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Abstract

A service oriented architecture (SOA) aims to structure complex dis-
tributed systems in terms of re-usable components, called services. To
guarantee a good service interoperability these services must be weakly
coupled and their description must be separated from their implementa-
tions. The interface of a service provides information on how it can be
invoked: the logical location where it can be invoked, the supported com-
munication protocol and the types of its input (parameters) and output
(result). Traditionally, a service can only be invoked when its parameters
are fully defined and, symmetrically, these services only return their re-
sults after they have been totally processed. In this paper, we promote a
more liberal view of services by allowing them to consume their data lazily
(i.e., as they need it) and produce their results incrementally (i.e., as they
are produced). We develop this notion as ’lazy services’ by building up
from the model of guarded attributed grammars that was recently intro-
duced in the context of distributed collaborative systems. We abstract
from this model and limit somewhat its expressiveness so that it can com-
ply more broadly to SOA principles. We introduce an improvement on
subscription management to optimize the distributed implementation of
lazy services.
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1 Towards a notion of lazy service

A service oriented architecture (SOA) aims to structure complex distributed sys-
tems in terms of re-usable components, called services. Services can be atomic
or composed of several other sub-services. They operate independently and
autonomously, and communicate via open protocols specified by their inter-
faces. In this way they are ideal candidates for implementing distributed sys-
tems where the components have a certain autonomy and where coordination
is asynchronous and decentralized. They have been widely adopted in business-
to-business interactions [6] and today constitute the basis of web applications
through the notion of web service [15].

To guarantee a good service interoperability, these services must be weakly
coupled and their description must be separated from their implementations.
The interface of a service provides information on how it can be invoked: the
logical location where it can be invoked, the supported communication protocol
and the types of its input (parameters) and output (result). A service is thus
presented as a black box that provides a precise functionality. The latter is
specified by the shape of its input parameters and its output result, regardless
of the way the result is produced. It thus corresponds to the mathematical
notion of function. Service-oriented systems rely on two formalisms. The first
one is used to specify the interface of a service (for example WSDL for web
services). The second (like BPEL) expresses how these services can be used to
design complex applications.

In order to define a new service through the orchestration or the choregraphy
of more basic services, one should be able to derive the interface of the com-
bined service from the interfaces of its components. In order to facilitate this
type of modularity while keeping a separation between interface specification
and service composition, the traditional approach to SOA restricts to a fairly
simple interaction scheme: a service can only be invoked when its parameters
are fully defined, and symmetrically, these services only return their results after
they have been completely processed. Nonetheless, the SOA principle of asyn-
chronous communication prescribes a message passing mechanism (no shared
memory) while allowing a client process to continue its execution without wait-
ing for the answer of the invoked service as long as it does not need it. This
principle thus calls for a more flexible view of service composition, that would
allow services to consume their parameter data lazily (i.e., as they need it) and
produce their results incrementally (i.e., as they are produced).

In this paper, we present a solution for this more general service interac-
tion scheme that improves concurrency. The exchanged data are lists of at-
tribute/value pairs where values can be specific (i.e. determined), but also
‘future’ values (i.e. subscriptions to values that remote services have committed
to produce). These commitments have an impact on the course of future actions
(even if the corresponding values are not yet known). For instance, if one asks
a report on a file by an expert, the answer can take the form of two attributes:
the first one is a Boolean indicating whether the expert accepts to produce the
report, and the second one is a link to the report to be produced. The commit-
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ment of the expert allows the process to progress (even if the report is not yet
produced) and the other services that are dedicated to future treatments, using
that report, must also be subscribed to it.

We develop this notion of lazy services, building up from the model of
guarded attributed grammars introduced in the context of distributed collabo-
rative systems [7]. We abstract from this model and limit somewhat its expres-
siveness so that it can comply more broadly to SOA principles, and we develop
a distributed implementation of lazy services. In addition, we outline some
practical situations where we believe that lazy services can provide a significant
improvement.

2 Guarded Attribute Grammars

In this section we present a simplified version of Guarded Attribute Grammars
(GAG) adapted to the scope of this work. The reader is not expected to be
familiar with the original GAG model since we provide a complete description
of its adaptation to the present purpose. Our goal is to define a notion of lazy
service compatible with the requirements of a service oriented architecture. We
proceed by associating each service with an interface that specifies how this ser-
vice can be used regardless of its implementation. The interface thus allow for
a loose-coupling between the implementation of a service and its use in larger
applications. This conforms to the image of a service as a black box and of its
interface as instructions for using it, that specify both the assumptions on how
the caller should invoke the service and the guarantees that the service offers in
return. Then, we introduce the so-called productions which are a means to com-
bine several services. One can statically check the correctness of a production.
This consist in verifying that each service is invoked according to its interface
and that no cyclic dependencies between values (produced by a service and used
by others) can be created during execution. The latter property allows us to
associate an interface to a production thus providing a new (more complex)
service.

2.1 Running example

We will use as running example a simple book ordering process between two
bookstores A and B, corresponding to an adaptation of the ordering process
presented in [16]. The process starts when a bookstore A places an order to a
larger bookstore B according to its needs. Once the order is received, bookstore
B checks for the available books and their quantities in its warehouse and makes
an offer to A. If Bookstore A is satisfied with the offer, it must validate it and
pay the corresponding fees. Upon receipt of payment, the books are delivered
to A and the process terminates. The BPMN representation of the process
nominal case is showed in Figure 1.
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Figure 1: Book order process between two bookstores

2.2 The interface of a lazy service

We can invoke a service by providing it with input parameters. It takes the form
of a list of attribute/value pairs which we call the input form. For instance, the
input form for admission in a hospital would contain the name of the person,
her address, social security number, attending physician, the results of certain
medical examinations etc. It may be the case that not all of this information
can be determined at the time of service call, if another service is responsible for
providing it. Indeed, in order to do so, this other service could in turn require
information from the service we are just invoking, in such a way that none of
the two services can be fully executed before the other. In this case, the missing
information should be provided as soon as it is available. Therefore, it is not
necessary for attributes in the form to be associated to actual values. What we
mean by ’actual value’ can be a basic data: a symbol, a string of characters,
a numerical value, a Boolean value; but also any value obtained from these by
constituting lists, associative lists, arrays, hash tables etc. Thus, actual values
can be complex hierarchical data. The attributes in the input form are called
inherited attributes, since their values are produced by the environment, and the
attribute in the output form are called synthesized attributes as their values are
produced by the service during its execution. The remaining ingredient needed
for defining the interface of a service is a dependency relation between inherited
and synthesized attribute:

Definition 2.1 (Interface). The interface of a service is given by a disjoint sets
of (names of) inherited attributes Inh and of synthesized attributes Syn and a
dependency relation D ⊆ Inh × Syn.

The dependency relation gives only potential dependencies because the value
of a synthesized attribute may depend on different sets of inherited attributes
depending on the way the service is rendered. A (realization of a) service con-
forms to an interface when the value of a synthesized attribute is determined
whenever all the values of the inherited attribute it (potentially) depends on
have actual values. In particular, when all inherited values have an actual value,
then the values of all synthesized attributes are determined. Thus, conformance
to an interface entails that a service commits itself to produce the values of all
its synthesized attributes, and will do so as soon as the required information
is available in the input form. The rationale for introducing the dependency
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relation in the interface of a service is to stipulate how services can be safely
combined without introducing cyclic dependencies between attributes.

2.3 Incremental Computations

A realization (or implementation) of an interface is a computation of the values
of the synthesized attributes in terms of the values of inherited attributes, in ac-
cordance with the dependency relation. We call it an incremental computation.
The purpose of this section is to define these incremental computations.

The basic building block for incremental computations is the notion of pro-
duction. A production is a rewriting rule that allows for expanding a service
call as a composition of calls to sub-services.

Definition 2.2 (Service Call). A service call is an expression of the form
s(x1, . . . , xn)⟨y1, . . . ym⟩ where s is the name of the service, the xi’s are vari-
ables associated bijectively with its inherited attributes, and the yi’s are variables
associated bijectively with its synthesized attributes. The variables yj’s are pair-
wise distinct, they are said to be defined by the service call. The variables xi’s
are said to be used by the service call.

Definition 2.3 (Configuration). A configuration of the system is given by a set
of variables, and an assignment of values to some of these, together with a set
of service calls that use these variables.

As it is usual in rewriting systems, we also consider formal service calls
whose variables do not appear in the configuration: they are just formal names
for placeholders. When a rewriting rule is applied, these formal variables are
replaced by actual variables: some already exist in the current configuration
where others are created and added to the configuration at the time of rewriting.

Definition 2.4 (Composite service). A composite service C is a set of (formal)
service calls s(x1, . . . , xn)⟨y1, . . . ym⟩. All variables appearing in a given service
call are pairwise distinct; although a same variable can occur in several service
calls. We say that a variable is defined (respectively used) in the composite
service C if it is defined (resp. used) by some service call in C. We assume
that each defined variable is defined by a unique service call, but it may be used
by several other service calls. The variables of a composite service can then be
classified into three categories:

• The Input variables, In(C), are those that are used but not defined.

• The Output variables, Out(C), are those that are defined but not used.

• The Local variables, Loc(C), are the remaining cases, namely the vari-
ables that are both used and defined.

Definition 2.5 (Acyclicity). If each service s comes with an interface, and thus
a dependency relation Ds ⊆ Inh(s)× Syn(s), then one gets an instance of this
dependency relation for each call of service s by replacing each attribute by the
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corresponding variable of the call of s in Ds. The composite service is said to be
well-formed if DC , the transitive closure of the union of these dependency rela-
tions, is acyclic; i.e., these equations do not induce cyclic dependencies between
attributes. Then a well-formed composite service C is an incremental computa-
tion with inherited attributes In(C), and synthesized attributes Out(C), which
conforms to the dependency relation DC ∩ (In(C) ×Out(C)).

Any procedure f in the host language, for which we assume a call-by-value
evaluation strategy, can be transformed into an incremental computation, de-
noted (lift f). It behaves as follows: it first waits for the value of each of its
arguments to be known, then applies procedure f with its arguments substi-
tuted by these values, and finally associates the values returned by f to the
corresponding output variables, which refines the current configuration.

For service calls defined by calling procedures of the host language, we shall
use notation (y1, . . . ym) = f(x1, . . . , xn) as a shorthand for

(lift f)(x1, . . . , xn)⟨y1, . . . ym⟩.

The set of equations (y1, . . . ym) = f(x1, . . . , xn) so obtained constitute the
semantic rules of the composite service. Thus, a semantic rule can in particu-
lar include user-interactions, requests to a local database, and calls to distant
services (usual services not defined by the GAG specification and using a tradi-
tional call-by values evaluation strategy). Hence, the definition of a lazy service
can involve calls to usual services.

If we consider the book order example presented previously, the definition
of the composite service handling orders in bookstore B may look like this

B(order)⟨deliveryInfo⟩ = {
Validate(offer,paymentFees)⟨validation⟩;
Deliver(offer, validation)⟨deliveryInfo⟩;
check = checkWareHouse(order);
offer = user(check);
paymentFees = computeFees(offer);

}
where Validate and Deliver are two (sub-)services that should be defined else-
where in the GAG specification, and the three last equations constitute the
semantic rules. Here, each semantic equation returns a unique result, but we
may imagine that several results are returned if the host language allows it. In
this example, the (local) variables check and paymentFees are computed by or-
dinary functions of the host language. The offer sent to bookshop A is provided
by the user. We may also imagine that checkWareHouse or computeFees refer
to ordinary services rather than local functions. Finally, the synthesized result
deliveryInfo will be available as soon as the (sub-)service Deliver terminates.

Each computation in a composite service runs in parallel (each one in a par-
ticular thread) and the scheduling of the computations is only constrained by
the dependency relations between attributes. This allows for maximal paral-
lelism since it avoids any arbitrary sequencing of computations. This is why
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the acyclicity condition is required to ensure that the overall computation ter-
minates.

The defined and used variables of the semantic rules are respectively the
variables defined and used by some of its equations. This allows, as in Def. (2.4),
for defining the input, output and local variables of the semantic rules. See
Fig. (2) to observe the following.

Remark 2.6. The input variables of the semantic rules are

1. the input variables of the composite service together with

2. the defined variables of the service calls.

The output variables of the semantic rules are

1. the output variables of the composite service together with

2. the used variables of the service calls.

The local variables of the semantic rules are used to store preliminary results
that may be used in several places for subsequent computations (and thus avoid-
ing redundant computations). They also contribute to reinforce the incremental
character of a composite service.

Semantic Rules

Service

Sub-
Service

Sub-
Service

. . .

Figure 2: Composition of lazy services

If we abstract from the attributes and the semantics rules to focus on the
decomposition of tasks (the service), we end up with a rewriting system. For in-
stance the example above is reduced to the rewriting rule B → Validate Deliver
expressing the fact that the composite task B decomposes into its two sub-tasks
Validate and Deliver. More generally, we expect that a GAG specification gives
rise in this way to an abstract context-free grammar whose syntactic symbols
are service names. This means that the decomposition is hierarchical (a sub-
task itself can be a composite task), non-deterministic (several productions may
exists with the same symbol in its left-hand side, i.e. different decompositions
may exist to solve a given task) and possibly recursive (a task may indirectly
invoke itself as a sub-task).
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Definition 2.7 (Basic Computation). A basic (incremental) computation is a
composite service that contains only semantic rules, i.e. liftings of procedures
of the host language.

Definition 2.8 (Guarded Attribute Grammar). A guarded attribute grammar
is given by a set S of services, each of which is equipped with a set of inherited
attributes and synthesized attributes and a defining equation

s(x1, . . . , xn)⟨y1, . . . ym⟩ ⟶ G▷ (
k

∑
i=1

RHSi)

whose left-hand side is a (formal) service call and the right-hand side is a set of

so-called guarded productions G▷ (∑k
i=1RHSi) where:

• The guard G = G(x)⟨p⟩ is a basic incremental computation with inherited
attributes x ⊆ {x1, . . . xn}, a subset of the set of inherited attributes of
service s, and with one synthesized attribute p whose value in {1, . . . , k}
should indicate which production is triggered.

• Each RHSi is a composite service whose inherited attributes is a subset
of the inherited attributes of s and its output attributes coincide with the
set of synthesized attributes of s.

If each service is associated with a dependency relation then, the attribute gram-
mar is said to be well-formed whenever each right-hand side of guarded produc-
tions is well-formed and their dependency relation is included in the dependency
relation of the service they define.

Note that from the set of defining equations of a guarded attribute grammar,
one can inductively detect whether it is well-formed (free of cyclic dependency)
and return the least dependency relations to assign with each service, so that
the GAG is well-formed with respect to this assignment. Thus when specifying
a GAG one can omit to specify the interfaces of the services and let the sys-
tem check that the specification is well-formed and infer the less constraining
interfaces.

The fact that the synthesized attributes of each production which appears
in the definition of a service coincide with the set of its synthesized attributes,
guarantees that the service indeed commits to the computation of a value for
each of these attributes, regardless of the choice of the production. Nonetheless,
a given production needs not rely on the values of all the inherited attributes of
the service, which is why only set inclusions between sets of inherited attributes
are required.

The evaluation of the guard in the current configuration determines which
production is triggered. Triggering a production amounts to replacing the cor-
responding service call with the composite service in the right-hand side of the
selected production. Most often, the guard is decomposed in several threads, in

the form G = C ◦∑k
i=1Gi, where a guard Gi is associated with each produc-

tion. It produces a Boolean value pi from the inherited attributes of service s
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indicating if and when the corresponding production is enabled. Then, C can
be regarded as a ’choice function’, namely another basic incremental compu-
tation having p1,⋯, pk as inherited attributes, and p as synthesized attribute,
and whose role is to select which production to trigger among those currently
enabled. In user-centred systems, the choice will be proposed to the user in
charge of solving the given task, so that the system will be guided by the dif-
ferent decisions of the users. In other cases, additional queries may be made
(e.g. to local databases) in order to remove the indeterminacy. Mixed solu-
tions can also be used. In any case it is important to note that the guard is
a non-deterministic process: even though it must eventually select exactly one
production, the resulting choice is not based exclusively on the values of the
inherited attributes.

The monotonicity of incremental computations facilitates a distributed ver-
sion of a GAG specification. The operational semantic for the distributed exe-
cution of a GAG specification is detailed in Section 4. Before delving into these
technical aspects, we present in the next section some targeted application do-
mains.

3 Domain Specific Applications

This section presents some informal discussion on the possible applications of
the presented model. Having introduced the formalism in the previous section,
and before engaging in further technical details, we wish to provide the reader
with some intuition on how existing solutions may benefit from the features of
GAG. To this aim, we consider a few fields where we believe our contribution
may provide an advantage, and we underline it with some informal examples.

3.1 Micro- and Web-Services

Service-oriented, or more recently micro-service architectures have grown in
popularity among firms, due to the flexibility they provide in managing large
projects. On one hand, they allow for an easier integration of outsourced func-
tionalities.

As a matter of fact, the publication of services through Internet has fur-
ther opened a portal of collaboration between companies. Companies are able
to offer their services on the Internet by just specifying their interfaces (of-
ten called API). A common example is the secure payment services used by
e-commerce companies and offered by specialized payment companies. Such
services, provided over the Internet, are commonly referred to as web services.
Cloud computing is also turning to towards this model, offering computation
capabilities in the form of web services.

On the other hand, this flexibility provides advantages when managing large
projects internally. Tasks may be assigned to different working teams in such
a way that they leverage each other’s work by the means of services. One
team may make use of a service whose implementation was assigned to a dif-
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ferent team, focusing only on its functionality. Indeed, a service is composed
of sub-services, but the way these are put together does not rely on their im-
plementation, only on their interface. The implementation of this composite
service then only relies on the input and output parameters of the correspond-
ing sub-services. Such an implementation can furthermore be provided by a
service assigned to yet another team, so that this modular approach structures
the overall workflow of the project at stake.

In this way, each actor is provided with a service tool-box, and may use it
to solve the tasks they were assigned, without caring about the actual imple-
mentation of each tool. Only service interfaces are relevant at that stage, and
ultimately, the task resolution can be reduced to the appropriate combination
of input and output data of services.

Service-oriented architectures are nowadays firmly settled in the industry,
underlining the success of this approach. This trend leads to an always finer
granularity in the provided services, where more complex services are composed
at will by the users. Cloud computing is further fueling this momentum, by
providing, computational capabilities in the form of web services. Indeed, rather
than remotely running the programs of the users, it is in the advantage of the
provider to offer elementary functionalities in the form of web services, that
can be used as instructions with which a user may write source code in some
scripting language, as composition of services. The race is in this sense for
the versatility of the provided services, that increases their flexibility in the
hands of the users. This has led to the advent of the so called cloud functions,
as Amazon’s Lambda Service, Microsoft’s Azure Functions, or yet Google and
IBM’s.

The model we propose offers a qualitative enhancement in the service ori-
ented approach. Indeed, whereas services behave like black boxes, that commu-
nicate only upon call and termination, lazy services are permeable to data
flow. While the user composing services may still use the latter relying solely
on their interface, these will produce each output value as it is available,
and while the underlying process is still in execution. Symmetrically,
they can be invoked even if all the required data is not available yet.

It is to be noted, that any service may be lifted to an incremental computa-
tion. In this sense, our model comes as a complement to existing web-services
and APIs. An atomic lifted service does not present the features of our model,
but the composite services built from it do.

Example 3.1. Consider a filming crew. The director is responsible for provid-
ing a service “shooting” whose output data is the footage required for editing.
Another service “post-production” takes this footage as input and produces the
final theater-ready film. It is apparent that some editing may be done before
the shooting is finished, as the story-board indicates which footage is required in
which scene. The services ”shooting” and ”post-production” may be decomposed
into sub-services according to each scene. By lifting each such sub-service, both
composite services become lazy, and the edition of each scene may start as soon
as the corresponding footage is available. In this way, the shooting crew and the
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post-production technicians may work concurrently instead of following a sequen-
tial workflow. Since each scene is composed of possibly several sequence shots,
we may further refine the “shooting” and “post-production” services according
to these. By lifting sequence shots instead of whole scenes, smaller chunks of
footage are sent for edition as soon as they are available, thus increasing the
flexibility of the whole workflow, and further exploiting the concurrency between
the two teams.

Lazy services are hence consonant with the trend to provide finer and finer
grained services. Indeed, a finer decomposition of a service into sub-services,
allows for lifting services which provide more elementary functionalities, and
thus for taking better advantage of the lazy approach.

Web services have become common practice, as shown by the development
of standards to describe service interfaces [31]. Nevertheless, the tools available
today for their composition (BPEL[20], Petri net [13], etc.) assume that the ser-
vices are rendered in a limited execution time (usually a few seconds). Although
this is efficient for automatic services (provided by computers), it prevents the
publication of services that integrate manual user tasks and therefore require
longer execution time. Lazy services appear beneficial in this case, as they allow
to combine automatic services with manual tasks while deriving the resulting in-
terface. They are therefore good candidates for the integration of more complete
workflows over the internet, involving human and software actors.

3.2 IoT Workflows

The growing availability and diversity of portable devices, both for the general
public and the industry, have risen an interest in the research community for
their integration in larger systems. Indeed, these devices are equipped with a
variety of sensors (cameras, GPS, thermometers, . . . ) that provide valuable
information on the state of the real world. Symmetrically, some devices may
interfere with the world, either by communicating with the users, or by means
of robotic solutions. The field dealing with the integration of these devices into
larger systems, so as to take better advantage of their capabilities has been
tagged Internet of Things, IoT for short.

We represent devices as components, that may have a very limited comput-
ing capacity, but can provide data, and execute tasks in the form of services.
The ordeal of exploiting these data and commanding or scheduling actuator
behaviour to the best of their capacity then reduces to an efficient coordination
of services. For instance, the use of sensors for quality control in assembly lines
has become a widespread practice in the industry. Solutions involving visual
inspection have been greatly enabled by the use of neural networks for image
analysis. These tasks are extremely costly in terms of calculations, and the
capture devices lack the computation capacity to perform them. Solutions to
such problems thus rely on the coordination of sensors with the devices able to
process the data, and further with the intended consequences of such an anal-
ysis: detected defects need be communicated so that they may be taken care
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of.
The coordination of the prescribed interactions has been tackled thanks to

workflows, in their different implementations ([12]), but problems arise, partic-
ular to this setting. The unreliability of these devices may occur in a variety of
forms. First, sensors have a quality range which greatly depends on their price,
incurring into the quality of the provided data. Indeed, specific problems may
require the acquisition of a large number of poor quality devices rather than
a few costly ones. Cheap sensors may be extremely noisy, and the data they
provide proportionally unreliable. On the other hand, such device networks
may be spread over large geographical areas, which introduces a dependency on
the quality of the connection linking them together. In this case, a particular
device may often fail to communicate its output, so a coordination featuring
strong data dependency would risk to stall the whole system due to the failure
of a single irrelevant component. This points at a necessity for loose device
integration: systems in which at most a few devices are essentially required,
and where noisy data may be discarded with a limited effect on the system
behaviour.

Workflows constructed with lazy services have a high tolerance to
faulty, or unavailable data. To provide an example, we focus on the case of
agriculture, since it can greatly benefit from sensor networks in using resources
more efficiently, and limiting its environmental impact.

Example 3.2. Consider a large cropping field in a fairly arid region. Water
is in this case an extremely valuable resource, and irrigating vast areas could
be even too costly to be an option. A grid of sensors measuring rainfall or soil
moisture may be implanted over the area, providing information on the locations
where water is most needed. This data may be communicated to the workers re-
sponsible for irrigation, or to automatic actuators, that may activate a selected
set of water pumps. A system coordinating these devices could be structured hi-
erarchically as follows. Sensors may be clustered according to their geographical
location, and each cluster subordinated to a controller, responsible for the closest
water pump. These controllers are then in turn subordinated to the coordinator
of the general water supply, that may guide the resource to the wells in the ar-
eas in most need. The supply coordinator may invoke a service “estimate water
requirement” on each of the local controllers, either on a regular basis, or upon
availability of the resource. Each controller may then invoke a service “measure
moisture” on each sensor. This latter service shall provide the actual measured
moisture together with the particular position of the sensor. Note that the former
service is a composition of the many instances of the latter, combined with some
calculations. With a lazy implementation, the failure of a sensor to perform
the actual measure can be mitigated by the fact that it has provided its posi-
tion, and the controller may compensate this lack of information statistically.
Furthermore, statistical analysis at the controller level can be used to enhance
estimation of the errors in the data provided by each sensor, thus mitigating the
eventual noise they present. We could consider that the controllers do not have
enough computation capacities to perform these tasks, in which case these can
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be assigned to the general coordinator, thus limiting the controller functionality
to sensor data aggregation.

Such solutions can certainly be done without recurring to laziness or even a
service approach, but lazy services permit to structure the system with a far more
straightforward design. Furthermore, lazy services provide additional flexibility.
For instance, when the moisture measured by a sensor is below some critical
threshold, the controller may directly establish a high need for water in the area,
and return the estimation before all the sensors have provided the corresponding
data. With a lazy service implementation, this can be done without handling
additional exceptions, as these events can be integrated within a particular ser-
vice. The pump activation is not decided locally, since the supply coordinator
must validate the resource attribution. Thus, local controllers transfer their es-
timates to the supply coordinator as service outcomes, so that the latter may
efficiently distribute the water geographically. At this level again, data provided
by the different controllers may be aggregated through a lazy composite service,
so that decisions may be taken without waiting for all controllers to have trans-
ferred their estimates. In this way a straightforward service architecture may
be deployed so that given decomposition patterns present no risk of stalling the
system when some of its components fail, and with a more agile ability to react
to critical situations.

The presented approach transfers well to, for example, plague control, per-
mitting a wiser use of chemicals, costly both economically and in their ecological
impact.

The robustness, and tolerance to failure of workflows built with
lazy services enables their use in the design of safety critical systems,
where shorter reaction times may prevent catastrophic events. It is the data per-
meability of lazy services that makes them suitable for coordinating systems of
devices interacting in the real world, such as (automated) road traffic, air space
management, or human teams working in crisis situations (military, sanitary,
. . . ).

3.3 Distributed Computation

The processes underlying lazy services may run concurrently where their stan-
dard counterparts would stall while waiting for some unnecessary data. This
issue can, in general, be overcome by providing a different architecture that
would allow for a more efficient distribution of the calculation loads. While
these efficiency considerations still impose that atomic services be fine enough
to pertain to a single location, composing them as lazy services provides more
flexibility in the design of solutions than the conventional approach.

In general, composite services may be distributed according to their decom-
position patterns, in a way restricted by the data dependencies. Lazy services
partially lift this restriction, as inter-dependent services may still run concur-
rently. Indeed, the incremental computations allow for data depen-
dencies to breach through service interfaces, stalling the underlying
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processes only when strictly required.

Example 3.3. Consider a paradigmatic computation-intensive task, as is often
found in image processing. Suppose that a particular object needs to be found
and tracked along a sequence of frames. For the sake of simplicity, we may
imagine that a service meant to find the object statically is instantiated on each
frame, and that it is composed of sub-services that locally search for the object on
different regions of each frame. The object we are tracking is supposed to have a
roughly continuous motion, and when found on a frame, it is likely to be found
in nearby areas of the next and previous frames. This information can be used
to avoid unnecessary calculations, by killing too distant local searches, or giving
a higher priority to the nearby ones. This however, creates a data dependency
between the different frame instances of the global service. Indeed, in this setting,
each frame instance of the service would need for the object to be found on
the previous frame before being invoked. As a matter of fact, this view would
discard this solution to the problem, in favor of one that would better exploit
concurrency. However, with a lazy service approach, all frame-wise instance of
the service may be invoked concurrently, and their execution distributed. Upon
invocation of each instance, the input parameter corresponding to the position of
the object in the neighbouring frames is left as intentional. When one instance
succeeds in finding the object, it may communicate the outcome position to the
instances of the neighbouring frames, that may use this information to optimise
their own search.

Thus, lazy services may offer solutions that would be unpractical in a stan-
dard framework. Indeed, in this example, solutions could be optimised in other
ways, but our approach permits a natural service based way to tackle the prob-
lem while taking effective advantage of concurrency.

It is noteworthy that lately, researchers are exploiting fine grain cloud com-
puting to solve such computation-intensive tasks by launching parallel swarms
of cloud functions (see [10] for a short review). Our model represents a possible
solution for efficiently structuring such projects while leaving the data depen-
dency restrictions at the level of the cloud functions.

3.4 Human Centric Systems

Guarded attribute grammars were originally introduced for distributed collab-
orative systems, and user-centred systems remain the primary intended area of
application of our model. These systems range from rigid workflow (task-flow
systems) to more dynamic and flexible systems, such as corporate social net-
works. The former are adapted to well-defined processes, that however generally
depend on specific contexts and are not expected to evolve over time. The latter
on the contrary, may rely less strictly on a formal process so as to provide the
users with a higher degree of freedom.

As an example of a rigid workflow, we may consider crowd-sourcing. There,
some repetitive tasks requiring human intelligence are entrusted to external
actors. Lazy services can be used to coordinate the participation of
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external actors in such situations. Qualified external actors (the crowd) could
receive requests of the service that the company wants to outsource, together
with a defined set of productions meant to solve the corresponding task. The
crowd must implement the services by selecting the appropriate productions
among those made available to them, and these interact directly with the com-
pany’s services (database, automated programs, other lazy services, ...). The
outsourcing of such services allows for optimising the costs, while the availabil-
ity of productions regulate the way the crowd participates in the process, their
activation being guarded by contextual information.

Example 3.4. In an insurance company, for example, the validation of in-
surance or reimbursement claims can be outsourced following this principle. An
independent insurer could be given claim validation tasks from nearby customers.
The decision would be formalised by a particular choice of productions for task
resolutions. The guards of these productions would prevent discriminatory or
unfounded decisions, while the insurer could still take her final decision based
on her experience and possible interactions with the customer. Indeed, by ac-
commodating user interactions through the selection of productions, screening
of user activity is made possible, providing the system with a better control over
human interventions.

Regarding more flexible and less formal systems, we may consider corporate
social networks. These are more likely to harness the creativity of participants
enabling the emergence of collective intelligence towards the resolution of a
task, but they are too often not sufficiently structured. This lack of structure
represents a major obstacle for the cooperative production of a solution to the
problem at stake. In order to fully exploit the potential of such systems, rules
must be added to regulate the exchanges between the participants, in a way that
will not coerce their creativity. Guarded attribute grammars are well suited
for analysing how tasks may be decomposed into more elementary sub-tasks, and
as such, they can provide a normative framework for collective problem solving.
The semantic rules are written in the host language in which the system is
designed, so that the normative model can interact with the utilities offered by
the corporate social network (share documents, agendas, discussion threads).
Note that the possibility to select appropriate production rules, or even create
new ones, provides enough flexibility for the users to freely exploit their
creativity. Furthermore, the expertise of each user is reflected in her choices,
or the rules she creates, and this knowledge may be recorded for further use.
The social network allows for sharing most useful information (e.g. documents
or spreadsheets) but lacks control over its role in the process of task resolution.
This knowledge is left to the human participants. Our data-aware normative
approach allows for structuring the informal processes (or workflows) performed
by the users as they collaborate for solving their respective tasks. This
enhances the system in that it records the interaction patterns of the various
relevant expertise. In this way, the system may collect, not only the individual
knowledge of each user, but also gather a trace of the emergent collective
intelligence. This structure, together with the information provided by the
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synthesized attributes may also be used to offer a shared mental representation
to the users. Such a representation can be particularly effective in preventing
detrimental human behaviour, such as dilution of responsibility (by knowing who
has committed do doing what) or cognitive bias (like the illusion of unanimity,
the incomplete evaluation of alternatives, the pressure of divergent opinions,
self-censorship, feeling of invulnerability). Altogether this solution improves
the quality of the collaboration.

For a thorough example of human-centring application using the formalism
of Guarded Attribute Grammars, we refer to [19], which presents an application
to epidemiological surveillance.

4 Operational semantics of lazy services

The operational semantics of lazy services are defined by a distributed system,
consisting of elementary computational units called components. More precisely,
each component of the system proposes to solve certain tasks, the services it
offers, for which it may require to call external services offered by other compo-
nents. To this end, it is associated with a local GAG, as defined in Section (2,
with the difference that external services do not have a defining equation. As in
the case of the variables of a composite service, the services of a local grammar
can be classified into three categories:

• The provided services: those defined but not used.

• The required services: those used but not defined.

• The local tasks: those both defined and used.

The local tasks are not visible from outside the component and thus their names
are lexically bound to the scope of the component. Several components can
offer the same service and use different defining equations for it, i.e. different
components may render the same service in different ways.

4.1 Configuration

Each component maintains its own configuration as in Def. (2.3), a data struc-
ture storing a list of pending tasks (the current service calls), a partial valuation
for the involved variables, but also, for this distributed version, a set of sub-
scriptions to the variables defined locally but used in another component. It is
modeled by the four following sets:

1. A set of variables Var(Γ).

2. A set Eq(Γ) of equations of two types:

(i) A service call s(x1, ..., xn)⟨y1, ..., ym⟩ where yi, xj are variables and s is
either a provided service or a local task.
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This form models the services being executed within the component. The
presence of such an equation means that the current component must produce
the data y1, ..., ym from the inputs x1, ..., xn through service s.

(ii) A semantic rule (y1, ..., ym) = f(x1, ..., xn) where yi, xj are variables
and f a procedure of the host language.

This form means that the current component must execute procedure f to
compute the data y1, ..., ym from the data x1, ..., xn. Unlike for services,
the procedures used in semantic rules are not lazy. They correspond to
procedures of the host programming language used by the component to
implement its services.

We deduce from Eq(Γ) the inputs and outputs of the component. We shall say
that a variable is used (resp. defined) if it used (resp. defined) by one of its
instances of services or semantic equations. The inputs, noted In(Γ), are the
variables used but not defined: In(Γ) = Used(Γ)\Def(Γ); whereas the outputs
are those which are defined but not used: Out(Γ) = Def(Γ) \ Used(Γ). The
defined and used variables correspond to local variables used internally.

3. A valuation σ(Γ) which is a partial substitution of values to variables. Each
equation of σ(Γ) takes the form x = v meaning that the computation of
the variable x is completed and has resulted in the value v. The valuation
is updated whenever a semantic rule finishes its computation or when the
present component receives a notification providing the value from another
component.

4. The last set Sub(Γ) is the set of subscriptions on the variables that the
component must compute and publish. Each element of Sub(Γ) is of the
form (x, c′) such that x ∈ Out(Γ) and c

′
≠ c (c being the present component).

We associate some additional constraints ensuring the validity of the execution:

(C1): Non-double definition. A variable cannot be defined more than
once in Γ.

(C2): Acyclic dependency. The set D(Γ) of dependencies between vari-
ables of Γ is acyclic. This set is given as the transitive closure of the union of
the dependency relation associated with each equation: D(Γ) = (⋃

e∈Γ

D(e))∗,

where

• D(e) = {x1, ..., xn} × {y1, ..., ym} if e is a semantic rule (y1, ..., ym) =

f(x1, ..., xn),
• D(e) = Ds[xi/ini, yj/outj] if e is a service call s(x1, ..., xn)⟨y1, ..., ym⟩ and

the dependency relation of service s is Ds ⊆ {in1, ..., inn}×{out1, ..., outm}.

(C3): Input/output consistency. Each input variable x of a component
c must appear as an output variable of a single other component c

′
in the

system. Consequently, c
′
must have a subscription of c on the variable x.
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4.2 State of a Component

The initial computational state of a component is obtained from its initial con-
figuration by replacing each instance of a provided service by its definition. The
rationale is that all the guards are active in the current state and are evaluated
concurrently. When a production is triggered, we should activate (expand) the
corresponding right-hand side of the production. The state of a component
should then expose a structured set of equations that allows such a dynamic
evolution.

Definition 4.1. The state of a component consists of a set of variables, a
valuation (partial substitution of values to these variables), a set of subscriptions
and a set of instances of service. An instance of a service is a pair, denoted as

G ▷ (∑k
i=1RHSi), made of a instanciated guard G (a set of semantic rules)

and a list RHSi of equations (service calls and semantic rules). The analogs of
conditions (C1), (C2), and (C3) are also required.

The expansion of the set Eq(Γ) of equations in a configuration Γ is the state
Γ obtained by keeping all semantic rules unchanged and expanding each of the
instance of service in Eq(Γ) as defined below. The variables, valuation, and
subscriptions of Γ are those of Γ but they are updated during the expansion of
its equations as it is described below.

Recall that the definition of a service in a guarded attribute grammar is
given by a rewriting rule:

s(in1, ..., inn)⟨out1, ..., outm⟩ ⟶ G▷ (
k

∑
i=1

RHSi)

where:

• Guard G is given by a set of semantic rules that meets the constraints C1

and C2. Their inputs form a subset of the inherited attributes of service s
(In(G) ⊆ {in1, ..., inn}) and Out(G) = {p}.

• Each RHSi is given by a set of equations (service calls and semantic rules)
which verify C1 and C2. This set represents a potential implementation
of service s. Thereby, In(RHSi) ⊆ {in1, ..., inm} and Out(RHSi) =

{out1, ..., outn}.

All the variables that appear in such a rule are formal variables that play
the role of placeholders. Expanding a service call s(x1, ..., xn)⟨y1, ..., ym⟩ in a
configuration Γ is done as follows:

• If s is a defined service (provided service or local task) with a definition
as above, then replace s(x1, ..., xn)⟨y1, ..., ym⟩ with the corresponding right-
hand side where the formal parameters in1, ..., inn and out1, ..., outm are
replaced by the actual variables x1, ..., xn and y1, ..., ym. To avoid name
clashes, the other variables of the expression are renamed with new names.
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These variables are added to the set of variables of Γ (each with an unde-
fined value). The expansion of the service call s(x1, ..., xn)⟨y1, ..., ym⟩ is then

the instance of service G
′ ▷ (∑k

i=1RHS
′
i) with G

′
= G [xi/ini; yj/outj] and

RHS
′
i = RHSi [xi/ini; yj/outj].

• If s is a required service then (1) a service call request is sent to a component
c
′

providing s; (2) subscriptions (xi, c′) are created for the xi not defined
in σ(Γ); and (3) the values of the defined xi are embedded in the request.
A service call query thus takes the form ⟨s(x1, ..., xn)⟨y1, ..., ym⟩, σs⟩ where
σs = {xj = vj∣xj = vj ∈ σ(Γ) ∧ xj ∈ {x1, ..., xn} }.

4.3 System dynamics

The dynamics of the system relies on the notion of component state introduced
above and the operations that make it evolve (internal computation, service call,
notification, etc). We later show that the semantics so defined lends itself equally
well to a centralized architecture (central orchestration unit) and a decentralized
architecture (no central unit).

Note that, expanding the initial configuration of a component into its initial
state can generate events (calls to services provided by other components) and
thus already contributes to the system dynamics.

The execution dynamics is given by a set of operations that govern the
evolution of the set of component states and preserve the conditions of their
validation (C1 to C3).

Internal computation and notification

The atomic level of computation is an internal computation. For any semantic
equation (y1, ..., ym) = f(x1, ..., xn) the procedure f is called when, and as soon
as, each variable xi has a value vi in the current state: (xi = vi) ∈ σ(Γ). Then
for each yj , an equation yj = v

′
j is added in σ(Γ) where v

′
j is the value returned

by f for variable yj , i.e. (v′1, . . . , v′m) = f(v1, . . . , vn). This can potentially
result in notifications if there are subscriptions in Sub(Γ) for some of the yj ’s.

In such a case, equation yj = v
′
j is sent to the corresponding subscribers.

Triggering a production

If G▷ (∑k
i=1RHSi) is an instance of service in the current state and v(p) = i,

then the corresponding guarded production is triggered. Triggering this produc-
tion amounts to replacing this instance of service with the expansion of RHSi.
Recall that this expansion generates a service call for each requested service in
RHSi.

Message processing

A component can receive two types of messages corresponding to notifications
and service calls which are generated respectively after internal computations
and activation of productions.
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In the case of reception of a service call ⟨s(x1, ..., xn)⟨y1, ..., ym⟩, σs⟩ coming
from a c

′
, the component receiving the call executes the expansion of this service

call in its current state; updates the set of variable values: σ(Γ) = σ(Γ) ∪ σs;
and creates subscriptions (yj , c′) (in Sub(Γ)) to notify the caller c

′
whenever

an output value becomes available.
When a component c receives a notification ⟨x = v⟩, it updates its configu-

ration with the received value : σ(Γ) = σ(Γ) ∪ {x = v}. In some cases, it may
happen that the component c being notified had already stored subscriptions to
the notified value. This corresponds to the situations where the component has
used an output variable of a remote service as input of another remote service.
In such a case, it becomes a transiting node and must notify all the component
requiring the variable value as soon as it gets notified.

5 Implementation and Deployment

In this section we provide some guidelines for implementing and deploying lazy
services in a distributed environment with respect to the previously defined
operational semantics. We propose, as a proof of concept, the development and
deployment of the running example in a distributed environment. The guidelines
given in this section are general, and can be refined or adjusted according to
the targeted application.

5.1 Deployment architecture

Component 1

Component 2

Component 3

Component 4

Broker and 
Middleware

Communication 
Interface

Component n

Communication 
Interface

Configuration

Service 
Implementations

Data Storage

(Interfaces, 
Transiting 
messages, 

Configuration 
replicas, …)

Figure 3: Centralized deployment architecture for lazy service
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Broker Module

Component 2

Broker Module

Component 3

Broker Module

Component 4

Broker Module

Figure 4: Distributed deployment architecture for lazy service

The easy way to deploy lazy services is to use a central broker where each
component publishes the services it implements and searches for those it needs.
The broker can also hold middleware functions handling the connections and
disconnections of components, to ensure the routing of messages. In the case
of crowd-soucing systems where the components maintained by users can have
failures, the broker can also store the components’ sessions (i.e configurations),
to ensure the robustness of the system. The resulting architecture is then a
centralized architecture where interaction is provided by the broker in the mid-
dle (see Figure 3). In a more elaborate way, we can optimize the deployment
by distributing the broker within the components, similar to what is done in
distributed publish/subscribe systems ([28, 17, 9, 27]). Each component will
then hold a part of the broker and share the responsibility of the reliability of
the system (routing of messages, secure replication of data, etc.). This second
architecture (see Figure 4) also matches peer-to-peer systems, where each par-
ticipant plays an equal role towards other participants, and which are free of
central server bottlenecks.

Thus, the application domain can also guide the used architecture, and the
shared data. For an enterprise application, a centralized architecture seems
appropriate, while for a collaboration between different companies, a distributed
architecture where each component ensures the routing of its messages and the
reliability of its data, is more appropriate. Mixed architectures are also to be
considered. For example, an enterprise application based on lazy services and
communicating with other applications of the same type could have a centralized
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internal broker securing its data and interfacing with other brokers.

5.2 An application prototype based on lazy services

We have developed a demonstrator based on an instantiation of the architecture
in Figure 4. It is the implementation of the book order example introduced in
section 2.1. Its interface has four principal panels (see Figure 6). The first one
(top left) shows the graphic visualization of the configuration, and the three
others (bottom left, top right and bottom left) show respectively the different
parts (Eq(Γ), σ(Γ) and Sub(Γ)) of the configurations described in section
4. Our example has two components CA and CB . The first component CA

implements the two services offered by the bookstore A: a service to initiate
the transaction and a service to validate or reject the offers made by B. The
component CB implements the composite service used byB to handle A’s orders.
This service uses the validation service offered by A to confirm B

′
s offers, and

an internal service to deliver the books upon confirmation. In case of offer
rejection, the same internal service returns a null delivery detail value. Figures

Figure 5: User interface allowing B to make its offers

5 and 6 display screenshots of the application. The first figure presents the user
interface that allows B to make its offers. This interface is activated by the
local function user of the bookstore B. We can also observe in the figure (in
the subscription panel), the subscription of A to the delivery detail that B has
to produce. The second figure corresponds to the final interface of the bookstore
B after delivery. We can observe in the configuration valuation panel that the
offer has been validated and that the delivery detail is now available.
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Figure 6: Final execution interface of the bookstore B after the delivery

The application is implemented using Java as host language, and a DSL
based on XML and the jaxb library

1
to specify the GAG of each component.

The communication between components is ensured by means of the distributed
SON middleware

2
. The source code of the prototype is available at [1].

6 Related works and discussions

In this section, we discuss the relation of the present work with other approaches,
in line with the lazy service concept.

6.1 Lazy data computing: data with embedded calls

A popular lazy data computing technique consists in embedding functions into
data. The data is then composed of two types of information; some explicit and
available called extensional information and others available only when needed,
upon embedded function call, called intensional information. This computa-
tional principle has been used by Microsoft Office, to provide information to

1
The Java Architecture for XML Binding (JAXB) provides an API and tools that automate

the mapping between XML documents and Java objects[22]
2
SON is a generic lightweight P2P middleware that assists application developers by pro-

viding an automatic code generation which handles several requirements (e.g., communication
mechanisms, message queue management, broadcasting messages, etc.)[14].
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users on demand, by means of “smart tags” [2, 18]; and by datalogs [5, 11] to
deduce new (intensional) information from pre-existing one.

The active XML documents (AXML) approach [3, 4, 24] then proposed to
replace embedded functions by embedded web services to integrate the use of in-
tensional information in distributed computing over the internet. Our approach
differs from this one, in that data which are not available are here considered
as commitments, that must be delivered by the system as soon as they are pro-
duced. The main advantage of this is that, it is henceforth possible to exchange
intensional data on the basis of the commitments of their producers: lazy and/or
parallel processing are therefore enhanced. In fact, one can now perform an op-
eration and/or invoke a service before all the necessary data are available if a
significant part already is. Thus, we are not only interested in lazy evaluation
of data, but also in lazy and parallel evaluation of services so as to optimize the
overall computing speed.

6.2 Service composition

The composition of services is a technique regularly used in the distributed ex-
ecution of business processes. It is generally handled via one of two approaches:
orchestration or choreography. Service orchestration relies on a central ser-
vice dedicated to orchestration and coordination; the orchestration model being
given by a dedicated language such as BPMN [21], BPEL [20] or Petri nets
[13, 8]. The orchestration technique generally suffers from scaling drawbacks
due to the centralization of coordination. Service choreography tends to solve
the problem by defining specification languages (WSCI [29], WS-CDL [30]) that
consider services as autonomous entities collaborating without intervention of
a central server. They can also be used to ensure the collaboration of several
orchestration models [30].

Since no specific orchestration or collaboration language is defined in the
lazy services approach, it can be used to efficiently execute distributed business
processes, improving lazy and parallel processing, from the orchestration point
of view, as well as from the choreography one.

6.3 Peer-to-peer computing

Peer-to-peer computing is progressively gaining popularity for the development
of internet applications [14, 25]. In a peer-to-peer application, each participant
plays an equal role towards the other participants. Therefore, no server is
required to centralize the processing and thus scaling constraints are leveraged.

Lazy services are well suited for peer-to-peer computing, as they operate
independently and do not require a central server for their execution. More-
over, since communication between lazy services is asynchronous and data are
delivered as soon as possible, they can be used to better address connectivity
problems generally encountered in peer-to-peer network.
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6.4 Declarative models

Declarative models are a promising means to exploit concurrency and avoid
over-specifications when designing systems. Nowadays, declarative computing
models [23, 26] allow the user to specify only the mandatory constraints to be
met when executing a process and let the system decide on the other contextual
requirements to be fulfilled during the execution. These contextual require-
ments may depend on the execution platform or on the availability of resources.
A representative case study was provided by the Condec approach [23] that
proposes to execute business processes in the form of task constraints without
specifying the execution flow, which is determined at runtime by the user. Lazy
services enrich these approaches by providing a service-based model for building
declarative systems where the only mandatory constraint to be specified before
execution is the data dependency. The remaining constraints are determined by
the execution dynamics.

7 Conclusion

In this paper, we have developed a notion of lazy service starting from the
model of guarded attribute grammars previously introduced in the context of
collaborative systems. Lazy services provide flexibility to SOA systems, al-
lowing services to start with only some of their inputs and to return outputs
at the earliest possible time, as they are produced by sub-services and local
functions. Lazy service behaviour relies on productions of guarded attribute
grammars. Each production of the grammar defines how a composite service
relies on sub-services and local functions of a host programming language to
produce its outputs. It is worth emphasising that a GAG specification is al-
ways relative to a host language, but any arbitrary language can host a GAG
specification. GAG formalism should be seen as a means of extending the host
language. The approach followed is therefore clearly language-oriented: our in-
tent is not to develop a fixed application but to offer a means to extend the host
language. We have shown how so defined lazy service may bring more flexibility
in user-centered systems or show more resilience in systems subject to failures
or connectivity problems. Time execution is also improved, as scheduling con-
straints are reduced down to data dependency.

We introduced a lightweight syntax (section 2.3) to specify lazy services
and used it to implement a prototype through xml. This lightweight syntax
can be refined to target concrete applications. One may want to offer higher-
level notations more fitted for describing a given problem, and hence provide
extensions of the core syntax. For instance, if the host language allows for
macros, new syntactic patterns can be defined. Any expression using these
macros can then be expanded into a specification of the core model of GAG.

Extending the core model thus constitutes the primary intended follow-up
of this work. More specifically, it will consist in providing frameworks, libraries
and Domain specific languages (DSLs), built on top of the core model, for each
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of the domain specific applications discussed above. DSLs built on top of the
base model will then provide an additional level of abstraction, easing the user
into the specification of lazy services, while exploiting the features of the base
model.
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