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Words categorize the semantic fields they refer to in ways that
maximize communication accuracy while minimizing complexity.
Focusing on the well-studied color domain, we show that artificial
neural networks trained with deep-learning techniques to play a
discrimination game develop communication systems whose dis-
tribution on the accuracy/complexity plane closely matches that
of human languages. The observed variation among emergent
color-naming systems is explained by different degrees of discrim-
inative need, of the sort that might also characterize different
human communities. Like human languages, emergent systems
show a preference for relatively low-complexity solutions, even at
the cost of imperfect communication. We demonstrate next that
the nature of the emergent systems crucially depends on com-
munication being discrete (as is human word usage). When con-
tinuous message passing is allowed, emergent systems become
more complex and eventually less efficient. Our study suggests
that efficient semantic categorization is a general property of dis-
crete communication systems, not limited to human language. It
suggests moreover that it is exactly the discrete nature of such
systems that, acting as a bottleneck, pushes them toward low
complexity and optimal efficiency.

efficiency of human language | language emergence in artificial neural
networks | color-naming systems

Words partition our world into semantic categories. Con-
verging evidence indicates that, while these categories

differ widely across languages, they are shaped by universal con-
straints (1–3). In particular, it has been suggested that semantic
categorization evolves to support efficient communication (4).
Humans develop naming systems to talk about their experience
under two competing pressures: “accuracy maximization” (words
should encode precise information about their referents) and
“complexity avoidance” (preventing unwieldy languages). At an
extreme, a maximally accurate system would have a different
term for each perceptual or mental experience. At the other, a
maximally simple system would use only one term to refer to all
experiences, completely hindering communication.

Actual human naming systems are efficient in the sense that
they optimize the accuracy/complexity trade-off. More gener-
ally, since the foundational work of Zipf (5), a similar trade-off
between precision and simplicity has been observed in many
areas of language (6).

Zaslavsky et al. (7) formalized the measurement of naming-
system efficiency within the general information–theoretic
framework of the Information Bottleneck (IB) (8) (see also the
closely related rate-distortion theory framework in ref. 9). A
system is deemed efficient if it reaches the maximum possible
accuracy for a given complexity. In the IB framework, both accu-
racy and complexity are computed in a communication model
where an idealized Speaker aims to communicate a meaning to
an idealized Listener. Accuracy is then inversely related to the
cost of a misinterpreted meaning, while complexity measures the
quantity of information needed to convey the meaning. The IB
efficiency of a system is effectively visualized in plots (see Fig. 3).

The black curve in Fig. 3 represents the theoretical limit: no
system of a certain complexity (horizontal axis) can have accu-
racy (vertical axis) above the curve. Hence, according to IB,
a system is optimal if it lies on the curve. Equipped with this
framework, Zaslavsky et al. (7) demonstrated that color-naming
systems (4, 10, 11) are notably close to the theoretical limit and
hence efficient in a quantifiable way.

IB theory is agnostic about where on the theoretical-limit curve
a system should lie. Degenerate systems lying at the extremes
of the curve, and expressing each referent with a different term
or all referents with a unique term, are also efficient according
to this theory. However, such systems are not attested. Instead,
real color-naming systems approximate a small range of possible
optimal solutions, avoiding the extremes, and in particular high-
complexity trade-offs (7). This avoidance of complexity extremes
has been observed more broadly in studies of categorization and
naming across many semantic domains (4, 12–14).

We study the efficiency of color naming from a different
perspective. We compare natural language systems with those
emerging from the interaction of modern neural networks (NNs)
faced with a color-communication task. Artificial NNs trained
with deep-learning methods (15) have recently been used to
study human (neuro)cognition in many fields (e.g., refs. 16–
19), including color naming (20, 21). Traditional simulations in
cognitive science are specifically designed to assess how cer-
tain factors of interest affect system behavior by developing ad
hoc models, an approach illustrated by Baronchelli et al. (22)
and Loreto et al. (23), in the domain of color naming, and
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Fig. 1. The 330 WCS color chips. Rows correspond to equally spaced lightness values and columns to equally spaced Munsell hues. Each stimulus is at the
maximum available saturation for that hue/lightness combination.

applied by Carr et al. (24) to the study of complexity/accuracy
trade-offs in semantic categorization. Deep networks, however,
are high-performance general-purpose learners, independently
developed for engineering purposes, with no claims of cognitive
plausibility concerning their architecture or learning process. In
this respect, they might be best seen as complex “animal mod-
els” (25, 26). The main interest lies in whether the emergent
behavior of these powerful mechanisms mirrors nontrivial prop-
erties of human behavior (27). If it does, we can entertain the
intriguing hypothesis that the specific converging human and
deep-network patterns we observe have common roots. We can
moreover directly intervene on the artificial organisms (more
easily so than we can on humans), in order to causally assess how
different components affect their emergent behavior.

Specifically, we show that, when two deep learning-trained NNs
play a simple color discrimination game, they develop naming
systems that closely match the distribution of human languages
on the IB plane, showing both efficiency maximization and com-
plexity control (Fig. 3). The use of human-like artificial systems
emerges without imposing ad hoc constraints favoring efficiency
or limiting complexity on the training procedure. Having observed
the systematic emergence of efficiency and complexity reduction
in the NN systems, we proceed to test the hypothesis that these
properties crucially depend on the bottleneck imposed by the dis-
crete communication channel. Indeed, as we let NNs exchange
messages that are increasingly more continuous, their naming sys-
tems become more complex, and, eventually, no longer efficient.
Varying the degree of color-discrimination granularity required
to play the game affects the complexity of the emergent systems,
but not efficiency, and only within the range of attested human
variation. NN capacity only affects the complexity of the system
in function of discreteness of communication.

The emergence of efficient and reasonably simple semantic
categorization is not specific to human language but might gener-
ally arise in cognitive devices exchanging discrete messages about
their world. Discreteness of communication plays a central role
in the emergence of efficient and low-complexity naming systems
among our artificial agents, raising intriguing questions about the
role of discreteness in human language.

Color-Naming Task
Stimuli. Following prior work (4, 7, 28), we use the World Color
Survey (WCS). The WCS contains the names of 330 color chips
(Fig. 1) in 110 languages of nonindustrialized societies (29).
We represent each color stimulus as a three-dimensional vec-
tor in CIELAB space (a color space designed to approximate
human vision). In particular, we measure color similarity based
on Euclidean distance in CIELAB, as it correlates with human
perceptual sensitivity (7).

Discrimination Game. We implement a classic discrimination
game (30) played by 2 NN agents, Speaker and Listener. Speaker
receives a target color ct from the palette and sends one word
w from its vocabulary V to Listener. Speaker chooses the word
from a fixed vocabulary of size |V |= 1,024. As |V | is larger than
the number of colors (330), it is always possible, in principle,

for Speaker to use a unique word to denote each distinct color.
Given w and two distinct colors, ct and a distractor cd , Listener
must predict the target. The agents succeed if Listener guesses
the correct target (as in Fig. 2).

As in previous work (4, 28), we assume a uniform prior dis-
tribution p(c) over target colors. In SI Appendix, Supporting
Information Text, 3. Salience-Weighted Source Distribution, we test
an alternative nonuniform prior (31), and the results still hold.

The game is implemented in EGG (32). Further details are in
Materials and Methods.

Discriminative Need. Despite the presence of universal tenden-
cies (10, 33, 34), color-naming variance is also observed (35,
36). Prior studies hypothesized that such variance depends on
distinct frequencies of occurrence of colors across communities
(31, 37). In lack of data capturing these differences, we explore
a complementary source of variation, that is easier to model
computationally. We hypothesize that different cultures have
different discriminative needs. Intuitively, highly industrialized
societies might need to distinguish between subtly different color
shades characterizing different goods, whereas nonindustrialized
societies can rely on coarser distinctions. As indirect evidence,
Gibson et al. (31) reported that, in the nonindustrialized Tsi-
mané community, color terms are “only used to discriminate
between familiar artificial objects.” Since in a nonindustrialized
community, there is relatively low variety of artificial objects,
discrimination need will be low. In English, instead, speakers sys-
tematically use color terms to discriminate between objects of all
kinds (31).†

Concretely, we define discriminative need as the minimum
allowed Euclidean distance between targets and distractors in
CIELAB space. Agents trained with small minimum target-
distractor distance, distmin, simulate communities with high dis-
criminative need; the ones trained with large distmin represent
communities with low discriminative need. We quantify distmin

in terms of the nth percentile in the list of pairwise distances
between the 330 distinct color chips. For example, with per-
centile = 50, for a given target color ci , a distractor cj is sampled
uniformly among candidate colors such that

dist(ci , cj )≥med ({dist(ck , cl); k , l ∈{1..330}, k > l}), [1]

where med is the median function and dist is the Euclidean dis-
tance in CIELAB space. Note that larger percentiles correspond
to games requiring less granular discrimination. We provide
examples in SI Appendix, Supporting Information Text, 1. Example
of Nearest Target-Distractors for Different Percentiles.‡

Speaker Word Distributions. Just like in natural language, we allow
fuzzy naming: the same color might be, in different occasions,

†Humans can also handle varying contextual discrimination needs by producing longer
or shorter phrasal descriptions (38), a strategy we are not modeling here.

‡SI Appendix, Supplementary Information Text, 2. Random Sampling of Distractors
demonstrates that highly efficient systems also emerge when no percentile is imposed,
although the latter never reach our threshold for minimum game accuracy (95%).
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Fig. 2. A successful round of the discrimination game. A chip c is drawn
from a uniform distribution and fed to Speaker. Speaker outputs a proba-
bility distribution p(W|c) over its vocabulary of size |V|. Here, a probability
is mapped to a color according to a gray gradient (with darker colors rep-
resenting higher probabilities). A word w is sampled from p(W|c) and fed
to Listener. Finally, Listener—given w, the target chip (in position 1 in this
illustration), and a distractor chip (in position 2 in this illustration)—assigns
a probability to both positions, representing its guess about the position of
the target (in this illustration, Listener correctly assigns a higher probability
to the target position).¶

denoted by different words. To estimate the probability dis-
tribution P(w |c) associated to a color chip c, we sample 25
words with replacement from Speaker after convergence.§ For
instance, since Speaker’s outputs form a categorical distribution
over V , if this distribution is a Dirac, the resulting set of 25 sam-
ples will correspond to a unique word. At the other extreme, if
Speaker has no confidence about c’s category, we might get 25
distinct words equiprobably naming c.

Evaluating the Accuracy/Complexity Trade-Off. To compareNN and
human naming systems, we adopt the communication model of
Zaslavsky et al. (7), keeping the same notation. U represents the
set of world’s objects, in our case, the set of colors; W represents
the set of words; and M represents the set of Speaker’s meanings.
We assume that a NN Speaker, similarly to what is conjectured
for humans (4, 7), internally represents each target color chip c as
a Gaussian distribution m ∈M over U centered at c and defined
upon CIELAB color similarity. That is, for a given target chip
c, Speaker constructs an internal representation m(c) reflecting
its belief about the color chip it wishes to communicate to Lis-
tener. The Gaussian m(c), of mean c, is then only parameterized
by variance σ2, that informs about the Speaker’s (un)certainty
about its belief. Concretely, an m(c) with low variance, reflect-
ing a certain belief, would only cover c and few neighboring chips
according to the CIELAB space (e.g., slightly darker and lighter
chips). Similarly to Zaslavsky et al. (7), we set σ2 =64 for all
target chips. Note that M is only introduced to compute the accu-
racy and complexity measures below, and it plays no direct role
in the discrimination game.

In the framework by Zaslavsky et al. (7), the complexity of a
naming system is quantified by the number of bits of informa-
tion required for expressing the intended meanings. As shown by
Zaslavsky et al. (7), this is measured by the mutual information,
I (M ;W ) between M and W .

Also following Zaslavsky et al. (7), we use I (U ;W ) to mea-
sure the accuracy of a naming system. The latter measure is
inversely related to the Kullback–Leibler divergence between
Speaker and Listener meanings. That is, the better Listener is
at reconstructing Speaker’s meaning, the larger I (U ;W ) is.

§A majority of WCS languages contains names elicited from 25 speakers, leading to
comparable a sample size for P(w|c) estimation.

¶Target and distractor positions are randomly shuffled at each round to prevent Listener
from relying on position to succeed at the game.

The theoretically optimal trade-offs between complexity and
accuracies are approximated by minimizing the IB objective
function:

I (M ;W )−βI (U ;W ) s.t . β≥ 1, [2]

where β is the trade-off parameter determining the relative
weight a system will attribute to complexity avoidance vs. accu-
racy maximization. Both complexity and accuracy are quantified
by mutual information terms. However, the IB objective min-
imizes the first term (lowering complexity) and maximizes the
second (increasing accuracy; note the minus sign preceding the
second term in Eq. 2), two constraints that will be in contrast.

To minimize Eq. 2 for a fixed β, we look for the set
{P(wi |cj )}i,j , where j ∈ [1, 330] and i ∈ [1,K ], with K a variable
to optimize. To get the theoretical-limit curve shown in Fig. 3,
we repeat this procedure for each β, as described in Materials
and Methods.# Refer to Zaslavsky et al. (in particular, Bounds on
Semantic Efficiency in the main text of ref. 7 and SI Appendix,
section S1.3 in ref. 7) for more details about definitions and
derivations.

The farther a system is to the theoretical-limit curve, the less
efficient it is. To quantify the inefficiency of a system s , charac-
terized as a point on the accuracy/complexity plane (Fig. 3), we
introduce the Inef score:

Inef (s)=min
β
{‖s − s∗β‖

2
s.t . β≥ 1}, [3]

where s∗β are the coordinates of the optimal naming system (on
the theoretical-limit curve) for a fixed β.

Experiments and Results
Human vs. NN Naming Systems. To simulate communities with
different needs, we run the discrimination game varying mini-
mum target-distractor distance, defined in terms of percentile
of nearest distractor (see Discriminative Need). With percentile
< 20, target-distractor pairs are too close, and agents fail to
converge. Above percentile = 80, there are no distractors suf-
ficiently distant to any given target. We hence played the game
with percentile ∈{20, 30, 40, 50, 60, 70, 80}, resulting in 60 suc-
cessful games in total. Control experiments are in SI Appendix,
Supplementary Information Text, 5. Encouraging the Emergence of
a Two-Word System during Training.

Looking at how human and NN naming systems spread along
the IB line in Fig. 3, we can make two striking observations.
First, NN systems lie near the theoretical IB limit just like human
languages do. SI Appendix, Supplementary Information Text, 4.
Efficiency: Comparing Human vs. NN Systems, and Actual vs.
Rotated Systems shows that NN system inefficiency (Eq. 3) falls
within the human range. Second, both human and NN systems
lie on a narrow segment of the curve. While this segment does
not include the minimal values, it is still clearly tilted toward
the low-complexity end of the curve. Note that minimum com-
plexity would be achieved by a system with a single color term.
As this makes no sense, we do not expect minimum-complexity
systems to emerge. Intriguingly, neither WCS nor NN systems
include two-word codes (which are exceedingly rare in natural
languages in general) (39). SI Appendix, Supplementary Informa-
tion Text, 5. Encouraging the Emergence of a Two-Word System
during Training shows that, even when we manipulate the game
so that agents could achieve perfect discrimination with two
words only, they minimally converge to a three-word system.

#We only optimize Eq. 2 to calculate the IB bound. NN training is completely distinct and
independent from this calculation.
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Fig. 3. Human (blue circles) and NN (orange circles) color-naming systems
on the information plane. English (light blue circle) is not in WCS, but it
is approximated relying on Zaslavsky et al. (SI Appendix, figure S7 in ref.
7). The IB curve (black line) defines the theoretical limit on accuracy given
complexity. All color-naming systems achieve near-optimal efficiency.

We have no explanation for why two-word systems are avoided.
Still, both WCS and NN systems are clearly coming much closer
to the lower end of the complexity scale than to the upper
bound.‖

In sum, standard NNs trained on the discrimination game
develop systems that support efficient communication (i.e., are
close to the IB curve) while preferring low complexity, similarly
to human color-naming systems. Our focus here is on the IB
trade-off. However, the way in which NN systems accomplish this
trade-off is not radically different from that of human languages.
SI Appendix, Supplementary Information Text, 10. Direct Com-
parison of Color Space Partitions presents a detailed comparison
of color partitioning in human and NN naming systems, high-
lighting partial differences but also important commonalities,
in particular, in terms of the convexity of regions correspond-
ing to distinct color names (see also SI Appendix, Fig. S12 for
qualitative comparison between both systems).

Effect of discriminative need. Fig. 3 shows the NN systems
resulting from exploring the full range of possible percentile
values (the parameter controlling discriminative need). While
all systems are efficient, we observe some variability in com-
plexity (within the [0.84, 2.8] range), that might be due to
different discriminative needs. This is confirmed by Fig. 4,
which shows NN naming system complexity in function of
percentile. Smaller percentile values (requiring more granular
discrimination) make systems more complex. Still, this trend
is gradual with no significant pairwise differences, suggesting
the need for distant discriminative needs to observe a sig-
nificant difference in systems’ complexity. Furthermore, NN
systems’ complexity remains within human-range complexity
when exploring the full range of percentile values. Interest-
ingly, Fan et al. (14) showed, in the context of visual com-
munication, that humans are also sensitive to discriminative
need and adapt the complexity of their communicative system
accordingly.

Thus, discriminative need (or related environmental/societal
pressures to make more/less granular distinctions) could account
for the range of complexity variation we observe in NN and
human naming systems (and that might be somewhat underesti-

‖NN systems are tilted toward the top of the human complexity range. This is probably
an artifact of WCS’ focus on nonindustrialized societies. English, the only industrialized-
society language in Fig. 3, is more complex than any NN language.

mated by the WCS sample). However, alone, it does not explain
why the range of observed systems is so narrow.

Preference for low complexity. Both human and NN systems show
much lower complexity than what could be found in an optimal
naming system by systematically varying the trade-off parame-
ter β ∈ [1,+∞[.

∗∗
The attested systems all occur within a small

segment corresponding to β ∈]1, 1.14].
One might conjecture that more complex codes do not evolve

simply because the attested ones are sufficiently granular to sup-
port all required discriminations. For our NN agents at least, this
is not the case, as they systematically fail to achieve 100% suc-
cess in the discrimination game, which would instead be possible
with more complex systems. To illustrate the latter, we generate
additional naming systems by partitioning the color space using
the “fuzzy c-means” (FCM) soft clustering algorithm (40), treat-
ing cluster labels as color names. We obtain different systems
by varying the number-of-clusters hyperparameter. We then play
the discrimination game with Speakers and Bayesian Listeners
that use p(w |c) distributions derived from the soft clustering
solutions.

The FCM-based agents can reach 100% communication suc-
cess at all percentiles. However, this comes at the cost of higher
complexity. Table 1 compares, for each percentile, the 100%
successful FCM system with lowest complexity to the NN sys-
tem with highest success rate. In all cases, NNs came up with
systems that are considerably less complex but that also fail to
reach perfect discrimination success.†† We conclude that the
low complexity of NN systems cannot be explained by lack of
sufficient communicative pressure toward more complex solu-
tions. We explore next other possible sources of low-complexity-
preference.

Roots of Efficiency and Complexity Avoidance. Building on recent
work (41), we explore the idea that the discrete nature of the
communication channel acts as bottleneck on the amount of
information that the agents are able to transmit, leading them to
establish efficient and low-complexity naming systems. Another
natural bottleneck could be agents’ capacity. Perhaps, the “neu-
ral power” of our NNs does not suffice to develop more complex
languages. We show next that channel discreteness plays a fun-
damental role in complexity reduction, whereas NN capacity only
matters insofar as it allows the agents to further simplify the code
in presence of a discrete channel.

Effect of channel discreteness. We fix percentile = 50 and explore
different training regimes ranging from a fully discrete setup
to a virtually continuous one, relying on two commonly used
methods to train deep networks in language emergence sce-
narios (e.g., refs. 42 and 43; also see Materials and Methods).
The REINFORCE (RF) algorithm uses fully discrete symbol
transmission during both training and evaluation. The Gumbel-
Softmax (GS) method is fully discrete at evaluation time, but it
estimates symbol probabilities through a smooth approximation
during training. At training time, discrete symbols are approxi-
mated by continuous vectors with most of the mass concentrated
around a single value. The “peakiness” (and thus discrete-
ness) of this approximation is controlled by the temperature
parameter τ . The lower the τ , the peakier the vector (practi-
cally converging to a discrete “1-hot” encoding for low τ s). We

**In practice, distinct optimal systems are only obtained for β ∈ [1, 213], as all optimal
systems with β > 213 are identical and assign a unique word to each color.

††In the few cases in which FCM systems converged to success rates comparable to those
of NN systems, FCM systems were on average less complex, suggesting that the rela-
tively high FCM complexity we observe in Table 1 is not due to an inherent tendency
of the latter to converge to high-complexity solutions.
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Fig. 4. Complexity distributions of NN systems across different discrim-
inative needs (human distribution included for comparison). There is a
decreasing trend in complexity when increasing percentile (P = 0.004;
Kruskal–Wallis). Pairwise differences are not significant when evaluated
with Bonferroni-corrected Mann–Whitney–Wilcoxon.

explore τ ∈{1, 5, 10}, corresponding to increasingly smoother
communication channels.

Settings with less smooth channels, and in particular fully dis-
crete RF, are harder to train. Hence, we launch 60 runs for
each GS setting and 180 for RF. In SI Appendix, Supplemen-
tary Information Text, 6. Discreteness and Success Rate, we discuss
the relation between channel smoothness and successful conver-
gence, arguing that the high failure rate of more discrete settings
is due to a higher complexity-reduction pressure.

Fig. 5A shows that agents trained with RF (thus, in the
completely discrete setting) develop significantly less complex
systems compared to the ones trained with GS. Within GS, lower
τ (more discreteness) leads to simpler codes. With more com-
plexity, smoother systems also become less efficient, an effect
that is clear with the highest τ =10 (Fig. 5B).‡‡ In SI Appendix,
Supplementary Information Text, 9. How Are Color-Naming Sys-
tems (In)efficient?, we study one concrete way in which these
systems are inefficient, comparing them with complex but still
efficient NN systems resulting from high discriminative need.

Effect of agent capacity. Only Speaker capacity has a significant
impact on complexity and only with a discrete communication
channel. Interestingly, larger Speakers further reduce the com-
plexity of the emerging naming system (SI Appendix, Fig. S9).
As further discussed in SI Appendix, Supplementary Information
Text, 8. Impact of Agent Capacity, a reasonable interpretation
for this pattern is that, when the channel is discrete, transmit-
ting information is difficult. Consequently, a “smarter” Speaker
will use its extra computational power to come up with an
encoding that allows it to transmit even less bits through the
channel while maintaining reasonable accuracy. Thus, the agents’
capacity experiments further confirm the importance of the
discrete-channel bottleneck for complexity minimization.

Discussion
We have shown that NNs trained to play a color discrimina-
tion game develop naming systems whose distribution on the
accuracy/complexity trade-off plane strikingly resembles that of
human languages. We obtained this result using game success
as the sole training signal, without imposing any constraint on

‡‡The trend toward higher complexity and lower efficiency continues with larger τ .
However, above τ = 10, agents rarely succeed at the game, making the interpretation
of results difficult.

Table 1. Complexity and success rate (game accuracy after
training) of FCM-based and NN systems in function of the game
percentile parameter

min complexity Complexity Success rate
Percentile FCM Best NN Best NN

20 5.39 2.50 95.45%
30 4.34 2.28 96.97%
40 4.01 2.23 95.76%
50 3.75 2.68 98.79%
60 3.44 2.17 96.97%
70 3.39 2.30 97.56%
80 3.12 2.24 98.78%

FCM success rate is always 100%. For FCM, we report min-
imal complexity among fully successful solutions. For NN, we
report complexity and success rate of the system achieving
highest success rate.

the emergent code, except that it had to consist of single dis-
crete symbols. A very recent study by Kågebäck et al. (21)
reports that deep NN agents trained with generic techniques
to play a color-naming game strike a similarly human-like com-
plexity/accuracy trade-off, despite important differences between
their game and ours (in their setup, the Listener receives only the
message as input, and it has to reconstruct the color chip seen
by the Speaker), different methods to derive a discrete protocol,
and different factors modulating the trade-off (the complex-
ity cline, in their experiments, depends on different amounts
of noise added to the communication channel). This consti-
tutes important converging evidence that deep-network com-
munication tends to naturally optimize the accuracy/complexity
trade-off, independently of the specifics of the simulations.

We observed, in particular, that the networks developed “low-
complexity” systems, again in accordance with natural language
data. We then looked for the source of this low-complexity pres-
sure in NN systems. Building up on a recent study reporting
similar results in artificial tasks (41), we showed that the pres-
ence of a discrete communication bottleneck plays a crucial
role. As we relax discreteness, the emergent naming systems
become complex beyond what is attested in human language,
and, eventually, significantly inefficient.§§

In the last few years, much evidence for the efficiency of
human languages in general (6) and semantic categorization
in particular (4) has been accumulated. Yet, we still lack a
full scientific understanding of “why” language is efficient. Our
results provide two contributions relevant to this question. First,
since efficiency and complexity avoidance also characterize the
code evolved by communicating NNs, these factors cannot
be explained away by least-effort factors specific to biological
agents. Second, the fact that NNs exchange a discrete signal is
crucial. Discreteness is a striking, possibly unique characteristic
of human language (44, 45), often adduced as a precondition for
the combinatorial infinity of expression that characterizes it (46).
Our finding suggests that it might also be responsible for the effi-
cient nature of semantic categorization (and possibly language at
large). We do not have direct evidence on how the language of
our ancestors became discrete and on how this affected the struc-
ture of semantic categorization. However, our computational
results pave the way for experiments with contemporary humans,
exploring how a continuous/discrete transition in communication

§§ Intriguingly, while Kågebäck et al. (21) do not explicitly discuss it, their results also
point to a correlation between complexity reduction and discreteness, despite the
fact that they control discreteness in a different way, that is, by injecting noise into
a continuous channel.
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Fig. 5. Complexity and inefficiency of NN color-naming systems trained with REINFORCE or GS with different τs. Pairwise differences evaluated with
Bonferroni-corrected Mann–Whitney–Wilcoxon. ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001; ∗∗∗∗P < 0.0001. Differences that are not significant are not marked.

systems affects the nature of information exchange. With human
subjects, we might not have a direct equivalent of the GS tem-
perature parameter. We can however build on a strong tradition
of experimental semiotics studies using continuous signals, such
as drawings, whistles, and nonconventionalized gestures, and
sometimes reporting a tendency to discretize the signals as sys-
tematic communication strategies emerge (14, 47, 48). By using
this framework, we should be able to design experiments that
probe a causal relation between discreteness and communica-
tive efficiency, ultimately strengthening our understanding of the
roots of efficiency in language.

Materials and Methods
Human Languages. We used the WCS database (www1.icsi.berkeley.edu/
wcs/). Two languages with extremely sparse information (judgments from
1 speaker only for at least some chips) were removed, resulting in 108 ana-
lyzed languages. English, which is not in WCS, was approximated based on
the relevant figures from the study by Zaslavsky et al. (7).

Agent Architecture and Training. Both agents are feed-forward NNs. Speaker
contains 3 hidden layers, each of size 1,000 and with leaky-ReLU (rectified
linear unit) activations. For each color, the Speaker’s output layer defines a
Categorical distribution over its vocabulary V . Listener is modeled as a linear
layer of hidden size 5. The impact of agents’ capacity on results is discussed in
SI Appendix, Supplementary Information Text, 8. Impact of Agent Capacity.

Training NNs to communicate through a discrete channel is nontrivial,
as we cannot backpropagate into the Speaker through this bottleneck. We
use two methods commonly employed in the deep agent language emer-
gence literature: 1) GS relaxation (e.g., ref. 43) and 2) REINFORCE (e.g.,
ref. 42)) (in both cases, Listeners’ gradients are obtained with standard
backpropagation). We plug the obtained gradient estimates into Adam (49).

GS. Samples from the GS distribution (50, 51) approximate those from a
Categorical distribution through a reparameterization trick, thus enabling
gradient-based training. Let us denote σ :Rn→Rn the standard softmax
function. To get a sample that approximates an n-dimensional categorical
distribution with probability p, we draw g = [g1, . . . , gn], where for each i,
gi ∼ Gumbel(0,1) and use it to calculate y such that:

y =σ

(
g + log p

τ

)
, [4]

where τ is the temperature hyperparameter. As τ tends to 0, the samples
get closer to one-hot, making communication more discrete; as τ→+∞,
the samples tend to uniform, resulting in smooth communication. At train-
ing time only, we use the relaxed samples as messages from Speaker, making

the entire Speaker/Listener setup differentiable. We look at the impact of
τ on Speakers’ output distribution in SI Appendix, Supplementary Infor-
mation Text, 7. Effect of More/Less Discrete Training on Speakers’ Output
Distribution.

Reinforce
Following Schulman et al. (52), we sample Speaker’s words and estimate its
gradients as follows:

Eis ,il
Ew∼S(is ) [L(o; t) + sg (L(o; t)− b)log Pθ (w)], [5]

where ia are agent’s inputs with a = s if agent is Speaker and a = l if it
is Listener. o denotes Listener’s prediction, t denotes the ground-truth,
and L denotes the cross-entropy loss function; sg refers to the “stop-
gradient” operation. We use the standard running mean baseline b (53, 54)
to reduce estimate variance. To achieve more robust convergence, we also
adopt the common trick to add an entropy maximization term (55, 56) on
Speaker’s words. This could favor higher code complexity, which makes our
low-complexity result even more striking.

When not stated otherwise, results are based on GS training with tem-
perature τ = 1. Training consists in letting the agents play the game until
their performance converge (this happens, on average, after about 6 mil-
lion interactions). For each considered setting, we repeat experiments with
20 different random initializations and only focus the analysis on the suc-
cessful runs. We consider a run successful if, after convergence, the agents
have at least a 95% success rate. Following standard practice, success rates
are computed in games in which the most likely word is deterministically
sampled from the Speaker distribution.

IB Curve. We use the Agglomerative IB method (57) with βinit = 213. At each
step of the annealing process, we evaluate the IB solution, i.e., P(w|c) for
each (w, c) using Iterative IB (57). The latter is an iterative method that alter-
nates between evaluating P(w|c) and m(c) (Speaker’s meaning for each c)
until convergence. We refer readers to Zaslavsky et al. (SI Appendix, section
1.4 in ref. 7) for more details about this two-step process. When annealing
β according to Agglomerative IB, the IB solution is initialized with the one
found with the previous value of β. Optimization ends when β= 1.

Data Availability. The models reported in this paper have been deposited in
GitHub (https://github.com/rahmacha/EGG).
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