
HAL Id: hal-03348046
https://inria.hal.science/hal-03348046

Submitted on 17 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Explaining Safety Violations in Real-Time Systems
Thomas Mari, Thao Dang, Gregor Gössler

To cite this version:
Thomas Mari, Thao Dang, Gregor Gössler. Explaining Safety Violations in Real-Time Systems.
[Research Report] RR-9420, INRIA; Verimag, Université Grenoble Alpes. 2021. �hal-03348046�

https://inria.hal.science/hal-03348046
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
94

20
--

FR
+E

N
G

RESEARCH
REPORT
N° 9420
September 2021

Project-Team SPADES

Explaining Safety
Violations
in Real-Time Systems
Thomas Mari, Thao Dang, Gregor Gössler

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Explaining Safety Violations
in Real-Time Systems

Thomas Mari∗†, Thao Dang†, Gregor Gössler∗

Project-Team SPADES

Research Report n° 9420 — September 2021 — 19 pages

Abstract: We tackle the problem of explaining faults in real-time systems. Intuitively, an
explanation of the violation of a safety property by an execution is a concise excerpt of the faulty
execution that retains only the elements that were relevant for entailing the violation, thus ex-
hibiting how causes accumulate over time and propagate to entail the effect. Fault explanation
therefore goes beyond the well-known concepts of fault diagnosis and localization.
We provide a formal definition of causal explanations on dense-time models, based on the well-
studied formalisms of timed automata and zone-based abstractions. Our approach is able to
account for limited observability of the faulty execution. We propose a symbolic formalization
to effectively construct such explanations, which we have implemented in a prototype tool. We
illustrate our approach on several examples.

Key-words: causal explanations, real-time, safety

∗ Univ. Grenoble Alpes, INRIA, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
† CNRS/VERIMAG, France

Explication des violation de sûreté
dans les systèmes temps réel

Résumé :
Nous nous intéressons au problème de l’explication de fautes pour des systèmes temps réel.

Intuitivement, une explication de la violation d’une propriété de sûreté par une exécution est un
extrait suffisamment concis de l’exécution ne contenant seulement les éléments pertinents pour
entraîner la violation. Une explication permet donc d’exhiber comment les causes des violations
s’accumulent et se propagent avec le temps.

L’explication de faute va au-delà des classiques diagnostique et localisation de fautes. Nous
fournissons une définition formelle d’explication causale pour les modèles à temps dense. Celle-ci
est basée sur le formalisme des automates temporisés et de l’abstraction basée sur les zones.
Notre approche tient compte de l’observabilité partielle de l’exécution fautive. Nous proposons
une formalisation symbolique pour construire en pratique ces explications. Cette construction a
été implémentée dans un prototype. Nous illustrons notre approche avec des exemples.

Mots-clés : Explications causales, temps réel, sûreté

Explaining Safety Violations in Real-Time Systems 3

1 Introduction

Embedded real-time systems have been part of our daily lives for several decades now, and the
number of such devices is growing exponentially. There is a rich body of work on software
engineering, formal verification, and certification of such systems. However, when looking at the
headlines about failures and casualties caused by embedded systems, one may wonder whether
we have learned to fully master their growing complexity.

As a complementary approach, accountability aims at constructing systems in such a way
that the responsibilities for a failure can be identified and explained post mortem [15]. Intuitively,
an explanation is a concise excerpt of the observed execution that retains only the elements that
were relevant for entailing the violation. However, formalizing this objective is far from obvious,
and different communities have tackled the problem under different angles.

A first challenge consists in conveying the “right” amount of information, e.g., in order to help
a human expert in quickly understanding the causes of the violation, or to automatically react
to the failure by swapping a component or changing parameters. In this work we are interested
in causal explanations that allow us to track the chains from cause to effect while eliminating
irrelevant events from the explanation.

A second challenge is to devise explanations that satisfy the requirements of embedded sys-
tems. First, embedded real-time systems usually have an infinite state space, requiring reasoning
on an appropriate abstraction. Nevertheless, research on reasoning about causation on abstrac-
tions is only in its infancy [2, 7]. Second, explanations for embedded systems have to cope with
the limited observability of state and events, which is again an issue that is hardly addressed in
existing work on causation.

The work presented in this paper is part of an ongoing effort to construct explainable embed-
ded real-time systems. We investigate how to construct, from a system model, a safety property,
and an execution log that violates the property, a concise explanation of how the log brought
about the violation of the property.

This paper makes the following contributions. We provide a formal definition of causal
explanations on dense-time models, based on the well-studied formalism of timed automata. We
propose a symbolic approach to effectively construct explanations. We illustrate our approach
on several examples and a case study.

2 Related Work

Causal explanations. Our construction of choice explanations is based on effective choice
explanations for discrete-event systems [6]. The latter are, in turn, inspired by [11], which
leverages game theory to explain counterexample traces from model-checking by exhibiting the
portions of the trace in which the system could have avoided the violation of an expected property
no matter how the environment behaves.

Several authors have proposed a construction of explanations for the satisfaction of a property
P by an execution trace based on sub-sequences of the trace that are sufficient to entail P , such as
explanatory diagnoses [17] and causal compression [4]. However, in contrast to our approach, sub-
sequence explanations do not convey any information about the outcome produced by alternative
branches in a non-deterministic system.

Static program slicing [22] determines a part (“slice”) of a program that influences a set of
variables at a given point. Dynamic slicing [14] computes a slice for a given computation, yielding
a smaller slice. In contrast to slicing, our approach accounts for counterfactual runs that have
not been taken in the actual execution.

RR n° 9420

4 Thomas Mari, Thao Dang, Gregor Gössler

Fault diagnosis, localization, and repair. Counterfactual causation has been studied in
many disciplines as a precise assessment of individual causes that contribute to bring about an
effect, see e.g. the influential definition of actual causality in [9]. Some form of counterfactual
reasoning has been used by many authors to diagnose, localize, and repair faults. We only cite
some representative examples here. As these approaches exhibit individual causes rather than
chains from cause to effect, they are less apt to explain how contributory causes accumulate
over time and propagate to entail an effect. The seminal work of [19] proposes a framework
of model-based fault diagnosis that defines a diagnosis as a minimal sets of components whose
faults make the observations consistent with the system model. The use of a distance metric is
explored in [8] to localize, based on an error trace, a possible fault as the difference between the
error trace and a closest correct trace. Similarly, Delta debugging [24] starts from a failing and a
passing input and finds a pair of a failing and a passing input with minimal distance. A variant
of actual causality is used in [3] to over-approximate the set of causes for the first violation of
an LTL formula by a trace. The goal of program repair is, given a program that violates an
expected property P , to construct a syntactically close program that satisfies P , see e.g. [21] for
the repair of reactive programs. Closer to our setting, [12] uses MaxSMT to repair clock bounds
in a network of timed automata so as to ensure an expected property.

In contrast to the pieces of related work cited above that are based on some form of model to
compare the actual execution with counterfactual traces, many recent techniques summarized un-
der the umbrella term of explainable AI lack a model and hence, the possibility of counterfactual
reasoning [18].

3 Preliminaries

Let C be a set of clock variables that take values in R+. A C-valuation is a function C → R+.
Let 0 denote the C-valuation assigning 0 to all clocks. An atomic constraint on C is an inequality
c ∼ k or c − c′ ∼ k where c, c′ ∈ C, ∼ ∈ {≤, <,≥, >} and k ∈ N. We say that a C-valuation v
satisfies an atomic constraint c ∼ k (or c−c′ ∼ k) if v(c) ∼ k (or v(c)−v(c′) ∼ k). A C-constraint
is a finite conjunction of all atomic constraints on C. Let C denote the set of C-constraints. By
abuse of notation, we use a C-constraint interchangably with the sets of C-valuations that satisfy
it.

Definition 1 (Timed Automaton). A timed automaton (TA) A is a tuple A = 〈Σ, L, L0, C, F, I, E〉
where

• Σ is a finite set of events;

• L is a finite set of locations;

• L0 ⊆ L is the set of initial locations;

• C is a set of clock variables;

• F ⊆ L is a set of accepting locations;

• I : L→ C specifies for each location an invariant;

• E ⊆ L×C×Σ× 2C × L is a set of edges of the form e = 〈`, g, σ,X, `′〉 where ` and `′ are
respectively source and target locations; σ is an event; g is the guard of e; and X is a set
of clocks to be reset when the edge is traversed.

Inria

Explaining Safety Violations in Real-Time Systems 5

To account for the fact that some events are not observable, the set Σ of events is partitioned
into two subsets of observable and unobservable events.

We formalize the semantics of timed automata using labeled transition systems, or LTS. An
LTS is a tuple 〈Σ,V, E ,V0,VF 〉 where Σ is the alphabet, V is a set of nodes, E ⊆ V ×Σ×V is the
set of labeled transitions, and V0 ⊆ V and VF ⊆ V are the sets of initial and accepting nodes,
respectively. For ν ∈ V let ν• = {ν′ ∈ V | ∃σ ∈ Σ : (ν, σ, ν′) ∈ E} be the postset of ν. In the
following we use the terms LTS and graph interchangeably.

Definition 2 (Semantic LTS). The semantic LTS of a timed automaton A = 〈Σ, L, L0, C, F, I, E〉
is the LTS sem(A) = 〈Σ′,V, E ,V0,VF 〉 where

• Σ′ = Σ ∪ R+ is the set of labels;

• V = {(`, v) | ` ∈ L ∧ v ∈ I(`)}, i.e. the states of A are the pairs (`, v) where v ∈ I(`) is a
clock valuation that satisfies the invariant of the location `;

• V0 = {(`, v) ∈ V | ` ∈ L0 ∧ v = 0};

• VF = V (indeed the accepting states do not matter);

• the set of transitions are of two types, discrete and time transitions:

E =
{

((`, v), σ, (`′, v′)) | ∃g,X : 〈`, g, σ,X, `′〉 ∈ E ∧ v′ = v[X := 0] ∧ v′ ∈ I(`′)
}

∪
{(

(`, v), δ, (`, v′)
)
| δ > 0 ∧ v′ = v + δ ∧ v′ ∈ I(`)

}
The states (`′, v′) and (`, v′) are respectively called e-successor δ-successor of (`, v).

As usual we write (`, v)
·−→ (`′, v′) for

(
(`, v), ·, (`′, v′)

)
∈ E . By abuse of notation we omit the

curly braces in {ν0} when there is a single initial state. Note that since δ is a real number, a
time transition (`, v)

δ−→ (`, v′) can be split into an arbitrary number k of time transitions, that
is, (`, v)

δ1−→ (`, v1)
δ2−→ (`, v2) . . .

δk−→ (`, vk) such that δ = δ1 + δ2 + . . .+ δk.

Definition 3 (Runs and Traces). Let G = 〈Σ,V, E ,V0,VF 〉 be an LTS.

• A run of G starting from ν1 ∈ V is a (finite or infinite) sequence of states and transitions:
ρ = ν1

e1−→ ν2
e2−→ We denote by Υ(G) the set of all runs of G. A state ν is reachable

if there is a run from an initial state to ν.

• Given a run ρ ∈ Υ(G), the sequence of labels in ρ is called trace. We denote by Ψ(G) the
set of all traces of G.

Definition 4 (Timed Log). A timed log is a one-clock, deterministic and acyclic TA. In addition,
all the events of the automaton are observable.

An example of timed log is a timed automaton roughly depicted as follows: l0
x=t0,a,∅−−−−−→

l1
x=t1,b,∅−−−−−→ l2

x=t2,a,∅−−−−−→ l3, with l3 as an accepting location and l0 an initial location. The edge
from the location l0 to the location l1 has the guard x = t0; its event is a; and its set of clocks
to be reset is empty.

As mentioned in the introduction, we are interested in explaining why a system, modeled as a
timed automaton A, violates a safety property. To this end, we define a safety property observer
as a timed automaton with one sink state, to model the property violation of a timed log. In
addition, this observer is required to be receptive with respect to all observable events of A, as

RR n° 9420

6 Thomas Mari, Thao Dang, Gregor Gössler

defined in the following. An LTS 〈Σ,V, E ,V0,VF 〉 is receptive over Σ1 ⊆ Σ if at every reachable
state ν, all events in Σ1 are enabled, that is, ∀σ ∈ Σ1 ∃ν′ : ν

σ−→ ν′. Given a timed log L and a
safety property observer P, we say that L violates the safety property at hand if each run of L
is a run of P that reaches the sink state.

The sets of states and transitions of a timed automaton are infinite, and therefore, as in
verification, finite abstractions can be used to construct explanations. In this work, we use time-
abstracting bisimulations to abstract away the quantitative information about time lapses in the
execution of a timed automaton. This leads to finite discrete abstractions of the original timed
automata from which we can compute choice-based explanations [6]. The following definition is
adapted from [20] so as to distingluish events, and accepting vs. non-accepting states.

Definition 5 (Strong bisimulations). A binary relation ∼ on an LTS G = 〈Σ,V, E ,V0,VF 〉 is a
strong bisimulation if for any pair of nodes p and q of G such that p ∼ q, the following conditions
hold:

• ∀σ ∈ Σ ∀p′ ∈ V :
(
p
σ−→ p′ =⇒ ∃q′ : q

σ−→ q′ ∧ p′ ∼ q′
)
;

• the above condition also holds when p and q are swapped;

• p ∈ VF ⇐⇒ q ∈ VF .

When G is the semantic LTS of a TA, the relation ∼ is a strong time-abstracting bisimulation
(STAB) if for any pair of nodes p = 〈`1, v1〉 and q = 〈`2, v2〉 of G such that p ∼ q, the following
conditions hold:

• `1 = `2;

• ∀σ ∈ Σ \ R+ ∀p′ ∈ V :
(
p
σ−→ p′ =⇒ ∃q′ : q

σ−→ q′ ∧ p′ ∼ q′
)
;

• ∀δ > 0 ∀p′ ∈ V :
(
p
δ−→ p′ =⇒ ∃δ′ > 0 ∃q′ : q

δ′−→ q′ ∧ p′ ∼ q′
)
;

• the above conditions also hold when p and q are swapped;

• p ∈ VF ⇐⇒ q ∈ VF .

We use STAB, implemented in Minim [20], to construct a finite symbolic abstraction of TA.
We then reduce the latter with respect to strong bisimulation so as to merge bisimilar states
involving different locations.

4 Explanations
Our goal is to explain, for a TA A modelling a system, an observer P of a safety property, and a
timed log L of observable events of A that violates P, how the violation came to happen. More
precisely, in this work, we focus on non-deterministic choices in the execution that entailed the
failure, where different choices would have helped to avoid it. Prominent of such failures are
“concurrency bugs” that only occur in certain interleavings of threads, and deadline misses due
to bad scheduling decisions in real-time systems.

To construct such explanations for real-time systems, we lift the effective choice explanations
formalized in [6] to timed automata. The main steps of our construction, as shown in Figure 1,
are the following.

1. Construct a timed log observer Lc from L that tracks, for any run ρ of Lc, whether the
observable behavior of ρ produces L.

Inria

Explaining Safety Violations in Real-Time Systems 7

model A

observer P

log L

A||P||Lc

observer Lc

abstraction [A||P||Lc] subgraph Gi

levels of choice ξ

explanation Ei

Figure 1: Overview of the approach.

2. Compose A, P, and Lc to form a timed automaton A||P||Lc, where ‖ is the standard
parallel composition of timed automata, see e.g. [23].

3. Construct a discrete abstraction [A||P||Lc] of the continuous-time semantics of A||P||Lc,
using a time-abstracting bisimulation.

4. Compute the levels of choice on [A||P||Lc] that, intuitively, represent, for each equivalence
class q ∈ [A||P||Lc], the number of bad choices ξ(q) left before violating P.

5. Extract, from [A||P||Lc], a sequence of subgraphs Gi representing the traces that will be
condensed to an explanation of length i.

6. Abstract away, from each Gi, all transitions that do not decrease ξ, in order to obtain the
explanation Ei that retains only those (discrete or timed) transitions that contributed to
the failure.

We will now discuss each of these steps.

Log observer.

Given an alphabet Σ and a timed log L over the observable alphabet Σobs ⊆ Σ, we construct a
log observer that accepts all runs over Σ and enters an accepting sink state whenever an observed
behavior is inconsistent with the log.

Definition 6 (Log observer). The observer of a log L = 〈Σ, L, L0, C, F, I, E〉 is the TA Lc :=
〈Σ, L′, L0, C, F, I ′, E′〉 where

• L′ = L ∪ {sink} where sink /∈ L is a fresh location;

• I ′ = I ∪ {sink 7→ true};

• E′ = E ∪ E1 ∪ E2 where

– E1 = {` C(`,σ),σ,∅−−−−−−→ sink | ` ∈ L ∧ σ ∈ Σ} where C(`, σ) = ¬
∨
{g | ∃`′ ∈ L : `

g,σ,·−−−→ `′}.

– E2 = {sink true,σ,∅−−−−−→ sink | σ ∈ Σ}.

Intuitively, E1 is the set of edges from a location in L that are not consistent with L, used
to make the log observer receptive with respect to Σobs.

RR n° 9420

8 Thomas Mari, Thao Dang, Gregor Gössler

Discrete abstraction.

To obtain discrete abstractions for the timed automaton A||P||Lc, we use the STAB of Defini-
tion 5. Let us briefly recall the notion of time-abstracting quotient graph [20]. Given a TA over
alphabet Σ with semantic LTS G = 〈Σ ∪ R+,V, E ,V0,VF 〉 and a partition Ṽ of V, the quotient
of G with respect to Ṽ is the LTS G/Ṽ = 〈Σ′, Ṽ, E ′, Ṽ0, ṼF 〉 where

• Σ′ = Σ ∪ {δ} where δ is a fresh symbol;

• E ′ = {ν̃ σ−→ ν̃′ | (ν, σ, ν′) ∈ E ∧ σ ∈ Σ} ∪ {ν̃ δ−→ ν̃′ | ∃t > 0 : (ν, t, ν′) ∈ E};

• Ṽ0 = {ν̃ | ν ∈ V0} and ṼF = {ν̃ | ν ∈ VF }

and for ν ∈ V, ν̃ denotes the element of Ṽ for which ν ∈ ν̃.
In particular, we are interested in the quotient with respect to the equivalence classes of states,

called symbolic states, induced by STAB. Let [A||P||Lc] := A||P||Lc/∼ be the quotient graph
with respect to STAB. This quotient graph can be computed by the existing timed automata
model-checkers, such as UPPAAL and Kronos [23, 16]. In this work, we use the tool Minim [20]
integrated in Kronos.

Levels of choice.

In the following, we compute the level of choice on [A||P||Lc]. Intuitively, the level of choice
measures how close the system is to violating the required safety property.

Definition 7 (Level of choice). Given an LTS G = 〈Σ,V, E ,V0,VF 〉, we say that ξ : V → N∪{∞}
is the level of choice function if:

1. ∀ν ∈ VF : ξ(ν) = 0

2. ∀ν ∈ V such that ν is not co-reachable, ξ(ν) =∞

3. for all other states ν ∈ V let

ξ(ν) = min+
({
` | ∃ν′ : ξ(ν′) = ` ∧ ∃e ∈ Σ : ν

e−→ ν′
})

where

min+(G) =

{
min(G) if |G| ≤ 1

1 + min(G) otherwise

and we set min ∅ =∞.

4. Maximality: ξ is maximal among the functions fulfilling the preceding conditions.

Definition 8 (Effective choice). Given an LTS G = 〈Σ,V, E , ν0,VF 〉 and a level of choice
function ξ : V → N ∪ {∞}, a transition s

e−→ s′ ∈ E is an effective choice transition iff ξ(s) =

1 + ξ(s′) and ∃ρ = s′
e0−→ s1

e1−→ ...sn ∈ run(G) such that ξ(sn) = 0 and (maxs∈ρ ξ(s)) = ξ(s′).
When such a transition exists, the state s is called an effective choice state.

Intuitively, an effective choice transition is a transition that decrements the level of choice
and is prefix of a run ρ violating P along which the level of choice no longer exceeds ξ(s′).

Lemma 1. Let G = 〈Σ,V, E ,V0,VF 〉 and ξ the level of choice of G. Let VC =
{
ν ∈ V | ξ(ν) ∈

N \ {0} ∧ ξ(ν) = 1 + min{ξ(ν′) | ν′ ∈ ν•}
}
and VNC =

{
ν ∈ V | ξ(ν) ∈ N \ {0}

}
\ VC . Then

E ∩ (VNC × Σ× VNC) is acyclic.

Inria

Explaining Safety Violations in Real-Time Systems 9

That is, VC is inevitable from VNC .

Proof. If there is a cycle such that all the states have the same finite level of choice, then from
all those states there exists a path to VF , but there exists also a path that avoid indefinitely VF
by repeating the cycle. Leaving the cycle should decrease the level of choice in the path to VF .
Hence at least one of those states is in VC .

Theorem 1. Given an LTS G = 〈Σ,V, E ,V0,VF 〉, a level of choice function ξ on G, and a
strong bisimulation ∼ on V, we have that s ∼ s′ =⇒ ξ(s) = ξ(s′).

Proof. Toward contradiction: Let us suppose that we have G = 〈Σ,V, E ,V0,VF 〉, a level of choice
function ξ on G, and a strong bisimulation ∼ on V and

∃ν, ν′ ∈ V, ν ∼ ν′ ∧ ξ(ν) 6= ξ(ν′) (H)

Let n ∈ N be the smallest level of choice such that there exists one state at level n which is
bisimilar with a state at level n′ > n. Formally, n is the smallest integer such that P (n) with:

P (n) := ∃ν, ν′ ∈ V, (ν ∼ ν′) ∧ ξ(ν) = n ∧ ξ(ν) < ξ(ν′) (P(n))

The existence of n is implied by the hypothesis (H).
‘

Case n = 0: Let ν ∈ V such that ξ(ν) = 0 and ∃ν′ ∈ V, ν ∼ ν′ ∧ ξ(ν′) > 0. ξ(ν′) > 0 implies
ν′ /∈ VF by definition of the level of choice and therefore ν /∈ VF because ν ∼ ν′ by definition of
∼.

ξ(ν′) > 0 implies that there exists a successors ν′′ of ν′ such that ξ(ν′′) > 0. Therefore from
ν′ we can build a run where ξ−1(0) can be avoided indefinitely (or reach a state non-coreachable
wrt VF) while from ν, all paths reach VF within a bounded number of transitions. We can build
two sequentially bisimilar paths, from ν and from ν′ where the destinations are bisimilar but one
is in VF while the other destination is not.

Case n > 0: Because n is minimal we know that for lower level of choice, bisimilarity implies
same level of choice :

∀n′ ∈ N, n′ < n =⇒ ∀ν, ν′ ∈ V, ν ∼ ν′ ∧ ξ(ν) = n′ =⇒ ξ(ν) = ξ(ν′) (1)

Let VCn = {ν ∈ V | ξ(ν) = n ∧ ξ(ν) = 1 +min{ξ(ν′) | ν′ ∈ ν•}
Let ν ∈ V be the closest (wrt. d) to VCn such that

ξ(ν) = n ∧ ∃ν′ ∈ V, (ν ∼ ν′) ∧ ξ(ν′) > n (2)

ν exists because P (n) is true.
Subcase ν ∈ VCn :
By definition of the level of choice, ξ(ν), ν has one successor νmin such that ξ(νmin) = n− 1.

Let ν′min ∈ ν′
• such that νmin ∼ ν′min a successor of ν′, it exists because ν ∼ ν′. ξ(νmin) < n

therefore by induction hypothesis ξ(ν′min) = ξ(νmin) = n− 1.
By definition of ξ, we have ξ(ν′) ≤ 1 +min{ξ(v′′) | v′′ ∈ ν′•} ≤ 1 + ξ(ν′min) = n. We have a

contradiction with ξ(ν′) > ξ(ν).
Subcase ν /∈ VCn :

RR n° 9420

10 Thomas Mari, Thao Dang, Gregor Gössler

All successors of ν are also at level n, and at least one, let us call it νmin, is strictly closer to
VCn wrt d, than ν. We have either νmin ∈ VCn or (∀ν′min ∈ V, νmin ∼ ν′min =⇒ ξ(ν′min) = n).
Let ν′min the successor of ν′ such that νmin ∼ ν′min, it exists because ν ∼ ν′.

If νmin ∈ VCn then ξ(ν′min) ≤ ξ(νmin), therefore ξ(ν′) ≤ n+ 1, therefore ξ(ν′) = n+1 because
ξ(ν′) > n.

If νmin /∈ VCn then ξ(ν′min) = ξ(νmin) = n, therefore ξ(ν′) ≤ n+ 1, therefore ξ(ν′) = n+ 1.
ξ(ν′) = n + 1 ∧ ξ(ν′min) ≤ n =⇒ ∃ν′max ∈ ν′

•
, ξ(ν′max) ≥ n′ and because ν ∼ ν′, ∃νmax ∈

ν′max
•
, νmax ∼ ν′max and because ν /∈ VCn , ξ(νmax) = ξ(ν) = n

For x, y ∈ V, let P (n, x, y) := x ∼ y ∧ ξ(x) = n ∧ ξ(x) < ξ(y)
We proved that ∃ν, ν′ ∈ V2, P (n, ν, ν′) =⇒ ∃νmax, ν′max ∈ ν• × ν′

•
, P (n, νmax, ν

′
max)

We can iterate until we have P (n, x, y) with x ∈ VCn . There is a bounded number of iterations
because of the lemma 1 there are no cycles in VNC , especially in ξ−1(n) ∩ (VNC). We can then
conclude with the same contradiction of the previous subcase.

This theorem allows us to work on the LTS further reduced with respect to strong bisimula-
tion instead of [A||P||Lc], as we know that bisimulation preserves the level of choice.

Once we have the abstraction [A||P||Lc] and labeling with levels of choice, we are ready to
extract the explanations. The basic idea is to extract, from [A||P||Lc], a graph that retains only

• the states of [A||P||Lc] that are co-reachable from the final location of Lc, i.e., the states
that are consistent with the observed log, and

• the edges along which the level of choice decreases, i.e., the ones that bring the system
closer to a violation of P.

To this end we proceed as follows.

Graph splitting.

Given an acyclic graph G = 〈Σ,V, E ,V0,VF 〉 equipped with a level of choice function ξ : V →
N ∪ {∞}, we compute a split graph as follows. For any ν ∈ V let

bounds(ν) =

{ {
max{ξ(ν), bounds(ν′)} | ν′ ∈ ν•

}
if ν• 6= ∅

{ξ(ν)} otherwise

We define the split graph G = 〈Σ,V ′, E ′, (V ′)0, (V ′)F 〉 where

V ′ =
{(
ν, b
)
| ν ∈ V ∧ b ∈ bounds(ν)

}
E ′ =

{(
(ν, b), e, (ν′, b′)

)
| (ν, e, ν′) ∈ E ∧ b = max{b′, ξ(ν)

}
(V ′)0 =

{
(ν, b) ∈ V ′ | ν ∈ V0

}
(V ′)F = {(ν, b) | ν ∈ VF }

That is, we duplicate the states according to the maximum levels of choice that may be encoun-
tered in the future, and update the edges so as to point to the matching copy. We extend ξ to
the split graph by putting ξ

(
(ν, b)

)
:= ξ(ν). Intuitively, G accepts the same traces as G, while

ensuring that each state is either effective choice or not, independent of the future behavior.

Example 1. Consider the discrete graph shown in Figure 2(a). From s0 a fault f1 or f2 may
occur, and f1 may be coped with until a timeout t1 occurs. From s2, a second fault f3 will entail
a system failure. However, the initial fault can be handled by primary and secondary fallback
mechanisms b1 and b2, until a timeout t2 occurs. The split graph is shown in Figure 2(b).

Inria

Explaining Safety Violations in Real-Time Systems 11

s0

s1

s2

s3

s4

s5

s∞

1

2

1

2

1

0

∞

f1

f2

t1

b1

f3 b2

t2

(a) Discrete graph with
levels of choice.

s0, 1 s0, 2

s1, 2

s2, 2s2, 1

s3, 2

s4, 1

s5, 0
0

1

1

1

2

1

2

1

f3

t1

b2

t2

(b) Split graph. Only
labels of effective choice
transitions are shown.

s0, 1

s2, 1

s5, 0

1

1

0

f3

(c) Subgraph 1

s0, 2

s1, 2

s2, 2s2, 1

s3, 2

s4, 1

s5, 0
0

1

1

2

1

2

1

f3

t1

t1

b2

t2

(d) Subgraph 2

{(s0, 1), (s2, 1)}

{(s5, 0)}

f3

(e) Explanation E1. The shortest explana-
tion of the system failure is the occurrence
of event f3.

{(s0, 2), (s1, 2), (s2, 2), (s3, 2)}

{(s2, 1)} {(s4, 1)}

{(s5, 0)}

t1 b2

t2f3

(f) Explanation E2. The events that ulti-
mately entailed the system failure are either
t1; f3 or b2; t2.

Figure 2: Splitting, sub-graph extraction, and explanations obtained after determinization.
Dashed transitions are in the model but not consistent with the log.

Subgraph extraction.

The explanations in the split graph are bounded in length by [ξ(ν0),max ξ], where max ξ is the
maximum finite level of choice in G. Our experiments suggest that explanations are easier to
grasp when only explanations of the same length are presented simultaneously. We therefore
extract, from the split graph G = 〈Σ,V ′, E ′, (V ′)0, (V ′)F 〉, for l ∈ [ξ(ν0),max ξ], the graph Gl of
explanations of length l by restricting the LTS 〈Σ,V ′′, E ′′, (V ′′)0, (V ′′)F 〉 where

V ′′ =
{

(ν, b) ∈ V ′ | b ≤ l
}

E ′′ = E ′ ∩ (V ′′ × Σ× V ′′)
(V ′′)0 =

{
(ν, b) ∈ (V ′)0 | b = l

}
(V ′′)F = (V ′)F ∩ V ′′

to the states that are reachable from (V ′′)0, and from which some state in (V ′′)F is reachable.
Notice that Gl is the empty graph when there is no explanation of length l. We then construct,
for each (non-empty) subgraph, an explanation by applying the standard determinization (τ -
elimination) algorithm based on subset construction [1] to “collapse” the non-pertinent parts of
the graph.

RR n° 9420

12 Thomas Mari, Thao Dang, Gregor Gössler

Example 2. From the split graph of Figure 2(b), two sub-graphs of constant height, in terms of
effective choice transitions, are extracted (Figures 2(c) and 2(d)). By determinization we obtain
the explanations E1 and E2 of Figures 2(e) and 2(f) that highlight the decisive events for disjoint
scenarios, with increasing complexity of the explanation.

Theorem 2. For each trace w ∈ Ψ(G) there exists l ∈
[
ξ(ν0),max ξ] such that w ∈ Gl.

Proof. Let n ∈ N and w = e1e2e3...en ∈ Ψ(G). Let ρ = ν0
e1−→ ν1

e2−→ ...
en−→ νn ∈ Υ(G). Let

〈b0, b1, ..., bn〉 ∈ Nn+1 such that ∀i ∈ [0, n], bi = max{ξ(νj) | j ∈ [i, n]}. Let l = max{ξ(νi) | i ∈
[0, n]}. We prove that ρ′ = (ν0, b0)

e1−→ (ν1, b1)
e1−→ ...

en−→ (νn, bn) ∈ Υ(Gl).
First of all, let us prove that the states in the run ρ′ are in the split graph G′ = 〈Σ,V ′, E ′, (V ′)0, (V ′)F 〉.

We know that ∀i ∈ [0, n], νi ∈ V, and therefore
(
∀i ∈ [0, n], bi ∈ bounds(νi)

)
=⇒

(
∀i ∈

[0, n], (νi, bi) ∈ V ′
)
.

By induction on n− i, we prove that ∀i ∈ [0, n], bi ∈ bounds(νi).
For i = n, ρ ∈ Υ(G) =⇒ νn ∈ Vf =⇒ bounds(νn) = {0} and νn ∈ Vf =⇒ ξ(νn) = 0,

hence bn = 0 ∈ bounds(νn).
For i < n, bi = max{ξ(νi), ξ(νi+1), ..., ξ(νn)} = max(ξ(νi),max{ξ(νi+1), ..., ξ(νn)}) = max(ξ(νi), bi+1).

By induction hypothesis we know that bi+1 ∈ bounds(νi+1). Because νi+1 ∈ νi• then by con-
struction bi = max(ξ(νi), bi+1). We have that ∀i ∈ [0, n], bi ∈ bounds(νi) and therefore the states
in ρ′ are state of the split graph.

Now let us prove that the transitions of ρ′ are also in the split graph. ∀i ∈ [1, n], (νi−1, bi−1)
ei−→

(νi, bi) ∈ E ′ because νi−1
ei−→ νi ∈ E and bi = max(bi+1, ξ(νi))

Let Gl = 〈Σ,V ′′, E ′′, (V ′′)0, (V ′′)F 〉 be the given a sub-graph for the explanation of length l.
∀i ∈ [1, n], (νi−1, bi−1)

ei−→ (νi, bi) ∈ E ′′ = E ′ ∩ (V ′′ × Σ × V ′′) because νi−1
ei−→ νi ∈ E ′ and

bi ≤ l by definition of l and bi.
The run ρ′ is in Υ(Gl) and therefore w ∈ Ψ(Gl).

This result means that any log-consistent violation is contained in some subgraph after split
and extraction.

4.1 Further Improvements
4.1.1 Compressing δ-sequences and estimating time delays.

Our explanations may still encompass sequences of discretized time delays whose intermediate
states are distinguished by the bisimulation. Our motivation for eliminating such sequences of
delays is twofold. First, to construct a more concise explanation. In the case study, compressing
δ-sequences allows us to reduce the number of transitions in the explanation from 21 to 7. Second,
compressing sequences of time delays allows us to quantitatively estimate the possible time delays
of the concrete runs that are summarized by the explanation.

Given a sub-graph Gl = 〈Σ,V, E ,V0,VF 〉, a δ+-sequence is an atomic sequence of transitions
σ = ν1

δ−→ ν2
δ−→ ...

δ−→ νn+1, that is,

∀i ∈ {1, ..., n} ∀e ∈ Σ ∀ν′ ∈ V :
(
νi

e−→ ν′ =⇒ e = δ ∧ ν′ = νi+1

)
such that ν1

δ−→ ν2 is an effective choice transition.
As illustrated in Figure 3, we replace each maximal δ+-sequence σ with a single transition

ν1
δ−→ νn+1. The second condition requires the first transition of the sequence to be effective

choice, which ensures the information about effective choice states, used in the sequel, to be
preserved.

Inria

Explaining Safety Violations in Real-Time Systems 13

s0

s1

s3

s4

s2

s5

δ
a

δ

δ
b

(a) Effective choice transition in red, a and b
are discrete events, the transitions in black are
either effective choice or not.

s0

s1 t s3

s4

s2

s5

δ

a

δ
b

(b) δ+-compression.

Figure 3: Compression of sequences of discretized time delays.

In order for the explanation to convey quantitative timing information, we estimate, for each
abstract time transition ν δ−→ ν′, the range of concrete delays represented by the transition, given
the location invariants in ν and ν′. For each state s and clock c, there exists the constants
infsc, supsc ∈ N ∪ {∞} such that in s, infsc ≤ c ≤ supsc. If s′ is a time successor of s then we can
estimate the delay to be between δinf = maxc∈C(infs

′

c − supsc) and δsup = minc∈C(sups
′

c − infsc).
In the case where δinf is negative it is set to 0.

4.1.2 Safe alternatives.

The rationale of our construction of explanations is to highlight the events that contributed to
the violation of a safety property. Complementary to this information, and equally crucial for
understanding how the property was violated, is the question “how could the outcome have been
avoided?”. Providing this information is the goal of safe alternatives.

Definition 9 (Safe alternative).

Definition 10 (Safe alternative). A transition ν e−→ ν′ of an LTS Gl is a safe alternative iff ν is
an effective choice state and ξ(ν′) ≥ ξ(ν).

Intuitively, given a choice state, a safe alternative is a transition that would have contributed
to avoiding the violation by not decreasing the level of choice.

4.1.3 State constraints.

So far we have focused our attention on the events of a failing run. The complementary infor-
mation crucial for understanding the outcome, is in which states some relevant event took place.
In this section, let us assume the TA to be equipped with a function π : L → 2Π that labels
each location with a set of atomic propositions. A straight-forward approach for displaying the
states in the explanation would be to compute, for each aggregate state of the determinized
graph consisting of a set Q of locations, the disjunction of the invariants (resp. of the atomic
proposition) of the locations in L. This would, however, lead to unreadably complex expressions.

RR n° 9420

14 Thomas Mari, Thao Dang, Gregor Gössler

(a) Heart ventricular component. (b) Pacemaker ventricular component AVI .

Figure 4: Two components of the model.

We therefore make the design choice to label each state q = {ν1, ..., νk} ∈ Q returned by
determinization, with a convex predicate of the form ν1 t · · · t νk := Ĉ(q) ∧ SP (q), where Ĉ(q)
is the weakest convex clock constraint that is implied by the invariants of the locations of all
effective choice states in q. It is straight-forward to compute this clock constraint from the DBMs
of the involved location invariants.

Similarly, for the function SP that aggregates, for a state q, atomic propositions of the states
in q, multiple definitions are possible. We settle for the conjunction of the atomic propositions
that hold in all effective choice states in q. This set is therefore obtained as:

SP (q) =
⋂

νi∈q: νi is an effective choice state

⋂
`∈νi

π(`)

An example of the obtained state predicates is shown in Figure 7.

5 Implementation and Case Study
We have implemented our results in a tool written in Python. It relies on Kronos [23] for the
composition of timed automata, Minim for the generation of the quotient graph, and CADP [5]
for reductions up to bisimulation.

We illustrate our approach on the dual-chamber implantable pacemaker model of [10]. It is
a multi-component system where components are timed automata communicating over channels
[16]. We use the model of [13] that we have translated into the Kronos format. The model
consists of 5 timed automata for the components of the pacemaker and 2 timed automata that
model its environment, that is, the atrial and ventricular behavior of a heart. Whenever delays
between sensed atrial or ventricular events exceed a threshold, the pacemaker produces an AP
(atricular pace) or VP (ventricular pace) event.

Among the safety properties discussed in [10] we focus on the requirement that the time
between two ventricular events (sensed or paced) never exceeds 1000ms. The safety property
observer is shown in Figure 5. If the heart model is safe then the system is also safe. We have
therefore modified the parameters of the pacemaker so as to allow for unsafe behaviors.

Figure 4(a) shows the model of the ventricular behavior, with a frequency betweenVminwait =
500ms and Vmaxwait = 1100ms, so as to allow a for fault. On the pacemaker model we increase
the upper rate interval TURI from 400ms to 1600ms. This parameter determines the minimum
delay between two ventricular events VP in the AVI component shown in Figure 4(b). In order
to compare our results, we have taken the same parameters as in [13].

Inria

Explaining Safety Violations in Real-Time Systems 15

wait1 wait2 BAD

VS ,VP, {c} VS ,VP, ∅

c > 1000

c ≤ 1000, {c}

Figure 5: Safety property observer.

AP, φ0, ∅ VGET , φ1, ∅ VS , φ1, ∅ AP, φ2, ∅ VGET , φ3, ∅ VS , φ3, ∅

Figure 6: Timed log. All location invariant are true, φ0 = (x = 850), φ1 = (850 ≤ x ≤ 1000),
φ2 = (1700 ≤ x ≤ 1800), φ3 = (1850 ≤ x ≤ 2200).

We fix the set of observable events as the set Σobs = {VP, V S,AS,AGET,AP, V GET} of
signals exchanged between components, whereas we consider all internal events of the components
as unobservable. We use Uppaal to obtain a witness trace for the violation of the property, from
whose projection on the observable events we construct the timed log shown in Figure 5.

Let us now apply our approach to explain the causes of the violation. The sizes of the timed
automata, discrete abstractions, and explanation are shown in Table 1.

1. The first step is to generate the log observer, which consists of 8 locations and 60 transitions.

2. We invoke Kronos to compose the components, the safety property observer, and the log
observer.

3. We use Minim to compute the quotient graph with respect to strong time-abstracting
bisimulation.

4. The levels of choice and safe alternatives are computed.

5. We remove the states that are not consistent with the log or the property violation. The
difference in size is important because the observed behavior is only a small part of the
behavior of the model.

6. In this case study the effective choice states are not ambiguous, therefore splitting does not
change the graph. Similarly, the extracted sub-graph amounts to the full graph here.

7. Two maximal δ+-sequences of length 11 (resp. 6) are found, encompassing 10 (resp. 6)
effective choice transitions. After δ+-compression, the quantitative time delays along the
abstract delay transitions (called “time_succ” in our implementation) are computed.

8. After determinization we obtain the explanation shown in Figure 7.

In our case, the explanation is a sequence of discrete and δ-transitions. Each of them moves
the system closer to the violation of the safety property, in spite of safe alternatives (shown as
transitions without a target state) that would have avoided the violation. In our case the safe
alternatives are mostly events sent by the heart model. This is logical because we know that
VGET from the heart induces immediately a ventricular event in the PVRP component (not
shown here) that would have avoided the violation. In order to understand why the pacemaker
failed to adjust the ventricular events rate, we need to look at the state predicates. If we focus on
the last three transitions, we see that the pacemaker waits 150ms and takes an internal transition

RR n° 9420

16 Thomas Mari, Thao Dang, Gregor Gössler

Automaton #states #transitions
A||P 96 296
L 7 6
Lc 8 60
A||P||Lc 117 332
[A||P||Lc] 1817 5041
[A||P||Lc]/ ∼ 1763 4931
log-consistent 50 52
split 50 49
δ+-compression 35 34
explanation 8 7

Table 1: Sizes of the timed automata (number of locations), discrete abstractions, and resulting
explanation.

I_AVI . If we look at the model of the AVI component, we see that this event could only occur
because we increased TURI . From this point the violation becomes unavoidable after a further
delay of 400ms.

Comparison with TarTar [13]. We use the same model as in [13], up to the fact that we
have increased the parameters Aminwait and Vminwait (the minimal atrial and ventricular rate
of the heart model, respectively) from 1ms to 500ms in order to reduce the size of the quotient
graph to a size that can be managed by Minim. This modification does not impact the safety
violation we are interested in.

TarTar focuses on fixing time delay parameters in order to repair safety violations, and
proposes a repair of the bounds on TURI . Our approach is more general in the sense that it
does not restrict its attention to time delays. On the other hand, it does not propose a repair. In
particular, our explanations are useful to explain failures caused by nondeterministic behavior, or
when there are no admissible repairs but one still wants to understand the causes of a violation.

6 Discussion

We have proposed a novel approach to explain the violation of a safety property by a real-time
system. In essence, an explanation is formed by the parts of the behaviors that are consistent
with the log, that jointly contributed to move the system into the failure state.

This work is a first step in constructing explainable cyber-physical systems. Much work
remains to be done though towards this long-term goal. In particular, we need to establish formal
properties of our explanations, such as soundness and completeness. We will also investigate how
to construct explanations online, and how to extend our analysis to more general classes of hybrid
systems.

Acknowledgment. The authors thanks Stavros Tripakis and Sergio Yovine for their help in
using Kronos.

Inria

Explaining Safety Violations in Real-Time Systems 17

Figure 7: Pacemaker explanation

References

[1] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers – Principles, Techniques, and Tools.
Addison Wesley, 1986.

[2] S. Beckers, F. Eberhardt, and J.Y. Halpern. Approximate causal abstractions. In Ryan P.
Adams and Vibhav Gogate, editors, Proceedings of The 35th Uncertainty in Artificial Intelli-
gence Conference, volume 115 of Proceedings of Machine Learning Research, pages 606–615.
PMLR, 22–25 Jul 2020.

[3] I. Beer, S. Ben-David, H. Chockler, A. Orni, and R.J. Trefler. Explaining counterexamples
using causality. Formal Methods in System Design, 40(1):20–40, 2012.

[4] V. Danos, J. Feret, W. Fontana, R. Harmer, J. Hayman, J. Krivine, C. Thompson-Walsh,
and G. Winskel. Graphs, Rewriting and Pathway Reconstruction for Rule-Based Models.
In D. D’Souza, T. Kavitha, and J. Radhakrishnan, editors, IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012),
volume 18 of Leibniz International Proceedings in Informatics (LIPIcs), pages 276–288.
Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2012.

[5] H. Garavel, F. Lang, R. Mateescu, andW. Serwe. CADP 2011: a toolbox for the construction
and analysis of distributed processes. Int. J. Softw. Tools Technol. Transf., 15(2):89–107,
2013.

RR n° 9420

18 Thomas Mari, Thao Dang, Gregor Gössler

[6] G. Gössler, T. Mari, Y. Pencolé, and L. Travé-Massuyès. Towards Causal Explanations of
Property Violations in Discrete Event Systems. In DX’19 - 30th International Workshop on
Principles of Diagnosis, pages 1–8, November 2019.

[7] G. Gössler and J.-B. Stefani. Causality analysis and fault ascription in component-based
systems. Theoretical Computer Science, 837:158–180, 2020.

[8] A. Groce, S. Chaki, D. Kroening, and O. Strichman. Error explanation with distance
metrics. STTT, 8(3):229–247, 2006.

[9] J.Y. Halpern and J. Pearl. Causes and explanations: A structural-model approach. part I:
Causes. British Journal for the Philosophy of Science, 56(4):843–887, 2005.

[10] Z. Jiang, M. Pajic, S. Moarref, R. Alur, and R. Mangharam. Modeling and verification of
a dual chamber implantable pacemaker. In C. Flanagan and B. König, editors, Tools and
Algorithms for the Construction and Analysis of Systems, pages 188–203, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

[11] H. Jin, K. Ravi, and F. Somenzi. Fate and free will in error traces. STTT, 6(2):102–116,
2004.

[12] M. Kölbl, S. Leue, and T. Wies. Clock bound repair for timed systems. In I. Dillig and
S. Tasiran, editors, Computer Aided Verification - 31st International Conference, CAV 2019,
volume 11561 of LNCS, pages 79–96. Springer, 2019.

[13] M. Kölbl, S. Leue, and T. Wies. Tartar: A timed automata repair tool. In S.K. Lahiri
and C. Wang, editors, Computer Aided Verification - 32nd International Conference, CAV
2020, volume 12224 of LNCS, pages 529–540. Springer, 2020.

[14] B. Korel and J. Laski. Dynamic program slicing. IPL, 29(3):155–163, 1988.

[15] R. Küsters, T. Truderung, and A. Vogt. Accountability: definition and relationship to
verifiability. In ACM Conference on Computer and Communications Security, pages 526–
535, 2010.

[16] K.G. Larsen, P. Pettersson, and W. Yi. Uppaal in a Nutshell. Int. Journal on Software
Tools for Technology Transfer, 1(1–2):134–152, October 1997.

[17] S.A. Mcllraith. Explanatory diagnosis: Conjecturing actions to explain observations, pages
155–172. Springer Berlin Heidelberg, 1999.

[18] J. Pearl. Theoretical impediments to machine learning with seven sparks from the causal
revolution. In Proc. Eleventh ACM International Conference on Web Search and Data
Mining (WSDM ’18), pages 3–3. ACM, 2018.

[19] R. Reiter. A theory of diagnosis from first principles. Artif. Intell., 32(1):57–95, 1987.

[20] S. Tripakis and S. Yovine. Analysis of timed systems using time-abstracting bisimulations.
Formal Methods Syst. Des., 18(1):25–68, 2001.

[21] C. von Essen and B. Jobstmann. Program repair without regret. Formal Methods in System
Design, 47(1):26–50, 2015.

[22] M. Weiser. Program slicing. IEEE Transactions on Software Engineering, 10(4), 7 1984.

Inria

Explaining Safety Violations in Real-Time Systems 19

[23] S. Yovine. KRONOS: A verification tool for real-time systems. Software Tools for Technology
Transfer, 1(1+2):123–133, 1997.

[24] A. Zeller. Why Programs Fail. Elsevier, 2009.

RR n° 9420

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Related Work
	Preliminaries
	Explanations
	Further Improvements
	Compressing -sequences and estimating time delays.
	Safe alternatives.
	State constraints.

	Implementation and Case Study
	Discussion

