
HAL Id: hal-03328646
https://inria.hal.science/hal-03328646

Submitted on 30 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Leveraging Formal Specifications to Generate Fuzzing
Suites

Nicolas Osborne, Clément Pascutto

To cite this version:
Nicolas Osborne, Clément Pascutto. Leveraging Formal Specifications to Generate Fuzzing Suites.
OCaml Users and Developers Workshop, co-located with the 26th ACM SIGPLAN International
Conference on Functional Programming, Aug 2021, Virtual, United States. �hal-03328646�

https://inria.hal.science/hal-03328646
https://hal.archives-ouvertes.fr

Leveraging Formal Specifications to Generate Fuzzing Suites

Nicolas Osborne1 and Clément Pascutto1,2

1Tarides, 75005 Paris, France
nicolas.osborne@tarides.com, clement@tarides.com

2Université Paris-Saclay, CNRS, ENS Paris-Saclay, Inria, Laboratoire Méthodes Formelles,
91190, Gif-sur-Yvette, France

Abstract

When testing a library, developers typically first have
to capture the semantics they want to check. They then
write the code implementing these tests and find relevant
test cases that expose possible misbehaviours.

In this work, we present a tool that automatically takes
care of these last two steps by automatically generating
fuzz testing suites from OCaml interfaces annotated with
formal behavioural specifications. We also show some
ongoing experiments on the capabilities and limitations
of fuzzing applied to real-world libraries.

1 Introduction

Library testing is the most common and accessible ap-
proach for ensuring software engineering safety. It typ-
ically requires developers to agree on the semantics of
their programs before writing the code implementing
checks for this semantics, and finally finding relevant test
cases that expose possible misbehaviours or trigger edge
cases. We present a tool to automate these last two steps
by generating fuzz testing suites out of formal specifica-
tions, so developers only have to write down the proper-
ties that the implementation should satisfy.

This work relies on Gospel [2], a contract-based be-
havioural specification language, Monolith [3], a model-
based test framework for fuzzing OCaml libraries, and
is part of ortac, a runtime assertion checking tool for
OCaml. The ortac project is open-source and available
at https://github.com/ocaml-gospel/ortac.

At its core, ortac identifies an executable subset of
the Gospel specifications and translates formulae into
OCaml Boolean expressions. It then wraps the user-
written implementation with these runtime checks. If

the implementation complies with the specification, the
original implementation and the wrapper have the same
behaviour. Otherwise, the wrapped code raises an excep-
tion carrying information about the unmet specifications.

In this presentation, we will show an example of our
workflow and explain how the code generation works un-
der the hood. We will finish with some experiments on
the capabilities and limitations of fuzzing and applica-
tions to real-world libraries.

2 Workflow Overview

The first—and only—task of the developer is to anno-
tate their module signature with Gospel comments that
hold function contracts and type invariants. Figure 1
shows the contents of a file power.mli declaring a func-
tion power annotated with a simple Gospel contract.

val power : int -> int -> int

(*@ r = power x n

requires n >= 0

ensures r = pow x n *)

Figure 1: Power module interface.

Once the user has specified their module interface, they
can call ortac with monolith enabled on the interface
file. The tool prints the generated code on stdout so
they — or the build system — can redirect it in a file:

$ ortac --frontend=monolith power.mli > main.ml

At this point, main.ml contains a complete and cor-
rect Monolith program that will exercise the contract of
power. The user may run it either in random mode or in
fuzzing mode with afl-fuzz [1]:

1

random mode

$./main

fuzzing mode

$ afl-fuzz -i inputs/ -o outputs/ -- ./main @@

In both cases, Monolith provides inputs to the an-
notated functions and reports errors in the directory
outputs/crashes in the form of replayable scenarios.
To get more information about a misbehaviour, the user
can replay the scenario by passing the corresponding file
name to the generated program as an argument. This
way, the user has access to the failure scenario and all
the errors reported by ortac on these specific inputs,
highlighting the broken specifications.

$./main outputs/crashes/<filename>

File "power.mli", lines 1-4, characters 0-26:

Runtime error in function ‘power’:

- the post-condition

‘r = pow x n’

was violated.

3 Under the Hood: a Frontend
for ortac

The architecture of ortac is designed such that its core
can be specialised by a frontend in order to extend its
default behaviour. Our fuzzing frontend specialises it in
three different ways to integrate it with Monolith. Fig-
ure 2 presents the structure of the generated code.

Prelude (specialised runtime)

Reference module (wrapped implementation)

Candidate module (original implementation)

Generators for user-defined types

Printers for user-defined types

Monolith specs for user-defined types

Monolith declarations and main

Figure 2: Organisation of the generated code.

A specialised runtime. We provide the final code
with a specialised runtime, adapting the default
ortac-runtime to Monolith error reporting. For exam-
ple, if a precondition is unmet, we do not report an er-
ror but rather ignore this scenario. Our runtime also
provides generators and printers that Monolith does not
provide natively.

Reference and candidate implementations.
Monolith is a model based test framework; it requires
two modules with the same signature, a Reference and
a Candidate. We use the original implementation as
the Candidate, and the wrapper generated by ortac as
the Reference, as it contains the information about the
expected behaviour.

Monolith declarations. The last part of the program
registers the functions in the interface and their types so
that Monolith can exercise them. Our frontend generates
these declarations automatically from the typing infor-
mation by constructing printers and random generators
for user-defined types.

4 Conclusion and Future Work

The ortac tool and its monolith frontend are under ac-
tive development to extend the support for user-defined
OCaml types and Gospel specifications. We also plan
to continue the experiments on real-world libraries in or-
der to explore further the capabilities and limitations of
ortac combined with fuzzing.

References

[1] afl-fuzz — American fuzzy lop. https://

lcamtuf.coredump.cx/afl/.

[2] Arthur Charguéraud, Jean-Christophe Filliâtre,
Cláudio Lourenço, and Mário Pereira. GOSPEL -
Providing OCaml with a Formal Specification Lan-
guage. In FM 2019 - 23rd International Symposium
on Formal Methods, October 2019.

[3] François Pottier. Strong automated testing of OCaml
libraries. In Journées Francophones des Langages Ap-
plicatifs (JFLA), February 2021.

2

