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On the Reliability of Inverse Optimal Control
Jessica Colombel1, David Daney2, François Charpillet1

Abstract— Inverse Optimal Control (IOC) is a popular
method for human motion analysis. In the context of these
methods it is necessary to pay attention to the reliability of
the results. This paper proposes an approach based on the
evaluation of Karush-Kuhn-Tucker conditions relying on a com-
plete analysis with Singular Value Decomposition and provides
a detailed analysis of reliability. With respect to a ground
truth, our simulations illustrate how the proposed method
analyzes the reliability of the resolution. After introducing a
clear methodology, the properties of the matrices are studied
with different noise levels and different experimental models
and conditions. We show how to implement the method, step
by step, by explaining the numerical difficulties encountered
during the resolution and thus how to make the results of the
IOC problem reliable.

Human Motion Analysis, Identification, Inverse Optimal
Control.

I. INTRODUCTION

Human motion analysis is relevant to provide a robot re-
sponse adapted to human behavior. It is important to understand
how this biological motion is generated and which elements
impact it, whether they are external factors such as the task
to be performed or internal factors such as emotions [1].
Many methods have been developed to try to understand these
different factors, such as Fourier methods [2], PCA [3], as well
as machine learning [4]. One interesting method focuses on
the analysis of motion, hypothesizing that its generation can
be considered an optimal control problem.

This method, called Inverse Optimal Control (IOC), is used
to understand better the control that governs human movement
[5] and also in robotics in two main areas. First, reproduction
of human-like motion for robotics [6], [7], especially for hu-
manoids. Second, for human-robot interaction as a prediction
[8], [9] or as a way of understanding task division [10]. Human
locomotion is one of the most studied motions [11]–[14] as
well as its style [15]. A recent paper also explores affect in arm
motion [16]. These publications underline that behavior change
can be studied with IOC.

IOC, similar to Inverse Reinforcement Learning [17], [18],
for human motion analysis is based on the assumption that
human motion is a trajectory resulting from an optimization
process in which a given set of cost functions is minimized
(or in case of Reinforcement Learning, a given set of Reward
function is maximized). The goal is then to find the weights of
the associated cost functions (see II-B for examples).

Two main approaches are used to solve the IOC problem.
The first one is called Bi-Level and relies on the convergence of
sequential Direct Optimal Control (DOC) towards the reference
trajectories [6], [13], [19]. One issue with this approach is
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the computational complexity and computing time [20]. The
second approach, named Approximate Inverse Optimal Control
(AIOC), is based on the necessity of respecting the optimal-
ity conditions provided by Karush-Kuhn-Tucker (KKT) [21]
which are interpreted as a residual minimization process [20],
[22]. This method has decreased computational cost compared
to the Bi-level method which enables to process, online, a tra-
jectory through a sliding window. Some studies have explored
these methods for incomplete trajectories [23] or trajectories
with multiple phases [24]. However, the resulting cost func-
tion can be far away from reality if a rigorous mathematical
analysis of the problem is not perform. This paper revisits the
AIOC problem by analyzing its KKT optimality matrices using
Singular Value Decomposition.

The main contributions of the paper are : (i) details of the
properties of the methods that provide indices to the feasibil-
ity and identifiability of the parameters; (ii) analysis of the
reliability of the approach with regard to measurement noise.
The results are presented on the simulation of a 2-bar robotic
arm. This allows the robustness results to be highlighted with
knowledge of the original costs.

First, this paper introduces the IOC method and the proposed
resolution, then it details the analysis and interpretation of the
problem. The experiments in simulation are provided before
presenting the results and the discussion.

II. INVERSE OPTIMAL CONTROL METHOD

A. Direct Optimal Control formulation

A strong hypothesis considers that human motion trajecto-
ries (noted s) are generated by optimizing a convex criterion
C(s), under nf constraints fi(s) (i = 1, . . . , nf ) that allows
to model it as a Direct Optimal Control problem as follows:

s = arg min C(s) s.t. f1,...,nf
(s) = 0 (1)

where s ∈ Rns×nt is a trajectory composed, by nt of frames
; each are defined by a state xt of dimension ns, such that
s = [x1, . . . ,xt, . . . ,xnt ]

T . In this paper, the state is given by
xt = [xt, ẋt, ẍt]

T . Note that in the context of human motion
analysis, it is not necessary to introduce a control variable. To
clarify our statements, we will not use this formalism which
can be found in [23], for instance. f is the set of nf equality
constraints. Inequality constraints can also be considered, as in
[25], but not presented in this paper for the sake of simplicity.
Equality constraints f are defined by g that connect the vari-
ables and their derivative to figure the kinematics of the system,
in addition to constraints on given values of the initial (xstart)
and final (xgoal) states .

f : g(x1, . . . ,xnt
) = 0 ; x1 − xstart = 0 ; xnt

− xgoal = 0
(2)
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Let C be the cost functions to be minimized, their physical
meaning will be given in the next section:

C(s) =
nc∑
k=1

ωk

nt∑
t=1

Ck(xt) (3)

with ωk the kth component of the weight normalized vector
ω associated to the cost function Ck. Note that in the context
of our problem, we consider that the weights do not change
with time. To guarantee the convexity of this problem, it can be
chosen that ωk ≥ 0 and Ck is quadratic for all k ∈ [1, nc].

B. Cost functions for human motion
One of the issue to identify human motion is to model the

motor control that the human will optimize to generate its
motion. In the case of IOC, it means to select several cost
functions which should be based on this motor behaviour. In
the literature, there are two main approaches to define these
cost functions. The first one is to consider the kinematics of
motion, for example, the jerk to report its smoothness [26].
Then the cost functions are built on kinematic criteria such
as: the distance to the goal, the velocity, the acceleration and,
obviously the jerk. The second one is to explain the motion
through torque-change in joints, then dynamics cost functions
should be defined using energy, torque, angular power, e.g.
[27].

IOC’s literature studies human motion with all cost functions
that can explain the motion either they are kinematics or
dynamics and depending on the motion, different cost functions
are highlighted. Moreover, descriptors for motion can qualify
separately the task achived but also the style of the motion
and it is possible to implement descriptors as cost functions to
describe the motion better [28]. Recent paper shows these other
types of cost functions as Laban’s effort (time, space, etc.) or
quantity of motions to explore the affect part of a motion [16].

C. Inverse Optimal Control through KKT formulation
The following formulation considers the ideal case in which

the measurements are perfects (noised-free). The goal of in-
verse optimal control is to find the objective function weights
ωk from a given trajectory s∗ supposed to be optimal, knowing
the cost functions Ck for all k = 1, .., nc and equality con-
straints fi for all i = 1, ..., nf . The approach presented here is
based on Karush-Kuhn-Tucker optimality conditions. Let s∗

be an optimal trajectory associated with ω . Let’s define the
Lagrangian L associated to the direct optimisation problem of
equation 1 :

L(s∗ ,λ) =
nc∑
k=1

ωkCk(s∗) +

nf∑
i=1

λifi(s
∗) (4)

with λ ∈ Rnf is the vector of nf Lagrange multiplier λi of
equality constraints functions f .

Let the observed state vector s∗ be considered as the opti-
mal trajectory associated with λ. Therefore, to minimize the
Lagrangian L, its derivative ∂L

∂s (s∗), evaluated at s∗ , must be
equal to vector zero.

∂L

∂s
(s∗ ,λ) =

nc∑
k=1

ωk
∂Ck

∂s
(s∗) +

nf∑
i=1

λi
∂fi
∂s

(s∗) = 0

(5)

Moreover, as s∗ is computed according to the constraints
describes in Equation 1, we get:

fi(s
∗) = 0, i = 1, . . . , nf (6)

These two last equations 5 (stationary condition) and 6
(primal feasibility condition) define here the KKT conditions.
Solving the inverse optimal control problem corresponds to
identify the unknown vector weight (ω as well as the asso-
ciated Lagrange multiplier λ) subject to these conditions.

D. Resolution using KKT conditions
Equation 5 can be rewritten as J.z = 0 with:

[Jω ,Jλ ]︸ ︷︷ ︸
J

(
ω
λ

)
︸ ︷︷ ︸

z

= 0
(7)

and
Jω =

[
∂C1

∂s
(s∗) . . .

∂Cnc

∂s
(s∗)

]
,

Jλ =

[
∂f1
∂s

(s∗) . . .
∂fnf

∂s
(s∗)

]
.

Classically, we remark that:
• If J is not singular, equation 7 only admits as a trivial

solution z = 0. This means that trajectory s∗ does not
correspond to any trajectory minimizing criterion C(s∗)
(equation 3) and this whatever the value of ω .

• If J is singular, this means that z is a vector of the null-
space of J.

In the last case, z can easily be obtained through the Sin-
gular Value Decomposition of J so that USVT = J with
σ1, . . . , σL the singular values in descending order, given by
the diagonal of S, V1, . . . , VL the right singular vector as-
sociated with σ1, . . . , σL so that orthogonal matrix VT =
[V T

1 , . . . , V
T
L ]T and U also an orthogonal matrix. Then, if rank

deficiency of J is equal to 1 (σL = 0), the solution for z is VL.

If z = VL then

USVT︸ ︷︷ ︸
J

z = US

V
T
1 VL

...
V T
L VL

 = U


0
...
0
σL


and ||J z|| = σL (8)

Note that a re-normalization of z = VL is
necessary to provide values to ω so that ω =
(VL1, . . . , VLnc

)T /||(VL1, . . . , VLnc
)T ||.

If more than one singular values is equal to zero, each linear
combinations of singular vector associated to null singular
values can be a solution of z for equation 7. However, the
physical interpretation of this case is problematic and will be
discussed in section II-F.

Problem : Ideally, the resolution of Equation 7 solves the
IOC problem. However, in real applications, trajectories and
models suffer from inaccuracies making the IOC problem more
complex to solve, e.g σL should not be equal to zero but near
to zero.

This is why, according to equation 8 we suggest using the
lower singular value as an indicator of the quality of the
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approximation of z by VL. Our challenge is to analyze the
reliability of the IOC solutions. Given that the singular values
are not zero, to what extent can we trust the recovered vector?
This paper shows that the singular values are indices of the
reliability of the solution to this problem.

E. Difference with AIOC approach
Our previous proposal insists on the solving of equation 5

and reformulated in equation 7. However, the previous section
shows that uncertainties prevent us from obtaining a clear
solution and this will be discussed in the next section.

Classically, this problem is considered by the community
by transforming the solving problem, given in equation 5 into
a constrained minimization problem by considering residuals
rs(ω ,λ, s) = J(s) [ω ,λ]T . The stationary condition is then
called stationary residuals rs and the aim of the method is to
find the minimum of it square norm in (ω ,λ) as :

minimize
ω ,λ

‖rs(ω ,λ, s)‖2

s.t. ωk ≥ 0, k = 1, . . . , nc.

The additional constraints (ωk ≥ 0) ensure the convexity of the
criterion used in the COD (see end of the section II-A). There
are several methods in order to solve this problem. However,
this formulation of the problem must admit drawbacks. It
always provides a solution whatever the nature on the real
optimality of the considered trajectory (s = s∗ ) is regarding
the ω solution. If the resolution is perform by optimization
algorithms, it will inform if the result obtained is due to a
successful convergence but it will not give any information on
the validity of the solution. The other methods of resolution
(e.g. SVD, Least Square) do not even give any information
on the convergence of the solution. Moreover, the inequality
constraints on the positivity of ω project the values without
any control of the approximation made.

Thus, it becomes difficult to rely on the solution found. The
following section presents an analysis of the reliability of the
IOC problem based on Singular Values study.

F. Rank analysis and reliability
As mentioned in section II-D, the ideal case is rank-deficient

of 1 for J, meaning that an optimal trajectory exists in the set
defined by constraints f regarding criterion C(s).

In the opposite case, several cases can be explained :
• Identifiability of ω or λ The identifiability of the

parameters is studied on the sub-matrices. Equation 5 can
be written as Jω ω = −Jλ λ. Thus it is not possible
to identifiy ω (resp. λ) if the rank of Jω (resp. Jλ ) is
not equal to dimω (resp. dimλ). This case is classic in
parameter’s identification and needs to be checked. It can
be done by a QR decomposition of Jω (or Jλ ) to detect
and compute the dependencies between parameters ω (or
λ), see Appendix A of [29].
In the case of rank deficiency of Jω , this phenomenon
can have several origins. First, the cost functions Ck are
linearly dependent generating a redundant information
on the cost of the trajectories. This dependency can be
formal, due to a bad definition or selection of basis C

or punctually numerical for a particular trajectory s (e.g.
constant trajectory with acceleration equal to zero). An-
other case can happen if a basis is not dependent to tra-
jectory parameters. The weak identifiability is a complex
case which appears when one (or several) of the bases of
C is not excited enough by the evaluated trajectory. In
these conditions the value of the smallest singular value of
Jω is low but not null: in this case, a selection criterion,
often associated by a normalization of the matrix Jω , is
needed to properly exclude the base(s): some strategies
can be implemented as [30] for a calibration problem.
The rank deficiency of Jλ is linked to a bad parametriza-
tion of the manifold described by f , i.e. the number of
constraints is not minimal to represent the set of trajecto-
ries. This means that the dimension of λ is too large and
the number of constraints must be reduced to reach the
size rank(Jλ) = nf .
In both cases (Jω and Jλ ), the full identifiablity of ω
and λ have to be verified before processing the IOC
resolution, this to prevent (in part) the rank deficiency of
J greater than 1.

• J is near singular Because of the uncertainties related
to the observation of the trajectory in real conditions, it
is difficult to determine if matrix J is singular or not.
However, we suggest a decision criterion which is one
of the contributions of this article. The quantification of
singular values is problematic because numerical zero is
dependent on the floating-point relative accuracy and the
size of the matrices. Moreover, we need to integrate the
tolerance allowed between the observed trajectory and
the trajectory reconstructed from the result of IOC (ωk ).
However, this approach is incompatible with the online
calculation requirements.
In this paper, the evaluation of the drop in between the
singular values of matrix J is used instead of pure rank as
a good criteria to interpret the problem and the results. A
simple algorithm to detect the drop is used. First the set of
singular values are calculated successively (σk−1/σk for
k=1..L). Then the greater gap gives the ”drop”: if it is the
kth, the drop is of L − k. Additionally, the normalization
of the matrices allows to amplify the difference between
the singular values clarifying the criterion on the rank.
Under these conditions, if a drop in the singular values
is detected, we consider the matrix as singular.
◦ If this drop is equal to 1, the solution of z is the lower
right singular vector VL. Weights ωk are then deduced
if and only if their values are positive in order to certify
that criterion C(s) is convex; otherwise we prefer not to
provide a solution.
◦ If this drop is greater than 1 and the identifiability of ω
and λ have been verified (Jω and Jλ are full rank), every
linear combination of the singular vectors associated to
the singular values considered as null is a solution for z.
Thus the IOC problem would have multiple solutions with
a dimension equal to the rank drop. We believe that this
case is due to the approximation of the rank under specific
conditions and that only the lower null singular value is
significant. An example will be given in section IV but the
question remains open. However, this example also shows
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the danger of using the stationary residue minimization
approach.

• Full rank of J (but not near singular) In this case,
equation 5 does not admit any solution (except the trivial
solution z = 0). The tested trajectory is not optimal
regarding C(s) whatever the choice of ω may be. In
this case, we prefer not to provide a solution to the IOC
problem because its reliability is questionable.

III. EXPERIMENT SIMULATIONS

A. Simulation

The first example proposed is a two-link robot arm. It is
defined by st = [θ1,t, θ2,t, θ̇1,t, θ̇2,t, θ̈1,t, θ̈2,t]

T the state of the
two-link robot arm with s = [s1, . . . , snt ]

T the trajectory of
the system to go from a start point (sstart) to an objective point
(sgoal). The dynamics of the two-link robot arm is expressed as
followed:

τ t = M(θt) θ̈t + R(θt, θ̇t) θ̇t + g(θt) (9)

with τ t = [τ1, τ2]
T
t the torques applied to each joint, M the

positive-definite inertia matrix, R the Coriolis matrix and g
the gravity vector. All the equations detailing this model will
be in appendix I.

The cost functions of the 10 trajectories of simulation
are presented with their cost weight in Table I with Ck ={
τ21 , τ

2
2 ,

...
θ
2
1,

...
θ
2
2, θ̈

2
1, θ̈

2
2, (θ̇1τ1)2, (θ̇2τ2)2

}
. The equality con-

straints f are defined by:

f (s)


s1 − sstart
snt
− sgoal

∀i ∈ [1, nt − 1][
θi+1

θ̇i+1

]
−
[
θi
θ̇i

]
−∆t

[
θ̇i
θ̈i

] =

0
...
0


(2ns+nt(ns−2))×1

with the same values for each trajectories sstart =
[0, 0, 0, 0, 0, 0] and sgoal = [π/2, π/2, 0, 0, 0, 0].

Remark: The simulations are done with Matlab R2019a.
The DOC is done with fmincon. Matrix J is chosen to be
normalised with a norm 1 which corresponds to the maximum
absolute column sum of the matrix. It was found more robust
than other types of norms for the examples proposed (2, infinit
and frobenius, as in [24]). The normalisation of ω is done with
norm 2.

The simulation steps are as follows:
1) Generate a reference trajectory with DOC andω =
ωref for each trajectory of the Table I as presented
in section II-A;

2) Modification of the basis (III-B) or addition of
measurement noise (III-C);

3) Resolution of IOC as presented in section II-D to
obtain ωsol;

4) Generate new trajectories with DOC from the
found vector weight ωsol;

5) Analysis of the results (III-D), by comparing pre-
vious trajectories with reference ones.

B. Identification of basis
A preliminary question is to define the cost functions that

could have been used to generate the human movement, its state
variables and the associated constraints. For human movement
it is all the more difficult as we do not really know what cost
functions are associated with each type of movement. This
section tests different types of trials to simulate a number of
problems or errors that can affect the IOC implementation.
They correspond to the case described in section II-F :

• Cost function symbolically correlated among all the cost
functions proposed (e.g. (2τ1)2 correlated to τ21 );

• One cost function missing among those used to generate
the motion (e.g. τ21 );

• Cost functions added with no symbolical links with the
initial ones, in the results are is called ”useless” functions
(e.g. θ̇21).

C. Noise level
This paper suggests exploring the effects of noise uncertain-

ties on the reliability of the results. Uncertainties are designed
as white Gaussian noise with mean m = 0 and different values
of variance var. Two types of noises will be tested. The first
test it what is called ”constant noise”: the same noise level
will be applied to all observed states (i.e. angle, velocity and
acceleration). This test will allow us to investigate the violation
of the problem of equality constraints. The second test, called
”real noise” is only added once on angles. Other state variables
are obtained by derivation without any additional noise. This
is designed to simulate the kind of data that can be retrieved
in real life using simple sensors. In addition, it allows the
constraints to be maintained but the cost functions are more
impacted. For both tests, the ten trajectories are being assessed
for 8 noise level with var from 10−7 to 1 with 10 repetitions
of each with randomized noise.

D. Evaluation criteria
To compute the error between ωref used to generate the

reference trajectory by a DOC and the one identified by IOC
ωsol presented in Section II-D the dot product is assessed.
It gives the similarity to ωref . It is important to notice that
all the ωs are normalized and that all the ωks have the same
sign (necessary condition for convexity, ω ≥ 0 to within
one sign). In addition to the comparison of ω , the Root Mean
Square Error (RMSE) between the initial trajectory and the
trajectory generated by the ωsol is assessed to evaluate the
precision of the algorithm. The trajectory means here the state
vector composed of angular position, velocity and acceleration.
Finally, the rank drop by singular values is assessed.

IV. RESULTS

A. Identification of basis
The different tests on the identification of basis are computed

on all the trajectories and the resulting RMSE are assessed.
The results are presented in Table II. The first line of this
table shows the results in ideal case. The average and standard
deviation of RMSE is 3.3E−5± 5.0E−5. With the adding of 6
”useless” cost functions, the RMSE is almost equal to the one
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in ideal case with a mean of 3.6E−5 and standard deviation
of 3.8E−5. For both ideal case and useless cost functions,
the mean over 10 trajectories of the rank drop of Jω is of
1.1 ± 0.32. It is not of mean 1 because trajectory 5 has with
our algorithm a rank of 2 even though Jω and Jλ are full rank.
However the other clue of reliability is ω ≥ 0 and in this case
ω does not meet this criterion.

As presented in part II-F, the number of correlated functions
is linked with the drop in rank of J but especially of Jω . The
rank drop of Jω is 1 for all trajectories, while the mean of J
is 1.8± 0.42. Once the QR algorithm is used and the collinear
functions pinpointed, the fall in rank returns to a fall of 1 and
the proposed approach allows to determine a right ω . Without
the QR algorithm, the average RMSE is of 1.4E2 ± 2.2.

While one cost function is missing, the RMSE increases
to 2.8E51 ± 8.9E51 with complete rank for J (rank drop
of 0.1 ± 0.32) and Jω . These huge RMSE are obtained by
different signs in ω resulting in absurd recovered trajectories.

It should be noted that the rank of Jλ is always full with the
same minimum ratio (0.26). Indeed, this submatrix is constant
for the examples which have been provided.

B. Noise level

a) Constant Noise: All trajectories indicate an inflection
point at which the noise is so high that the evolution of RMSE
is erratic and it exceeds 104. Before this point, the trajectories
show a correlation between increased noise and increased
RMSE on the reconstructed trajectory. For trajectories 6 and
8 the inflection point is at a noise of 10−3. Trajectory 1 has
its inflection point at a noise of 10−1. All the other trajecto-
ries have an inflection point at a noise of 10−2. After these
points, the rank is systematically considered as full and ω is
irretrievable. For half of the trajectories this inflection point
also corresponds to a change in the fall in rank. The trajectories
still have a rank drop of 1 at this point, then it becomes full rank
beyond. The other half is divided into two categories. The first,
which includes trajectories 1 and 3, goes into full rank at the

inflection point, but they exceed the RMSE error of 10−1. The
second category includes trajectories 5, 6 and 7 which also pass
through the full rank before their inflection point but this does
not correspond to high RMSE errors (≤ 10−1). Figure 1 shows
the example of three of the trajectories (1, 6, 9) to highlight
these three types of behaviors and to explore the results in
more detail. It is possible to see the evolution of the ωsol error
in relation to the noise level. For trajectory 1, the similarity
of ωsol to ωref is of 1 until the noise level 10−1 where it
starts to decrease with 0.995. Trajectory 6 shows a decrease
in similarity from 1 to 0.782 at 10−3 which corresponds to
a RMSE of 6.9E−2. Finally trajectory 8 has an error in ωsol

that decreases on the rank deficiency at the error level of 10−2

(0.774385) before it increases again after on the two last noise
levels (0.89794, 0.95311). These errors correspond to a RMSE
error on trajectory greater than 1012.

b) Real Noise: The results obtained with real noise are
clear. Whatever the noise level is, the RMSE quickly exceeds
1010. The most robust trajectories to this type of measurement
noise are trajectories 1, 2, 9 and 10, the RMSE of which is of
the order of 10−2 at a noise level of 10−6 before exceeding
104 at a noise level of 10−5; as well as trajectory 4, which even
obtains a RMSE of 4.9E−3 for a level noise of 10−6.

V. DISCUSSION

A. Identification of Basis

The results show that the ideal case does not generate the
same exact trajectory with a RMSE of zero. This can be
explained by the computing error and the precision of the
arithmetic use. Therefore, all results should refer to this result
for the ideal case. Then it is important to notice that the addition
of cost functions hardly affects the results, provided that the
added functions are not correlated. In contrast, if a function is
missing, the trajectories are not recoverable.

Therefore, it is recommended to put as many cost functions
as possible, paying attention to symbolic correlations. Then
it is essential to look at the ranks of the two sub-matrices to

Torque Jerk Acceleration Power
τ21 τ22

...
θ
2
1

...
θ
2
2 θ̈21 θ̈22 (θ̇1τ1)2 (θ̇2τ2)2

Traj 1 0.981 0.196 0 0 0 0 0 0
Traj 2 0.196 0.981 0 0 0 0 0 0
Traj 3 0.196 0.981 0.002 0.010 0 0 0 0
Traj 4 0.117 0.078 0 0 0.971 0.194 0 0
Traj 5 0.0002 0.001 0.002 0.010 0.981 0.196 0 0
Traj 6 0.004 0.004 0.007 0.007 0.707 0.707 0 0
Traj 7 0.019 0.097 0.002 0.010 0.971 0.194 0.019 0.097
Traj 8 0.096 0.172 0.010 0.002 0.957 0.191 0.019 0.096
Traj 9 0.019 0.097 0 0 0.971 0.194 0.097 0.019

Traj 10 0.019 0.097 0 0 0.971 0.194 0.019 0.097

TABLE I: Table of cost functions weight vector ω for each trajectory generated in simulation. The cost functions are
normalized.

RMSE ω error J Rank drop Jω Rank drop
Ideal Case 3.3E−5 ± 5.0E−5 1± 2.3E−9 1.1± 0.32 0± 0

Useless Functions 3.6E−5 ± 3.8E−5 1± 8.6E−6 1.1± 0.32 0± 0
Correlated function 1.4E2 ± 2.2 0.15± 0.27 1.8± 0.42 1± 0
Function missing 2.8E51 ± 8.9E51 0.78± 0.33 0.1± 0.32 0± 0

TABLE II: Table of results for tests on basis functions. The results are expressed as mean± standard deviation over the
ten trajectories tested.
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Fig. 1: This figure shows results on 3 trajectories for constant
noise. Figure A illustrates the RMSE median and Figure
B the median ω error, in relation to the noise level. The
shadows on both graphs represent percentiles 25 and 75. The
vertical coloured lines running through both graphs show the
median of changes in rank (before the bar the rank deficiency
is of 1, from the bar, the rank is complete). No percentiles
are illustrate for the change in rank because they are equal
to the median.

check that there is no identifiability problem. If the sub-matrix
or sub-matrices are not of full rank, it is then possible to do
a QR decomposition which will allow to find the superfluous
column(s) of the sub-matrices.

Finally, even if the rank drop is of one, the last check is
on ω. If it does not meet the positivity condition, the result
is automatically considered false. This may mean that one or
more cost functions explaining the movement is missing.

B. Noise Level
As the results show, the constant noise has much less impact

than the real noise. This can be explained by the fact that
successive first-order derivatives increase the noise on accel-
erations. This has a direct impact on the noise level on torques
and jerks, for instance. It is therefore very important to ensure
measurement quality on the higher derivative variables. The
types of sensors used in the experiments may influence the IOC
results when analyzing human movement. In addition, constant
noise violates the KKT equalities constraints (Equation 6) but
still allows information to be recovered up to a certain noise
level. It can be deduced that it is more important to guarantee
the quality of the cost functions variables than to maintain the
constraints. Then, it is possible to use filters and polynomial
functions to get as close as possible to the initial trajectories
rather than trying to maintain these constraints.

It is interesting to notice that the error onω does not indicate
precisely the error made on the reconstructed trajectory. This is

because the different cost functions do not impact the gener-
ation of the trajectory in the same way. Thus an error on ωk,
does not impact the trajectory the same way if it is on ωk+1.

VI. CONCLUSION

In this paper, a study of an Inverse Optimal Control approach
is proposed and discussed. It is shown that the singular values
and the drop in rank can be good features to understand the
reliability of the results obtained. The paper presents two
different types of problems with the interpretation of the re-
sults: the identifiability of the basis and the reliability under
uncertainties. It is important to make sure that the model is well
defined for cost functions and constraints. This information is
studied independently in each sub-matrices (Jω and Jλ ) of
the KKT stationary condition. It is recommended to use as
many cost functions as possible, as long as the correlations
between them are taken into account. Beware, depending on
the size of the model and the number of variables, the addition
of cost functions may be detrimental to the calculation time.
The tests carried out on the robustness to noise indicate that
the more noisy the cost functions are the more difficult it is
to find the desired results. It is therefore very important to
try to guarantee the reliability of the state variables used by
the cost functions. On the other hand, it is possible to violate
the equality constraints of the model and still to recover a
reliable result. This reliability can be seen in the rank drop of
the main matrix J. The closer the last singular value is to the
penultimate, the less reliable the results are. Thus, when the
rank is full, there is a good chance for the trajectory to be too
noisy or too badly modelled to recover the unknowns sought.

APPENDIX I
DETAILED MODEL FOR SIMULATION

M(θ) =

[
a1 + 2a2cos(θ2) a3 + a2cos(θ2)
a3 + a2cos(θ2) a3

]
R(θ, θ̇) =

[
−a2θ̇2sin(θ2) −a2(θ̇1 + θ̇2)sin(θ2)

a2θ̇1sin(θ2) 0

]
g(θ) =

[
b1b3cos(θ1) + b2b3cos(θ1 + θ2)

b2b3cos(θ1 + θ2)

]

a1 = m1r
2
1 +m2(l21 + r22) + I1 + I2

a2 = m2l1r2

a3 = m2r
2
2 + I2

b1 = l1m2 + r1m1

b2 = r2m2

b3 = g = 9.81

and for each link : m1 = 1,m2 = 1.5kg are the mass, l1 =
1, l2 = 1.2m are the length, r1 = 0.5, r2 = 0.6m are the
distance from the joint center to the center of mass and I1 =
0.5, I2 = 0.7kgm2
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ical motion. Orléans, Dec. 2015.

[26] N. Hogan, “An organizing principle for a class of voluntary move-
ments,” J Neurosci, vol. 4, no. 11, pp. 2745–2754, Nov. 1984.

[27] Y. Uno, M. Kawato, and R. Suzuki, “Formation and control of optimal
trajectory in human multijoint arm movement,” Biol. Cybern., vol. 61,
no. 2, pp. 89–101, Jun. 1989.

[28] C. Larboulette and S. Gibet, “A Review of Computable Expressive
Descriptors of Human Motion,” in Proceedings of the 2Nd Interna-
tional Workshop on Movement and Computing, ser. MOCO ’15. New
York, NY, USA: ACM, 2015, pp. 21–28.

[29] S. Besnard and W. Khalil, “Identifiable parameters for parallel robots
kinematic calibration,” in Proceedings 2001 ICRA. IEEE International
Conference on Robotics and Automation (Cat. No.01CH37164), vol. 3,
2001, pp. 2859–2866 vol.3.

[30] T. Gayral and D. Daney, “A sufficient condition for parameter identifi-
ability in robotic calibration,” in Computational Kinematics. Springer,
2014, pp. 131–138.


