Skip to Main content Skip to Navigation
New interface
Journal articles

Latency-Aware Strategies for Deploying Data Stream Processing Applications on Large Cloud-Edge Infrastructure

Abstract : Internet of Things (IoT) applications often require the processing of data streams generated by devices dispersed over a large geographical area. Traditionally, these data streams are forwarded to a distant cloud for processing, thus resulting in high application end-to-end latency. Recent work explores the combination of resources located in clouds and at the edges of the Internet, called cloud-edge infrastructure, for deploying Data Stream Processing (DSP) applications. Most previous work, however, fails to scale to very large IoT settings. This paper introduces deployment strategies for the placement of DSP applications on to cloud-edge infrastructure. The strategies split an application graph into regions and consider regions with stringent time requirements for edge placement. The proposed Aggregate End-to-End Latency Strategy with Region Patterns and Latency Awareness (AELS+RP+LA) decreases the number of evaluated resources when computing an operator’s placement by considering the communication overhead across computing resources. Simulation results show that, unlike the state-of-the-art, AELS+RP+LA scales to environments with more than 100k resources with negligible impact on the application end-to-end latency.
Document type :
Journal articles
Complete list of metadata

https://hal.inria.fr/hal-03347555
Contributor : Laurent Lefèvre Connect in order to contact the contributor
Submitted on : Friday, September 17, 2021 - 12:15:52 PM
Last modification on : Tuesday, October 25, 2022 - 4:21:17 PM
Long-term archiving on: : Saturday, December 18, 2021 - 6:39:32 PM

File

config-scalability.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Alexandre da Silva Veith, Marcos Dias de Assuncao, Laurent Lefèvre. Latency-Aware Strategies for Deploying Data Stream Processing Applications on Large Cloud-Edge Infrastructure. IEEE Transactions on Cloud Computing, 2021, pp.1-12. ⟨10.1109/TCC.2021.3097879⟩. ⟨hal-03347555⟩

Share

Metrics

Record views

46

Files downloads

121