeled in-domain speech is available, and the RNN LM is trained

on both manually labeled in-domain speech and the ASR 1-best hypotheses

or confusion networks obtained from the unlabeled in-domain speech. Adding

manually labeled in-domain speech is expected to result in better performance,240

not only because of the manual labels but also because this increases the total

4https://groups.inf.ed.ac.uk/ami/corpus/datasets.shtml
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amount of training data. Rather than the absolute performance, we are inter-

ested in the effect of including some in-domain labeled data on the proposed

training methods.

3.2.2. Training vs. adaptation245

When the in-domain training data is limited, RNN LMs can be pre-trained

on a larger amount of out-of-domain text data and then adapted to the available

in-domain text (Ma et al., 2017). Our evaluation of the different methods of

training RNN LMs on ASR confusion networks is also extended to an adap-

tation setting. We use the transcriptions of the Switchboard (Godfrey et al.,250

1992) English corpus5 as the out-of-domain spoken conversational text. We

adopt a simple but competitive domain adaptation method wherein the RNN

LM is first trained on the combination of the out-of-domain and in-domain

datasets, namely Switchboard and Verbmobil (SWB+VM) or Switchboard and

AMI (SWB+AMI), and the entire RNN LM is then fine-tuned on the respective255

in-domain dataset.

3.3. RNN LM configuration and training details

3.3.1. LM vocabulary

In our experiments, the RNN LMs trained on the combined out-of-domain

and in-domain datasets have a vocabulary of 12,119 and 12,918 words for260

SWB+VM and SWB+AMI, respectively. RNN LMs trained only on AMI as

well as RNN LMs adapted to AMI retain the SWB+AMI vocabulary. Unlike

AMI, the VM corpus vocabulary does not span over the entire SWB vocabulary

and also contains many new words. Hence, RNN LMs trained only on VM as

well as those adapted to VM retain a VM specific vocabulary. The perplexities265

reported on the VM development and test sets in the adaptation setting are

computed after reducing the RNN LM embedding matrix accordingly.

5fetched from http://www.isip.piconepress.com/projects/switchboard/releases/

switchboard_word_alignments.tar.gz
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3.3.2. Model settings and hyper-parameters

All experiments use LSTM-RNN LMs, i.e. RNN LMs with LSTM cells, as

they have been shown to outperform the original RNN LMs and to be more270

effective than GRU-RNN LMs (Irie, 2020). All RNN LMs in our experiment

have a single RNN layer, as training only on limited in-domain text highly

overfits with more than one RNN layer. The input embedding matrix and the

output word embedding matrix in our LSTM-RNN LM are tied and shared,

as this results in a significant reduction of model parameters and improves the275

LM perplexity (Press and Wolf, 2017; Inan et al., 2017). During training, each

utterance is treated independently without sharing hidden states or context

across utterances.

The dimension of the word embeddings and the weight matrices in the LSTM

cells is set to 64 for models trained only on in-domain text and 128 for models280

adapted to in-domain text after pre-training with SWB data. Increasing the

dimensionality beyond 64 did not give significant perplexity improvements with

the small amount of in-domain training text. Models are trained using the

Adam optimizer and training is controlled using an early stopping criterion

which monitors perplexity on the development set. The noising probability285

hyper-parameter γ0 is chosen among 0.25, 0.5, 0.75 based on the perplexity

measured on the development set.

As discussed in Section 2.2, the hidden states of RNN LMs applied on ASR

confusion networks can be obtained by applying pooling over the RNN hidden

states corresponding to arcs from the confusion bin at the previous step. We290

experimented with average, weighted-sum, max and 1-best pooling, wherein the

hidden state corresponding to the arc with the highest score is chosen. We

found that 1-best pooling resulted in the best performance for both KL and

HMM based training.

3.3.3. Adjusting the number of arcs in confusion bins295

Our implementation of the proposed methods to train RNN-LSTM LMs on

ASR confusion networks uses only the N most probable arcs from each confusion
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bin, after redistributing the posterior probabilities among these N arcs and

zero-padding on arcs wherever required. This is especially required to train

the RNN-LSTM LMs on GPU with mini-batches of training data. Our initial300

experiments studied the effect of varying N (the number of most probable arcs

retained from confusion bins). The outcome of this experiment was something

expected:

• increasing N from 2 to 5 reduced the perplexity obtained by each of the

proposed training methods;305

• further increasing N up to the maximum number of arcs did not yield any

further reductions in perplexity.

This was expected because most of the posterior probability in a confusion bin

is concentrated in the top-few most probable arcs.

In the case of the sampling based training method, we counted the average310

number of possible paths that can be sampled from the confusion network of a

training utterance, wherein only the 5 most probable arcs from each confusion

bin are retained as discussed above. The average number of possible paths

is 51 M and 3.8 M for the VM and AMI datasets, respectively. The number

of possible paths is greater for VM because the VM dataset has much longer315

utterances as compared to those in AMI dataset. However, since the number

of training epochs is relatively small (29 for VM and 39 for AMI when training

only on the unlabeled training set) and arcs are sampled from each confusion

bin based on their posterior probabilities, the sampling based training method

sees only a small number of (different) paths in practice. The average number320

of (different) paths sampled from the confusion network of a training utterance

across all epochs is 17 for VM and 7 for AMI.

3.3.4. ASR setup

Our ASR system is based on the Kaldi Chain acoustic model architecture

with Time Delay Neural Network (TDNN) layers and i-vectors for speaker adap-325

tation (Povey et al., 2016). In the case of the VM dataset, the AM and the seed
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LM are trained on the labeled training set. The unlabeled training set is not

used in the training of the VM seed AM and LM. The AM has a TDNN ar-

chitecture with splices {-2,-1,0,1,2} {-1,0,1} {-1,0,-1} {-3,0,3} {-3,0,3} {-6,-3,0}

at each successive layer with 512 dimensions. The inputs are 40 Mel-frequency330

cepstral coefficients and 100 dimensional online i-vectors. The i-vector extractor

is trained on the combined labeled and unlabeled datasets. The seed LM is a

standard 3-gram LM with interpolated Kneser-Ney smoothing. The VM seed

AM and LM result in a Word Error Rate (WER) of 39.52% and 39.77% on the

VM development and test sets, respectively.335

For experiments on the AMI dataset we use the ASpIRE6 chain model,

trained on the Fisher English corpus, and the accompanying pre-compiled de-

coding graph. The motivation behind this choice was to evaluate the perfor-

mance with a strong pre-trained AM and LM, in contrast to the VM setup.

The ASpIRE chain models result in 33.15% and 35.82% WER on the AMI340

development and test sets, respectively.

4. Results and discussion

We report in Section 4.1 the results achieved in the in-domain only train-

ing setting. Section 4.1.1 presents the perplexity reductions obtained in that

setting, including an analysis of the improvements brought by the labeled and345

the unlabeled training data, and a comparison of the perplexity of LSTM-RNN

LMs and 3-gram LMs trained on ASR confusion networks. The WERs obtained

in that setting are presented in Section 4.1.2. This includes a discussion on the

WER achieved with or without the labeled training data. Section 4.2 reports

the results achieved in the adaptation setting in terms of perplexity and WER350

in Sections 4.2.1 and 4.2.2, respectively. Finally, Section 4.3 presents a probe

on the perplexity reductions in order to identify the possible causes for the

relatively smaller reductions in WER (or perplexity) in some of the settings.

6http://kaldi-asr.org/models/m1

20

http://kaldi-asr.org/models/m1


In our perplexity evaluation, we use the Wilcoxon signed-rank test to ensure

that the differences in perplexity are statistically significant, following the rec-355

ommendations by Dror et al. (2018). In our ASR WER evaluation, we could

not use lattice rescoring on the AMI dataset due to a mismatch between the

vocabulary of the ASpIRE model used for decoding and that of the trained

LSTM-RNN LMs. For the sake of consistency, we perform n-best list rescoring

on both the VM and AMI datasets. The matched pairs sentence-segment word360

error test (Gillick and Cox, 1989) from the NIST scoring toolkit7 is used to

ensure that the differences in WER are statistically significant.

4.1. Perplexity and WER evaluation in the in-domain only training setup

4.1.1. Perplexity in the in-domain only training setup

The perplexities obtained by the LSTM-RNN LMs trained only on the in-365

domain datasets, i.e., only VM or AMI, are presented in Table 2. We can observe

that the sampling+KNN method for learning from ASR confusion networks re-

sults in the lowest perplexity, both with or without manually labeled training

data. This perplexity is significantly lower than LSTM-RNN LMs trained on

ASR 1-best hypotheses, with or without KNN. For instance when training with-370

out the labeled training set, the relative reduction in perplexity is 9% (from 68.4

to 62.0) on the VM test set and 12% (from 137.9 to 121.8) on the AMI test set.

Training based on the KL divergence loss gives significant perplexity reduc-

tions over training on ASR 1-best hypotheses without the labeled training data.

However, the KL divergence method fails to outperform training on ASR 1-best375

hypotheses in presence of labeled training data. Training based on the HMM

formulation results in higher perplexities compared to the other models trained

on ASR confusion networks or ASR 1-best hypotheses. As presented in the fol-

lowing section and in Section 4.2.1, the performance of this method improves by

training on both labeled and unlabeled training data and also in the adaptation380

setting.

7https://github.com/usnistgov/SCTK
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Table 2: Perplexities obtained on the VM and AMI datasets by (64-d) LSTM-RNN LMs

trained only on in-domain data using different training methods. Bold font denotes the low-

est perplexity within each horizontal half and underline indicates performance statistically

similar to the lowest perplexity. (lab: labeled training set, unlab: unlabeled training set, ref:

manual transcriptions, 1b: ASR 1-best, cn: ASR confusion network, CE: cross entropy, KL:

Kullback–Leibler divergence, +KNN: bigram Kneser-Ney noising along with the method in

the previous row. unlab-ref is an oracle-like condition wherein manual transcriptions of the

unlabeled training set are used for training.)

Training set Training

method

Trained on

VM only

Trained on

AMI only

Dev Test Dev Test

w
it

h
ou

t
la

b
el

ed
tr

ai
n

in
g

se
t

unlab-ref
CE 48.2 52.1 72.4 81.9

+ KNN 47.5 50.2 70.7 79.1

unlab-1b
CE 66.3 72.7 119.5 144.9

+ KNN 62.9 68.4 114.9 137.9

unlab-cn

KL 58.4 63.7 109.6 130.0

HMM 74.0 81.9 139.0 165.8

sample 58.9 64.1 104.8 124.9

+ KNN 57.5 62.0 102.2 121.8

w
it

h
la

b
el

ed
tr

ai
n

in
g

se
t lab-ref + unlab-ref

CE 48.7 51.9 68.9 76.9

+ KNN 44.8 47.3 67.7 75.4

lab-ref + unlab-1b
CE 58.4 62.7 81.0 91.4

+ KNN 56.0 59.0 80.6 90.4

lab-ref + unlab-cn

KL 55.2 59.2 83.2 96.4

HMM 60.6 64.5 88.3 99.5

sample 54.7 58.4 77.9 87.9

+ KNN 53.5 56.2 76.5 85.5

22



4.1.1.1. Perplexity improvements brought by labeled training data

Comparison of the LSTM-RNN LMs trained with vs. without the labeled

training data, in Table 2, shows that a small amount of manually transcribed in-

domain data results in a significant reduction in perplexity for all the training385

methods. On the VM test set, the best performing sampling+KNN method

shows a perplexity reduction of 9% relative (from 62.0 to 56.2). On the AMI test

set, the best performing sampling+KNN method shows 30% relative reduction

in perplexity (from 121.8 to 85.5). The availability of the labeled training set

also leads to significant perplexity reductions for the KL method as well as390

for training on ASR 1-best hypotheses. It should be noted that training on

the in-domain datasets using the HMM formulation by including the labeled

training data achieves 21% (from 81.9 to 64.5) and 40% (from 165.8 to 99.5)

relative reductions in perplexity on the VM and AMI test sets, respectively, as

compared to training without the labeled training data.395

However, the perplexity comparison of LSTM-RNN LMs trained with vs.

without the labeled training data, as mentioned above, is partly biased as the

amount of training data is different in the two settings. In order to evaluate the

improvement brought by manual labeling independently of the amount of data,

we trained LSTM-RNN LMs on ASR 1-best hypotheses or confusion networks400

of both labeled and unlabeled training sets of the AMI dataset. The resulting

perplexities are presented in the Table 3. Comparison of the AMI results in

Table 2 and Table 3 helps us to confirm that greater perplexity reductions are

obtained due to the manual transcriptions of the labeled training data. The

increase in the amount of unlabeled training data, in the form of ASR 1-best405

hypotheses or confusion networks of the labeled training set, results in significant

but smaller perplexity reductions.

4.1.1.2. Perplexity improvements brought by unlabeled training data

We also analyzed the improvements brought by unlabeled training data by

training LSTM-RNN LMs with different amounts of unlabeled training data410

from the AMI dataset. Figure 3 shows the perplexities obtained on the AMI
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Table 3: Perplexities obtained on the AMI dataset by (64-d) LSTM-RNN LMs trained on

ASR hypotheses of labeled and unlabeled training sets using different methods. Bold font

denotes the lowest perplexity and underline indicates performance statistically similar to the

lowest perplexity. (lab: labeled training set, unlab: unlabeled training set, 1b: ASR 1-best,

cn: ASR confusion network, CE: cross entropy, KL: Kullback–Leibler divergence, +KNN:

bigram Kneser-Ney noising along with the method in the previous row.)

AMI training set Training

method

Trained

on AMI

only

Dev Test

w
it

h
la

b
el

ed
tr

ai
n

in
g

se
t

(l
a
b

el
s

u
n
u

se
d

)

lab-1b + unlab-1b
CE 112.4 134.3

+ KNN 109.3 130.5

lab-cn + unlab-cn

KL 105.3 124.8

HMM 134.4 159.3

sample 101.4 119.8

+ KNN 97.2 114.7

test set by LSTM-RNN LMs trained on ASR 1-best hypotheses or confusion

networks (using the sampling based method). We can observe that training on

ASR confusion networks using the sampling based method gives a consistent re-

duction in perplexity as compared to training on 1-best hypotheses, irrespective415

of the amount of unlabeled training data, .

4.1.1.3. Improvements from ASR confusion networks: n-gram versus RNN LMs

We evaluated the performance of 3-gram LMs trained on ASR 1-best hy-

potheses and ASR confusion networks, and compare the resulting reductions

in perplexity to those obtained from the LSTM-RNN LMs. 3-gram LMs are420

trained on ASR 1-best hypotheses or manual transcriptions or a combination of

both using modified interpolated KN smoothing (Chen and Goodman, 1996).

Classical KN smoothing cannot be applied directly to ASR confusion networks

as words/arcs carry fractional weights or scores. A modified interpolated ex-
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Figure 3: Perplexity obtained on the AMI test set by LSTM-RNN LMs trained using differ-

ent amounts of unlabeled training data. (Only ASR 1-best or confusion networks used for

training.)

pected KN smoothing (ieKN) approach has been proposed in the literature to425

handle such fractional counts (Zhang and Chiang, 2014). This has been applied

to learn n-gram LMs from crowdsourced and ASR transcriptions (Levit et al.,

2018), and shown to result in n-gram LMs with lower perplexities as compared

to other previous works.

We extend the ieKN approach to train n-gram LMs on ASR confusion net-430

works. Our approach first extracts n-gram bin sequences from the confusion

network and then populates different possible n-th (i.e. highest) order word

sequences. Each n-th order word sequence is assigned a score by multiplying

the associated arc posteriors with each other. The ieKN smoothing approach

is applied to obtain the n-th order probability estimates. Then the recursive435

smoothing, analogous to standard KN smoothing, is applied to obtain the lower

order probability estimates (Zhang and Chiang, 2014).

Table 4 presents the perplexities obtained by 3-gram and LSTM-RNN LMs

on the VM and AMI datasets. LSTM-RNN LM perplexities correspond to
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Table 4: Perplexities of 3-gram LMs and LSTM-RNN LMs trained on ASR 1-best hypotheses

(using KN smoothing and CE+KNN, respectively) or ASR confusion networks (using ieKN

smoothing and sample+KNN, respectively). (lab: labeled training set, unlab: unlabeled

training set, ref: manual transcriptions, 1b: ASR 1-best, cn: ASR confusion network. Note

that the ASpIRE LM with a larger vocabulary is used to decode the AMI development and

test sets, and the corresponding perplexities are not comparable. unlab-ref is an oracle-like

condition wherein manual transcriptions of the unlabeled training set are used for training.)

Training set / LM 3-gram LM LSTM-RNN LM

VM AMI VM AMI

Dev Test Dev Test Dev Test Dev Test

decode LM 77.3 78.0 142.3 163.6 - - - -

w
it

h
ou

t
la

b
el

ed
tr

ai
n

in
g

se
t unlab-ref 52.0 54.6 69.5 76.6 47.5 50.2 70.7 79.1

unlab-1b 68.2 72.8 100.1 116.5 62.9 68.4 114.9 137.9

unlab-cn 64.1 68.5 95.9 111.0 57.5 62.0 102.2 121.8

w
it

h
la

b
el

ed
tr

ai
n

in
g

se
t

lab-ref + unlab-ref 50.1 52.5 67.8 74.5 44.8 47.3 67.7 75.4

lab-ref + unlab-1b 64.0 67.4 80.5 89.8 56.0 59.0 80.6 90.4

lab-ref + unlab-cn 61.2 64.3 78.6 87.4 53.5 56.2 76.5 85.5

the CE+KNN and sample+KNN methods in Table 2. Firstly, we can observe440

that training 3-gram LMs on ASR confusion networks with the ieKN based

approach results in a significant reduction in perplexity as compared to 3-gram

LMs trained on ASR 1-best hypotheses. A comparison of perplexities across

3-gram and LSTM-RNN LMs shows that the LSTM-RNN LMs achieve lower

perplexities on the VM dataset, namely 62.0 and 56.2 on the VM test set,445

without and with the labeled training set, versus 68.5 and 64.3 obtained by

the ieKN 3-gram LM, respectively. However, ieKN 3-gram LMs obtain lower

perplexities than LSTM-RNN LMs on the AMI dataset. This could be due

to the fact that the VM dataset has longer utterances (i.e., speaker turns) as
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compared to the AMI dataset. Moreover, we can also observe that perplexity450

reductions obtained by the use of ASR confusion networks instead of ASR 1-

best hypotheses are greater when the labeled training data was not available,

with a few exceptions.

4.1.2. ASR WER in the in-domain only training setup

Table 5a presents the WER obtained by the LSTM-RNN LMs trained on the455

ASR 1-best hypotheses and confusion networks, along with the labeled train-

ing set. ASR lattices were decoded using the seed LMs for the VM and AMI

datasets, as presented in Section 3.3.4. These lattices were rescored using a KN

smoothed 3-gram LM trained on a combination of the labeled data and 1-best

transcripts of the unlabeled data, denoted as ‘lab-ref + unlab-1b’ in Table 5a.460

100-best lists were then obtained from these n-gram rescored lattices. Finally,

the 100-best lists were rescored using the LSTM-RNN LMs such that the orig-

inal AM scores are retained and the 3-gram and LSTM-RNN LM scores are

linearly interpolated. This is denoted as ‘3g+LSTM’ in Table 5a. The weight

for linear interpolation was tuned on the development set. The perplexities465

obtained after interpolation of the 3-gram and LSTM-RNN LMs are shown in

Table 5b.

The first observation from Table 5a is that the room left for WER reduction,

i.e., the difference between ‘lab-ref + unlab-1b’ 3g LM rescoring and ‘lab-ref +

unlab-ref’ 3g+LSTM LM rescoring, is small. The absolute difference is about470

2.6% on both the VM and AMI test sets. This implies that WER reduction

through RNN LMs is a difficult task in such limited training data setups. On the

VM dataset, the LSTM-RNN LM trained on the ASR confusion networks using

sampling+KNN results in the lowest WER. On the VM dev set, the difference is

statistically significant (at p = 0.05) compared to the KL method. On the VM475

test set, the difference is statistically significant compared to the KL method as

well as CE+KNN on ‘lab-ref + unlab-1b’.

On the AMI dataset, the WERs obtained by the LSTM-RNN LMs trained

on ASR 1-best hypotheses and confusion networks are nearly the same. We
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Table 5: WER and perplexity obtained after linear interpolation of 3-gram (trained on lab-ref

+ unlab-1b) and different LSTM-RNN LMs. (lab: labeled training set, unlab: unlabeled

training set, ref: manual transcriptions, 1b: ASR 1-best, cn: ASR confusion network, KN:

modified interpolated Kneser-Ney smoothing, CE: cross entropy, KL: Kullback–Leibler diver-

gence, KNN: bigram Kneser-Ney noising. Bold font denotes the lowest WER/perplexity and

underline shows performance statistically similar to the lowest. unlab-ref is an oracle-like

condition wherein manual transcriptions of the unlabeled training set are used for training.)

(a) WER on rescoring 100-best lists obtained from (lab-ref + unlab-1b) 3-gram LM rescored lattices.

LM configuration VM AMI

Training set / LM Type Method Dev Test Dev Test

decode LM 3g KN 39.52 39.77 32.27 35.12

w
it

h
la

b
el

ed
tr

ai
n

in
g

se
t

lab-ref + unlab-ref 3g+LSTM CE + KNN 35.22 35.32 31.45 34.00

lab-ref + unlab-1b
3g KN 37.42 37.93 34.01 36.70

3g+LSTM

CE + KNN 36.42 36.69 33.18 35.85

lab-ref + unlab-cn
KL 36.56 36.75 33.24 35.83

sample + KNN 36.14 36.33 33.25 35.77

(b) Perplexity after linear interpolation of the 3-gram and LSTM LMs (except for LM type 3g).

(AMI decode LM perplexities are not comparable and not shown.)

LM configuration VM AMI

Training set / LM Type Method Dev Test Dev Test

decode LM 3g KN 77.3 78.0 - -

w
it

h
la

b
el

ed
tr

ai
n

in
g

se
t

lab-ref + unlab-ref 3g+LSTM CE + KNN 42.1 45.0 60.6 66.6

lab-ref + unlab-1b
3g KN 64.0 67.4 80.5 89.8

3g+LSTM

CE + KNN 53.1 56.1 69.2 82.1

lab-ref + unlab-cn
KL 52.1 55.4 71.7 80.1

sample + KNN 51.1 53.8 70.6 78.3
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also observe that rescoring the ASpIRE model decoded lattices with the in-480

domain ‘lab-ref + unlab-1b’ 3g LM increases the WER. This is mainly due to

the mismatch in the vocabulary of the (ASpIRE LM) decoded lattices and the 3g

LM used to rescore the lattice. To perform a WER evaluation without this bias,

100-best lists were directly obtained from the ASpIRE model decoded lattices

and were rescored using the LSTM-RNN LMs. In this case there is a linear485

interpolation between the ASpIRE 3-gram LM and the LSTM-RNN LM. The

resulting WERs, as well as the perplexity after interpolation, are presented (by

the middle group of rows) in Table 6. We can observe that rescoring 100-best

lists obtained from the ASpIRE model reduces the WER below the first pass

decoding results, unlike the AMI results in Table 5a. The 100-best lists obtained490

directly from the ASpIRE decoded lattices are less affected by the vocabulary

mismatch problem.

Unlike the VM setup, the AMI setup in our experiments allows us to evaluate

the WER in two settings, first wherein additional labeled training data is avail-

able and second wherein either reference transcriptions or ASR hypotheses of495

the labeled data may be considered for training the LSTM-RNN LMs. Table 6

presents the WER results obtained in these settings. We can observe that the

availability of labeled training data results in small but consistent reductions in

WER. The WERs obtained by the LSTM-RNN LMs trained on the ASR 1-best

hypotheses and confusion networks are nearly the same, both with or without500

the labeled training set. An analysis of the perplexity reductions brought by

training on ASR confusion networks, as discussed in Section 4.3, reveals that

the perplexity reductions mainly come from the less frequent words. However,

these less frequent words do not contribute towards WER reduction.

Finally, it must be noted that the gap between WERs of the first pass decod-505

ing (‘decode LM’) and rescoring with LSTM-RNN LMs trained on labeled and

unlabeled data (‘lab-ref + unlab-ref’) is only partly filled. This motivates the

need for better methods for training RNN LMs from uncertain ASR hypotheses.
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Table 6: WER on the AMI dataset after rescoring 100-best lists obtained from the ASpIRE

model using LSTM-RNN LMs trained with or without labeled training data, and perplexity of

the interpolated 3g+LSTM-RNN LMs. (lab: labeled training set, unlab: unlabeled training

set, ref: manual transcriptions, 1b: ASR 1-best, cn: ASR confusion network, KN: modified in-

terpolated Kneser-Ney smoothing, CE: cross entropy, KL: Kullback–Leibler divergence, KNN:

bigram Kneser-Ney noising. Bold font denotes the lowest WER within each horizontal third

and underline indicates performance statistically similar to the lowest WER. unlab-ref is an

oracle-like condition wherein manual transcriptions of the unlabeled training set are used for

training. lab-1b and lab-cn imply that ASR hypotheses of the labeled training set are used

instead of the reference transcriptions.)

LM configuration Perplexity WER

Training set / LM Type Method Dev Test Dev Test

decode LM 3g KN - - 32.27 35.12

w
it

h
o
u

t
la

b
el

ed
tr

ai
n

in
g

se
t

unlab-ref 3g+LSTM CE + KNN 67.6 75.0 30.19 32.59

unlab-1b

3g+LSTM

CE + KNN 94.1 106.6 31.80 34.36

unlab-cn
KL 93.1 104.7 31.77 34.48

sample + KNN 91.2 102.7 31.71 34.28

w
it

h
la

b
el

ed
tr

ai
n

in
g

se
t lab-ref + unlab-ref 3g+LSTM CE + KNN 65.9 73.0 29.93 32.44

lab-ref + unlab-1b

3g+LSTM

CE + KNN 84.8 95.0 31.44 34.16

lab-ref + unlab-cn
KL 83.2 95.5 31.44 34.16

sample + KNN 83.1 92.8 31.42 34.13

w
it

h
la

b
el

ed
tr

ai
n

in
g

se
t lab-1b + unlab-1b

3g+LSTM

CE + KNN 92.8 104.9 31.68 34.27

lab-cn + unlab-cn
KL 91.1 102.6 31.67 34.26

sample + KNN 89.4 100.3 31.62 34.31

4.2. Perplexity and WER evaluation in the adaptation setup

4.2.1. Perplexity in the adaptation setting510

Table 7 presents the perplexities of the LSTM-RNN LMs pre-trained on

a combination of SWB and the in-domain data, and then adapted to the in-
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domain data. The adapted models achieve much lower perplexities than their

in-domain only counterparts (shown in Table 2) in all cases, both on the VM

and AMI datasets. However, note that the performance of the pre-trained and515

adapted LSTM-RNN LMs is not directly comparable to that of LSTM-RNN

LMs trained only on the in-domain data because they have model parameters

of different dimensions (64 for LSTM-RNN LMs trained only on the in-domain

data and 128 for the pre-trained and adapted LSTM-RNN LMs). Moreover,

it must be noted that such an out-of-domain dataset, consisting of manual520

transcriptions of about 300 hours of spoken conversations, may not be available

for most languages.

Table 7 reveals some useful insights on the presented methods for training

RNN LMs on ASR confusion networks. Adapting the LSTM-RNN LMs to

the in-domain ASR hypotheses, without the labeled training data, achieves the525

lowest perplexities with the KL method. However, adaptation along with the

labeled training data results in similar perplexities when training with ASR

1-best transcripts or ASR confusion networks, in case of the KL divergence

and sampling based methods. Adaptation of the LSTM-RNN LMs using the

HMM formulation results in much lower perplexities as compared to HMM based530

training only on the in-domain data. The perplexity reductions are observed

with or without the labeled training data.

Moreover, we also observe that applying Kneser-Ney noising (KNN) when

adapting to the in-domain data can lead to increased perplexities. This is more

evident on the AMI dataset, both with or without the labeled training data.535

4.2.2. ASR WER in the adaptation setting

Table 8 presents the WER obtained by rescoring ASR 100-best lists using

the adapted LSTM-RNN LMs. 100-best lists for the AMI development and test

sets are obtained from ASpIRE model decoded lattices. 100-best lists for VM

are obtained after rescoring lattices with a 3g LM trained on ‘lab-ref + unlab-540

1b’. Accordingly, the VM WERs in Table 8 can be compared to those in Table

5a and the AMI WERs in Table 8 can be compared to those in Table 6.

31



Table 7: Perplexities obtained on the VM and AMI datasets by (128-d) LSTM-RNN LMs

trained using different training methods in the adaptation setting. Bold font denotes the

lowest perplexity within each horizontal half and underline indicates performance statistically

similar to the lowest perplexity. (lab: labeled training set, unlab: unlabeled training set, ref:

manual transcriptions, 1b: ASR 1-best, cn: ASR confusion network, CE: cross entropy, KL:

Kullback–Leibler divergence, +KNN: bigram Kneser-Ney noising along with the method in

the previous row. unlab-ref is an oracle-like condition wherein manual transcriptions of the

unlabeled training set are used for training.)

Training set Training

method

SWB+VM

pre-trained

SWB+VM

adapted

to VM

SWB+AMI

pre-trained

SWB+AMI

adapted

to AMI

Dev Test Dev Test Dev Test Dev Test

w
it

h
o
u

t
la

b
el

ed
tr

ai
n

in
g

se
t

unlab-ref
CE

68.5 70.7
40.4 43.0

88.9 97.1
61.9 68.3

+ KNN 40.7 43.7 62.4 69.6

unlab-1b
CE

84.7 83.8

52.4 56.0

111.5 124.7

89.5 102.6

+ KNN 54.6 59.6 96.8 113.2

unlab-cn

KL 51.2 55.0 87.2 100.2

HMM 53.5 57.3 97.9 113.1

sample 53.0 56.0 89.9 104.0

+ KNN 53.1 56.0 92.1 107.3

w
it

h
la

b
el

ed
tr

ai
n

in
g

se
t

lab-ref + CE
69.6 71.1

40.5 42.8
87.7 94.9

59.7 65.9

unlab-ref + KNN 40.0 42.1 60.3 66.4

lab-ref + CE

78.2 77.1

47.8 50.6

96.5 104.2

70.5 77.9

unlab-1b + KNN 49.1 51.6 75.6 85.0

KL 47.4 50.2 70.3 78.4

lab-ref + HMM 48.1 50.8 74.3 82.7

unlab-cn sample 48.0 50.8 70.6 79.9

+ KNN 48.8 51.6 69.7 77.5
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Table 8: WER evaluation in the adaptation setting. LSTM-RNN LM rescoring on 100-best

lists obtained from (lab-ref + unlab-1b) 3g LM rescored lattices for VM. LSTM-RNN LM

rescoring on 100-best lists obtained from the ASpIRE model for AMI. (lab: labeled training

set, unlab: unlabeled training set, ref: manual transcriptions, 1b: ASR 1-best, KN: modified

interpolated Kneser-Ney smoothing, CE: cross entropy. unlab-ref is an oracle-like condition

wherein manual transcriptions of the unlabeled training set are used for training.)

LM configuration VM AMI

Training set / LM Type Method Dev Test Dev Test

decode LM 3g KN 39.52 39.77 32.27 35.12

w
it

h
la

b
el

ed
tr

ai
n

in
g

se
t lab-ref + unlab-ref 3g+LSTM CE 34.65 34.74 29.45 32.05

lab-ref + unlab-1b

3g KN 37.42 37.93 - -

3g+LSTM CE 35.33 35.63 31.10 33.75

3g+LSTM Sample 35.30 35.66 31.05 33.70

We can observe that the adaptation setting results in small, but signifi-

cant, WER reductions compared to training only on in-domain data. In the

case of VM, the best performing LSTM-RNN LM trained only on in-domain545

data results in 3.4% (from 37.42 to 36.14) and 4.2% (from 37.93 to 36.33) rel-

ative WER reduction on the development and test sets, respectively, while the

adapted LSTM-RNN LM results in 5.6% (from 37.42 to 35.30) and 6.0% (from

37.93 to 35.63) relative WER reduction on the development and test sets, re-

spectively. In the case of AMI, the best performing LSTM-RNN trained only on550

in-domain data results in 2.6% (from 32.27 to 31.42) and 2.8% (from 35.12 to

34.13) relative WER reduction on the development and test sets, respectively,

while the adapted LSTM-RNN LM results in 3.7% (from 32.27 to 31.05) and

4.0% (from 35.12 to 33.70) relative WER reduction on the development and test

sets, respectively. It should also be noted that the differences in the WER from555

training versus adaptation of LSTM-RNN LMs on reference transcriptions are

quite small. We can state that, in the absence of a large relevant corpus for

pre-training LSTM-RNN LMs, exploiting the ASR hypotheses from in-domain

speech data with more effective training methods can lead to a better ASR

performance.560
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4.3. A probe into the perplexity reductions

We observed that LSTM-RNN LMs trained on ASR confusion networks re-

sult in significant reductions in perplexity, even after interpolation with 3-gram

LMs. However, the reductions in perplexity do not translate into significant re-

ductions in WER. Moreover, the perplexity reductions in the adaptation setting565

follow a different trend than that observed in the non-adaptation setting. In or-

der to identify the possible causes, we performed an analysis wherein we dissect

the LM perplexity for words from different frequency groups. More specifically,

we computed the log-likelihoods assigned by an LM to the words in the test

set, then grouped the words based on their count in the in-domain training set570

and plotted the average perplexity obtained by each group of words. Figure 4

shows the average perplexity obtained on the AMI test set words, (a) by the

LSTM-RNN LMs and (b) after interpolation of the LSTM-RNN and 3-gram

LMs. The X-axis in the bar charts represent word groups based on their counts

in the AMI in-domain training set. LSTM-RNN LMs trained only on the in-575

domain data are denoted by suffix ‘training’ and those trained in the adaptation

setting are denoted by suffix ‘adaptation’. These plots correspond to ‘lab-ref +

unlab-1b/cn’ in Table 6 and Table 7.

Figure 4 (a) shows that the proposed sampling based training method achieves

consistent reductions in perplexity across all the word groups, with larger re-580

ductions for the less frequent words for training only on in-domain data. These

reductions in perplexity are smaller in the adaptation setting. We hypothesize

that this is because the less frequent words were seen during the pre-training

stage on out-of-domain data in the adaptation setting.

Figure 4 (b) shows that interpolation of the LSTM-RNN LMs with the 3-585

gram LMs provides much larger reduction in perplexity on the less frequent

words. Moreover, it reduces the differences in perplexity of the different methods

for training LSTM-RNN LMs. The perplexity reductions coming from the less

frequent words result in an overall reduction in perplexity on the complete

test set. However, these less frequent words do not contribute to a significant590

reduction in the WER.
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Figure 4: Average perplexity obtained by LMs on words in the AMI test set. (Higher count

words on the X-axis are not shown.)

5. Conclusion

We explored three different methods to train and adapt RNN LMs on ASR

confusion networks obtained from unlabeled in-domain speech, with the aim of

exploiting uncertainty in ASR transcriptions, while targeting limited training595

data scenarios. Overall, the method based on sampling of paths from the ASR

confusion networks, as well as the method which minimizes the KL divergence

between the model predictions and confusion bin posteriors, lead to statistically

significant reductions in perplexity, as compared to training on ASR 1-best hy-

potheses. Training based on the HMM formulation resulted in higher perplexi-600

ties as compared to training on ASR 1-best hypotheses. However, evaluation of

perplexities in the adaptation settings, wherein the RNN LM was pre-trained on

out-of-domain conversations, shows that the three methods perform similarly to

training on 1-best ASR hypotheses.

ASR evaluation based on rescoring of n-best lists showed that the proposed605

methods for training RNN LMs on ASR confusion networks do not achieve

consistent WER reductions. A small but significant reduction in WER is seen

in one setting on the VM dataset but never on the AMI dataset. ASR evaluation
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of the pre-trained RNN LMs adapted to the manual transcriptions of entire in-

domain data reveals that similar WER reductions could be achieved by training610

only on the in-domain data. This motivates the need for more effective methods

to train RNN LMs on uncertain ASR hypotheses.

Apart from discovering more effective methods to train RNN LMs from in-

domain speech, we also envisage to explore the recent Transformer LMs for this

task. Incorporating the alternate hypotheses and uncertainties using the self615

attention mechanism of Transformers seems to be an interesting direction for

future work. However, training and adaptation with limited in-domain data

will remain an interesting challenge in this direction. Moreover, the proposed

methods should be evaluated for different languages as well as for rescoring in

end-to-end ASR systems.620
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