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Abstract

Evaluating population-scale exposure to the radio frequencies (RF) used in wireless telecommunication
technologies is important for conducting sound epidemiological studies on the health impacts of these RF [1,
2]. Numerous studies have reported population exposure, but have used very small population samples. In
this context, the real exposure of the population to RF remains subject to controversy [3, 4, 5, 6]. Here, to
the best of our knowledge, we report the largest crowd-based measurement of population exposure to RF
produced by cellular antennas, Wi-Fi access points, and Bluetooth devices for 254,410 unique users in 13
countries from January 2017 to December 2020. All measurements were obtained from the ElectroSmart
Android app [7], and we applied a thorough methodology to clean and consolidate the measurements. We
show that total exposure has been multiplied by 2.3 in the four-year period considered, with Wi-Fi as the
largest contributor. The cellular exposure levels are orders of magnitude lower than the regulation limits
and not significantly impacted by national regulation policies. Therefore, the mere comparison of exposure
levels to regulation limits is a poor way to describe the real evolution of exposure. The population tends
to be more exposed at home; for half of the study subjects, personal Wi-Fi routers and Bluetooth devices
contributed to more than 50% of their total exposure. We make our dataset publicly available to provide a
starting point for sound epidemiological studies on the health impacts of RF, and for other types of studies
interested in population exposure to RF or the usage of wireless communication technologies.

Keywords: radiofrequency, population exposure, crowdsource, personal measurements, large-scale

1. Introduction1

The long-term impact of radio frequencies on2

health is a long-standing scientific question that is3

well illustrated by the classification of radio frequen-4

cies as a Group 2B carcinogen by the WHO [8]. This5

classification means that there is some evidence that6

it can cause cancer in humans but at present it is far7

from conclusive[9]. Total exposure to various sources8

of radio frequencies is considered a critical factor for9
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mitigating health hazards, but in the wild, this ex- 10

posure varies greatly with time and among individ- 11

uals. Environmental and behavioral factors play a 12

role, as previous assessments have shown[10, 11, 12, 13

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], 14

limiting the generalizability of results obtained from 15

small study-groups or sparsely instrumented mea- 16

surements. We present here the first longitudinal 17

analysis of exposure events on a large subject popu- 18

lation; results span four years, from approximately a 19

quarter-million unique subjects in 13 countries across 20

Europe, the Americas, Asia, and Australia. The scale 21

of our study allows us to offer the first generalizable 22

findings on critical epidemiological questions regard- 23
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ing the growth of radio exposure worldwide and the24

respective contributions of different technologies to25

this growth. We also consider the effectiveness of reg-26

ulation and some of the factors within an individual’s27

control that affect exposure. Beyond these advances,28

the release of our data (in a form rendering users29

unidentifiable) can facilitate large-scale epidemiolog-30

ical studies on the impact of radio frequencies. The31

data were collected using the crowdsourcing Android32

app Electrosmart [7] that we developed to instrument33

a smartphone’s baseband and report Received Sig-34

nal Strength Indicators (RSSI) for radio frequencies35

received from cellular infrastructures, Wi-Fi access36

points, and Bluetooth devices. Our dataset includes37

the exposure of 254,410 unique persons from January38

2017 to December 2020.39

2. Materials and Methods40

This study relies heavily on the quality of the data41

we collected. In this section, we present our data42

collection methodology, the dataset we collected, and43

the cleaning we applied to this dataset.44

2.1. Data collection45

2.1.1. The ElectroSmart measurement app46

ElectroSmart [7] is an Android consumer app we47

designed to measure the power that a given smart-48

phone receives from Wi-Fi access points, Bluetooth49

devices, and cell towers. To reach a large audience,50

we put a great deal of effort into the user experience,51

designing ElectroSmart to be an easy-to-use tool that52

offers users transparent information on their exposure53

to radio frequencies. ElectroSmart can be installed54

on any Android smartphone running Android 4.1 or55

later. The app was first launched in August 2016,56

and as of May 18th, 2021, it had 900,000 downloads57

and 190,000 active users.58

ElectroSmart performs an exposure scan every 2059

minutes when used in the background. All scans are60

periodically collected on our servers. Below, we ex-61

plain how an exposure scan works and describe the62

information it collects. We discuss user consent and63

privacy protection in the following section. A scan64

performs the following actions.65

• It creates a timestamp with the local time in 66

UTC. This is a slight approximation as signals 67

might not be measured at exactly the same time 68

in a given measurement scan. However, by con- 69

sidering a window of a few seconds, it is easy to 70

attribute all measured signals to a given mea- 71

surement scan and timestamp (we specifically 72

discuss the case of Bluetooth in the section Blue- 73

tooth scan synchronization). 74

• It collects characteristics of the smartphone 75

(brand and model) and its Android version. 76

• It measures the smartphone location in terms of 77

latitude and longitude. Android provides this 78

information by combining GPS, Wi-Fi access 79

points, and cell tower information using a pro- 80

prietary algorithm. 81

• It measures the downlink Received Signal 82

Strength Indicator (RSSI) of all measurable Wi- 83

Fi access points, Bluetooth devices, and cell tow- 84

ers (we discuss limitations below), along with 85

several source-specific data. 86

– For Wi-Fi access points, we collect the 87

SSID, the BSSID, the frequency, and 88

whether the user is connected to this access 89

point. 90

– For Bluetooth devices, we collect the de- 91

vice name, the device MAC address, and 92

whether the user is bonded to this device. 93

– For cell towers, we identify whether the cell 94

is using a 2G, 3G, 4G, or CDMA/EVDO 95

technology. We determine whether the cell 96

is serving (that is, the user is currently 97

connected to this cell), and we collect cell 98

identification information, such as the Mo- 99

bile Network Code (MNC), Mobile Country 100

Code (MCC), or Cell ID (CID), to generate 101

a unique identity for each cell tower. 102

2.1.2. Ethical and legal considerations 103

We submitted the study protocol to our institu- 104

tional ethical committee (Inria COERLE [27]). They 105

provided guidelines for respecting user privacy, con- 106

sent, and data protection. 107
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WiFi Bluetooth Cellular (2G, 3G, 4G)
Max -1 -1 -51
Min -126 -150 -113

Table 1: Valid range of the RSSI (in dBm) for each
wireless protocol.

ElectroSmart requires explicit user consent for all108

information collection. In particular, we are fully109

compliant with the European General Data Protec-110

tion Regulation (GDPR) [28].111

In addition, ElectroSmart is used anonymously by112

default, unless a user decides to provide an email ad-113

dress. The email address field is clearly identified as114

optional.115

All scans are associated with a unique user ID. This116

user ID is randomly generated on our server at the117

app installation time. It is not linked to any unique118

smartphone or user information.119

2.1.3. Limitations120

We perform all scans with a vanilla version of An-121

droid using the regular Android API. That is, we122

do not have access to low-level data available from123

rooted smartphones or customized drivers. This ap-124

proach is beneficial for targeting a large-scale audi-125

ence, but it limits what we can measure, as elabo-126

rated below.127

First, we only measure the downlink received by128

the measuring smartphone. Therefore, the contribu-129

tion of the uplink to the exposure, that is, the emis-130

sion of the measuring smartphone, is not considered131

in this study. Also, we do not measure the uplink of132

surrounding devices.133

Second, the minimum and maximum measurable134

power for each wireless technology is capped by the135

Android API and the technology standards. We show136

in Table 1 the valid ranges of measurements for each137

technology. For example, if a smartphone is exposed138

to a higher power than the maximum measurable139

power, it will always report the maximum value pre-140

sented in Table 1. We explain in Dataset Cleaning141

how we filter out-of-range scans.142

Third, for 2G, 3G, and 4G, the RSSI is provided143

by the Android API as an Arbitrary Strength Unit144

(ASU), an integer value between 0 and 31. It is con- 145

verted to dBm according to the formula: dBm = 146

ASU∗2−113. For this reason, the granularity of the 147

cellular RSSI is 2 dB. 148

Fourth, each wireless technology comes with some 149

additional limitations. Bluetooth sources can only be 150

measured when they are discoverable. Wi-Fi sources 151

can only be measured when they are configured as 152

access points, that is, the emitting power of the con- 153

nected devices is not measured. Measurements of 154

cellular sources suffer from several limitations. i) A 155

smartphone with an active SIM card can only mea- 156

sure the RSSI from the operators declared in the SIM 157

card. In practice, it is either the cellular operator 158

that owns the SIM card (MNO), the cellular opera- 159

tor that is operating the cellular infrastructure for the 160

virtual operator (MVNO), or the operators that part- 161

ner with the MNO of the SIM card in foreign coun- 162

tries (Roaming). We explain in the Dataset Process- 163

ing section how we mitigate this issue. ii) The mea- 164

surement coverage is largely dependent on the version 165

of Android and the cell phone maker. Indeed, the An- 166

droid API can return the RSSI of the serving cell for 167

all smartphones, but only the most recent versions of 168

Android can also return the neighboring cells’ RSSI. 169

In addition, this API tends to be quite buggy due 170

to the Android RIL (Radio Interface Layer, which 171

is closed-source and vendor-specific. In particular, 172

some smartphones return invalid RSSI measurements 173

(outside of the range given in Table 1). We discuss in 174

Dataset Cleaning how we identify and remove invalid 175

measurements. iii) Smartphones periodically scan for 176

cellular networks to ensure continuity of service. To 177

speed up network scanning, smartphones follow pri- 178

ority rules that are defined by the network and stored 179

in the SIM card. This means that a given smartphone 180

may not scan for all the cellular Radio Access Tech- 181

nology (RAT), but instead, scan only high priority 182

RATs. For example it may scan only 4G and 3G 183

networks, excluding 2G. As a result, we expect the 184

cellular scans not to include all the cellular genera- 185

tions in a single scan. 186

Last, the received power is measured using the Re- 187

ceived Signal Strength Indicator (RSSI). Therefore, 188

our measurements do not take into account the effec- 189

tive load of the wireless channel. 190
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2.2. Dataset characteristics191

In this study, we use all the exposure scans col-192

lected from January 2017 to December 2020 (4 years)193

representing 506,100 user profiles and 6,438 million194

measured RSSI.195

We first clean this raw dataset as follows: i) we re-196

move all measurements with invalid GPS coordinates,197

ii) we remove all measurements with invalid RSSI val-198

ues, iii) we keep only measurements from the 13 coun-199

tries with the largest number of measurements, iv) we200

remove all CDMA/EVDO measurements.201

Then, we process the remaining measurements: v)202

we convert all timestamps to the local time of the203

country of origin, vi) we identify the Wi-Fi physical204

sources, vii) we attribute each Bluetooth measure-205

ment to an atomic scan. The following sections detail206

each of these seven steps.207

2.2.1. Dataset cleaning208

Invalid GPS coordinates removal. Background mea-209

surements are quite fast (typically a few seconds).210

There is usually not enough time to get a valid GPS211

coordinate from scratch, that is, when the GPS was212

not activated before the scan or when no prior infor-213

mation is cached to help the GPS converge faster to214

a location. However, location is a system-wide prop-215

erty, so if another app or the system has recently ac-216

cessed the device location, we will benefit from this217

when we make the scan. Also, when the device is not218

power-constrained, we can allow more time to get a219

valid GPS location.220

When a GPS coordinate cannot be retrieved in the221

ElectroSmart app, we set both the latitude and the222

longitude associated with a scan to either 0 or -1 de-223

pending on the root cause (in this paper, we do not224

exploit this root cause). As one of our goals is to ex-225

plore the evolution of the exposure per country, we re-226

moved all scans with a GPS coordinate set to either 0227

or -1. We removed 7.9% of the Wi-Fi measurements,228

9% of the Bluetooth measurements, 18.2% of the 2G229

measurements, 19.8% of the 3G measurements, and230

12.8% of the 4G measurements. Overall, we removed231

11.2% of all the raw measurements by filtering out232

invalid GPS coordinates.233

Invalid RSSI removal. The Android OS is an open- 234

source software program that is common to all An- 235

droid devices, but each smartphone manufacturer 236

adapts it to their hardware by performing customiza- 237

tion and developing drivers, all of which are propri- 238

etary. Therefore, each smartphone model can come 239

with specific bugs [29]. This step focuses on the RSSI, 240

which is produced by the proprietary Radio Interface 241

Layer (RIL). 242

Fortunately, each wireless standard comes with a 243

valid range for the RSSI value, as shown in Table 1. 244

We can therefore easily filter out each measurement 245

with an out-of-range RSSI value. We removed 0.07% 246

of the Wi-Fi measurements, 0.04% of the Bluetooth 247

measurements, 0.8% of the 2G measurements, 2.4% 248

of the 3G measurements, and 14.1% of the 4G mea- 249

surements. After this removal step, 85.9% of all the 250

raw measurements remained. 251

In addition to the out-of-range values, we also ob- 252

served in-range abnormal values for cellular measure- 253

ments (2G, 3G, 4G). Abnormal values are in the valid 254

range but tend to appear with higher frequency in 255

the same exposure scan. The root cause of these ab- 256

normal values is hard to pinpoint as it most likely 257

comes from bugs in the proprietary RIL. In par- 258

ticular, we observed that all smartphones with an 259

Exynos [30] System on Chip (SoC)1 have an abnor- 260

mally high number of -51 dBm measurements: for all 261

cellular measurements performed from smartphones 262

with an Exynos SoC, the -51 dBm values represent 263

71% of all cellular measurements, whereas, they rep- 264

resent 1.91% for all smartphones running any SoC 265

other than Exynos. 266

We found that the cells reporting abnormal values 267

correspond to fake cells, that is, when the RIL reports 268

a cell, but it does not correspond to a real measured 269

cell. Indeed, when a smartphone connects to a cel- 270

lular operator, it measures various performance indi- 271

cators (including the RSSI), and connects to the cell 272

with the best performance indicator; we call this cell 273

the serving cell. All the other cells are called neigh- 274

1Most likely, the issue comes from the modem associated
with the Exynos SoC, but we only have access to the SoC
name from the Android API.
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boring cells. We found that for 3G, the percentage of275

neighboring cells measured by smartphones with an276

Exynos SoC is 21.8% of all measured cells, whereas it277

is 2.7% for smartphones running any SoC other than278

Exynos. This is a clear indication that smartphones279

with an Exynos SoC report fake neighboring cells, at280

least for 3G.281

Due to the bogus behavior of smartphones run-282

ning an Exynos SoC, we decided to adopt a conser-283

vative strategy by removing all measurements (Wi-284

Fi, Bluetooth, 2G, 3G, 4G) performed by a smart-285

phone with an Exynos SoC. Even if the issue does286

not concern Wi-Fi and Bluetooth, removing only cel-287

lular measurements (while keeping Wi-Fi and Blue-288

tooth measurements) would have affected our discus-289

sion of personal exposure by changing the proportion290

of the sources of exposure. We removed 24.4% of the291

Wi-Fi measurements, 33.5% of the Bluetooth mea-292

surements, 7.9% of the 2G measurements, 40.6% of293

the 3G measurements, and 10.8% of the 4G mea-294

surements. After this removal step, 62.6% of all raw295

measurements remained.296

For the sake of completeness, we note that we also297

observed an abnormally large number of measure-298

ments with a -113 dBm RSSI for 2G and, to a lesser299

extent, for 3G. We did not, however, find any corre-300

lation between these -113 dBm measurements and a301

specific SoC, device brand, or Android version. As302

dBm are in a logarithmic scale, and since we perform303

all our computations in Watt, which is in a linear304

scale, the impact of these measurements on the rest305

of this paper is negligible.306

Included countries. ElectroSmart was released in Au-307

gust 2016 in two languages, English and French.308

We added Italian and German in March 2019, and309

Spanish and Portuguese in January 2020. France310

is the country with the largest number of measure-311

ments (36% of all measurements after removing in-312

valid GPS and RSSI), followed by the USA (27.5%),313

Italy (7.9%), and Germany (4.6%).314

We restricted this study to the 13 countries with315

the largest number of measurements. In addition to316

France, the USA, Italy, and Germany, we included (in317

order from the highest to the lowest number of mea-318

surements) Canada, the United Kingdom, Switzer-319

land, Belgium, Spain, the Netherlands, India, Aus- 320

tralia, and Brazil. Although Brazil accounts for only 321

0.5% of all measurements, this still represents 21.6 322

million measurements and 2668 unique users. 323

Altogether, the excluded countries represent 9.3% 324

of all measurements. So, after this step, 56.8% of 325

all raw measurements and 50.3% of all user profiles 326

remained. 327

CDMA removal. The term CDMA refers to a large 328

family of cellular protocols (cdmaOne, CDMA2000, 329

EVDO) deployed mainly in North America. Elec- 330

troSmart can measure CDMA cells, but, apart from 331

in the USA, we did not find CDMA measurements 332

in any of the selected countries. In the USA, all 333

CDMA measurements represent 0.95% of all cellu- 334

lar measurements (4G measurements represent 64% 335

of all cellular measurements). As CDMA measure- 336

ments are only used in the USA in our filtered dataset 337

and represent a negligible fraction of all cellular mea- 338

surements, we decided to remove all CDMA measure- 339

ments from our dataset. 340

Cleaned dataset characteristics. In the rest of 341

this paper, we will only refer to the cleaned dataset 342

that resulted from the previous removal steps. This 343

dataset contains 254,410 user profiles and 3,656 mil- 344

lion measured RSSI. This represents 56.8% of all the 345

measurements and 50.3% of all the profiles available 346

in the raw dataset. 347

In this cleaned dataset, Wi-Fi represents 58.3% of 348

all measured RSSI, Bluetooth 6.6%, 2G 10.5%, 3G 349

7.6%, and 4G 17%. 350

2.2.2. Dataset processing 351

Adapting to local time. All the raw measurements in 352

the dataset are associated with a timestamp in UTC 353

that corresponds to the instant the corresponding sig- 354

nal was detected. In order to identify day and night 355

periods, we need to convert all timestamps into local 356

time. To do so, we reverse-geocode the GPS coor- 357

dinate of each measurement using OpenStreetMap’s 358

Nominatim [31] to determine the corresponding coun- 359

try. Then we convert the timestamp in UTC to a 360

timestamp in the local timezone of the GPS coordi- 361

nate using timezonefinder python library [32]. 362
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Identifying physical and logical WiFi sources. Identi-363

fying the physical sources of radio frequencies is par-364

ticularly important for assessing exposure. This no-365

tion of physical source can be tricky. In this paper, a366

physical source is the source of a carrier signal, that367

is, the source of a signal at a specific frequency. For368

Bluetooth, 2G, 3G, and 4G, one detected signal cor-369

responds to one physical source, but this is not the370

case for Wi-Fi.371

A Wi-Fi access point usually has one or two phys-372

ical sources of emission, but the signals we measure373

correspond to logical sources, and it is common to374

have multiple logical sources for one physical source.375

We can obtain the carrier signal frequency for each376

measured source, and one might argue that this in-377

formation is enough to identify the physical sources.378

However, it is not the case, as different physical379

sources can use the same frequency. This is a com-380

mon issue in Wi-Fi as the number of available fre-381

quencies (called channels) is limited, and the density382

of sources is high.383

Wi-Fi networks are based on the notion of a ser-384

vice set, that is, the idea that logical networks can385

be layered on top of a physical network. Such logical386

networks are identified by a Service Set ID (SSID)387

(usually a human-readable string) associated with a388

Basic Service Set ID (BSSID), which is a 6-byte, in-389

ternationally unique identifier usually derived from390

the MAC address of the access point. The strategy391

used to derive a BSSID from a MAC address depends392

on the equipment and administrator. We observed393

three strategies: the BSSID differs from the MAC394

address by the first byte, the last byte, or both the395

first and last bytes.396

Therefore, the rule we apply to identify a physical397

source in a user scan is the following: if several Wi-Fi398

measurements report the same frequency and have399

the same BSSID (excluding the first and last bytes400

in the comparison), we associate them to the same401

physical source. In addition, as logical sources for402

the same physical source might report different RSSI403

(because the measurements might not be performed404

at the exact same time), we consider that the RSSI405

of the physical source is the maximum RSSI of all the406

associated logical sources for a given scan.407

In the rest of this paper, all results we report for408

Wi-Fi are for physical sources. 409

Bluetooth scan synchronization. When counting the 410

number of sources, it is important to use the concept 411

of an atomic scan, that is, a scan that reflects the 412

instantaneous exposure as measured by the smart- 413

phone. Cellular and Wi-Fi scans are atomic because 414

the Android API returns all current sources in a sin- 415

gle call or callback. However, this is not the case 416

for Bluetooth. When we start a Bluetooth scan, the 417

smartphone will perform a Bluetooth inquiry request 418

and wait for an answer from devices in the vicin- 419

ity [33]. Therefore, devices will reply one by one, 420

usually within 15 seconds of the start of the scan. 421

The heuristic we use to attribute replying devices 422

to an atomic scan is to group together all Bluetooth 423

devices whose inter-arrival is less than 15 seconds. 424

In the rest of this paper, each time we count the 425

number of Bluetooth devices, we count the number of 426

devices in an atomic scan as defined in this section. 427

Mitigation of the cellular scans limited to the SIM op- 428

erator. We have explained in the Limitations section 429

that the cellular measurements only take into account 430

the RSSI from the operator declared in the SIM card. 431

This limitation results in a significant underestima- 432

tion of the cellular exposure. To mitigate this issue, 433

in each scan, we multiple the RSSI corresponding to 434

a cellular measurement with the number of operators 435

in the country in which the scan was performed. 436

2.3. Personal exposure definition and calculation 437

We define personal exposure as the received power 438

from all the electromagnetic field sources on the ra- 439

dio frequency bands exposing humans. The received 440

power is a function of the emitting power that is 441

expressed in Equation (1) where Pr is the received 442

power, Pe is the emitting power, K is a constant 443

dependant on the emitting and receiving antennas’ 444

characteristics, d is the distance to the source, and f 445

is the signal frequency [34]. We see in Equation (1) 446

that distance plays an important role in personal ex- 447

posure, as does signal frequency: higher frequency 448

signals fade faster than lower ones. 449
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Pr = K

(
1

4πdf

)2

Pe (1)

The analysis we perform in this paper is based on450

three main calculation steps that we describe and jus-451

tify in the following. i) First, for all computations452

based on an exposure scan (as defined in Materials453

and Methods), we consider the sum of the received454

power in Watt of all signals in this scan. Comput-455

ing the sum is relevant because an exposure scan is456

atomic in terms of time, so it represents all the signals457

simultaneously exposing an individual. ii) Second, we458

average the exposure scans of each user per month.459

This gives a per-user monthly average exposure. The460

rationale of computing per-user monthly averages is461

to prevent users with a large number of measurements462

from biasing the monthly average. iii) Third, for each463

country, we group the per-user monthly average ex-464

posures. When a user has been in different countries465

for a given month, we compute one monthly average466

exposure per country. Then, we compute the mean467

of these per-user monthly average exposures to ob-468

tain a monthly average exposure per country. Finally,469

we obtain the yearly average exposure by computing470

the mean of the monthly average exposure per coun-471

try. Computing the yearly average exposure this way472

avoids bias that could be introduced by months with473

a larger than average number of users.474

2.4. Data availability475

Upon publication, all data used in this paper will476

be available online for scientific exploitation. The477

data consists of timestamped measurements of RSSI478

for each of the five types of signals considered in this479

paper (Wi-Fi, Bluetooth, 2G, 3G, 4G). All user IDs480

have been anonymized (using a salted hash), and all481

GPS locations have been replaced by one of the 13482

countries we consider. When required to preserve483

user anonymity, we provide aggregated data using484

pre-processing steps. For instance, we provide the485

identification of the unique physical sources using486

our own anonymous source counter. A detailed487

description of the format of the data will be available488

on the online publication site. 489

490

3. Results 491

3.1. World-wide sustained growth of radio exposure 492

is primarily driven by WiFi 493

Table 2 shows the evolution of the total personal 494

exposure in the 13 countries with the largest num- 495

ber of measurements (as discussed in Materials and 496

Methods). We observe an overall trend of increased 497

exposure across all countries from 2017 to 2020. To 498

confirm this trend, we computed the Spearman cor- 499

relation on the monthly average exposure to evalu- 500

ate the relationship between time (months) and the 501

monthly average exposure for each country. Table 3 502

shows a significant positive correlation between time 503

and exposure for most countries. 504

2017 2018 2019 2020
Year

60

55

50

45

40

35

30

Ex
po

su
re

 (d
Bm

)

Bluetooth
2G
3G

4G
WiFi
Total

Figure 1: The total exposure of the population has been
multiplied by 2.3 in 4 years. For each year, we take the
yearly average exposure as given in Table 2, convert it to Watt,
compute the mean for all 13 countries, and convert it back to
dBm. The bars represent a 95% confidence interval for the
mean using empirical bootstrap resampling with replacement
(N=1,000) on the yearly average exposure per country. Plots
are shifted horizontally to avoid confidence interval overlap.
An increase of 3 dB results in the doubling of the exposure.

It is interesting to understand how each wireless 505

technology contributes to this exposure trend. Fig- 506

ure 1 shows that the total exposure (brown curve) has 507

been multiplied by 2.3 (from -34.6 dBm in 2017 to - 508

31 dBm in 2020) over the four-year period. The trend 509
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2017 2018 2019 2020
Country Mean 95%CI Mean 95%CI Change Mean 95%CI Change Mean 95%CI Change

BR -39.4 [-41.1, -38.1] -36.3 [-39.1, -34.1] +105% -34.4 [-37.3, -32.4] +56% -32.0 [-33.1, -31.0] +71%
AU -34.2 [-37.4, -31.5] -34.1 [-36.5, -32.1] +2% -31.0 [-34.0, -28.4] +104% -31.1 [-31.9, -30.4] -3%
NL -39.1 [-41.9, -36.9] -37.1 [-39.6, -34.9] +57% -36.3 [-38.7, -34.3] +19% -33.6 [-35.3, -32.1] +87%
IN -29.8 [-35.1, -26.3] -27.6 [-37.0, -23.6] +64% -32.2 [-33.8, -30.9] -65% -30.6 [-32.2, -29.4] +46%
ES -37.4 [-40.2, -35.1] -35.4 [-37.6, -33.6] +60% -32.9 [-34.6, -31.7] +77% -31.6 [-32.9, -30.5] +35%
BE -40.7 [-42.0, -39.7] -35.9 [-37.7, -34.3] +204% -35.4 [-36.5, -34.4] +13% -32.5 [-33.8, -31.5] +91%
CH -31.6 [-33.4, -30.2] -32.9 [-34.4, -31.7] -25% -33.1 [-34.9, -31.6] -6% -32.6 [-34.3, -31.2] +13%
GB -39.2 [-41.0, -37.7] -34.7 [-36.8, -32.9] +182% -32.7 [-35.1, -30.6] +60% -30.9 [-32.3, -29.8] +49%
CA -35.6 [-37.8, -33.8] -32.3 [-33.5, -31.0] +112% -31.9 [-33.3, -30.6] +9% -29.2 [-30.1, -28.3] +89%
DE -36.6 [-37.5, -35.9] -36.9 [-38.4, -35.8] -7% -32.8 [-34.8, -31.3] +158% -32.1 [-33.0, -31.0] +19%
IT -33.8 [-38.4, -30.7] -33.9 [-35.3, -32.7] -2% -33.3 [-34.1, -32.4] +16% -32.1 [-33.1, -31.4] +30%
US -33.5 [-34.9, -32.0] -30.5 [-31.2, -29.9] +98% -29.8 [-31.0, -28.5] +18% -27.3 [-28.3, -26.4] +76%
FR -33.5 [-34.1, -33.0] -33.0 [-33.8, -32.2] +14% -33.3 [-33.9, -32.7] -7% -31.8 [-32.2, -31.4] +42%

Table 2: The yearly average exposure increased from 2017 to 2020 worldwide. This table represents the evolution
of the yearly average exposure per country. We use an ISO 3166 [35] alpha-2 country code to represent each country using
a two-letter code. We compute the mean and the 95% confidence interval for the mean using empirical bootstrap resampling
with replacement (N=1,000) [36] on the monthly average exposure for each country. The change column shows the increased
(in blue) or decreased (in red) exposure as a percentage compared to the previous year. This percentage change is computed
in Watt instead of dBm to have a linear interpretation of the change in exposure.

we observe for each wireless technology corresponds510

to the adoption or decline of the corresponding tech-511

nology. We observe a clear increase in the exposure512

due to Wi-Fi and Bluetooth technologies, but a de-513

crease in the exposure due to 2G and 3G technologies.514

Interestingly, Wi-Fi is by far the largest contributor515

to exposure.516

In summary, we observe an overall increase in total517

personal exposure with time (a 2.3-fold increase from518

2017 to 2020), with Wi-Fi being the largest contribu-519

tor to personal exposure.520

3.2. Exposure growth is not explained by the multi-521

plication of sources522

We focus now on how each source contributes to523

total exposure. This is a central question because an524

improved understanding of the most exposing sources525

could inform strategies for reducing personal expo-526

sure.527

Since the measurement of the number of sources528

is not reliable for cellular technologies (see Materi-529

als and Methods), we focus on Wi-Fi and Bluetooth530

technologies. We consider this limitation reasonable531

because, as shown in Figure 1, these two are the most 532

significant contributors to total exposure. 533

Table 3: The Spearman correlation shows a signifi-
cant positive correlation between time and exposure
for most countries. The Spearman correlation is computed
on the monthly averages for each country from 01/2017 to
12/2019. We exclude 2020 from this correlation as the COVID-
19 period would have significantly impacted the interpretation
of this correlation. In blue, we show the positive correlations,
and in red, the negative ones. The grey two-sided p-values are
above the threshold of 0.05. When including 2020, we observe
an increase in the Spearman coefficients between 0.1 and 0.2
for most countries and lower p-values for all countries (except
CH), showing the impact of lockdowns on exposure. The most
significant difference is France, with a Spearman coefficient of
0.42 (p<0.01).

country BR AU NL IN ES BE

score 0.44 0.45 0.37 0.14 0.42 0.63
p-value 0.0066 0.0058 0.026 0.4 0.011 3.4E-05

CH GB CA DE IT US FR

-0.21 0.7 0.57 0.47 0.36 0.62 0.00
0.23 2.2E-06 0.0003 0.0039 0.03 5.8E-05 0.99
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Figure 2: A large number of sources in the vicinity
marginally increases individual exposure. The figure
represents the distribution of all the exposure scans in Blue-
tooth (top) and Wi-Fi (bottom) when there is a given num-
ber of (Bluetooth or Wi-Fi) sources in the scan (the boxplot
convention is the following: the middle orange line shows the
median, the lower and higher hinges show the first and third
quartiles, respectively, and the lower and higher whiskers show
a limit of 1.5x the interquartile range from the lower and higher
hinges, respectively). For instance, the last box in the top fig-
ure represents the sum of the received power in Bluetooth for
exposure scans with exactly 20 detected Bluetooth sources.
We observe that beyond 4 to 5 sources in the vicinity, any
additional sources marginally change the individual exposure.

Figure 2 shows the relationship between individ-534

ual exposure and the number of sources in a vicinity.535

We observe that beyond four to five sources, addi-536

tional sources do not significantly increase individual537

exposure. Although this finding might seem counter-538

intuitive, it is mainly explained by the important fad-539

ing with the distance of the electromagnetic fields540

(see Equation 1). In addition, we see in Figure 3541

that in 50% of the exposure scans, the most exposing542

Wi-Fi source (resp. Bluetooth) represents at least543

83% (resp. 91%) of the total exposure due to Wi-Fi544

(resp. Bluetooth). Thus, the number of sources in545

the vicinity is not a good predictor of personal expo-546

sure; rather, the most exposing source is the primary547

contributor to exposure.548

The question now is how actionable this informa-549

tion is with respect to exposure reduction. To an-550

swer, we focus on the Wi-Fi-connected sources and551

1 2 3 4 5
Source rank
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n 
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Figure 3: The most exposing source is the primary
driver of individual exposure. This figure represents the
distribution of the percentage contribution of the top five ex-
posure sources in all exposure scans, with Bluetooth in green
and Wi-Fi in blue (the boxplot convention is the following:
the middle line shows the median, the lower and higher hinges
show the first and third quartiles, respectively, and the lower
and higher whiskers show a limit of 1.5x the interquartile range
from the lower and higher hinges, respectively). For instance,
the first green box shows the distribution of the contribution of
the most exposing Bluetooth source to the sum of the exposure
of all Bluetooth sources for each exposure scan. We observe
that for 75% of the exposure scans (containing at least one
Bluetooth measurement), the most exposing Bluetooth source
represents at least 56% of the entire Bluetooth exposure.

Bluetooth-bounded devices to which a user has al- 552

ready connected. Connected sources or bounded de- 553

vices are usually owned or controlled by the user and 554

can therefore be switched off or moved to reduce ex- 555

posure. Taking all scans into account, we computed 556

that 41% of the time, the most exposing of all the 557

Wi-Fi sources is a connected one. For Bluetooth, 558

the most exposing source is a bounded device 10% 559

of the time. Then, we computed what the individual 560

personal exposure would have been if all connected 561

sources and bounded devices had been switched off. 562

While this is an overly optimistic situation, the goal 563

is to assess the degree to which an individual could 564

control exposure. Figure 4 shows that, by switching 565

off the connected sources and bounded devices, half 566

of the users could have reduced their total exposure 567

by 50% (a reduction by 3.1 dB), and 25% could have 568

reduced their total exposure by 90% (a reduction by 569

10 dB). 570

In summary, the growth of total exposure is not 571

explained by a multiplication of sources. On the con- 572

trary, a handful of sources generate most of the per- 573

sonal exposure at any given time, and it is not uncom- 574

9
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Figure 4: By switching off connected Wi-Fi sources and
bounded Bluetooth devices, 50% of the users can re-
duce their exposure by 3.1 dB, and 25% of the users
can reduce it by at least 10 dB. This figure shows the
distribution of the individual exposure reduction for each user
when we remove connected Wi-Fi sources and bounded Blue-
tooth devices. In red, we show the median and in blue, the
75th percentile. For each user and month, we first compute the
per-user monthly average exposure. Then, for each user and
month, we collect all connected Wi-Fi sources and bounded
Bluetooth devices, and we re-compute the per-user monthly
average exposure by removing all collected connected sources
and bounded devices from the exposure scans. Finally, we
compute the difference between the per-user monthly average
exposure in each case. The result is the distribution shown
in this figure for each user. Note that in some rare cases, the
difference can be negative. This can occur when an exposure
scan contains only one connected source. By removing con-
nected sources, we change the number of samples on which we
average. As a result, a user with only a few samples could
end up with a higher average without connected sources. In
this figure, we drop users with a negative gain; they represent
0.92% of all users.

mon that an individual’s exposure is almost entirely575

the result of sources they either own or associate with576

(for a quarter of our subjects, such sources account577

for 90% of exposure).578

3.3. Impact of regulation on personal exposure579

Electromagnetic field emissions are regulated,580

which means that both the spectrum used and the581

emitting power per frequency band are fixed by a582

regulatory authority. The types of cellular and Wi-583

Fi sources we explore in this paper are regulated on584

a country-specific basis. Therefore, the maximum585

emitting power per frequency band is not uniform586

in the top 13 countries we consider. By contrast,587

Bluetooth uses the same emitting power in all the588

countries we consider. We explore next how cellular589

and Wi-Fi regulation impacts the received power.590

3.3.1. Cellular regulation 591

The maximum allowed exposure of the population 592

is fixed by the ICNIRP international body [37]. How- 593

ever, each country is free to lower the maximum expo- 594

sure depending on local policies. In addition, some 595

countries have policies specific to some areas (e.g., 596

Belgium has different limits for Flanders, Wallonia, 597

and Brussels) or specific to some contexts (e.g., Italy 598

enforces lower exposure near schools). Finally, the 599

limits are specific to the frequencies used by cellular 600

technologies. Here, we specifically focus on the fre- 601

quencies 900 MHz, 1800 MHz, and 2100 MHz. For 602

each country, we build a regulation limit triplet, one 603

limit per frequency. 604

To the best of our knowledge, there is no cen- 605

tral repository of exposure limits for all countries. 606

To obtain a regulation limit triplet for each of the 607

13 countries we consider, we consolidated several 608

sources [38, 39, 26], and when multiple limits were 609

provided (due to local policies or context), we keep 610

the limit covering the largest population. 611

Figure 5 does not show any clear correlation be- 612

tween regulation limits and exposure. We must be 613

careful interpreting this result as there are several 614

external factors that we do not control, such as the 615

deployment strategy of the cellular operators. For 616

example, operators might decide, in a densely pop- 617

ulated area, to have a higher density of base sta- 618

tions (to increase the supported load) emitting at a 619

lower power (to reduce interference). In such cases, 620

base stations expose the population at a level that 621

is significantly lower than what the regulation per- 622

mits [26, 15]. Therefore, in practice, the regulation is 623

an upper bound to the population exposure in some 624

extreme cases, but in most cases, the population is 625

exposed at levels much lower than the regulation lim- 626

its. 627

To confirm this hypothesis, we computed the dis- 628

tribution of the cellular measurements in V/m. We 629

obtain the electric field E in V/m from the measured 630

received power in dBm with the formula: 631

E =
9.73f

√
50× 10

P−30
10

c
√
G

(2)

where G is the antenna gain, f is the frequency in Hz, 632
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Figure 5: We observe no correlation between regulation
limits and exposure. This figure shows the correlation be-
tween the exposure and a regulation limit triplet for the three
cellular technologies we measure, 2G, 3G, and 4G (the boxplot
convention is the following: the middle orange line shows the
median, the lower and higher hinges show the first and third
quartiles, respectively, and the lower and higher whiskers show
a limit of 1.5x the interquartile range from the lower and higher
hinges, respectively). Here is the association between regula-
tion limit triplets and countries: (13, 18, 20) is for IN; (20, 20,
20) is for IT; (21, 29, 31) is for BE; (32, 40, 43) is for CA; (41,
58, 61) is for FR, DE, GB, CH, ES, NL, AU, BR; (47, 61, 61)
is for US.

P is the power in dBm, and c is the speed of light [40].633

The antenna gain of the smartphone is unknown, so634

we assume an isotropic antenna (i.e., G = 1). In our635

dataset, we have access to the cellular frequency f for636

serving cells only. Therefore, we only keep exposure637

scans with a serving cell containing a valid frequency638

(they represent 74.5% of all exposure scans). We sum639

all the cellular RSSI2 in each exposure scan and con-640

vert the summed RSSI into V/m using the frequency641

of the serving cell.642

Figure 6 shows the distribution of the measured643

electric field for each exposure scan per country. We644

see that the current population exposure is orders of645

magnitude lower than any current regulation limit.646

We found that by considering all countries together,647

2As explained in Materials and Methods, we perform the
sum in Watt, and because we only measure the RSSI for the
operator declared in the SIM card, we multiply each RSSI by
the number of operators in the country in a pre-processing
phase.
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Figure 6: The population exposure is orders of magni-
tude lower than any existing regulation limits for the
considered countries. This figure shows the distribution of
the estimated electric field produced by cellular antennas at
the receiver per country using boxplots, where the middle or-
ange line shows the median, the lower and higher hinges show
the first and third quartiles, respectively, and the lower and
higher whiskers show a limit of 1.5x the interquartile range
from the lower and higher hinges, respectively. The red dot
shows the mean. Considering all signals together, we have a
median at 0.005 V/m, and a 99th percentile at 0.18 V/m.

only 1% of the scans are above 0.18 V/m. 648

Admittedly, this estimation is a coarse description 649

of reality. We now explore how the different lim- 650

itations and approximations of our estimation will 651

impact our conclusion. First, as described in Ma- 652

terials and Methods, the maximum cellular RSSI 653

that we can measure is −51 dBm, so measurements 654

above −51 dBm are capped. However, measure- 655

ments at −51 dBm represent only 1.8% of all mea- 656

surements, a very small fraction that cannot funda- 657

mentally change our conclusions. Second, we apply 658

the same frequency (that of the serving cell) to all 659

cellular measurements in the same exposure scan. 660

Considering that 98% of the frequencies are within 661

[782, 2660] MHz and Equation 2 is linear with f , 662

we have at most a factor of 3.4. Note that this is a 663

very conservative estimate, as the median frequency 664

is 1,745 MHz. Last, in Boussad et al.[41], we show, 665

using calibrated measurements in an anechoic cham- 666

ber, that the average deviation between the real re- 667

ceived power at a calibrated isotropic antenna and a 668

smartphone is 2.5 dB. If we translate this offset in 669

Equation 2, we find that it results in a multiplying 670

factor of
√

10
2.5
10 ≈ 1.3. By combining the two main 671
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Figure 7: The mean exposure is significantly higher
when the Tx power is higher in the 2.4 GHz band,
but significantly lower in the 5.3 GHz band. The fig-
ure shows the distribution of the per-user monthly average
exposure using boxplots. The middle orange line shows the
median, the lower and higher hinges show the first and third
quartiles, respectively, and the lower and higher whiskers show
a limit of 1.5x the interquartile range from the lower and higher
hinges, respectively. The red dot shows the mean. To compute
the significance of the mean, we perform a permutation test
(N=1,000,000). The test statistic is the difference of the means
for the same frequency band. The two-sided p-value is lower
than 0.001 for both bands.

sources of error, the actual exposure in V/m could672

be 4.4 times higher than what we report in Figure 6,673

which is still orders of magnitude lower than the most674

restrictive regulation limits in the countries we con-675

sider.676

In summary, 99% of our exposure scans report a677

cellular exposure lower than 0.18 V/m (corrected to678

0.79 V/m if we take into account the multiplying fac-679

tor of 4.4, corresponding to a worst-case estimate sce-680

nario), which is orders of magnitude lower than any681

regulation limits in the considered countries.682

3.3.2. WiFi regulation683

Wi-Fi is a generic term that gathers together a684

large number of standards covering a wide spectrum685

of frequencies in the 2.4 GHz and 5 GHz bands. For686

Wi-Fi, the goal of regulation is to reduce interference687

by limiting the maximum transmission power. This688

limit might be different for each country and each689

frequency. Getting a consolidated view of the vari-690

ous international regulations on Wi-Fi is tricky. For691

this purpose, we rely on the efforts of J. W. Linville692

and S. Forshee, who maintain a consolidated file con-693

taining the Wi-Fi emitting power per country and 694

frequency for the Linux kernel [42]. 695

To understand the impact of regulation on ex- 696

posure, we focus on two frequency bands that in- 697

clude a large enough number of countries using dif- 698

ferent regulations: 2.4 GHz ([2400, 2483] MHz) and 699

5.3 GHz ([5250, 5350] MHz). The 2.4 GHz (resp. 700

5.3 GHz) band represents 76% (resp. 2%, still 37 701

million measurements) of all Wi-Fi measurements. 702

In the 2.4 GHz band, the maximum transmission 703

power is 36 dBm for Australia, 30 dBm for the USA 704

and Canada, and 20 dBm for all the other consid- 705

ered countries. In the 5.3 GHz band, the maximum 706

transmission power is 24 dBm for Brazil, India, and 707

Canada, 23 dBm for the USA, and 20 dBm for all the 708

other considered countries. 709

Figure 7 shows that in the 2.4 GHz band, a Tx 710

power of 20 dBm leads to significantly lower expo- 711

sure than a Tx power higher than 30 dBm. There- 712

fore, this regulation clearly impacts population ex- 713

posure. Surprisingly, when we observe the exposure 714

for the 5.3 GHz band, we have the opposite result: 715

a Tx power of 20 dBm leads to significantly higher 716

exposure than a Tx power over 23 dBm. 717

We can explain this seemingly contradictory result. 718

Unlike regulations for cellular, regulations for Wi-Fi 719

limit the Tx power; therefore, it is not surprising 720

to see that Tx power impacts population exposure. 721

When the difference in Tx power is large (a mini- 722

mum of 10 dB between the two groups in the 2.4 GHz 723

band), the Tx power dominates the other factors that 724

affect population exposure. However, when the dif- 725

ference in the Tx power is small (a maximum of 4 dB 726

for the 5.3 GHz band), other factors dominate the 727

population’s exposure. Indeed, as the attenuation in- 728

creases with the frequency (see Equation 1), a small 729

4 dB difference in the Tx power will have a marginal 730

impact on the total exposure compared to, for in- 731

stance, the deployment and density of Wi-Fi access 732

points per country. 733

In summary, the impact of Wi-Fi regulation on 734

population exposure depends not only on the Tx 735

power, but also on the frequency bands. It is worth 736

noting that the goal of this regulation is to limit in- 737

terference rather than population exposure. 738
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3.4. The population is most exposed at home739

User location is also a factor that may affect per-740

sonal exposure. In the following, we focus on two741

location categories: at-home and out-of-home. The742

rationale is that, according to the results reported in743

the previous sections, Wi-Fi is the greatest contribu-744

tor to total exposure. We hypothesize that users are745

more exposed at home because most users have Wi-746

Fi at home3 and are closer to their router than would747

be the case in other environments. The goal of this748

section is to explore the difference between at-home749

and out-of-home exposure.750

To cluster measurements according to the user lo-751

cation, we need users with a large enough number of752

measurements to identify the home location; we call753

them dense users. More precisely, when we compute754

the per-user monthly average exposure, we only keep755

users with at least 14 days of data in that month and756

at least 80% hourly sampling density. To calculate757

sampling density, we count the number of hours be-758

tween the first and last day we see a user in a given759

month. An 80% hourly sampling density means that760

the user has at least one exposure scan for 80% of the761

counted hours. In our entire dataset, we have 22,907762

dense users, which is 9% of all users.763

Finally, we use the DBSCAN algorithm [45] (ε764

= 100 meters, minPts = 24, distance = haversine)765

on the GPS coordinates of the dense users for each766

month, independently. We label the cluster that767

most frequently appears between 10PM and 8AM as768

the home cluster. All the other clusters are labeled769

”out-of-home”. Therefore, out-of-home gathers to-770

gether all other indoor and outdoor locations, includ-771

ing those frequented for work, transportation, etc.772

Figure 8 shows that users at home are significantly773

less exposed to cellular radiation. The main reason774

is that cellular antennas are outside, so walls atten-775

uate the radiation. Conversely, exposure to Wi-Fi776

is more important at home than out-of-home. Here,777

the increased adoption of Wi-Fi technology at home778

3According to the US Census Bureau, 81% of USA house-
holds had internet access in 2016 [43]. In 2019, more than
80% of the households in the European countries included in
our study had internet access, with 83% coverage in France
and 98% in the Netherlands) [44].
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Figure 8: The mean exposure is significantly lower at
home for cellular (-1.19 dB) and higher at home for
Wi-Fi (+1.55 dB). This figure shows the distribution of the
per-user monthly average exposure for dense users when they
are at home (in green) and out-of-home (in blue) for Bluetooth,
Cellular, and Wi-Fi sources. In the boxplots, the middle or-
ange line shows the median, the lower and higher hinges show
the first and third quartiles, respectively, and the lower and
higher whiskers show a limit of 1.5x the interquartile range
from the lower and higher hinges, respectively. The red dots
and labels show the mean exposure. We performed a permu-
tation test (N=1,000,000) between at-home and out-of-home
for each of the three types of sources. We obtained a two-sided
p < 0.001 for Wi-Fi and Cellular, and a two-sided p = 0.09 for
Bluetooth.

is a reasonable explanation. We computed how many 779

hours (per month) each dense user is connected to a 780

Wi-Fi source at home and out-of-home. We found 781

that half of the users (median) are connected 91% of 782

the time at home, and 29% of the time out-of-home. 783

Finally, we found that the difference of exposure to 784

Bluetooth between at-home and out-of-home is not 785

significant. 786

In summary, user location has a significant impact 787

on exposure. In particular, users are more exposed 788

to Wi-Fi at home. As they are largely connected to 789

Wi-Fi at home, we further conclude that personal Wi- 790

Fi routers are the most significant factor in at-home 791

exposure. 792

4. Discussion 793

Understanding the potential human health impacts 794

of exposure to radio frequencies is a long journey. An 795

important challenge in performing sound epidemio- 796

logical studies is the complexity of characterizing the 797

real exposure of the population. The methods and 798

dataset we present here offer the first analysis of the 799
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evolution of radio frequency exposure at population-800

scale for 13 countries over four years. This change of801

paradigm from previous small-scale studies has direct802

consequences for the current debate on population803

exposure and the impact of this exposure on health.804

The Council of Europe, following the principle of805

precaution, has called for an As Low As Reasonably806

Achievable (ALARA) rule [46]. In line with this prin-807

ciple, one proposal is to reduce exposure levels as808

low as 0.6 V/m and even 0.2 V/m in the medium809

term. The debate currently includes proponents, who810

see ALARA as a necessary drastic reduction to curb811

the current level of exposure, and cellular operators,812

who oppose ALARA by arguing that it would impede813

the deployment of communication infrastructure, and814

thus, eventually, access. We reveal that for the vast815

majority of the population, exposure is already be-816

low the lowest ALARA level. However, reducing the817

current regulation levels would still benefit the small818

fraction of the population that is currently more ex-819

posed than recommended by the ALARA rule.820

Our work also fundamentally changes the debate821

on frequency exposure, currently heavily centered on822

the regulation of cellular operators. Not only do we823

show that Wi-Fi is by far the largest contributor824

to population exposure, but also that a few sets of825

sources, namely those used by individuals and those826

present at home, are the key contributors. Offering827

tools for individuals to prevent unnecessary exposure828

at home, or working on technology that automatically829

reduces exposure are just some examples of short and830

medium term ways to expand the precautionary prin-831

ciple. Such approaches have not yet received the at-832

tention that they deserve.833

Beyond these direct implications, we envision our834

work and dataset providing a foundation for future835

epidemiological studies.836
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