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ABSTRACT As industrial plants increase the number of wirelessly connected sensors for fault detection,
a key problem is to identify and obtain data from the sensors. Due to the large number of sensors, random
access protocols exploiting non-orthogonal multiple access (NOMA) are a natural approach. In this paper,
we develop new algorithms based on approximate message passing for sensor identification and channel
estimation accounting for correlation in the activity probability of each sensor and observations of physical
variables (e.g., temperature) by the access point. These algorithms form the basis for data decoding, while
also identifying faulty machines and estimating local values of the temperature, which can lead to a reduction
in the amount of data required to be transmitted. Numerical results show that for an expected activity
probability of 0.35, our algorithms improve the normalized mean-square error of the channel estimate by up
to 5dB and reduce the rate of sensor identification errors by a factor of four.

INDEX TERMS Maximum likelihood detection, channel estimation, fault detection, correlation, Internet
of Things, belief propagation, approximation algorithms, Bayesian methods, message passing, massive
machine-type communications.

I. INTRODUCTION
To improve efficiency and minimize economic losses, a key
challenge in large-scale industrial plants is rapid identifica-
tion of faulty or degraded machines. An increasingly popular
approach is to place sensors with wireless communication
capability on as many machines as is economically feasi-
ble [1]. When a centralized access point sends a sync signal,
all sensors which detect faulty behavior of their machine then
transmit data to the access point.

An important challenge lies in the fact that each sensor
only transmits when it detects a fault. For applications with
a relatively small number of sensors, it would be reason-
able to allocate distinct subcarriers to each sensor, mak-
ing the identification trivial since detecting a signal in a
subcarrier would indicate which sensor is active. However,
it will not be the case when the—potentially very large—
number of sensors that transmit within a given frame can
vary dramatically. It is therefore highly inefficient to allocate
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orthogonal resources for each sensor’s transmission espe-
cially when sensors are inactive with a high probability.
Doing so would lead to high resource requirements, most
of which is not utilized. As a consequence, this scenario—
known as random access—requires non-orthogonal resource
allocation (e.g., the same time-slots or subcarriers are utilized
bymultiple sensors), often known as non-orthogonal multiple
access (NOMA) [2].

Another, less often accounted for, feature is that sensors
on the same or nearby machines often observe physical
variables, such as the temperature, that are similar. In par-
ticular, the observations by such sensors are statistically
correlated [3].

In order to transmit data, each sensor first transmits a
pilot sequence which provides a means of identifying active
sensors (and hence faulty machines) and estimating channels
between the sensors and the access point. There is presently
a large body of work on sensor identification and channel
estimation in random access for uncorrelated sensors. For
example, a Bayesian estimation framework has been devel-
oped for the user identification problem in [4], which attempts
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to identify the active subset of sensors based on the posterior
distribution informed by observations at the access point.

Due to the nature of random access, active sensors typ-
ically form a sparse subset of all sensors. As a conse-
quence, the problem of channel estimation has recently been
attacked using compressed sensing, with algorithms based on
least absolute shrinkage and selection operator (LASSO) and
orthogonal matching pursuit [5]–[7].

The problem of joint sensor identification and channel
estimation in random access based on NOMA has recently
seen significant attention. In [8], channel estimation is per-
formed via a low complexity, but accurate, variant of belief
propagation (BP) known as generalised approximate message
passing (GAMP), with sensor identification obtained through
an ad hoc thresholding scheme. In [9], a GAMP-based sensor
identification and channel estimation algorithm has been pro-
posed for multi carrier communication systems, with activity
probabilities estimated via expectation-maximization. In [10]
and [11] expectation propagation is used to address the joint
active user detection and channel estimation problem in a
multi-user setup with inter-symbol interference introduced
by a faster-than-Nyquist signaling. While the correlation
between the symbols is considered, the activity of the users is
assumed to be statistically independent. In [12]–[14], a sys-
tematic approach for the joint identification and channel
estimation problem exploited a general framework, known
as the group-sparse model, where sensor activity—common
to all subcarriers—is treated as a latent variable. A GAMP-
type method, known as hybrid GAMP (HGAMP), was then
applied by exploiting the group-sparse hybrid GAMP (GS-
HGAMP) algorithm in [15] tailored for the group-sparse
model.

This existing work on joint identification and channel
estimation has largely focused on generic random access
systems. For sensor networks tailored to industrial fault
detection, the probability a fault occurs is also often depen-
dent on physical variables, such as the temperature, for which
a noisy estimate may also be obtained at the access point.
Indeed, when the temperature deviates from standard operat-
ing levels, the probability of a machine faults or degradation
can increase. Such a scenario arises in the context of semicon-
ductor manufacturing [16]. As the access point can locally
measure the ambient temperature, this provides additional
information, which can potentially improve the performance
of algorithms for sensor identification and channel estima-
tion.

In this paper, we develop algorithms for sensor identifica-
tion and channel estimation in narrowband communication
systems in presence of fault probability, which depend on
physical variables (such as the temperature, which we will
focus on in the remainder of the paper) and may be statis-
tically correlated. The first step is to introduce a statistical
model relating observations at the access point (i.e., the ambi-
ent temperature and received signal) to the channel, activity
of each sensor, and the probability each machine is faulty.

Based on our new model, we derive an identification
and channel estimation algorithm by exploiting GAMP.
In particular, the model falls into the framework of hybrid
GAMP [15]. The algorithm is obtained by developing a loopy
BP (LBP) algorithm for the model, and then applying GAMP
for the variables associated with the communication channel.

A key feature of the algorithm is that it explicitly accounts
for uncertainty and correlation in the probability sensors are
active, as opposed to existing approaches where the activity
probability is fixed and sensor transmissions are uncorrelated.
In addition, our model accounts for the impact of physical
variables (such as temperature) on the probability of a fault.
We model the probability of a fault conditioned on tempera-
ture observations at the access point via the beta distribution,
a highly flexible family of models. As such, we call the
algorithm β-HGAMP.

Numerical results demonstrate that β-HGAMP outper-
forms existing algorithms based on GAMP [17] and GS-
HGAMP [13], [15]. In particular, β-HGAMP outperforms
these approaches by up to 5dB in terms of the normalized
mean-square error (NMSE) for channel estimation and for
sensor identification, the user error rate (UER) is approxi-
mately four times lower when the expected activity probabil-
ity is 0.35. Finally, unlike existing GAMP and GS-HGAMP
algorithms, β-HGAMP yields a posteriori estimates of activ-
ity probabilities. These estimates provide insight into the
physical variables (e.g., temperature) at each machine that
may be useful to detect degradation without including mea-
surements within the data transmission.

A. MAIN CONTRIBUTIONS
The main contributions in this work are summarized as
follows:

1) We develop a new framework for wireless sensor net-
works for fault detection, which incorporates knowl-
edge of physical variables (e.g., temperature).

2) We introduce a new statistical model for device activity
that allows for correlated sensors, which generalizes
the group-sparse model and allows for features such as
error-prone sensors.

3) We develop an algorithm within the HGAMP frame-
work to estimate the channel and identify active sen-
sors.

4) We show via Monte Carlo simulations that significant
performance improvements can be obtained over exist-
ing algorithms in terms of NMSE and UER.

B. ORGANIZATION
This paper is organized as follows. In Sec. II, we introduce
the system model. We then derive in Sec. III new loopy belief
propagation and HGAMP algorithms tailored to our model.
We assess and discuss the performance of the new β-HGAMP
in Sec. IV. Finally, we conclude and provide insights for
future work in Sec. V.
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Algorithm 1: Transmission Protocol
1 Step 0 (Downlink): Sync signal sent by the access point to

indicate the beginning of a frame.
2 Step 1 (Local at Devices): The sensor on each machine detects

whether or not the machine is faulty.
3 Step 2 (Uplink): Sensors on faulty machines transmit pilot

sequences.
4 Step 3 (Local at Access Point): The access point locally

measures the room temperature, then performs identification
of active sensors and estimates of channel coefficients.

5 Step 4 (Uplink): Sensors on faulty machines transmit data.

C. NOTATION
Deterministic scalars are denoted by x or X whereas deter-
ministic vectors and matrices are respectively denoted by
x and X . Random scalars are denoted by x or X whereas
random vectors and matrices are respectively denoted by x
and X. The transpose operator is denoted by (·)T. Identity,
1-only and 0-only matrices are respectively denoted by IN ,
1M×N and 0M×N . The Bernoulli, beta and complex gaussian
distributions are denoted by B(·), Beta(·, ·) and C N (·, ·),
respectively. The probability density and mass functions of
a random variable x are denoted by fx(·) and Px(·). The
expectation and variance are denoted by E[·] and V[·]. For
N ∈ N, [N ] denotes the set {1, . . . ,N }. The symbol ∝
indicates equality up to a multiplicative constant.

II. SYSTEM MODEL AND PROBLEM FORMULATION
Consider an industrial plant consisting of B machines, each
monitored via S sensors equipped with a single antenna and
utilizing a single subcarrier. We denote by [B] the index set
of machines and by N = BS the total number of sensors. For
b ∈ [B], Mb denotes the index subset {(b − 1)S +
1, . . . , bS} ⊂ [N ] of the sensors observing the b-th machine
and

⋃B
b=1Mb = [N ]. The sensors seek to transmit infor-

mation about the state of the machines they are watching,
e.g. faulty behavior, to an access point equipped with K
antennas.

A. COMMUNICATION PROTOCOL AND RECEIVED SIGNAL
A typical communication protocol between the sensors and
the access point is given in algorithm 1. In Step 0, the access
point broadcasts a sync signal to all sensors, which indicates
the beginning of a frame. At this time, each sensor detects
whether or not the correspondingmachine is faulty as detailed
in Step 1.

In Step 2, each active sensor n transmits its pilot sequence
an ∈ CK . In Step 3, the access point observes the signal

Y = AX+W, (1)

where X ∈ CN×K is the channel random matrix, A =
[a1, . . . , aN ] ∈ CM×N is the matrix with all the pilot
sequences with norm

√
M and W ∈ CM×K is the noise

random matrix. The entries of W are assumed to be i.i.d.
C N (0, τw).

TABLE 1. List of the system variables.

B. TEMPERATURE-DEPENDENT ACTIVITY PROBABILITY
AND CORRELATION
The activation of the sensors is indicated by the randomvector
s = [s1, . . . , sN ]T ∈ {0, 1}N , where sn = 0 and sn = 1
correspond to the cases where sensor n is inactive and active,
respectively. Given the sensor n is active, we assume that the
fading coefficients xnk between this sensor and the k-th access
point’s antenna is Gaussian distributed with mean µ0 and
variance τ0. When a sensor is inactive, the fading coefficient
is set to zero with probability one. Formally, we then have

∀(n, k) ∈ [N ]× [K ],

{
xnk |sn = 0 ∼ Dirac(0)
xnk |sn = 1 ∼ C N (µ0, τ0) .

(2)

A common assumption is that the probability a machine
is faulty, and hence the corresponding sensors are active,
is constant [13]. However, many industrial processes are tem-
perature dependent; that is, the probability of a fault depends
on the temperature of the machine. This arises, for example,
in semiconductor manufacturing [16]. Other physical vari-
ables, such as pressure or light intensity, may also have a sim-
ilar impact on faults. For the purpose of exposition, we focus
in the remainder of the paper on temperature although our
framework can also be applied to these alternative variables.

Let Tb ∈] − 273.15,+∞[ be the temperature of machine
b ∈ [B] in degrees Celsius. We assume that probability that
machine b is faulty, denoted by qb, is defined by the function
gb : Tb 7→ qb. Hence, each sensor on this machine will
share the same activity probability, inducing correlation in
the activity of sensors on the same machine. In practice,
the relationship between Tb and qb is obtained via empirical
tests at the design phase of machine b. As a consequence,

∀n ∈Mb, sn|Tb ∼ B(qb) . (3)
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FIGURE 1. Examples of probability density functions for the Beta
distribution.

where Mb = {(b − 1)S + 1, . . . , b S} and qb is a realization
of gb(Tb).
On the other hand, the access point does not have direct

access to measurements of the temperature within machine
b. Instead, as detailed in Step 3, the access point can only
measure the room temperature locally, denoted by T0. The
(possibly random) temperature, T0, measured at the access
point and the temperature, Tb, at machine b are not in general
the same, but are statistically dependent.

Observe that qb = gb(Tb) ∈ [0, 1], which means that we
require a general statistical model with support on [0, 1] for
the conditional distribution of qb. A good candidate is

qb|T0 ∼ Beta(αb(T0), βb(T0)), (4)

corresponding to a beta distribution with parameters
αb(T0), βb(T0), which depend on the temperature T0
observed by the access point. Indeed, the beta distribution is
both tractable and highly flexible model, including both the
uniform distribution and cases where the probability mass is
concentrated at zero and one (see Fig. 1).

In particular, the probability mass function of the beta
distribution with parameters αb(T0), βb(T0) is given by

fqb|T0 (q | T0) =
qαb(T0)−1(1− q)βb(T0)−1

B(αb(T0), βb(T0))
, (5)

where

∀(α, β) ∈]0, +∞[2, B(α, β) =
0(α)0(β)
0(α + β)

, (6)

and 0(·) is the Gamma function. Note that the precise func-
tional form of αb(T0), βb(T0) depends on the function gb
and the statistical dependence between T0 and Tb, which is
established during the design phase of the plant.

C. RELATED WORK ON GROUP SPARSE MODELING
Recent models for the joint sensor detection and channel esti-
mation assume that the activity of each sensor on a machine
to be the same or the activity of each sensor is independent.
In the former case, when a fault occurs on a machine, the sen-
sors monitoring it all turn on and transmit their identification
sequence. Hence, an activity variable sb describing the state

FIGURE 2. Factor graph induced by the joint density (12) with
B,S,N,M,K = (2,3,6,3,3).

of the group of sensors can be used instead of considering an
activity variable sn per sensor (see [15]).
This machine-based group sparse model can be seen as a

special case of our model. Choosing the density

fqb|T0 (q | T0) = pb(T0)δ(q)+ (1− pb(T0))δ(q− 1) (7)

leads to the activity probabilities {0, 1} where the weight
pb(T0) ∈ [0, 1] depends on the temperature. As a conse-
quence, this models the group sparsity since all sensors in
a group would be either all active with probability pb(T0) or
inactive with probability 1 − pb(T0), without any possibility
for intermediate states (i.e., sensors on the same machine that
do not agree on whether a fault has occured). In the rest of
this paper, it will be assumed that

pb(T0) =
αb(T0)

αb(T0)+ βb(T0)
(8)

which corresponds to the expected value of qb when it is beta
distributed according to (5).

However, such a machine-based model is limiting when
sensors on the samemachine may not all be active at the same
time, with correlated activity probabilities. A simplification
of the group sparse model, that we call sensor-based, is to
ignore the groups i.e. assuming that the size of the groups is
S = 1 such that no distinction ismade between the groups and
the sensors. Again, we will consider the activity probability
of each sensor to be given by (8). This sensor-based model
then allows to treat each sensor’s activity independently from
the other sensors’ activity, as in [13].

In summary, the machine-based and sensor-based models
are not able to capture the correlation in the activity probabil-
ity of the sensors. Moreover, these models do not capture the
uncertainty arising from the dependence on the temperature.

D. PROBLEM STATEMENT
The focus of the remainder of this paper is to develop
algorithms to identify active sensors and estimate channel
coefficients in Step 3 accounting for the local temperature
observations at the access point. Aside from learning which
machines are faulty, active sensor identification and channel
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estimation forms the basis for data decoding in Step 4; e.g.
via successive interference cancellation.

Formally, we are interested in solving the minimum mean
squared error (MMSE) estimation problem

X? = argmin
X∈CN×K

E
[
‖X − X‖22 | Y = Y ,T0 = T0

]
= E

[
X | Y = Y ,T0 = T0

]
=

∫
CN×K

X fX|Y,T0 (X | Y ,T0)dX (9)

where Y and T0 are observed. At the same time, we seek
to obtain the posterior distributions Psn|Y,T0(s | Y ,T0) and
fqb|Y,T0 (q | Y ,T0). This provides a basis to also obtain the
estimates

∀b ∈ [B], q?b = E
[
qb | Y = Y ,T0 = T0

]
(10a)

∀n ∈ [N ], s?n = argmax
s∈{0,1}

Psn|Y,T0(s | Y ,T0) (10b)

However, each of these three estimators are intractable
to compute so it is necessary to resort to algorithms that
approximate the optimal solutions. The algorithm for channel
estimation and user identification is detailed in Sec. III.

III. DEVICE IDENTIFICATION AND CHANNEL ESTIMATION
ALGORITHMS
In this section, we derive algorithms for the sensor identifi-
cation (10b) and channel estimation (9) problems. We first
start by writing the loopy belief propagation (LBP) algorithm
for the system model derived in Sec. II. Despite few works
granting the convergence for general models [18], [19], this
approach has been successfully and widely used in graphical
inference problems. We then develop an algorithm within the
HGAMP framework called β-HGAMP from LBP to reduce
the complexity of the algorithm with limited loss in perfor-
mance.

A. LOOPY BELIEF PROPAGATION APPROACH
LBP is an algorithm which aims at solving inference prob-
lems in a systematic fashion by exploiting the structure
of the joint density of the system variables [20]. The idea
is to decompose (factorize) this joint density into multiple
subfactors, each depending on a subset of the system vari-
ables. It is then possible to build a graphical representation
of the dependency between the factors and the variables,
namely a factor graph, where the graph’s nodes are split
into factor nodes and variable nodes. An edge between a
variable node and a factor node exists if and only if the
corresponding variable is an argument of the corresponding
factor.

From Sec. II, the system variables are T0 and the entries of
q, s,X,Y . Noting that their associated random counterparts
form the following Markov chain

T0→ q→ s→ X→ Y, (11)

we can write their joint density as

fY,X,s,q,T0 (Y ,X, s, q,T0) = fY|X(Y | X)fX|s(X | s)

×Ps|q(s | q)fq|T0 (q | T0) (12)

where each term can be factorized as

fY|X(Y | X) =
K∏
k=1

N∏
m=1

fymk |xn (ymk | xn), (13a)

fX|s(X | s) =
K∏
k=1

N∏
n=1

fxnk |sn (xnk | sn), (13b)

Ps|q(s | q) =
B∏
b=1

∏
n∈Mb

Psn|qb(sn | qb), (13c)

fq|T0 (q | T0) =
B∏
b=1

fqb|T0 (qb | T0), (13d)

which follow from the description in Sec. II. The factor graph
is detailed in Fig. 2 where the factor nodes, the variable nodes
and the edges between them are deduced from (12) and (13).

LBP provides a means of solving (9) and (10). In order to
develop the algorithm for the model in Sec. II, observe that

fX|Y,T0 (X | Y ,T0) =

∑
s
∫
fY,X,s,q,T0 (Y ,X, s, q,T0)dq

fY(Y )
,

(14a)

Ps|Y,T0(s | Y ,T0) =

∫ ∫
fY,X,s,q,T0 (Y ,X, s, q,T0)dqdX

fY(Y )
,

(14b)

fq|Y,T0 (q | Y ,T0) =

∫ ∑
s fY,X,s,q,T0 (Y ,X, s, q,T0)dX

fY(Y )
.

(14c)

The messages exchanged by LBP tailored to (9) and (10)
are described in Table 2 and lead to the beliefs1

(FV.2) · (VF.2) → ϒxnk (x) = µt

nk→nk
(x) µt

nk←nk
(x), (15a)

(FV.4) · (VF.4) → ϒsn (s) = ψ
t

n→n
(s)ψ t

n←n
(s), (15b)

(FV.6) · (VF.6) → ϒqb (x) = ζ t

b→b
(x) ζ t

b←b
(x) (15c)

and LBP estimates

x̂ ink = Eϒxnk
[xnk ] , (16a)

ŝin = 1

(
log

ϒsn (1)
ϒsn (0)

> 0
)
, (16b)

q̂ib = Eϒqb
[qb] . (16c)

1The beliefs ϒxnk , ϒsn and ϒqb estimate the marginal posterior distribu-
tions fxnk |Y,T0 , Psn|Y,T0 and fqb|Y,T0 .
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TABLE 2. Belief propagation messages for the factor graph induced by the joint density (12) and the factorizations (13).

B. β-HGAMP ALGORITHM
LBP still suffers from the intractability of the computation
of the messages (FV.1) exchanged in the dense part of the
factor graph. Indeed, one can see that the integrals required
to compute the messages λi

mk→nk
are high dimensional, which

means that LBP still has a very high complexity.
Such an issue was addressed in [17] with the development

of the GAMP framework leading to the key gaussian approx-
imation

µi

nk→nk
(x) ' CN (x; r̂ ink , v

r,i
nk ) (17)

where r̂ ink and v
r,i
nk are mean and variance variables iteratively

updated by GAMP. This approximation is made possible by
using the underlying linear mixing structure AX under a large
system limit assumptions i.e. when both M and N are very
large and the coefficients of A are scaling as O(1/N ).
Following the approach in [13] and [15], this approxi-

mation is then propagated successively in the messages of
Table 2, leading to the derivation of an hybrid GAMP algo-
rithm, namely β-HGAMP where the estimates x̂ ink , ŝ

i
n and

q̂ib are computed from 16. The complete algorithm is finally
given in algorithm 2. In more detail:

• Lines 8 – 15: the updates of the variables p̂imk , ẑ
i
mk and

ûimk may be seen as messages sent by the factor nodes
associated to fymk |x:k . These updates are obtained via the
derivation in [17].

• Lines 24 – 32: the estimates q̂ib and ŝin are computed
in these lines, which corresponds to the portion of the
factor graph where BP is applied; namely, between the
factor nodes fqb|T0 and fxnk |sn . The computation is per-
formed using intermediate variables from lines 16 to 23,
where the variables r̂ ink and v

r,i
nk arise from the Gaussian

approximation (17).
• Lines 33 – 38: the estimates of the channel coefficient
x̂ ink are updated here, which corresponds to the layer of
variable nodes xnk . Note that the final estimates x̂ ink will

TABLE 3. Complexity comparisons.

be set to 0 if the corresponding ŝin is 0 and left untouched
otherwise.

To the best of our knowledge, Algorithm 2 is the first
HGAMP algorithm relying on the activity probability vector
q. By viewing q as latent variables, it is possible to incorporate
correlation in the activity of the sensors.

C. COMPLEXITY ANALYSIS
We briefly address the complexity of the proposed β-
HGAMP algorithm. It is clear that lines 8 to 23 requires
O(2MNK ) floating operations (multiplications and divisions)
and lines 33 to 38 O(NK ) operations.
The complexity bottleneck appears from lines 24 to 32with

the computation of the estimates q̂ib and q̂
i
n,b, which requires

the evaluation of a high-dimensional integral. To reduce the
complexity of the integration, observe that the integrands are
polynomials in the variable q weighted by the density fqb (q).
It is thus possible to write

q̂ib =

∑S+1
j=0 πjE

[
qjb
]

∑S
j=0$jE

[
qjb
] and q̂in,b =

∑S
j=0 πn,jE

[
qjb
]

∑S−1
j=0 $n,jE

[
qjb
]
(18)

where

Pb(q) = q
∏
n∈Mb

[
(1− q)ψ0,n + qψ1,n

]
=

S+1∑
j=0

πjqj (19a)

Qb(q) =
∏
n∈Mb

[
(1− q)ψ0,n + qψ1,n

]
=

S∑
j=0

$jqj (19b)
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Pn,b(q) = q
∏

n′∈Mb\{n}

[
(1− q)ψ0,n′ + qψ1,n′

]
=

S∑
j=0

πn,jqj

(19c)

Qn,b(q) =
∏

n′∈Mb\{n}

[
(1− q)ψ0,n′ + qψ1,n′

]
=

S−1∑
j=0

$n,jqj

(19d)

Since the polynomials’ coefficients {πj}, {$j}, {πn,j},
{$n,j} depends on the intermediate variables {ψ0,n} and
{ψ1,n}, they cannot be computed offline. Each set of coef-
ficients are computed using a recursive algorithm2 with at
most O(S2) operations from the corresponding roots of the
polynomials. The computation of the moments E

[
qjb
]
may

be computed offline and so are assumed to be of constant
complexityO(1). Using this method grants the computational
complexity of lines 24 to 32 to be O(NS(1+ S)).
Finally, summing over each block leads to an overall com-

plexity of O((2M + 1)NK +NS(1+ S)). A complexity com-
parison with respect to GS-HGAMP is provided in Table 3
and one can compare with the methods within [15, table 1].
Though the complexity of β-HGAMP scales with S2 instead
of S for GS-HGAMP, it is worth noting that S would remain
relatively small in the context of large-scale industrial plant
where it is the number B of machines that would increase.

IV. NUMERICAL RESULTS
A. SETTINGS
We assess the performances of GAMP, GS-HGAMP and β-
HGAMP through extensive Monte-Carlo simulations. As a
baseline, GS-HGAMP is evaluated with the machine-based
and sensor-based modes described in Sec. II-C and quickly
summarized here:

1) the machine-based mode performs active sensor detec-
tion taking into account the underlying group structure
induced by the machines;

2) the sensor-based mode performs individual detec-
tion ignoring the group structure; i.e., each sensor is
assumed to be independent from the other sensors on
the same machine. In practice, this means that the num-
ber of groups B is assumed to be equal to the number
of sensors N (and so S = 1).

Performance is assessed in terms of the normalized
mean-square error (NMSE):

NMSE[X̂
i
,X]dB = 10 log10 E


∥∥∥X̂ i
− X

∥∥∥2
2

‖X‖22

 (20)

2For a polynomial P(X ) =
∑S

i=0 aiX
i
=
∏S
i=1(X − ri), identify, for

I ∈ [S], the coefficients of each side of the recursion PI+1(X ) = PI (X )(X −
rI+1) where PI (X ) =

∏I
i=1(X − rj).

Algorithm 2: β-HGAMP
Input: T0,Y ,A, µ0, τ0, τw, ε, Imax

1 Initialization
2 i = 0

3 X̂
i
= µ01N×K ,VX,i

= τ01N×K

4 Û
i
= 0M×K

5 end
6 while 1 > ε and i < Imax do
7 i = i+ 1

// Updates of system output variables.
8 for (m, k) ∈ [M ]× [K ] do
9 vp,imk =

∑N
n=1 |amn|

2 vx,i−1nk
10 p̂imk =

∑N
n=1 amnx̂

i−1
nk − v

p,i
mk û

i−1
mk

11 vz,imk = τwv
p,i
mk/(v

p,i
mk + τw)

12 ẑimk = p̂imk + v
p,i
mk (ymk − p̂

i
mk )/(v

p,i
mk + τw)

13 vu,imk = (1− vz,imk )/(v
u,i
mk )

2

14 ûimk = (ẑimk − p̂
i
mk )/v

p,i
mk

15 end

// Updates of intermediate variables.
16 for n ∈ [N ] do
17 for k ∈ [K ] do
18 vr,ink = 1/

∑M
m=1 |a|

2
mn v

u,i
mk

19 r̂ ink = x̂i−1nk + v
r,i
nk
∑M

m=1 amnû
i
mk

20 end
21 ψ0,n =

∏K
k=1 CN (0; r̂ ink , v

r,i
nk )

22 ψ1,n =
∏K
k=1 CN (0; r̂ ink − µ0, v

r,i
nk + τ0)

23 end

// Updates of activity-related variables.
24 for b ∈ [B] do

25 q̂ib =
∫
[0,1] qfqb (q)

∏
n∈Mb [(1−q)ψ0,n+qψ1,n]dq∫

[0,1] fqb (q)
∏
n∈Mb [(1−q)ψ0,n+qψ1,n]dq

26 for n ∈Mb do

27 q̂in,b =
∫
[0,1] qfqb (q)

∏
n′∈Mb\{n}

[(1−q)ψ0,n+qψ1,n]dq∫
[0,1] fqb (q)

∏
n′∈Mb\{n}

[(1−q)ψ0,n+qψ1,n]dq

28 LLRn = log
(

q̂in,b
(1−q̂in,b)

ψ1,n
ψ0,n

)
29 ŝin = 1(LLRn > 0)
30 γn = 1/(1+ exp(−LLRn))
31 end
32 end

// Updates of channel estimates.
33 for (n, k) ∈ [N ]× [K ] do
34 κnk = 1/(1/τ0 + 1/vr,ink )
35 νnk = µ0/τ0 + r̂ ink/v

r,i
nk

36 x̂ink = γnκnkνnk
37 vx,ink = γn(κnk + |κnkνnk |

2)−
∣∣x̂ink ∣∣2

38 end
39 end

Output: q̂i, ŝi, X̂
i

which measures the quality of the channel estimates and the
user error rate (UER)

UER[ŝi, s] = E

[
1
N

N∑
n=1

1(ŝin 6= sn)

]
. (21)
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TABLE 4. Simulation settings.

FIGURE 3. UER for the activity detection of the devices.

which measures the probability that a sensor is incor-
rectly detected. In particular, the UER provides a means
to investigate the impact of the communication system
on the ability for the access point to correctly identify
faults.

The corresponding results are given in Figs. 4 and 3. Fig. 5
shows the estimates of the a posteriori activity probabilities
q̂ib against the true activity probability qb. These figures have
been obtained using the settings described in Table 4 where
the parameters of the beta distribution are computed using

α(T0) =
|T0 − 25|

10
and β(T0) = 1− α(T0) (22)

meaning that the more T0 deviates from 25◦ C, the larger
the value of α(T0), the larger the fault probability, and
the number of active sensors during the transmission
time slot.

FIGURE 4. NMSE for the channel estimates.

B. DISCUSSION
As noted in Sec. III, convergence guarantees of LBP and
HGAMP are not necessarily available. With the aid of
damped updates for the GAMP and HGAMP algorithms,
the results obtained in Figs. 3 and 4 were stable without
observing divergence after extensive simulations.

1) UER AND NMSE
Observe from Fig. 4 that β-HGAMP outperforms GAMP
and the two modes of GS-HGAMP, with the sensor-based
GS-HGAMP the second best performing algorithm followed
by GAMP and then machine-based GS-HGAMP. The same
order is observed for the UER on Fig. 3. A UER curve for
GAMP is not present since GAMP only provides a channel
estimate and not sensor identification. As the average activ-
ity probability α(T0) increases, the performance differences
between the algorithms also increase. In more detail:

• Figs. 3 and 4 (a), α(T0) = 0.15: GAMP, GS-HGAMP
(sensor-based) and β-HGAMP have a similar NMSE.
In terms of the UER, β-HGAMP and sensor-based
GS-HGAMP have nearly the same performance.

• Figs. 3 and 4 (b), α(T0) = 0.25: β-HGAMP and sensor-
based GS-HGAMP have the lowest NMSE, while
GAMP and machine-based GS-HGAMP have a signifi-
cant performance degradation with a 10 and 30dB gap,
respectively. The UER for β-HGAMP and the sensor-
based GS-HGAMP are comparable.

• Figs. 3 and 4 (c), α(T0) = 0.35: each algorithm has
a reduction of approximately 10dB at a SNR of 25dB
in the NMSE for the channel estimate compared with
the case of α(T0) = 0.25. The biggest loss is observed
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FIGURE 5. Estimates of the a posteriori activity probabilities vs. the true activity probabilities for α(T0) = 0.35.

for sensor-based GS-HGAMPwith a decrease of around
14dB leaving β-HGAMP to have the best performance.
For the UER, two orders of magnitude have been lost
for β-HGAMP and sensor-based HGAMP with about a
factor 2 to 3 difference between them.

• Figs. 3 and 4 (d), α(T0) = 0.45: there is a significant
degradation in the NMSE and UER for all algorithms
due to, on average, a larger number of active devices.

From these observations, we see that β-HGAMP outper-
forms existing methods for the model described in Sec. II.
We also observe that despite incorporating some infor-
mation about the positions of the sensors, machine-based
GS-HGAMP has poor performance even compared with
sensor-based GS-HGAMP. This is due to the fact that the
individual behavior of each sensor cannot be accounted for.

However, sensor-based HGAMP does not exploit the prior
information of shared activity probability among groups,
unlike β-HGAMP. Hence, for larger average activity prob-
ability α(T0), the probability to have multiple sensors of the
same group to be active at the same time is also larger. This
information is leveraged by β-HGAMP in order to perform
a joint detection for sensors belonging to the same group.
In contrast, sensor-based HGAMP does not use this informa-
tion and performs independent detection for those sensors.

These explanations justify the UER of each algorithm and
also the values of the NMSE. Indeed, detection errors have a
direct consequence on the channel estimates. When a sensor
is detected to be inactive, the corresponding channel estimates
will be set to zero. Since machine-based GS-HGAMP is sub-
ject to a large number of detection errors because of the block
detection, a large number of channel estimates will be zero,
significantly increasing the errors in channel estimates and,
at the same time, degrading the NMSE. The same reasoning
applies to sensor-based GS-HGAMP and β-HGAMP, with a
weaker impact of the NMSE. We also mention that GAMP
does not leverage the diversity effect offered by the multiple
antennas because of the underlying structure of its factor
graph, limiting the quality of its estimates.

Finally, the performance degradation observed at α(T0) =
0.45 is explained by the potentially large number of devices
which might be active relatively to the length of the pilot
sequences. As a rule of thumb, an average of 45% of the
sensors are active over each transmission meaning that some
transmissions may have a more sensors active than the length

of the pilot sequences. Note that considering larger values of
M (i.e., longer pilot sequences) will prevent such an issue.

2) ESTIMATES OF THE A POSTERIORI ACTIVITY
PROBABILITIES
As detailed in Sec. II, the activity probability of each machine
is dependent on the local temperature. As a consequence,
the a posteriori activity probability estimate q̂ib for the b-th
machine can be used to obtain an estimate of the local tem-
perature. This information may be useful for diagnosis of
machine degradation without sending temperature informa-
tion within the data packet. We remark that this information is
not available using the GAMP and GS-HGAMP algorithms.

The estimates of q̂ib are plotted in Fig. 5. In particular,
the subfigures correspond to the estimates from each trans-
mission for different SNRs. Observe that the estimates largely
form 5 levels.

An explanation for this behavior is as follows. First, recall
that each machine in this example is equipped with 4 sen-
sors. For each transmission, each machine can be described
by 5 states corresponding to the number of active sensors;
i.e., 0, 1, 2, 3, 4. That is, the distribution of the estimates is
determined by how many sensors are active. The estimates
lying between the levels are due to channel noise, most evi-
dent for lower values of the SNR.

V. CONCLUSION
This paper investigates the joint sensor identification and
channel estimation problem for fault detection, where mul-
tiple sensors are placed on each machine. We derive an algo-
rithm based on the HGAMP framwework, called β-HGAMP,
which accounts for uncertainty in activity probabilities in
order to improve both the detection and estimation capabil-
ities compared with previous GS-HGAMP algorithm. As a
side feature, β-HGAMP estimates the a posteriori activity
probabilities which can reduce the quantity of data to be
transmitted.

Motivated by these results, the investigation of more
general models incorporating correlation is an interesting
open question. This would provide a flexible and systematic
approach for the joint detection and channel estimation prob-
lem for massive random access systems when the activity
of devices may be correlated beyond the group structure
considered in this paper.
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Finally, this work provides a basis for joint detection, chan-
nel estimation and data recovery in the presence of correlated
sensor activity. Combining our approachwith thework in [12]
appears to be a promising avenue of future work.
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