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Abstract
Testing and debugging a Virtual Machine is a laborious task
without the proper tooling. This is particularly true for VMs
with JIT compilation and dynamic code patching for tech-
niques such as inline caching. In addition, this situation is
getting worse when the VM builds and runs on multiple
target architectures.
In this paper, we report on several lessons we learned

while testing the Pharo VM, particularly during the port
of its Cogit JIT compiler to the AArch64 architecture. The
Pharo VM presented already a simulation environment that
is very handy to simulate full executions and live-develop
the VM. However, this full simulation environment makes
it difficult to reproduce short and simple testing scenarios.
We extended the pre-existing simulation environment with
a testing infrastructure and a methodology that allow us to
have fine-grained control of testing scenarios, making tests
small, fast, reproducible, and cross-ISA.

We report on how this testing infrastructure allowed us to
cope with two different development scenarios: (1) porting
the Cogit JIT compiler to AArch64 without early access to
real hardware and (2) debugging memory corruptions due
to GC bugs.

CCS Concepts: • Software and its engineering → Run-
time environments.

Keywords: just-in-time compilers, virtual machines, ARM,
testing, ports, Cross-ISA

1 Introduction
Testing and debugging a Virtual Machine is a laborious task
without the proper tooling. This is particularly true for VMs
that support code generation for JIT compilation and dy-
namic code patching for techniques such as inline caching.
This complexity is aggravated when the VM builds and runs
on multiple target architectures [1].

Several solutions have been proposed to aid in VM de-
bugging tasks. Traditionally, VM simulation environments
have appeared in Self [19], Smalltalk [12, 17] and Metacir-
cular VMs such as Maxine [20]. Complementary to simula-
tion environments, multi-level debuggers [14, 21] aid VM
developers to switch views between the program-level and
the implementation (VM)-level. These solutions are indeed
beneficial to identify and track problems once an issue has
been spotted and reproduced. However, reproducing bugs
still remains an expensive and long task because millions
of instructions may need to be executed before hitting the
actual problem. For example, it has been reported that de-
bugging memory corruption bugs in a simulation could take
several hours of execution1. Recently, the team of Maxine
recently reported a test-based infrastructure for cross-ISA
debugging [13]. They report that still debugging happens in
gdb in a different abstraction level than the original source
code and that they are not able to cover many parts of their
codebase.
In this paper, we report on several lessons we learned

while testing the Pharo VM, particularly while porting its
Cogit JIT compiler to the AArch64 architecture. The Pharo
VM presented already a high-level simulation environment
that is very handy to simulate full executions and live pro-
gram the VM [17] (See Section 2). We extended the pre-
existing simulation environment with a testing infrastruc-
ture that allows us to have fine-grained control of testing
scenarios, making tests small, fast, reproducible, and cross-
ISA (See Section 3). We defined a hybrid testing methodol-
ogy that takes advantage of the strengths of unit-testing,
full-system simulation, and real-hardware execution where
they perform better. In Section 5, we describe how this test-
ing infrastructure allowed us to cope with two different
development scenarios: (1) porting the Cogit JIT compiler

1http://forum.world.st/OpenSmalltalk-opensmalltalk-vm-Reproduceable-
Segmentation-fault-while-saving-images-444-td5106898i20.html

http://forum.world.st/OpenSmalltalk-opensmalltalk-vm-Reproduceable-Segmentation-fault-while-saving-images-444-td5106898i20.html
http://forum.world.st/OpenSmalltalk-opensmalltalk-vm-Reproduceable-Segmentation-fault-while-saving-images-444-td5106898i20.html
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to AArch64 without early access to real hardware and (2)
debugging memory corruptions due to GC bugs.

2 Context: The Pharo VM
The Pharo Virtual Machine is an industrial level Virtual
Machine written in Pharo itself and transpiled to C using
a VM-specific translator called Slang [12]. The VM imple-
ments at the core of its execution engine a threaded byte-
code interpreter, a linear non-optimising JIT compiler named
Cogit [16] that includes polymorphic inline caches [10] and
a generational scavenger garbage collector that uses a copy
collector for young objects and a mark-compact collector
for older objects [18]. The following numbers illustrate the
complexity of this Virtual Machine:
• It implements 255 bytecodes, organized in a total of 77
different families [2].

• It implements about 340 primitive methods, with a num-
ber of them both duplicated in the interpreter and in the
JIT compiler.

• The compiler defines about 150 different IR instructions.

2.1 Slang
The Pharo Virtual Machine is written in a subset of Pharo
that is easily transpilable to efficient C. As Pharo is a Smalltalk
inspired language, the Pharo to C translation is done using
Slang, a Smalltalk-to-C VM-specific transpiler [12]. Slang
operates by translating a group of classes into a single C file.
Methods are translated into functions, message-sends are
translated as function calls. While the Pharo source program
presents dynamic behaviour such as polymorphism, excep-
tions, or runtime reflection, Slang does not allow many of
those: it either forbids them at translation-time or generates
invalid C code.
Using Slang to develop the Pharo VM has two key ad-

vantages. First, Slang automatically introduces interpreter
optimisations such as (a) the localisation of critical variables
(frame pointer, instruction pointer) [15], (b) the inlining of
bytecode cases inside the interpretation loop, or (c) threaded
code [6]. Second, it allows us to simulate the Pharo VM just
by executing it as normal Pharo code, avoiding expensive
change-compile-test development cycles [17].

2.2 The Cogit JIT Compiler
The Cogit JIT compiler is a non-optimising method-based
linear JIT compiler originally implemented by Miranda [16].
It uses a linear 2-address-code intermediate representation
that does not explicitly model a control flow graph (CFG).
The compiler implements monomorphic inline caches as
linked sends, and polymorphic inline caches as stubs. The
compiler’s entry point for compilation is a single method
where bytecodes are translated in linear fashion intomachine
code: the code layout of the generated machine code almost

entirely mirrors the code layout of the bytecode. Compiling
a method includes three main phases:
• 1. Bytecode scan phase iterates the bytecodes of a
method to extract meta-data from them. For example,
it decides whether the method requires to be frame-less
or not based on the presence of interruption points (mes-
sage sends and backjumps).

• 2. Bytecode parsing phase does an abstract interpre-
tation of the bytecodes performing a stack bytecode to
register IR transformation.

• 3. Code generation phase computes IR instruction off-
sets and assembles the final machine code for the current
platform.

2.3 CogRTL Intermediate Representation
The Cogit JIT compiler uses a linear 2-address-code interme-
diate representation named CogRTL. An interesting design
point of the CogRTL IR is that it uses a fixed number of
virtual registers with names such as ReceiverRegister or
ClassRegister. Such registers have concrete roles at some
point during the compilation (e.g., they refer to the current
receiver or the receiver’s class at method entry point), and
when those roles are already fulfilled or not required they
are used as general purpose registers. An example of such
behaviour are some compiler intrinsics and machine code
versions of primitive methods.2

The fixed virtual register design avoids the need of a com-
plex register allocator. Instead, virtual registers are allocated
ahead of time to physical registers as a compiler configura-
tion for each supported backend/platform. Notice that in the
current architecture, a register allocator would have very
short windows of code to improve because of three reasons:
(1) the compiler does not implement inline substitution, (2) it
spills all registers before any message-send, and (3) message
sends are omni-present in Pharo’s code [22].
As a final point on CogRTL’s design: it aims to be as

machine-independent as possible. There is a clear separation
between the compiler’s front end that parses bytecode and
generates an IR, and the compiler’s backend that generates
machine code from the IR. Machine specific decisions such
as the ahead-of-time register allocation are backend-specific.
However, there are some machine-specific decisions that
cripple into the frontend making that a single method can
produce different IRs in different machines. For example,
when the backend is a RISC machine the frontend produces
IR instructions to push the link register on a method’s pre-
amble.

2Primitives are native methods in Smalltalk/Pharo’s jargon.
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2.4 Code Patching and PICs
Besides method compilation, the Cogit JIT compiler makes
use of machine code patching without using any of the sup-
port explained above. Instead, machine code patching is im-
plemented in the compiler’s backend, reusing most of the
compiler’s assembler, but it requires in addition to implement
a partial disassembler to identify the instructions to patch.
Machine code patching happens in twomain cases during the
execution: updating/linking of mono/poly/mega-morphic in-
line caches and updating object references in machine code
when objects are moved by the garbage collector.

The Cogit JIT compiler implements inline caches [5] and
polymorphic inline caches [9, 11]. Briefly, code patching of
the inline caches works as follows. Call-sites are initially
compiled as calls to send trampoline routines. Send tram-
polines eventually perform the method lookup and link the
call-site making it a monomorphic call-site: they rewrite the
call to the trampoline to a call to a type-checked entry point
of the found method. A monomorphic cache miss happens
when the receiver is of a different type than what the linked
method expects, thus upgrading the monomorphic inline
cache to a polymorphic inline cache (PIC). Instead of recom-
piling a method with a PIC in place, PICs are implemented
as machine code stubs. The so far monomorphic call-site is
re-linked to the PIC stub in the same way it was done for the
monomorphic case. PICs are patched with new cases at run-
time when a (type,method) pairs cause PIC misses, up to a
certain threshold. Finally, when a PIC surpasses the threshold
it is upgraded to a megamorphic inline cache. Megamorphic
caches are implemented as stubs shared by many call-sites
and linked in the same way monomorphic and polymorphic
caches were.

3 An Iterative Test-Based Methodology
The Pharo VM presents a high-level simulation environ-
ment that is very handy to simulate full executions and
live-program the VM [17]. The simulation environment is a
hybrid execution environment. The interpreter, JIT compiler
and memory manager are written in a Pharo subset that is
transpilable to C using Slang, and are executable as normal
Pharo code. The generated runtime, i.e., the machine code
compiled methods generated by the JIT compiler, is executed
using a machine code simulator. In Pharo, we have extended
the original machine code simulation infrastructure to use
Unicorn3, a QEMU-based machine code simulation library.
Unicorn provides a small yet powerful API to simulate ma-
chine code on multiple architectures.
We extended the pre-existing simulation environment

with a testing infrastructure that allows us to have fine-
grained control of testing scenarios, making tests small, fast,
reproducible, and cross-ISA. The VM development environ-
ment is illustrated in Figure 1. During simulation, the VM
3https://www.unicorn-engine.org/

has a heap and a native code cache memory regions instan-
tiated as Pharo ByteArrays and is configured to work on a
particular ISA/architecture. When JIT’ted code is simulated,
the simulation environment gives control to the Unicorn
machine simulator and when this latter hits a trampoline,
it gives control back to the Pharo-side of the simulation.
Our testing infrastructure lies within the simulation envi-
ronment and has access to the same infrastructure as the
full-simulation. Eventually, the VM is transpiled to C and
compiled for a given ISA/architecture.
Based on this infrastructure we defined a hybrid testing

methodology that mixes three different execution modes:
unit-testing, full-system simulation, and full-system real-
hardware execution. Our methodology takes advantage of
the strengths of unit-testing, full-system simulation, and
real-hardware execution where they perform better.

Production VM (C)

Simulation Environment (Pharo)

Heap

Native Code Cache

Unicorn LLVM 
Disassembler

VM

Interpreter GC JIT Compiler

Transpiled to
Testing 

infrastructure

Figure 1. Development environment of the Pharo VM.
The VM is executed as Pharo code in the simulation
environment and transpiled to C to produce the pro-
duction artefact. The simulation environment has its
own heap and native code cache used during the simu-
lated execution. The production VM will allocate sim-
ilar regions on the real execution. This new testing
infrastructure extends and makes use of the existing
simulation environment.

3.1 VM Testing: An Agile Perspective
Each of these execution modes has different benefits and
constraints, as shown in Table 1. Real-hardware is not al-
ways readily available or easy to debug, but its execution is
the most precise in comparison with simulated hardware. At
the same time, testing changes in real hardware is expen-
sive to compile and run, leading to slow develop-compile-test
feedback cycles. On the other side of the spectrum, unit tests
are a handy way to express reproducible and representative
scenarios and specially are capable of capturing regressions.
However, since they are based on a simulation environment,
they suffer from execution imprecisions because the simula-
tion machinery is not 100% representative of real executions.
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Table 1. Characterisation of different execution modes.

Unit Full-System Real Hardware
Testing Simulation Execution

Feedback-cycle
Speed

High Low Very Low

Availability High High Low
Reproducibility High Low Low
Precision Low Low High
Debuggability High High Low

Based on these observations, we characterise the three
different execution modes as per Table 1, using the following
criterion:
• Feedback-Cycle Speed. How fast is the develop-com-
pile-test cycle for a single test scenario? Unit tests sup-
port fast development cycles because they work on small
and precise scenarios and do not require a full system
initialization. Full-System simulations have slower de-
velopment cycles because they require a full-system ini-
tialization plus the time to arrive to the interesting ex-
ecution spot. Full-system real hardware execution has
even slower feedback cycles than the full-system simu-
lation because they require also a full VM compilation,
which in our case includes transpilation, interpreter post-
processing and C compilation.

• Availability. Is the testing scenario readily available
to execute? On the one hand, simulation-based solu-
tions (Unit tests, full-system simulations) are highly avail-
able although tied to the availability of a machine code
simulator, which are in general software-based portable
solutions. On the other hand, hardware-based solutions
(real hardware) are much less available, as they require
target hardware access.

• Reproducibility. What are the chances of reproducing
a single test scenario? Full-System executions (simula-
tion, real hardware) have low reproducibility by default
because millions of instructions may need to be executed
before hitting an actual problem, and non-determinism
may worsen the problem. Contrastingly, unit-tests are
by construction repeatable.

• Precision. How precise is the scenario execution? Sim-
ulation-based solutions (Unit tests, full-system simula-
tions) have generally lower precision than real hardware,
because a machine code simulator introduces a distance
between both executions. For example, the versions of
QEMU and the Unicorn machine simulator we use do
not perform stack pointer alignment checks on AArch64
because of performance reasons.

• Debuggability. Is the testing scenario easy to debug?
Simulation-based solutions (Unit tests, full-system simu-
lations) are often built with debugging support in mind.

On the other hand, real hardware execution requires
abandoning the abstractions of the simulation environ-
ment and often deal with abstractions closer to the ma-
chine.

3.2 A Single Methodology to Rule Them All
Based on these constraints, we developed the methodology
illustrated in Figure 2:

1. Spend as much time as possible working on unit tests:
they are cheap to write and execute.

2. Introduce full-system simulations when we consider
coverage is good enough: it represents a full-system
execution without access to real hardware.

3. Introduce testing on real hardware when we consider
full-system simulation reliable enough: to obtain final
precise and reliable feedback.

The key of this methodology is to augment the team’s
velocity and to apply Test-Driven-Development (TDD) tech-
niques from Software Engineering to JIT compiler develop-
ment. In this schema, unit tests are the main development
unit because of their fast feedback. In our experience, unit-
tests have caught the vast majority of bugs without the need
to validate it in real hardware. Really few problems seemed
to remain untestable at first because of simulation impreci-
sions, but most of them became testable after introducing
fixes in the simulation environment.
We then use full-system executions (either simulated or

on real hardware) to get feedback on failing untested func-
tionalities. As soon as a full-system execution fails, we use
that as feedback for unit testing: we build one or more fail-
ing tests for the scenario, we manually do test reduction on
them, and finally fix the actual problem to make them pass.
Such a mixed mode methodology allowed us to port most
of the JIT compiler to AArch64 before we had access to real
hardware. As a nice side effect, we created a large set of tests
that are small, fast to run, reproducible and cross-ISA, and
even unveiled old bugs in the pre-existing backends.

3.3 The Pharo VM Testing Infrastructure
The most complex part of writing a VM-specific unit test
is defining the test fixture/setUp. Indeed, executing a short
method doing push a, push b, send +, return requires the
initialization of the heap, the execution stack, internal VM
data structures, among others... Because of these, the largest
effort of our infrastructure was put on extending SUnit4 with
VM-specific initializations and testing primitives. The core
of our infrastructure lies within four abstract Test classes
that developers extend to define their new testing scenarios:
• Heap Initialized Test Case. The root of our testing
hierarchy. All tests that inherit from this class run con-
figured with a heap. This class also provides facilities to
create/load classes and instantiate objects.

4SUnit is the Pharo Unit Testing Framework
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Unit Test
x1000

Better
Testing

Infrastructure
Full-System
Simulation

x10

Full-System
Real Execution

x1

Figure 2. Illustrating theMethodology of the AArch64
Port. Our methodology was based mainly on developing
mostly black-box unit tests. When the number of running
unit tests gave us enough confidence we introduced full-
system simulations, and when we were confident enough
about the full system simulations we spent time on real
hardware. At each step, the problems we found were reduced
to be bare minimum reproducible, translated as unit tests
and introduced as regression tests.

• Interpreter Test Case. All tests that inherit from this
class run configured with a heap and an execution stack.
They have access to a call-stack builder to create well-
formed stack frames.

• Compiler Test Case. All tests that inherit from this
class run configured with a heap, an execution stack, and
a code cache. They have access to a simplified compiler
interface that compiles either entire methods, compiler
intrinsics and individual bytecodes. Moreover, all tests
extending this class are by default executed on all sup-
ported ISAs.

4 VM Testing Guidelines
In our journey of writing tests for the Pharo VM, we devel-
oped a large test suite that covers different VM concerns
such as the interpreter, the compiler, the object format, and
the garbage collector. In this section, we report on our ex-
perience designing VM-specific unit tests in the form of
several guidelines. These VM-specific guidelines emerged
from applying general well-known testing principles such
as:
Fast. A test should be as instantaneous as possible to ensure

we have a fast feedback cycle.
Reproducible. Test executions should be deterministic.
Repeatable. Several test runs should be independent from

each other.
Unitary. Each test should test a single concern. Particularly,

if a functionality has many aspects to test such as
several border-cases, a test exists for each of them.

Validating. A test must have at least one assertion, and
ideally only one.

4.1 Black Box Testing
We use black-box testing in the vast majority of our tests: we
test externally observable behaviour. For example, most of
our memory management tests are word-size independent.
Another example are compiler tests: we avoid as much as
possible exposing internals of the compiler such as the IR
or the generated machine code within the test code. Indeed,
most of our compiler related tests work with the granularity
of a single bytecode. This design gives our tests two main
properties: (1) resistance to changes in the VM and compiler
implementation, and (2) architecture/ISA independence.
Listing 1 shows one of the simpler tests in our compiler

test suite. The test uses our compiler interface to compile a
single bytecode, execute the generated machine code and test
that the constant zero was pushed to the operand stack. This
test is written once and runs automatically in all supported
compiler backends (AArch64,AArch32, x86, and x86-64), both
in 32bits and 64bits machines.
1 testPushConstantZeroBytecodePushesASmallIntegerZero
2 self compile: [ compiler genPushConstantZeroBytecode ].
3 self runGeneratedCode.
4 self assert: self popAddress equals: (memory

integerObjectOf: 0)

Listing 1. Test compilation of push constant zero.

4.2 Cross-ISA Testing Using Test Parameterisation
Our test infrastructure makes use of parameterized tests to
automatically run a single test on many configurations. We
express such configurations as a matrix. Listing 2 shows
an example configuration of our compilation testing matrix.
Our root test classes already provide pre-configured config-
uration matrices for the most common cases. For example,
the interpreter and memory manager tests automatically run
in 32bits and 64bits configurations. Compiler tests are con-
figured to run in all supported compiler backends. Listing
2 illustrates the compiler configuration matrix which at the
moment of writing this paper includes cases for AArch64,
AArch32, x86 and x86-64.
1 testParameters
2 ^ ParametrizedTestMatrix new
3 addCase: { #ISA −> #'aarch64'. #wordSize −> 8};
4 addCase: { #ISA −> #'x86'. #wordSize −> 4};
5 addCase: { #ISA −> #'X64'. #wordSize −> 8};
6 addCase: { #ISA −> #'ARMv5'. #wordSize −> 4};
7 yourself

Listing 2. Testing matrix for compiler tests.
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4.3 Grow Slowly in Complexity
A simple heuristic we use to develop tests is to always start
by the simplest test we can write. If a test cannot be easily
written with the testing infrastructure as-is this is an indica-
tor that either the infrastructure is missing support for some
feature, or that a simpler test needs to be developed before.

A second heuristic is to treat test code as any other code. In
otherwords, test code can be subject to refactorings, cleaning,
and the extraction of other reusable components.

4.4 Dealing with Platform Specific Constraints
The guidelines above make tests that are generic by default,
but generic tests do not deal correctly with platform specific
constraints. Platform specific constraints arise from different
VM configurations, target operating systems or target pro-
cessors. For example, AArch64 differs from Intel based pro-
cessors in many ways: multiplication overflow does not set
the overflow flag, subtraction present an inverted carry flag,
the stack pointer has alignment restrictions. Some operat-
ing systems impose exclusive write-executable permissions.
VM specific differences appear between 32bits and 64bits
memory models.
In cases like the ones exemplified above, our testing in-

frastructure does not forbid testing, but requires more fine-
grained control and narrowing the scope of test. We achieve
fine-grained control in platform specific tests by allowing
tests to manually feed Intermediate Representation instruc-
tions to the compiler. Also, when narrowing test scenarios
for a particular platform, we observed the appearance of two
main cases in our test suite:
Generic tests with exceptions. Some tests are valid for all

but onematrix configuration. In such cases, the specific
configuration is explicitly skipped for that test.

Platform Specific Tests. Some tests are valid only for a
single platform. In such cases, a separate test class with
a specialized test matrix is written to host them. An
example of this are the ARM stack alignment tests, in
class VMARMStackAlignmentTest, with a test matrix
using a single case, as shown in Listing 3.

1 testParameters
2 ^ ParametrizedTestMatrix new
3 addCase: { #ISA −> #'aarch64'. #wordSize −> 8};
4 yourself

Listing 3. Testing matrix for a platform specific test.

5 Case Studies
All unit tests and the testing infrastructure reported in this
article are available in the package VMMakerTests, in the
branch headless of our Git public repository5. Our testing

5https://github.com/pharo-project/opensmalltalk-vm

suite defines as-per-today 1367 written unit tests6, repre-
senting a total of 3603 run tests when the different matrix
configurations are taken into account. A full run of our unit
test suite amounts to a total time of ~2.5 minutes in our con-
tinuous integration server to the day we wrote this article.
Table 2 details the processor independent test cases, and
Table 3 details the processor dependent test cases.

In the remaining of this section we report our experience
with two concrete case studies where our testing infrastruc-
ture has been proven useful. We provide in appendix code
examples of both scenarios.

5.1 Porting the Cogit JIT Compiler to AArch64
We used this approach to port the Cogit JIT compiler to
AArch64. When we started the port, the JIT compiler had
mainly assembler tests that did not follow the principles
stated above. Following our guidelines above, we guided our
port to AArch64 by writing unit tests in increasing complex-
ity, specifically by translating and executing single bytecodes
and working exclusively on our test suites: we performed no
full-system execution of any kind. For example, the first tests
we wrote covered the bytecodes for push and pop of con-
stants, we later introduced tests for message-send bytecodes
which required to add testing support for trampolines, and
later we introduced tests for polymorphic inline caches and
their patching. This approach helped us with introducing
the assembler support gradually.

In addition, some testing scenarios required modifications
in the compiler’s intermediate representation e.g., to test
multiplication overflow we introduced a new JumpMultiply-
Overflow instruction because AArch64’s multiply instruc-
tion does not set the overflow flag. The JumpMultiplyOver-
flow is defined by default on all platforms as a JumpOverflow
and redefined for AArch64. Having a cross-ISA and fast test
suite allowed us to easily refactor and verify the change
not only in AArch64 but in all our supported platforms in
a couple of minutes, making sure we did not introduce any
regression in the compiler.

Once our test suite was large enough and gave us enough
confidence on our implementation, we switched to run full-
system simulations. During a full-system simulation, we
run the Pharo VM as if it was run from the command line.
This made the simulation environment exercise parts of the
code that were not necessarily covered by tests. When the
simulation reached a bug or an error, we investigated the
problem and rolled-back to design unit tests for the failing
scenario, incrementing our test coverage with concrete cases.

When the simulation was able to execute for long periods
of time without failing, we had a strong confidence in our
implementation. We switched to real-hardware execution,
knowing that we were going to face at least the stack pointer

6https://github.com/pharo-project/opensmalltalk-vm/commit/
8f3028057c4f98afa38c5645223d19ecfbfb2bf3

https://github.com/pharo-project/opensmalltalk-vm
https://github.com/pharo-project/opensmalltalk-vm/commit/8f3028057c4f98afa38c5645223d19ecfbfb2bf3
https://github.com/pharo-project/opensmalltalk-vm/commit/8f3028057c4f98afa38c5645223d19ecfbfb2bf3
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Table 2. Processor Independent Tests (32bits / 64bits): These tests center in the memory representation. They are executed
for 32 and 64 bits machines. They don’t use Unicorn’s machine simulator.

VM Component Operation Independent Tests Variations Total Executions

Test Infrastructure
Method Builder 10

32 bits / 64 bits
20

Stack Builder 18 36
Total 28 56

Object Memory

Stack Reification 7

32 bits / 64 bits

14
Context / Stack Mapping 13 26
GC Data Structures 13 26
Unmovable Objects 9 18
Old Object Garbage Collection 63 126
Young Objects Garbage Collection 38 76
Weak Object Garbage Collection 9 18
Ephemeron Object Garbage Collec-
tion

19 38

Old Objects FreeSpaceManagement 85 170
Memory Structure Preconditions 30 60
Total 286 572

Interpreter

Bytecode Tests 43

32 bits / 64 bits

86
Method Lookup 15 30
Object Representation 17 34
Primitives 62 124
Total 137 274

Total 451 902

alignment restrictions that were not simulated properly. Dur-
ing real-hardware execution, we only found three missing
features in our JIT port:
Stack alignment restrictions. We faced it right away in

the first execution. This problem lead us to design
platform specific tests to check the alignment, extend
the unicorn machine simulation with support for stack
alignment check, and refactor the JIT to use a general
purpose register (x28) as stack pointer register for the
Pharo execution stack. Since the Pharo VM uses as
stack a stack allocated memory region, the x28 register
is guaranteed to be always above the real stack pointer.

Marshalling of Single-precision Floats in FFI. Abug in
our assembler has been found: when reading/writing
single-precision floats, we used the 64bits instruction
variant. Our tests were not covering all possible scenar-
ios and this caused memory corruptions. This problem
was not unveiled by the full-system simulation because
it takes a huge amount of time to reach this point.

OSXW+X. When preparing the Pharo VM build for the new
M1 Apple Silicon Machines, we had to adapt the en-
tire JIT architecture to use the mmap JIT permissions
suggested by Apple7.

7https://developer.apple.com/documentation/apple-silicon/porting-just-
in-time-compilers-to-apple-silicon

5.2 Debugging and Testing Memory Corruptions
We used this same approach recently when facing a bug
in the prototype ephemeron [8] implementation reported
by a member of the Pharo community8. We started by in-
vestigating the issue in real-hardware using gdb. This first
exploratory step was to be able to identify more clearly the
symptoms of the problem and making hypothesis about the
potential causes. A quick analysis showed us a heap corrup-
tion where the crash manifested itself far away from its real
cause. After some debugging iterations we could observe
that the corrupted objects were effectively the ephemeron
objects, and that the corruption happened during GC, and we
proceeded to reproduce the same problem in a unit test and
debug it in the simulation environment. During this debug-
ging session in the simulation environment we found other
related bugs. The fixes and associated tests were published in
the following pull request: https://github.com/pharo-project/
opensmalltalk-vm/pull/183.

6 Related Work
Several solutions have been proposed in the past to aid in VM
debugging tasks and programming language implementation
validation.

8https://github.com/pharo-project/pharo/issues/8153

https://developer.apple.com/documentation/apple-silicon/porting-just-in-time-compilers-to-apple-silicon
https://developer.apple.com/documentation/apple-silicon/porting-just-in-time-compilers-to-apple-silicon
https://github.com/pharo-project/opensmalltalk-vm/pull/183
https://github.com/pharo-project/opensmalltalk-vm/pull/183
https://github.com/pharo-project/pharo/issues/8153
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Table 3. Processor Dependent Tests (x86 / x86-64 / AArch32 / AArch64)
These tests center in the execution of generated code. They depend on the target machine. The tests are executed for the
4 different platforms (x86 / x86-64 / AArch32 / AArch64). These tests run using Unicorn’s Machine Simulator. We include
here some platform specific tests for AArch64. These tests are used to validate AArch64 specific requirements. Also, Float
immediate representations and selector dereferencing are only available in 64 bits systems (x86-64 / AArch64).

VM Component Operation Independent
Tests

Variations Total
Executions

Platform Specific Tests
AArch64 Instruction Encoding 27

AArch64
27

AArch64 Stack Alignment Sim-
ulation

2 2

Total 29 29

Stack Manipulation Stack Reification 15 All 4 Platforms 60
Total 15 60

Primitives

Integer Division 8 All 4 Platforms 32
Float Immediate Operations 21 x86-64 / AArch64 42
FFI Marshalling 46 All 4 Platforms 184
Integer Immediate Operations 36 All 4 Platforms 144
Object Size Operations 20 All 4 Platforms 80
Object Access Operations 32 All 4 Platforms 128
Total 136 610

Test Infrastructure Unicorn Validation 17 All 4 Platforms 68
Total 17 68

JIT Compiler

Code Compaction 11 All 4 Platforms 44
Method Header Generation 2 All 4 Platforms 8
Primitive Inlining 33 All 4 Platforms 132
Selector Dereferencing 4 x86-64 / AArch64 8
Abort Routine Generation 3 All 4 Platforms 12
Bytecode Compilation 144 All 4 Platforms 576
Special Selectors Message Send 68 All 4 Platforms 272
Monomorphic Message Send 3 All 4 Platforms 12
Polymorphic Message Send 55 All 4 Platforms 220
Megamorphic Message Send 14 All 4 Platforms 56
VM Routine Invocation 28 All 4 Platforms 112
Total 365 1452

Total 589 2219

VM Simulation and Meta-circular VMs. VM frame-
works and Meta-circular VMs have offered for a long time
simulation environments that helped in testing and debug-
ging virtual machines. Such is the case of Self [19], Smalltalk
[12, 17] and Maxine [20]. These solutions allow full-system
simulations to ease debugging at the cost of slower and less-
precise executions. Our solution complements full-system
simulations with a unit-testing infrastructure and methodol-
ogy, that helped us in fixing complex bugs and porting the
JIT compiler to AArch64.

Compiler and VM Testing. Several works exist on the
area of compiler testing, particularly on the automatic gen-
eration of test programs and oracles for their validation [4].

Chen et al., do not study test generation or validation: they
study the infrastructure required to produce maintainable,
fast, focused and cross-ISA tests. Moreover, our tests cover
not only the JIT compiler but other VM concerns such as the
memory manager, the interpreter and the GC. We plan in
the future to work on VM-specific test generation.

Recently, the team of Maxine reported a QEMU test-based
infrastructure for cross-ISA testing and debugging [13]. They
reported that this infrastructure helped them in porting their
VM to AArch32 (ARMv7), similarly that what ours helped
us in porting to AArch64. Still, their debugging happens
in gdb in an abstraction level far-away from the original
source code. Moreover, they reported they still cannot cover
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many parts of their codebase. We believe that many of these
limitations come from the fact that Maxine is a meta-circular
VM that uses its JIT compiler to compile itself.

Finally, some work report recently efforts to validate in an
automatic or semi-automatic way optimising compilers [3,
7]. Although this is not the focus of this paper, we plan to
extend our infrastructure in the future to test our prototype
optimising JIT.

7 Conclusion
Testing and debugging a Virtual Machine is a laborious task
without the proper tooling. This is particularly true for VMs
with JIT compilation and dynamic code patching. In this
paper we present a testing infrastructure and a methodology
that allows us to take advantage of the strengths of unit-
testing, full-system simulation, and real-hardware execution
where they perform better, and have fine-grained control of
testing scenarios, making tests small, fast, reproducible, and
cross-ISA.

We report on how this testing infrastructure allowed us to
cope with two different development scenarios: (1) porting
the Cogit JIT compiler to AArch64 without early access to
real hardware and (2) debugging memory corruptions due to
GC bugs. In our experience, unit-tests have caught the vast
majority of bugs without the need to validate them in real
hardware. Really few problems seemed to remain untestable
at first because of simulation imprecisions, but most of them
became testable after introducing fixes in the simulation
environment.
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