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Abstract

Let G and H be respectively a graph and a hypergraph defined on a same set of vertices, and let F be
a graph. We say that G F -overlays a hyperedge S of H if the subgraph of G induced by S contains F as
a spanning subgraph, and that G F -overlays H if it F -overlays every hyperedge of H. For a fixed graph
F and a fixed integer k, the problem (∆ ≤ k)-F -Overlay consists in deciding whether there exists a
graph with maximum degree at most k that F -overlays a given hypergraph H. In this paper, we prove
that for any graph F which is neither complete nor anticomplete, there exists an integer np(F ) such that
(∆ ≤ k)-F -Overlay is NP-complete for all k ≥ np(F ).

1 Introduction
In order to obtain the low resolution structure of molecule-macro assemblies the following problem arises :
given a list of complexes, determine the plausible contacts between subunits of an assembly. A convenient
way of modelling this uses graphs and hypergraphs: we are given a hypergraph H whose vertices represent
the subunits and whose hyperedges represents complexes; the aim is then to find a graph G on the same
vertex set whose edges represent contacts between subunits and satisfying some properties.

One of the properties is that the subgraph of G induced by each hyperedge must belong to a family F
of admissible graphs. Precisely, a graph G F-overlays a hyperedge S if there exists F ∈ F such that F
is a spanning subgraph of G[S], and G F-overlays H if G F-overlays every hyperedge of H. In a typical
example, the family F is the set of trees (or equivalently connected graphs) and the goal is to minimize the
number of edges in G. This was studied by Agarwal et al. [1] in the aforementioned context of structural
biology, but also by several authors for various applications like the design of vacuum systems [6, 7], scalable
overlay networks [4, 13], and reconfigurable interconnection networks [8, 9]. Some variants have also been
considered in the contexts of inferring a most likely social network [2], determining winners of combinatorial
auctions [5], as well as drawing hypergraphs [3, 12].

Motivated by the fact that a subunit (e.g. a protein) cannot be connected to many other subunits, Havet
et al. [10] studied the problem in which the sought graph G must have bounded maximum degree. Therefore
they introduced the following problem where F is a fixed family of graphs, k a fixed integer and ∆(G)
denotes the maximum degree of G.

(∆ ≤ k)-F-Overlay
Input: A hypergraph H.
Question: Does there exist a graph G F-overlaying H such that ∆(G) ≤ k ?

They studied the complexity of this problem and the associated maximization problem (∆ ≤ k)-F-
Overlay and Max (∆ ≤ k)-F-Overlay which, given a hypergraph H and an integer p, consists in
deciding whether or not there exists a graph G of maximum degree at most k and F -overlays at least p
hyperedges of H. Special attention was paid to the particular case when the family F contains a unique
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graph F and H is then an |F |-uniform hypergraph (i.e. every hyperedge has |F | vertices). In this case,
we abbreviate {F}-overlay into F -overlay, and (∆ ≤ k)-{F}-Overlay into (∆ ≤ k)-F -Overlay. For
convenience, a graph F -overlaying H and with maximum degree at most k is called an (F,H, k)-graph.
Examples of (F,H, k)-graphs are given in Figure 1 when F is O3 or P3, the graphs with three vertices and
respectively one edge and two edges.

1 2 3

4 5 6

7

Figure 1: A hypergraph H (left), an (O3, H, 1)-graph (middle) and a (P3, H, 3)-graph(right).

Observe that if F is a graph with maximum degree greater than k, then solving (∆ ≤ k)-F -Overlay
or Max (∆ ≤ k)-F -Overlay is trivial as the answer is always ‘No’. Havet et al. [10] proved a complete
polynomial/NP-complete dichotomy for Max (∆ ≤ k)-F-Overlay depending on the pairs (F, k). They
proved that, except in a few exceptions, Max (∆ ≤ k)-F -Overlay is NP-complete if and only if ∆(F ) ≤ k.
The exceptions are when F is either an anticomplete graph Kp or the complete graph on two vertices K2 in
which case Max (∆ ≤ k)-F -Overlay is always polynomial-time solvable, or when F is the graph O3 with
three vertices and one edge and k = 1 with Max (∆ ≤ 1)-O3-Overlay being polynomial-time solvable.

Regarding (∆ ≤ k)-F -Overlay, establishing such a dichotomy seems more complicated. Indeed, Havet
et al. [10] showed several pairs (F, k) (with ∆(F ) ≤ k) such that (∆ ≤ k)-F -Overlay is polynomial-time
and some such that (∆ ≤ k)-F -Overlay is NP-complete, and posed the following problem.

Problem 1 (Havet et al. [10]). Characterize the pairs (F, k) for which (∆ ≤ k)-F -Overlay is polynomial-
time solvable and those for which it is NP-complete.

In order to attack this problem, they propose the following conjecture.

Conjecture 2 (Havet et al. [10]). If (∆ ≤ k)-F -Overlay is NP-complete, then (∆ ≤ k + 1)-F -Overlay
is also NP-complete.

In this paper, we give some partial answers to Problem 1 and some evidences for Conjecture 2. We prove
that except when F is complete or anticomplete, if k is large enough (with respect to F ), then (∆ ≤ k)-
F -Overlay is NP-complete. Recall that a graph is complete (resp. anticomplete) if its vertices are
pairwise adjacent (resp. non-adjacent). The complete (resp. anticomplete) graph on p vertices is denoted
by Kp (resp. Kp).

We define np(F ) as the minimum integer k0 such that (∆ ≤ k)-F -Overlay is NP-complete for all k ≥ k0
or +∞ if no such k0 exists. The aim of this article is to prove the following theorem.

Theorem 3. np(F ) = +∞ if and only if F is complete or anticomplete.

Let H be a p-uniform hypergraph. The anticomplete graph on V (H) vertices Kp-overlays H. Thus, for
any non-negative integer k, the answer to (∆ ≤ k)-Kp-Overlay is always affirmative, and so this problem
can be trivially solved in polynomial time. Thus np(Kp) = +∞ for all positive integer p.

If Kp is complete, then let G be the graph with vertex V (H) in which two vertices are adjacent if and
only if they belong to a same hyperedge of H. Obviously, a graph Kp-overlays H if and only if it contains G
as a subgraph. Hence, to solve (∆ ≤ k)-Kp-Overlay it suffices to build G and to check whether ∆(G) ≤ k,
which can be done in polynomial time. Thus np(Kp) = +∞ for all positive integer p.

Therefore to prove Theorem 3, it only remains to prove its sufficiency part, which is the following theorem.

Theorem 4. If F is neither a complete graph nor an anticomplete graph, then np(F ) < +∞.
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A possibility to prove this theorem would be to prove Conjecture 2 and that, for every graph F which is
not complete, there exists k such that (∆ ≤ k)-F -Overlay is NP-complete. Unfortunately, we do not prove
Conjecture 2. However, first show in Corollary 10 that it is sufficient to prove Theorem 4 for F with no
isolated vertices. We then establish a weaker statement than Conjecture 2 for such graphs: in Lemma 12 we
show that, for a graph F with no isolated vertices, as soon as there exists k such that (∆ ≤ k)-F -Overlay
is NP-complete, then np(F ) < +∞. This lemma, together with the following theorem, directly implies
Theorem 4.

Theorem 5. Let F be a graph with no isolated vertex and which is not complete. There exists k such that
(∆ ≤ k)-F -Overlay is NP-complete.

In Section 4, we first prove Theorem 5 when F belongs to some particular classes of graphs : F is
regular (Theorem 13), and F is a complete graph minus an edge, denoted by K− (Theorem 14) and
F is a disjoint union of the complete bipartite graph Ka,a+1 (Theorem 15). Then, in Section 5,
we prove Theorem 5 in full. Its proof requires the previously established particular cases and uses the
techniques introduced in proving them. Finally, in Section 6, we give some final remarks and present some
open questions for further research.

Remark 6. In all the paper, our aim is to prove that (∆ ≤ k)-F -Overlay is NP-complete under some
assumptions on k and F . Observe that, given an graph G, we can easily check whether G F -overlays H or
not in polynomial-time solvable, thus the problem is clearly in NP. Therefore, we only need to prove that
the problem is NP-hard.

All our NP-hardness proofs are reductions from either (3,4)-Sat or 3-Colorability of 4-regular graphs.
In (3, 4)-Sat, an instance is a set of clauses, each of which being a conjuction of three literals on variables,

such that every variable appears in at most 4 clauses; the problem consists in deciding whether there is a
truth assignment to the variables such that every clause is satisified. (3,4)-Sat has been proved NP-complete
by Tovey [14].

3-Colorability consists in deciding whether a given graph admits a proper 3-coloring. It has been
proved NP-complete for 4-regular graphs by Holyer [11].

2 Notations and definitions
For a positive integer p, let [p] = {1, . . . , p}.

2.1 Graphs
Let G be graph. We denote by V (G) and E(G) its sets of vertices and edges, respectively. The neighbor-
hood of a vertex v, denoted by NG(v), or simply N(v) when G is clear from the context, is the set of vertices
adjacent to v and its degree, denoted by dG(v) or simply d(v), is the cardinality of NG(v). A vertex is
isolated in G if it has degree 0. The minimum and maximum degree of G are respectively denoted by δ(G)
and ∆(G). Hence a graph F has no isolated vertices if and only if δ(F ) ≥ 1. We denote by Vi (resp. V≤i,
V≥i) the set of vertices of G that has degree exactly (resp. at most, at least) i in G.

For S ⊆ V (G), the subgraph induced by S, denoted by G[S], is the graph with vertex set S and edge
set {uv | u ∈ S, v ∈ S and uv ∈ E(G)}.

The degree sequence of a graph F is the non-decreasing sequence d = {d1, d2, . . . , dp} such that there
exists an ordering (v1, . . . , vp) of the vertices of F such that d(vi) = di for all i ∈ [p]. We denote by
λ1 < λ2 < · · · < λt the different values of d (that are the integers λ in which there exists j such that dj = λ).
We also denote by αi the multiplicity or number of occurrences of λi in d : αi = |{j | dj = λi}|. Observe
that d1 = λ1 = δ(F ) and dp = λt = ∆(F ).

We denote by Pt the path on t vertices.
We denote by G1 +G2 the disjoint union of the two graphs G1 and G2.
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2.2 Hypergraphs
Let H be a hypergraph. We denote by V (H) and E(H) its sets of vertices and hyperedges (a hyperedge is
a subset of vertices of V (H)), respectively.
A hypergraph is p-uniform for some p ∈ N, if all its hyperedge have exactly p vertices. Observe that
(∆ ≤ k)-F -Overlay only makes sense for |V (F )|-uniform hypergraphs. Therefore in the paper, we only
work with hypergraphs that are uniform, often without specifying it.

In a hypergraph H, a hyperedge S is pendant at a vertex x, if S is the unique hyperedge containing v
for all v ∈ S \ {x}.

Let F be a graph, H a hypergraph, and G a graph F -overlaying H. For each hyperedge S ∈ E(H), one
can choose a copy FS of F which is a subgraph of G[S]. We then say that v is a λ-vertex in S if v has
degree λ in FS . If H ′ is a sub-hypergraph of H (typically a gadget in an NP-hardness proof), we denote by
abbreviate G[V (H ′)] into G[H ′]. We also say that G has degree d in H ′ if it has degree d in G[H ′].

3 Reduction to Theorem 5

3.1 Graphs with isolated vertices
Lemma 7. Let F be a graph. If (∆ ≤ k)-F -Overlay is NP-complete, then (∆ ≤ k)-(F +K1)-Overlay is
also NP-complete.

Proof. We shall give a reduction from (∆ ≤ k)-F -Overlay to (∆ ≤ k)-(F +K1)-Overlay.
Let d be the (non-decreasing) degree sequence of F , and let λ+ be the first non-zero value in this sequence.
(λ+ = λ1 if F has no isolated vertex, and λ+ = λ2 otherwise.)
Let H be an |F |-uniform hypergraph. We construct an (|F |+ 1)-uniform hypergraph H ′ as follows.

- Let H1, . . . ,Ht be t = b kλ+ c|E(H)|+ 1 disjoint copies of H. We add V (Hi) to V (H ′) for all i ∈ [t].
- For any S ∈ E(H), we add a new vertex vS to V (H ′). For all i ∈ [t], denoting by Si the copy of S in
Hi, we add the hyperedge S′i = Si ∪ {vS} to H ′.

We shall prove that there is an (F,H, k)-graph G if and only if there exists an (F +K1, H
′, k)-graph G′.

Assume first that there is an (F,H, k)-graph. We build a graph G′ by taking G′[Hi] = G for any i ∈ [t].
Observe that G′[S′i] is (F +K1)-overlaid since G[Si] is F -overlaid and vS is an isolated vertex. Furthermore
G′ has at most degree k. Thus, G′ is an (F +K1, H

′, k)-graph.
Conversely, assume that there exists an (F +K1, H

′, k)-graph G′. We will prove that there exists a copy
Hi of H such that G′[Hi] is an (F,H, k)-graph. Observe that, for any S ∈ E(H), the vertex vS is either
isolated or has degree at least λ+ in each G′[S′i] for i ∈ [t]. Thus, vS is not a 0-vertex in at most b kλ+ c
hyperedges. Since there are |E(H)| such vertices, there exists a copy Hi of H such that for any S ∈ E(H),
vS is a 0-vertex in all hyperedges G′[S′i]. Thus G′[Hi] is an (F,H, k)-graph.

Applying the lemma several times, we get the following.

Corollary 8. Let F be a graph and q a positive integer. If (∆ ≤ k)-F -Overlay is NP-complete, then
(∆ ≤ k)-(F +Kq)-Overlay is also NP-complete. Hence np(F +Kq) ≤ np(F ).

The family of graphs with isolated vertices to which this result does not apply is Kp + Kq because
(∆ ≤ k)-Kp-Overlay is in P. We then need the following.

Theorem 9. np(Kp +K1) ≤ 2p− 2 for all p ≥ 2.

Proof. Let p ≥ 2 and k ≥ 2p− 2. Let q and r be the integers such that k = (p− 1)q + r with 0 ≤ r < p− 1.
Note that q ≥ 2 since k ≥ 2(p− 1).

We shall prove that (∆ ≤ k)-(Kp+K1)-Overlay is NP-complete with a reduction from 3-Colorability
on 4-regular graphs.

We need the following gadget. Let u be a vertex. A (p − 1)-gagdget at u is the hypergraph Hu

constructed as follows. The vertex set of Hu is the disjoint union of {u, v} and q + 1 sets U1, . . . , Uq+1 of
p− 1 vertices, and its hyperedges are {u, v} ∪ Ui for i ∈ [q + 1].
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Claim 9.1. Let Hu be a (p− 1)-gadget at u.
(i) u has degree at least p− 1 in every (Kp +K1, Hu, k)-graph.
(ii) There is a (Kp +K1, Hu, k)-graph in which u has degree p− 1.

Proof of Claim. (i) Let Gu be a (Kp +K1, Hu, k)-graph. Assume for a contradiction that u has degree less
than p− 1 in Gu. Then u must be a 0-vertex in each Si, i ∈ [q + 1]. Hence v must be adjacent to the p− 1
vertices of Ui in each Si. Thus v as degree at least (p− 1)(q + 1) > k in Gu, a contradiction.

(ii) For i ∈ [q], let Fi be a copy of Kp +K1 in which u is isolated, and let Fq+1 be a copy of Kp +K1 in
which v is isolated, and let Gu =

⋃
i∈[q+1] Fi. Clearly, Gu (Kp +K1)-overlays Hu, v has degree q(p− 1) ≤ k

in Gu and u has degree p− 1 in Gu. So Gu is the desired (Kp +K1, Hu, k)-graph. ♦

Given a 4-regular graph G, we build a p-uniform hypergraph H as follows.

cv

c1v
c2v

c3v

civ

aiv biv

li,1v li,2v li,3v li,4v

civ

aiv biv

Yciv

Figure 2: Constructing the hypergraph H. Left : the vertex gadget V Gv. At each civ of this gadget, we
add a binary tree (center). Each pair of edges joining a vertex x to its two children in this tree is replaced
by an x-edge-gadget. For example, the two red edges civaiv and civaiv are replaced by the civ-edge-gadget to
the right.

• For each vertex v ∈ V (G), we create a vertex gadget V Gv with three hyperedges Siv = {cv, civ}∪Xi
v for

i ∈ [3] where |Xi
v| = p− 2. We add q− 2 (p− 1)-gadgets at cv. We say that Siv is the parent hyperedge

of civ for each i ∈ [3].
• For each vertex v and each i ∈ [3], we construct a color gadget CGiv for i ∈ [3] as follows.

– We create a binary tree T iv with vertex set {civ, aiv, biv, `i,1v , `i,2v , `i,3v , `i,4v } and edge set
{civaiv, civbiv, aiv`i,1v , aiv`

i,2
v , biv`

i,3
v , biv`

i,4
v }, rooted at civ. In this tree, aiv and biv are the children of civ,

`i,1v and `i,2v are the children of aiv, and `i,3v and `i,4v are the children of biv.
– For any vertex x ∈ {civ, aiv, biv}, let y1, y2 be its children in T iv, and let e1 = xy1, e2 = xy2. We

construct an x-edge-gadget as follows: we add a set Yx of p − 2 new vertices, the hyperedges
S(e1) = {x, y1}∪Yx and S(e2) = {x, y2}∪Yx. For convenience, we say that S(xy1) (resp. S(xy2))
is the parent hyperedge of y1 (resp. y2). Moreover, for any leaf `i,jv , we denote by Si,jv the hyperedge
containing the vertex `i,jv . We then add q − 1 (p− 1)-gadgets at x.

• For every vertex v ∈ V (G), let e1v, e2v, e3v, e4v, be an ordering of the edges incident to v. For each edge
uv ∈ E(G), let ju and jv be the indices such that uv = ejuu = ejvv . Then, for all i ∈ [3], we identify the
vertices `i,juu and `i,jvv and we add q − 1 (p− 1)-gadgets at this vertex.

Let us now prove that there is a proper 3-coloring of G if and only if there is a (Kp +K1, H, k)-graph G∗.
Assume first that there is a (Kp +K1, H, k)-graph G∗.

Let v ∈ V (G). By Claim 9.1 (i), the vertex cv has degree at least p − 1 in each of its (p − 1)-gadgets. So
it has at most 2(p − 1) + r neighbours in S1

v ∪ S2
v ∪ S3

v . But those hyperedges pairwise intersect in {cv}.
Thus there is i ∈ [3] such that cv is a 0-vertex in Siv. Since there is only one 0-vertex in Siv, civ must be a
(p− 1)-vertex in Siv. Therefore, we can define a 3-coloring φ by φ(v) = i where i is an index such that civ is
a (p− 1)-vertex in Siv. Let us now prove that φ is proper. We need the following claim.

Claim 9.2. Let v ∈ V (G) and i ∈ [3]. If civ is a (p − 1)-vertex in Siv, then so is the leaf `i,jv in Si,jv for all
j ∈ [4].

Proof of Claim. It suffices to prove that for any x ∈ {civ, biv, aiv}, if x is a (p − 1)-vertex in its parent
hyperedge, then so are both y1, y2 in their parent hyperedges.
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Assume that x is a (p − 1)-vertex in its parent hyperedge. Since x has degree at least p − 1 in each of
its (p − 1)-gadgets by Claim 9.1 (i), it has at most r neighbors in S(xy1) ∪ S(xy2). It implies that x is a
0-vertex in both S(xy1), S(xy2). Hence, the vertex y1 (resp. y2) must be a (p − 1)-vertex in S(xy1) (resp.
S(xy2)). ♦

Consider an edge uv ∈ E(G), i ∈ [3]. By Claim 9.1 (i), the vertex ` = `i,juu = `i,jvv has degree at least
p−1 in each of its q−1 (p−1)-gadgets. Thus it has at most (p−1) + r neighbors in Si,juu ∪Si,jvv . As ` is the
unique common vertex of Si,juu and Si,jvv , it is a (p− 1)-vertex in at most one of those. Hence, by Claim 9.2,
at most one of ciu, civ is a (p− 1)-vertex in its parent hyperedge. Thus at most one of u, v is colored i by φ.
Therefore, φ is a proper 3-coloring of G.

Conversely, let φ be a proper 3-coloring of G. We construct a graph G∗ as follows.
• For any vertex gadget V Gv, i ∈ [3], let G∗[Siv] be a copy of Kp +K1 in which every vertex in Xi

v is a
(p− 1)-vertex, and cv is a 0-vertex (resp. (p− 1)-vertex) and civ is a (p− 1)-vertex (resp. 0-vertex) in
Siv if φ(v) = i (resp. φ(v) 6= i).

• In every color gadget CGiv, for x ∈ {civ, biv, aiv} with children y1 and y2, let G∗[S(xy1)] and G∗[S(xy2)]
be two similar copies of Kp +K1 such that:
– if i 6= φ(v), then x has degree p − 1 in G∗[S(xy1)] and G∗[S(xy2)]; y1 and y2 are 0-vertices in
S(xy1) and S(xy2) respectively (so x has degree p− 1 in G∗[S(xy1) ∪ S(xy2)]).

– if i = φ(v), then x has degree 0 in G∗[S(xy1)] and G∗[S(xy2)]; y1 and y2 are (p − 1)-vertices in
S(xy1) and S(xy2) respectively (so x has degree at most p− 1 in G∗[S(xy1) ∪ S(xy2)]).

– every vertex in Yx is a p − 1 vertex in both S(xy1) and S(xy2) and so has degree at most p in
G∗[S(xy1) ∪ S(xy2)];

• For any (p − 1)-gadget Hx at vertex some x, we let G∗[Hx] be a (Kp + K1, Hx, k)-graph in which v
has degree p− 1. Such a copy exists by Claim 9.1 (ii).

By construction, G∗ (Kp +K1)-overlays H. Let us check that ∆(G∗) ≤ k. Let u be a vertex of G∗.
- If u is in at most two hyperedges (in particular, if u is in Xi

v or u is in Yx for x internal vertex in some
T iv or u is only in a (p− 1)-gadget), then u has degree at most 2(p− 1), and so at most k.

- Assume now that u ∈ {civ, aiv, biv} for i ∈ [3] with u parent of y1, y2. Then u has degree p − 1 in
each of its q − 2 (p − 1)-gadgets. Moreover if i = φ(v) (resp. i 6= φ(v)), then u has degree p − 1
(resp. 0) in its parent hyperedge and p − 1 (resp. 0) in G∗[S1

uy1 ∪ S1
uy2 ]. Hence u has degree at most

(q − 1)(p− 1) + (p− 1) = q(p− 1) ≤ k.
- Assume that u is the identification of `i,jvv and `i,iww for an edge vw ∈ E(G). First, u has degree p− 1
in each of its q−1 (p−1)-gadgets. Moreover, since either φ(v) 6= i or φ(w) 6= i, then u has degree p−1
in at most one of Si,jvv , Si,jww and 0 in the other. Therefore, u has degree at most q(p− 1) ≤ k in G∗.

Consequently, G∗ is a (Kp +K1, H, k)-graph.

Corollary 8 and Theorem 9 directly imply the following.

Corollary 10. Theorem 4 holds if and only if it holds for graphs with no isolated vertices.

3.2 Reduction to Theorem 5
By Corollary 10, one can restrict our study to graphs F with δ(F ) ≥ 1. We shall now prove that for such
an F , we have np(F ) ≤ +∞ as soon as there is some k for which (∆ ≤ k)-F -Overlay is NP-complete. To
prove this, we introduce the notion of degree-gadget that will be useful in almost all the following proofs.

Let F be graph with δ(F ) ≥ 1. For any integer d ≥ λ1, a d-degree-gadget (with respect to F ) at vertex
v, is the subgraph D(d, v) defined as follows. Let α = bd/λ1c and β = d− αλ1. If β = 0, then D(d, v) is the
union of α pendant hyperedges at v. If β ≥ 1, then D(d, v) is the union of α − 1 pendant hyperedges at v
and two hyperedges which intersect in I ∪ {v} where I is a set of λ1 − β vertices. (See Figure 3).

Degree-gadgets are useful because of the following proposition whose easy proof is left to the reader.

Proposition 11. Let F be graph with δ(F ) ≥ 1. Then for any d ≥ λ1, we have the following.
(i) In any graph G that F -overlays D(d, v), vertex v has degree at least d.
(ii) There is a graph Gv that F -overlays D(d, v) in which v has degree exactly d, and every other vertex

has degree at most ∆(F ) if δ(F ) divides d (i.e. β = 0) and at most 2∆(F )− 1 otherwise.
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v

Sα−1

S1

I

Figure 3: A d-degree-gadget D at vertex v. The set I 6= ∅ is the intersection of the two blue hyperedges.
β 6= 0 when I is different from these two hyperedges; and β = 0 when I and the two blue hyperedges are
equal.

Lemma 12. Let F be a graph with δ(F ) ≥ 1. Assume that (∆ ≤ k0)-F -Overlay is NP-complete.
(i) If δ(F ) = 1, then np(F ) ≤ k0.
(ii) np(F ) ≤ max{k0 + δ(F ), 2∆(F )− 1}.

Proof. Observe that k0 ≥ ∆(F ), because (∆ ≤ k)-F -Overlay is trivially polynomial-time solvable for every
k < ∆(F ).

(i) Let k > k0. We shall prove that (∆ ≤ k)-F -Overlay is NP-complete. We give a reduction from
(∆ ≤ k0)-F -Overlay. Let H0 be an |F |-uniform hypergraph. Let H be the hypergraph obtained from H0

by adding a (k − k0)-degree-gadget DGv on every vertex v. Such a degree-gadget exists because k − k0 ≥
1 = δ(F ). Let us prove that there is an (F,H0, k0)-graph G0 if and only if there exists an (F,H, k)-graph G.

Assume there is an (F,H0, k0)-graph G0. By Proposition 11-(ii), for every v ∈ V (H0), there is a graph
Gv that F -overlays DGv, in which v has degree k−k0, and every other vertex as degree at most ∆(F ) ≤ k0.
Consider G = G0 ∪

⋃
v∈V (H0)

Gv. Clearly, G is an (F,H, k)-graph.
Conversely, assume that there is an (F,H, k)-graph G. By Proposition 11-(i), every vertex v of V (H0)

has degree at least k − k0 in DGv. Thus it has degree at most k0 in G[H0]. Therefore, G[H0] is an
(F,H0, k0)-graph.

(ii) The proof is identical to (i). Taking k ≥ max{k0 + δ(F ), 2∆(F ) − 1} and using the same reduction
as above we get that (∆ ≤ k)-F -Overlay is NP-complete. Note that (k− k0)-degree-gadgets exist because
k − k0 ≥ δ(F ).

By this lemma, in order to prove that np(F ) is bounded, it suffices to prove that there exists k0 such
that (∆ ≤ k0)-F -Overlay is NP-complete.

4 Particular cases
In this section, we prove the NP-completeness of (∆ ≤ k)-F -Overlay for pairs (F, k) where F is either a
regular graph, or a complete graph minus an edge K−p (i.e. it is obtained by removing an edge from
Kp) or a disjoint union of the complete bipartite graph Ka,a+1, and k is an integer (depending on F ).

4.1 Regular graphs
Theorem 13. Let λ be a positive integer, and let F be a λ-regular graph which is not complete.

Then (∆ ≤ 6λ− 1)-F -Overlay is NP-complete.

Proof. Set p = |F |. Since F is not complete, we have p > λ+ 1.
We give a reduction from (3,4)-Sat to (∆ ≤ 6λ− 1)-F -Overlay.
Given a formula Φ of (3,4)-Sat with n variables xt, t ∈ [n], and m clauses Cj , j ∈ [m], we construct a

p-uniform hypergraph H as follows.
• For each variable xt, we construct a variable gadget Ht as follows. We first create a center vertex
wt, a set of 4p − 4 vertices Ut = {u1t , . . . , u4p−4t }, and 4p − 4 hyperedges Sjt = {wt, ujt , . . . , uj+p−2t }
(superscripts are modulo 4) for j ∈ [4p − 4]. We then add a (2λ − 1)-degree-gadget at wt and a 4λ-
degree-gadget on each u(p−1)i−jt for any i ∈ [4] and j ∈ [λ − 1]. For r ∈ [4] let xrt = u

r(p−1)−p+2
t and
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x̄rt = u
r(p−1)−p+3
t . Set Xt = {x1t , x2t , x3t , x4t} and Xt = {x̄1t , x̄2t , x̄3t , x̄4t}. The vertices of Xt (resp. Xt)

are called the non-negated (resp. negated) literal vertices of Ht. See Figure 4.

x1t
x̄1t

λ− 1

x2t

x̄2t

λ− 1

x3tx̄3t

λ− 1

x4t

x̄4t

λ− 1

wt

Figure 4: The variable gadget Ht. The center vertex wt is in a (2λ − 1)-degree-gadget. There are four
sets of λ− 1 vertices (in black), each of which is adjacent to the center vertex wt and in a 4λ-degree-gadget.
Blue and red vertices are respectively non-negated and negated literal vertices.

• For each clause Cj = (`1 ∨ `2 ∨ `3) we identify y1, y2, y3 into a clause vertex cj , where yi = xrt if `i = xt
and `i is the r-th occurrence of xt, and yi = x̄rt if `i = x̄t and is the r-th occurrence of xt.

We will prove that there exists an assignment φ satisfying Φ if and only if there is an (F,H, 6λ−1)-graph
G. The general idea is that a variable xt = true (resp. false) if and only if the vertices of Xt (resp. Xt)
have degree 2λ− 1 in G[Ht] and so they are adjacent to the center vertex while the ones of the other set are
not.

Assume that there exists a truth assignment φ satisfying Φ. Let G be the graph obtained as follows.
For each t ∈ [n], let (v0, v1, . . . , vp−1) be an ordering of V (F ) such thatNF (v0) = {vp−λ+1, . . . , vp−1}∪{v1}

if φ(xt) = true and NF (v0) = {vp−λ+1, . . . , vp−1}∪{v2} if φ(xt) = false. For every j ∈ [4p−4], we let G[Sjt ]
be the copy of F in which wt corresponds to v0 and uit for i ∈ {j, . . . , j + p − 1} corresponds to the vertex
vi′ such that i ≡ i′ mod (p− 1). Observe that each uit corresponds to the same vertex of F in all the p− 1
copies of F induced by the Sjt to which it belongs. Therefore either uit is not adjacent to wt and it has 2λ
neighbors in G[Ht] or uit is adjacent to wt and it has 2λ−1 neighbors in G[Ht]. In particular, if φ(xt) = true
(resp. φ(xt) = false), then all vertices of Xt (resp. Xt) have degree 2λ− 1 in G[Ht] In addition, for every
d-degree-gadget D at some vertex v, we let G[D] be an (F,D, 6λ− 1)-graph in which v has degree d.

Let us check that every vertex has degree at most 6λ− 1 in G.
• Each center vertex wt has degree 2λ− 1 in its (2λ− 1)-degree-gadget and it is adjacent to 4λ vertices

in Ht, so 6λ− 1 in total.
• Every vertex in {u(p−1)i−jt | i ∈ [4] and j ∈ [λ − 1]} has 2λ − 1 neighbors in Ht and 4λ other in its

4λ-degree-gadget. Hence its total degree is 6λ− 1.
• Every vertex in Ut \ {u(p−1)i−jt | i ∈ [4] and j ∈ [λ − 1]} which is not identified in a clause vertex has

only neighbors in Ht and thus degree at most 2λ < 6λ− 1.
• Each clause vertex is the identification of three literal vertices which have degree 2λ or 2λ− 1 in their

variable gadgets. Moreover, at least one of the literals is true, so at least one of those vertices has only
2λ− 1 neighbors in its variable gadget. Hence its degree in G is at most 6λ− 1.

Hence, G is an (F,H, 6λ− 1)-graph.
Conversely, assume that G is an (F,H, 6λ− 1)-graph.

Consider a variable gadget Ht. The center vertex wt has degree at least 2λ− 1 in its (2λ− 1)-degree-gadget,
so it has at most 4λ neighbors in V (Ht). But wt has degree at least λ in each of the Sjt , and the hyperedges
Sjt , S

j+p−1
t , Sj+2p−2

t , Sj+3p−3
t pairwise intersect only in wt. So this vertex has exactly λ neighbors in each

of these sets, and so exactly λ neighbors in each Sjt . Furthermore, if ujt is adjacent to wt, then wt has λ− 1
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neighbors in {uj+1
t , . . . , uj+p−2t } and so uj+p−1t is adjacent to wt because S

j+1
t contains λ neighbors of wt.

In particular, the vertices of Xt (resp. Xt) are either all adjacent to wt or all non-adjacent to wt.
Now each of the λ−1 vertices in {up−r+2

t , . . . , up−1t } is in a 4λ-gadget in which it has degree 4λ. Therefore,
it has degree 2λ− 1 in G[Ht] and must be adjacent to wt. Hence at most one vertex in {x1t , x̄t1} is adjacent
to wt. Thus the vertices of Xt and those of Xt cannot be simultaneoulsy adjacent to wt.

Let φ be the truth assignment defined by φ(xt) = true if wt is adjacent to Xt, and φ(xt) = false
otherwise. In any clause vertex cj , we identified three literal vertices corresponding to the three literals. But
cj has degree at most 6λ−1, so there is at least one literal vertex having degree 2λ−1 in its variable gadget.
This implies that this literal is true. Therefore, φ satisfies Φ.

4.2 Complete graph minus an edge
Theorem 14. (∆ ≤ 3p− 1)-K−p -Overlay is NP-complete for all p ≥ 3.

Proof. Reduction from (3,4)-Sat. Given a formula Φ of (3,4)-Sat with variables xt, t ∈ [n] and clauses
Cj , j ∈ [m], we build a hypergraph H as follows.

• For each variable xt, we add a variable gadget Ht containing a center set Ct of size p − 2, a set Ut of
8 vertices Ut = {u1t , . . . , u8t}, and 8 hyperedges Sit = Ct ∪ {uit, ui+1

t } (superscripts are modulo 8) for
i ∈ [8]. Set Xt = {u2i−1t | i ∈ [4]} and Xt = {u2it | i ∈ [4]}. The vertices of Xt (resp. Xt) are called
the non-negated literal vertices (resp. negated literal vertices).

• For each clause Cj = (`1 ∨ `2 ∨ `3), we add a clause vertex cj in which, for each literal `i which is the
r-th occurrence of the variable xt, we identify u2r−1t (resp. u2rt ) if `i = xt (resp. `i = x̄t).

• In any center set Ct, if p = 3, in which case |Ct| = 1, we add a (2p− 2)-degree-gadget at the vertex of
Ct; if p ≥ 4, we add a (2p−4)-degree-gadget at max{0, 6−p} vertices of Ct and a (2p−5)-degree-gadget
at min{4, 2p− 8} vertices among the other ones.

We will show that there is an assignment φ satisfying Φ if and only there is a (K−p , H, 3p− 1)-graph G.

Assume that φ satisfies Φ, then we construct G as follows.
In a variable gadget Ht, for every i ∈ [8], we let G[Sit ] be a copy of K−p such that
- every vertex in Ct which is not in any degree-gadget is a (p−1)-vertex, and so is adjacent to all vertices
of Ht;

- if φ(xt) = true (resp. φ(xt) = false), then each vertex in Xt (resp. Xt) is a (p − 2)-vertex in
every hyperedge containing it and each vertex in Xt (resp. Xt) is a (p− 1)-vertex in every hyperedge
containing it.

- any vertex in Ct which is in a d-degree-gadget is adjacent to all vertices in Ht except p+5−(3p−1−d)
literal vertices in exactly one of the two sets Xt, Xt.

For any d-degree-gadget D at a vertex v, let G[D] be a (K−p , D, 3p− 1)-graph in which v has degree d.
Let us check that ∆(G) ≤ 3p− 1.

- Each vertex in Ct which is not in any degree-gadget is adjacent to all vertices of Ht. So it has degree
at most p+ 5 ≤ 3p− 1 in G.

- Each vertex in Ct which is in a d-degree-gadget has d neighbors in its degree-gadget and is adjacent
to 3p− 1− d vertices of Ht. So it has degree 3p− 1 in G.

- Any literal vertex which is not identified in any clause vertex has either p − 1 or p neighbors in its
variable gadget. Thus it has degree less than 3p− 1.

- Each clause vertex is the identification of three literal vertices. Each of those has degree either p−1 or
p in its variable gadget. Moreover at least one of the literals is true so its corresponding literal vertex
has degree p− 1 in its variable gadget. Therefore the clause vertex has degree at most 3p− 1.

- Any vertex which is in a degree-gadget but in no variable gadget belongs to at most two hyper-
edges.Thus it has degree at most 2(p− 1) < 3p− 1.

Hence, G is a (K−p , H, 3p− 1)-graph.

Conversely, assume that G is a (K−p , H, 3p−1)-graph. For every hyperedge S of H, let FS be a subgraph
of G[S] isomorphic to K−p .

Claim 14.1. For every t ∈ [n], we have the following:
(i) G[Ct] is complete.
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(i) There are exactly four non-edges between Xt∪Xt and Ct. Moreover, either each vertex of Xt is incident
to one of those non-edges, or each vertex of Xt is incident to one of those non-edges.

Proof of Claim. Assume that G[Ct] is not complete, then there is an edge uv 6∈ G[Ct] for u, v ∈ V (Ct). Since
all hyperedges of Ht are K−p -overlaid the edge uv is the only one missing in each subgraph G[Sit ], i ∈ [8].
Thus uit has degree p in G[Ht]. Therefore every vertex of Ct is adjacent to all vertices of Xt∪Xt. A vertex z
of Ct is in a d-degree-gadget with d ≥ 2p− 5 so it has at least 2p− 5 neighbors in this gadget. It is adjacent
to at least p − 3 vertices in Ct and the eight of Xt ∪Xt. So it has degree at least 3p, a contradiction.This
proves (i)

(ii) Consider a vertex of Ct that is in a (2p− 6 + i)-degree-gadget. It has degree at least (2p− 6 + i) in it
its gadget and p− 1 in Ct by (i). Hence it has at most 8− i neighbors in Xt ∪Xt and thus is non-adjacent
to i vertices in Xt ∪ Xt; Hence if p = 3 then the vertex of Ct is non-adjacent to four vertices in Xt ∪ Xt;
if p = 4, then two vertices of Ct are non-adjacent to two vertices in Xt ∪ Xt each; if p = 5, then the one
vertex of Ct non-adjacent to two vertices in Xt∪Xt, and two other vertices are non-adjacent to one vertex in
Xt ∪Xt each; if p ≥ 6, then four vertices of Ct are non-adjacent to one vertex in Xt ∪Xt each. In all cases,
there four non-edges between Xt ∪Xt and Ct. Now since every G[Sit ] has at most one non-edge, there are
exactly four non-edges between Xt ∪Xt and Ct, and each vertex of Xt is incident to one of those non-edges,
or each vertex of Xt is incident to one of those non-edges. This proves (ii). ♦

By Claim 14.1, we define a truth assignment φ by φ(xt) = true (resp. φ(xt) = false) if th four non-edges
between Xt ∪Xt and Ct are. incident to vertices of Xt (resp. Xt). Observe that a literal vertex has degree
p− 1 (resp. p) in Ht if its corresponding literal is true (resp. false).

A clause vertex cj is the identification of three literal vertices. Since it has degree at most 3p−1, then at
least one of those literal vertices has degree at most p−1 in its variable gadget. Thus this vertex corresponds
to a true literal in the clause Cj . Therefore, φ satisfies Φ.

4.3 Disjoint union of the complete bipartite graph Ka,a+1

In this section, we study on the family of disjoint union of the graph Ka,a+1. We aim to prove the following.

Theorem 15. Let rKa,a+1 be the disjoint union of r copies of Ka,a+1. Then np(rKa,a+1) ≤ 3a+ 5.

In order prove this theorem, we first prove Theorem 16 which show that np(Ka,a+1) ≤ 3a+ 5, and then
deduce it using Lemma 17.

Theorem 16. (∆ ≤ 3a+ 5)-Ka,a+1-Overlay is NP-complete.

Proof. Reduction from (3,4)-Sat. Given a formula Φ of (3,4)-Sat with variables xt, t ∈ [n] and clauses
Cj , j ∈ [m], we build a hypergraph H as follows.

• For each variable xt, we add a variable gadget Ht containing a set C1
t of size a, a set C2

t of size a−1 and
a set Ut of eight vertices Ut = {u1t , . . . , u8t}, and eight hyperedges Sit = C1

t ∪C2
t ∪{uit, ui+1

t } (superscripts
are modulo 8) for i ∈ [8]. Set Xt = {u1t , u3t , u5t , u7t} and Xt = {u2t , u4t , u6t , u8t}. The vertices of Xt (resp.
Xt) are called the non-negated literal vertices (resp. negated literal vertices).

• For each clause Cj = (`1 ∨ `2 ∨ `3), we add a clause vertex cj in which, for each literal `i which is the
rth occurrence of the variable xt, we identify u2r−1t (resp. u2rt ) if `i = xt (resp. `i = x̄t).

• We add degree-gadgets on some vertices:
– we add a (2a+ 2)-degree-gadget at each of vertices in C1

t .
– we add a (2a+ 1)-degree-gadget at each of vertices in C2

t .
We will show that there is an assignment φ satisfying Φ if and only there is a (Ka,a+1, H, 3a+ 5)-graph

G.

Assume that φ satisfies Φ, then we construct G as follows.
In a variable gadget Ht, for every i ∈ [8], we let G[Sit ] be a copy of Ka,a+1 such that

- every vertex in C1
t is an a-vertex and each vertex in C2

t is an (a + 1)-vertex (so G[Ct] is Ka,a−1 with
partition (C1

t , C
2
t ));
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- if φ(xt) = true (resp. φ(xt) = false, then each vertex in Xt (resp. Xt) is an a-vertex in every
hyperedge containing it and each vertex in Xt (resp. Xt ) is an (a + 1)-vertex in every hyperedge
containing it.

For any d-degree-gadget D at a vertex v, let G[D] be a (Ka,a+1, D, 3a+ 5)-graph in which v has degree
d.

Let us check that ∆(G) ≤ 3a+ 5.
- Each vertex in C1

t has degree 2a+ 2 in its (2a+ 2)-degree-gadget. It is also adjacent the a− 1 vertices
in C2

t , and to the four vertices of exactly one of the two sets Xt, Xt. Thus, this vertex has degree
3a+ 5 in G.

- Each vertex in C2
t has degree 2a+ 1 in its (2a+ 1)-degree-gadget. It is also adjacent the a vertices in

C1
t and to the four vertices in exactly one of sets Xt, Xt. Hence, it has degree 3a+ 5.

- Any literal vertex which is not identified in any clause vertex has degree at most a+ 2 in its variable
gadget. So, it has degree a+ 2 < 3a+ 5 in G.

- Each clause vertex is the identification of three literal vertices. Each of those has degree either a + 1
or a + 2 in its variable gadget. Moreover at least one of the literals is true so its corresponding
literal vertex has degree a + 1 in its variable gadget. Therefore the clause vertex has degree at most
2(a+ 2) + a+ 1 = 3a+ 5.

- Any vertex which is in a degree-gadget but in no variable gadget has degree at most 2(a+ 1) < 3a+ 5
since it belongs to at most two hyperedges.

Hence, G is a (Ka,a+1, H, 3a+ 5)-graph.

Conversely, assume that G is a (Ka,a+1, H, 3a + 5)-graph. For every hyperedge S of H, let FS be a
subgraph of G[S] isomorphic to Ka,a+1. Free to remove some edges, we may assume that G is the union of
the FS over all hyperedges S of H. We have the following.

Claim 16.1. For every t ∈ [n], the following hold.
(i) In a hyperedge of Ht, the two literal vertices cannot be both a-vertices or both (a+ 1)-vertices.
(ii) In every hyperedge of Ht, the vertices in C1

t are a-vertices and the vertices in C2
t are (a+ 1)-vertices.

(iii) The vertices of one of the two sets Xt, Xt are a-vertices in all hyperedges of Ht to which they belong,
and the vertices of the other of those sets are (a+ 1)-vertices in all hyperedges of Ht.

Proof of Claim. Observe that any vertex in C1
t is in a (2a+ 2)-degree-gadget, so it has degree at most a+ 3

in G[Ht]. Similarly, any vertex in C2
t is in a (2a+ 1)-degree-gadget, so it has degree at most a+ 4 in G[Ht].

(i) Assume for a contradiction that there is i ∈ [8] such that uit, u
i+1
t are both a-vertices in Sit . There are

a− 1 other a-vertices in Sit . Thus, at least one vertex v in C1
t is an (a+ 1)-vertex in Sit , and thus adjacent

to uit, u
i+1
t and the a− 1 other a-vertices in Sit which are in C1

t ∪ C2
t .

Assume for a contradiction that v is adjacent to exactly a− 1 vertices in C1
t ∪ C2

t . Then because v has
degree at least a in every hyperedge, it must be adjacent to at least one literal vertex in each Si

′
t for all

i′ ∈ [8]. In particular v is adjacent to at least one literal vertex in Si+2
t , Si+4

t , and Si+6
t . Hence v has degree

a+ 4 in G[Ht], a contradiction to the above observation.
Consequently, v is adjacent to at least a and at most a+ 1 vertices in C1

t ∪ C2
t .

• If v is adjacent to exactly a vertices in C1
t ∪C2

t , then there is a vertex u in C1
t \ {v} which is adjacent

to v since there are only a− 1 vertices in C2
t . Vertex u has degree at least a in Sit . Since v has degree

a + 2 in Sit ∪ C1
t ∪ C2

t , it is adjacent to at most one vertex, among the six literal vertices ui+1+j
t ,

j ∈ [6]. Hence there are two hyperedges S, S′ in {Si+2
t , Si+4

t , Si+6
t } such that v is adjacent to no literal

vertex of S and S′. Now in each of those two hyperedges, v has degree exactly a. Hence it must be
an a-vertex, and each of its neighbors, including u, is an (a+ 1)-vertex and thus is adjacent to the two
literal vertices. Hence u is adjacent to at least a + 4 vertices in G[Ht] (at least a in Sit plus the four
literal vertices of S and S′). This is a contradiction.

• If v is adjacent to a + 1 vertices in C1
t ∪ C2

t , then there are two vertices u, u′ in C1
t \ {v} which are

adjacent to v and each of them has degree at least a in Sit . Since v has degree a+ 2 in Sit ∪ C1
t ∪ C2

t ,
it is not adjacent to any of the six other literal vertices than uit, u

i+1
t . Consider the three hyperedges

Si+2
t , Si+4

t , Si+6
t ;

– if v is an (a+1)-vertex in one of these hyperedges, then u, u′ must be a-vertices and thus adjacent
to the two literal vertices in this hyperedge.
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– if v is an a-vertex in one of those hyperedges, then at least one of u, u′ is an (a+ 1)-vertex in this
hyperedge and is adjacent to its two literal vertex.

Thus at least one of u,u′ is adjacent to at least four literal vertices in Si+2
t ∪ Si+4

t ∪ Si+6
t , and so has

degree at least a+ 4, a contradiction.
This proves that the two literal vertices of a hyperedge of Ht are not both a-vertices.

Let us now prove that the two literal vertices of a hyperedge of Ht cannot be both (a + 1)-vertices.
Assume for a contradiction that there is i ∈ [8] such that uit, u

i+1
t are both (a+ 1)-vertices. Any a-vertex x

in Sit is adjacent to uit, u
i+1
t and at least a − 2 vertices in C1

t ∪ C2
t . If x is adjacent to exactly a − 2 (resp.

a − 1) vertices in C1
t ∪ C2

t , then, since it has degree at least a in any hyperedge, it is adjacent to all six
(resp. at least three) literal vertices in Si+2

t ∪ Si+4
t ∪ Si+6

t . Thus x has degree a+ 6 (resp. a+ 4) in G[Ht],
a contradiction. Hence every a-vertex in Sit has at least a neighbors in C1

t ∪ C2
t .

There are a + 1 a-vertices in Sit , so there must be one, say v, in C1
t . It has degree at most a + 3 in G[Ht]

and at least a+ 2 in Sit . Thus it is adjacent to at most one literal vertex in Si+2
t ∪ Si+4

t ∪ Si+6
t . Hence v is

not adjacent to the literal vertices of two hyperedges S, S′ in Si+2
t ∪ Si+4

t ∪ Si+6
t . Thus the literal vertices

of the hyperedge S (resp. S′) are both in a same part of FS (resp. FS′), and so they are (a+ 1)-vertices.
Now in each hyperedege of Ht, there are more a-vertices than (a+1)-vertices. Thus there is a vertex z which
is an a-vertex in at least three hyperedges S1, S2, S3 in Sit ∪ Si+2

t ∪ Si+4
t ∪ Si+6

t . In any of these hyperedges
at least one of the literal vertices is an (a + 1)-vertex, and in at least two of them the two literal vertices
are (a + 1)-vertices. Hence z is adjacent to at least five literal vertices. Moreover, as above, we can show
that z has at least a neighours in C1

t ∪C2
t . Thus z has degree at least a+ 5 in G[Ht], a contradiction. This

completes the proof of (i).

(ii) Assume for a contradiction that a vertex w ∈ C1
t is an (a + 1)-vertex in Sit . By (i), w is adjacent

to a literal vertex in Sit , and so it is adjacent to a other vertices in C1
t ∪ C2

t . Furthermore, by (i), in each
hyperedge of Ht, w is adjacent to a literal vertex (either to an a-vertex or an (a + 1)-vertex). Thus w is
adjacent to four literal vertices in Ht, and so has degree at least a+ 4 in G[Ht], a contradiction. Therefore
the a vertices of C1

t are a-vertices. Moreover, by (i), one of the literal vertex of each Sit is an a-vertex.
Therefore all vertices of C2

t must be (a+ 1)-vertices.

(iii) Let v be a vertex in C1
t . It is an a-vertex in each Sit , so by (i) it is adjacent to one vertex in {uit, ui+1

t }
for all i ∈ [8] and it is adjacent to the a− 1 vertices of C2

t . But v has degree at most a+ 3 in G[Ht], so v is
either adjacent to all vertices of Xt and non-adjacent to all vertices of Xt, or non-adjacent to all vertices of
Xt and adjacent to all vertices of Xt. ♦

By Claim 16.1, we define a truth assignment φ by φ(xt) = true (resp. φ(xt) = false) if all vertices in Xt

are a-vertices (resp. (a+ 1)-vertices) in the hyperedges of Ht to which they belong.
Observe that, by Claim 16.1, if a literal vertex uit is an (a + 1)-vertex in the hyperedges of Ht to which

it belongs then it has degree at least a + 2 in G[Ht] because it is adjacent to the a vertices of C1
t and the

two literal vertices ui−1t , ui+1
t .

A clause vertex cj is the identification of three literal vertices. Since it has degree at most 3a+ 5, then at
least one of those literal vertices has degree at most a+ 1 in its variable gadget. By the above observation,
this vertex is an a-vertex in the hyperedges of Ht to which it belongs. Thus this vertex corresponds to a
true literal in the clause Cj . Therefore, φ satisfies Φ.

Lemma 17. Let r be a positive integer. If (∆ ≤ k)-Ka,a+1-Overlay is NP-complete, then (∆ ≤ k)-
rKa,a+1-Overlay is NP-complete.

Proof. Ka,a+1 has a + 1 vertices of degree a and a vertices of degree a + 1. Hence, in rKa,a+1, there are
r(a+ 1) vertices of degree a and ra vertices of degree a+ 1.

We shall give a reduction from (∆ ≤ k)-Ka,a+1-Overlay to (∆ ≤ k)-rKa,a+1-Overlay.
Let H be a (2a + 1)-uniform hypergraph. We construct an r(2a + 1)-uniform hypergraph H ′ from H as
follows. We create a set A of (r − 1)(a + 1) vertices, a set B of (r − 1)a vertices, and a set C of 2a + 1
vertices. We add the hyperedge SC = A ∪ B ∪ C to E(H ′), and for every hyperedge S of H, we add the
hyperedge S′ = S ∪ A ∪ B to E(H ′). Finally, we add a (k − a)-degree-gadget at every vertex in A and a
(k − a− 1)-degree-gadget at every vertex in B.

12



Let us prove that there is a (Ka,a+1, H, k)-graph G if and only if there is an (rKa,a+1, H
′, k)-graph G′.

Assume that G is a (Ka,a+1, H, k)-graph. We construct G′ from G as follows. Let G′[H] = G[H], so
G′[S] = G[S] for each S ∈ E(H); let G′[C] be a copy of Ka,a+1; let G′[A ∪ B] be a copy of (r − 1)Ka,a+1

in which every vertex in A has degree a and every vertex in B has degree a+ 1; for each d-degree-gadget D
at a vertex v, let G′[D] be an (rKa,a+1, D, k)-graph in which v has degree d. Clearly, for any S′ ∈ E(H ′),
G′[S′] contains rKa,a+1 and so does G′[SC ]. Moreover, one easily checks that every vertex of G′ has degree
at most k. Therefore, G′ is an (rKa,a+1, H

′, k)-graph.

Assume now that there is an (rKa,a+1, H
′, k)-graph G′. Every vertex v ∈ A is in a (k−a)-degree-gadget,

so it has degree at most a in G′[V (H) ∪A ∪B ∪ C]. Thus it must be an a-vertex in every hyperedge S′ for
all S ∈ E(H).

Let v be a vertex in A. It is adjacent to a− i vertices in B. Then v must be adjacent to at least i vertices
in C and i vertices in V (H). Thus the degree of v is at least a+ i in G′[V (H)∪A∪B ∪C]. Therefore i = 0,
so v is adjacent to a vertices in B and no vertex in V (H) ∪ C.

This implies that there are (d − 1)a(a + 1) edges between A and B. But every vertex u ∈ B is in a
(k − a− 1)-degree-gadget, and so has degree at most a+ 1 in G′[V (H) ∪ A ∪ B ∪ C]. Thus, each vertex in
B has a+ 1 neighbors in A, and is adjacent to vertex in V (H) ∪ C.

Consider now a hyperedge S′ = S ∪ A ∪ B. The graph G′[S′] contains rKa,a+1. Since there is no edge
between A ∪B and V (H), necessarily G′[S] contains Ka,a+1. So S is Ka,a+1-overlaid by G′. Consequently,
G = G′[V (H)] is a (Ka,a+1, H, k)-graph.

5 Proof of Theorem 5
The aim of this section is to prove Theorem 5. The proof divides into four cases, Theorem 13, Theorem 18,
Theorem 19 and Theorem 20 as follows.

Proof of Theorem 5 (assuming Theorems 18, 19 and 20). Let F be a graph with degree values 1 ≤ δ(F ) =
λ1 < · · · < λt = ∆(F ).

If t = 1, (i.e. F is regular), then we have the result by Theorem 13. Henceforth, we may assume that
t ≥ 2.

If there exists i ∈ [t− 1] such that λi+1 > λi + 1, then Theorem 18 yields the result. Henceforth, we may
assume that λi+1 = λi + 1 for all i ∈ [t− 1].

If t ≥ 3, then λt + λ1 ≥ 2λ2 and Theorem 19 yields the result. Henceforth, we may assume that t = 2
which we then have the result by Theorem 20.

It thus remains to prove Theorems 18, 19 and 20.
The proofs of the first two are reductions from 3-Colorability on 4-regular graphs which are similar

to the one used to prove Theorem 9. Given a 4-regular graph G, we build a hypergraph H which includes,
for each vertex v ∈ V (G), a vertex gadget with three hyperedges which makes three choices of degrees on
vertices c1v, c2v, c3v (as three colors labeled 1, 2, 3 of vertex v) and a color gadget represented as a binary tree
with 4 leaves which copies each choice to four (leaves) vertices in other hyperedges (with respect to four
neighbors of v ∈ V (G)). For any edge uv, we simply identifies the two leaves of u, v. The idea is that for a
proper coloring c of G, c(v) corresponds to a vertex civ having a certain degree d; then c(v) = i if and only if
civ as degree d in its vertex gadget (see Figure 5). However, the set of hyperedges which are in a color gadget
of the two theorems are different, see Figure 6 in Theorem 18 and Figure 7 in Theorem 19.

Theorem 18. Let F be a graph on p vertices with degree values 1 ≤ λ1 < · · · < λt. If there exists
i∗ ∈ {2, . . . , t} such that λi∗ ≥ λi∗−1 + 2, then there is k such that (∆ ≤ k)-F -Overlay is NP-complete.

Proof. Set k = max{2λt, 2λi∗+λi∗−1+λ1}. We give a reduction from 3-Colorability on 4-regular graphs.
Given a 4-regular graph G, we build a hypergraph H as follows.

• For each vertex v ∈ V (G), we create a vertex gadget Hv with three hyperedges Siv = {cv, civ}∪Xi
v ∪Y iv

for i ∈ [3] where |Xi
v| =

∑i∗−1
j=1 αj − 1, |Y iv | = p − |Xi

v| − 2. We add a (k − λi∗ + 1)-degree-gadget at
each vertex x ∈ Xi

v for i ∈ [3], a (k − 2λi∗ − λi∗−1)-degree-gadget at cv. We say that Siv is the parent
hyperedge of civ for each i ∈ [3].
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cv

c1v
c2v

c3v

civ

aiv biv

li,1v li,2v li,3v li,4v

Figure 5: The construction of the reduction. The vertex gadget for vertex v (left) and the binary tree
representing the color gagdet (right). In the construction, each edge of this tree is replaced by hyperedges
such that the degree of the root civ is transmitted to all its descendants.

• For each vertex v and each i ∈ [3], we construct a color gadget Hi
v for i ∈ [3] as follows.

– We create a binary tree T iv with vertex set {civ, aiv, biv, `i,1v , `i,2v , `i,3v , `i,4v } and edge set
{civaiv, civbiv, aiv`i,1v , aiv`

i,2
v , biv`

i,3
v , biv`

i,4
v }, rooted at civ. In this tree, aiv and biv are the children of civ,

`i,1v and `i,2v are the children of aiv, and `i,3v and `i,4v are the children of biv.
– For any vertex x ∈ {civ, aiv, biv}, let y1, y2 be its children in T iv, and let e1 = xy1, e2 = xy2. We first

add a (k − 2λi∗ + 1)-degree-gadget at x. Then we construct an x-edge-gadget as follows: we add
a set Ax of

∑i∗−1
j=1 αj − 1 new vertices and a set Bx of p− |Ax| − 2 new vertices, the hyperedges

S(e1) = {x, y1} ∪ Ax ∪ Bx and S(e2) = {x, y2} ∪ Ax ∪ Bx, and a (k − λi∗ + 1)-degree-gadget at
every vertex a ∈ Ax. For convenience, we say that S(xy1) (resp. S(xy2)) is the parent hyperedge
of y1 (resp. y2). Moreover, for any leaf `i,jv , we denote by Si,jv the hyperedge containing the vertex
`i,jv . See Figure 6.

• For every vertex v ∈ V (G), let e1v, e2v, e3v, e4v, be an ordering of the edges incident to v. For each edge
uv ∈ E(G), let ju and jv be the indices such that uv = ejuu = ejvv . Then, for all i ∈ [3], we identify the
vertices `i,juu and `i,jvv and we add a (k − λi∗ − λ1)-degree-vertex at this vertex.

Note that each of the d-degree-gadgets exists because we have d ≥ λ1 by our choice of k.

x

y1 y2

Ax

Bx

k −
2λi∗

+
1

k − λi∗ + 1

Figure 6: The x-edge-gadget with degree-gadgets at x and every vertex in Ax.

Let us now prove that there is a proper 3-coloring of G if and only if there is an (F,H, k)-graph G∗.

Assume first that there is an (F,H, k)-graph G∗.
Let v ∈ V (G). The vertex cv has degree at least (k−2λi∗−λi∗−1) in its (k−2λi∗−λi∗−1)-degree-gadget.

Hence cv has degree at most 2λi∗ + λi∗−1 in S1
v ∪ S2

v ∪ S3
v . But those hyperedges pairwise intersect in {cv}.

Thus there is i ∈ [3] such that cv has degree less than λi∗ in Siv. Moreover, since any vertex x ∈ Xi
v has

degree at least k − λi∗ + 1 in its (k − λi∗ + 1)-degree-gadget, so it has degree less than λi∗ in Siv. Thus civ
must have degree at least λi∗ in Siv. Therefore, we can define a 3-coloring φ by φ(v) = i where i is an index
such that civ has degree at least λi∗ in Siv.
Let us now prove that φ is proper. We need the following claim.
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Claim 18.1. Let v ∈ V (G) and i ∈ [3]. If civ has degree at least λi∗ in Siv, then so does the leaf `i,jv in Si,jv
for all j ∈ [4].

Proof of Claim. It suffices to prove that for any x ∈ {civ, biv, aiv}, if x has degree at least λi∗ in its parent
hyperedge, then both y1, y2 have degree at least λi∗ in their parent hyperedges.

Assume that x has degree at least λi∗ in its parent hyperedge. Since x has degree at least k− 2λi∗ + 1 in
its (k− 2λi∗ + 1)-degree-gadget, it has degree at most λi∗ − 1 in S(xy1)∪S(xy2). Moreover, any a ∈ Ax has
degree at least k−λi∗+1 in its (k−λi∗+1)-degree-gadget and so has degree less than λi∗ in S(xy1)∪S(xy2)

and so in each of S(xy1), S(xy2). Since Ax is of size
∑i∗−1
j=1 α1− 1, the vertex y1 (resp. y2) must have degree

at least λi∗ in S(xy1) (resp. S(xy2)). ♦

Consider an edge uv ∈ E(G), i ∈ [3]. The vertex ` = `i,juu = `i,jvv has degree at least k − λi∗ − λ1 in its
(k − λi∗ − λ1)-degree-gadget and is the unique common vertex of the hyperedges Si,juu and Si,jvv . Therefore
it has degree λi∗ in at most one of Si,juu , Si,jvv . Hence, by the Claim 18.1, at most one of ciu, civ has degree
λi∗ in its parent hyperedge. Thus at most one of u, v is colored i by φ. Therefore, φ is a proper 3-coloring
of G.

Assume now that φ is a proper 3-coloring of G. We construct a graph G∗ as follows.
• For any vertex gadget Hv, i ∈ [3], let G∗[Siv] be a copy of F in which every vertex in Xi

v has degree at
most λi∗−1, every vertex in Y iv has degree at least λi∗ , and cv has degree λi∗−1 (resp. λi∗) and civ has
degree λ1 (resp. λi∗) in Siv if φ(v) = i (resp. φ(v) 6= i).

• In every color gadget Hi
v, for x ∈ {civ, biv, aiv} with children y1 and y2, let G∗[S(xy1)] and G∗[S(xy2)])

be two similar copies of F such that:
– if i 6= φ(v), then x has degree λi∗ in G∗[S(xy1)] and G∗[S(xy2)] (and so at most λi∗ + 1 in
G∗[S(xy1) ∪ S(xy2)]) and y1 and y2 have degree λ1 in G∗[S(xy1)] and G∗[S(xy2)] respectively.

– if i = φ(v), then x has degree λi∗−1 in G∗[S(xy1)] and G∗[S(xy2)] (and so at most λi∗−1 + 1 in
G∗[S(xy1) ∪ S(xy2)]) and y1 and y2 have degree λi∗ in G∗[S(xy1)] and G∗[S(xy2)] respectively.

– every vertex in Ax has degree at most λi∗−1 in both G∗[S(xy1)] and G∗[S(xy2)] and so at most
λi∗ + 1 in G[S(xy1) ∪ S(xy2)];

– every vertex in Bx is degree at least λi∗ in both G∗[S(xy1)] and G∗[S(xy2)] and so at most λt + 1
in G∗[S(xy1) ∪ S(xy2)];

• For any d-degree-gadget D at vertex v, we let G∗[D] be an (F,D, k)-graph in which v has degree d.

By construction, G∗ F -overlays H. Let us check that ∆(G∗) ≤ k. Let u be a vertex of G∗.
- If u is in at most two hyperedges (in particular, if = u is in Y iv or u is in Bx for x internal vertex in
some T iv or u is only in a d-degree-gadget), then u has degree at most 2λt ≤ k.

- If u ∈ Xi
v for v ∈ V (G), then u has degree k − λi∗ + 1 in its (k − λi∗ + 1)-degree-gadget and at most

λi∗−1 in Siv], thus u has degree at most k − λi∗ + λi∗−1 + 1 ≤ k.
- If u ∈ Ax for v ∈ V (G) and x internal vertex in some tree T iv, then u has degree k − λi∗ + 1 in its

(k − λi∗ + 1)-degree-gadget and at most λi∗−1 + 1 in G∗[S(xy1) ∪ S(xy1)], thus u has degree at most
k − λi∗ + λi∗−1 + 2 ≤ k.

- For u ∈ {civ, aiv, biv} for i ∈ [3] with u parent of y1, y2, it has degree k−2λi∗+1 in its (k−2λi∗+1)-degree-
gadget. And if i = φ(v) (resp. i 6= φ(v)), then u has degree λi∗ (resp. λ1) in its parent hyperedge and
λi∗−1 + 1 (resp. λi∗ + 1) in G∗[S1

uy1 ∪ S1
uy2 ]. Hence u has degree at most k − λi∗ + λi∗−1 + 2 ≤ k.

- Assume that u is the identification of `i,jvv and `i,iww for an edge vw ∈ E(G). First, u has degree
k − λi∗ − λ1 in its (k − λi∗ − λ1)-degree-gadget. Moreover, since either φ(v) 6= i or φ(w) 6= i, then u
has degree λ1n one of Si,jvv , Si,jww and at most λi∗ in the other. Therefore, u has degree at most k in
G∗.

Consequently, G∗ is an (F,H, k)-graph.

Theorem 19. Let a graph F on p vertices with degree sequence d = (d1, . . . , dp) such that λt + λ1 ≥ 2λ2.
Then there exists k such that (∆ ≤ k)-F -Overlay is NP-complete.

Proof. Observe that the condition λt + λ1 ≥ 2λ2 implies t ≥ 3. Set k = 2λt + λt−1.
We give a reduction from 3-Colorability on 4-regular graphs.

Given a 4-regular graph G, we build a p-uniform hypergraph H as follows.
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• For each vertex v ∈ V (G), we create a vertex gadget Hv with three hyperedges Siv = {cv, civ}∪Xi
v ∪Y iv

for i ∈ [3] where |Xi
v| =

∑t−1
i=1 αi − 1, |Y iv | = p− αt − 1. For i ∈ [3], we add a (k− λt−1)-degree-gadget

at each vertex x ∈ Xi
v

We say that Siv is the parent hyperedge of each civ, i ∈ [3].
• For each vertex v ∈ V (G) and each i ∈ [3], we construct a color gadget Hi

v for i ∈ [3] as follows.
– We create a binary tree T iv with vertex set {civ, aiv, biv, `i,1v , `i,2v , `i,3v , `i,4v } and edge set
{civaiv, civbiv, aiv`i,1v , aiv`

i,2
v , biv`

i,3
v , biv`

i,4
v }, rooted at civ. In this tree, aiv and biv are the children of civ,

`i,1v and `i,2v are the children of aiv, and `i,3v and `i,4v are the children of biv.
– For each edge e = xy of T iv with x the parent of y in T iv, we construct an edge-gadget containing
x, y, a new vertex ze, and four disjoint sets U1

eW
1
e , U

2
e ,W

2
e of new vertices, U1

e of size α1 − 1,
W 1
e of size p − |U1

e | − 1, U2
e of size p − αt − 1, W 2

e of size αt − 1. We add the hyperedges
S1
e = {x, ze}∪U1

e ∪W 1
e and S2

e = {ze, y}∪U2
e ∪W 2

e . See Figure 7. We finally add a (k−λt−2λ1)-
degree-gadget at x, a (k−λ1)-degree-gadget at each vertex of U1

e , a (k−λt + 1)-degree-gadget at
each of U2

e , and a (k − λ2 − λt + 1)-degree-gadget pendant at ze.
• For every vertex v ∈ V (G), let e1v, e2v, e3v, e4v, be an ordering of the edges incident to v. For each edge
uv ∈ E(G), let ju and jv be the indices such that uv = ejuu = ejvv . Then, for all i ∈ [3], we identify the
vertices `i,juu and `i,jvv and we add a (k − 2λt + 1)-degree-gadget at this vertex.

ze

x

y

U1
e

W 1
e

U2
e

W 2
e

k − λt
− 2λ1

k − λ1

k − λt + 1

k − λ2 − λt + 1

Figure 7: The edge-gadget for an edge e = xy with degree-gadgets at x, ze and every vertex in U1
e , U

2
e .

Let us now prove that there is a proper 3-coloring of G if and only if there is an (F,H, k)-graph G∗.

Assume first that there is an (F,H, k)-graph G∗.
Let v ∈ V (G). The vertex cv has degree at most 2λt + λt−1 in S1

v ∪ S2
v ∪ S3

v . But those hyperedges
pairwise intersect in {cv}. Thus there is i ∈ [3] such that cv has degree less than λt in Siv.

Moreover, each vertex x ∈ Xi
v has degree at least k−λt−1 in its (k−λt−1)-degree-gadget, and so at most

λt−1 in Siv. Together with cv, there are
∑t−1
i=1 αt vertices of degree at most λt−1 in Siv. Thus civ have degree

λt in its parent hyperedge Siv. Therefore, we can define a 3-coloring φ by φ(v) = i where i is an index such
that civ has degree λt in Siv.

Let us now prove that φ is proper. We need the following claim.

Claim 19.1. Let v ∈ V (G) and i ∈ [3]. If civ has degree λt in Siv, then so does any leaf `i,jv in Si,jv for
j ∈ [4].

Proof of Claim. It suffices to prove that for any x ∈ {civ, biv, aiv}, if x has degree λt in its parent hyperedge,
then both y1, y2 have degree λt in their parent hyperedges.
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Assume that x is a λt-vertex in its parent hyperedge. Since x has degree at least k − λt − 2λ1 in
its (k − λt − 2λ1)-degree-gadget, and degree λt in its parent hyperedge, it has has degree at most 2λ1 in
S1
xy1 ∪ S1

xy2 , and so λ1 in each of S1
xy1 , S

1
xy2 . Let e = xy be one of the two edges xy1, xy2. Any vertex in

U1
e has degree at least k − λ1 in its (k − λ1)-degree-gadget, and thus λ1 in S1

e . It implies that ze has degree
at least λ2 in S1

e . Since it is also in a (k − λ2 − λt + 1)-degree-gadget, ze has degree less than λt in S2
e .

Moreover, any vertex in U2
e is in a (k− λt + 1)-degree-gadget, then none of them has degree λt in S2

e except
those in W 2

e which is of size αt − 1. Thus, y must have degree λt in S2
e . ♦

Consider an edge uv ∈ E(G), i ∈ [3]. The vertex ` = `i,juu = `i,jvv has degree at least k − 2λt + 1 in its
(k− 2λt + 1)-degree-gadget and is the unique common vertex of the hyperedges Si,juu and Si,jvv . Therefore it
has degree λt in at most one of Si,juu and G∗Si,jvv . Hence, by Claim 19.1, at most one of ciu, civ has degree λt
in its parent hyperedge. Thus at most one of u, v is colored i by φ. Therefore, φ is a proper 3-coloring of G.

Assume now that φ is a proper 3-coloring of G. We construct a graph G∗ as follows.
• For any vertex gadget Hv, i ∈ [3], let G∗[Siv] be a copy of F in which every vertex in Xi

v has degree at
most λt−1, every vertex in Y iv has degree λt, and cv has degree λt−1 (resp. λt) and civ has degree λt
(resp. λ1) if φ(v) = i (resp. φ(v) 6= i).

• In every color gadget Hi
v, for each edge e = xy of T iv with x parent of y, let G∗[S1

e ], G∗[S2
e ] be copies

of F such that:
– every vertex in U1

e has degree λ1;
– every vertex in U2

e has degree at most λt−1;
– every vertex in W 2

e has degree λt;
– if i = φ(v), then x has degree λ1 in S1

e , ze has degree λ2 in S1
e and λt−1 in S2

e , and y has degree
λt in S2

e ;
– if i 6= φ(v), then x has degree λ2 in S1

e , ze has degree λ1 in S1
e and λt in S2

e , and y has degree λ1
in S2

e .
• For any d-degree-gadget D at vertex v, we let G∗[D] be an (F,D, k)-graph in which v has degree d.

By construction, G∗ F -overlays H. Let us check that ∆(G∗) ≤ k. Let u be a vertex of G∗.
- If u is in at most two hyperedges, (in particular if u is in Y iv , in W 1

e ∪W 2
e in an edge-gadget or only in

a degree-gadget), then u has degree at most 2λt < k in G∗.
- If u = cv, then it has degree λt−1 in Siv for the index i = φ(v), and λt in Siv for the two indices i 6= φ(v).
Hence cv has degree 2λ1 + λt−1 = k.

- If u ∈ Xi
v for v ∈ V (G), then u has degree k − λt−1 in its (k − λt−1)-degree-gadget and at most λt−1

in Siv, thus u has degree at most k in G∗.
- If u ∈ U1

e for some edge e of T iv, then u has degree k−λ1 in its degree-gadget and λ1 in S1
e , thus u has

degree k in G∗.
- If u ∈ U2

e , then u has degree k− λt + 1 in its degree-gadget and at most λt−1 in S2
e , thus u has degree

at most k in G∗.
- If u ∈ {civ, aiv, biv} for i ∈ [3] with children y1, y2, then u has degree k − λt − 2λ1 in its (k − λt − 2λ1)-
degree-gadget. Moreover, if i = φ(v) (resp. i 6= φ(v)), then u has degree λt (resp. λ1) in its parent
hyperedge and λ1 (resp. λ2) in both S1

uy1 , S
1
uy2 . Hence u has degree at most k−λt−2λ1 +λt+2λ1 = k

(resp. k − λt − 2λ1 + λ1 + 2λ2 ≤ k by the assumption λt + λ1 ≥ 2λ2) in G∗.
- If u = ze for some edge e of T iv, then u has degree k−λ2−λt + 1 in its (k−λ2−λt + 1)-degree-gadget.
Moreover, if i = φ(v) (resp. i 6= φ(v)), then u has degree λ2 (resp. λ1) in S1

e and λt−1 (resp. λt) in
S2
e . Hence, u has degree at most k− λ2 − λt + 1 + λ2 + λt−1 ≤ k (resp. k− λ2 − λt + 1 + λ1 + λt ≤ k)

in G∗.
- Assume that u is the identification of `i,jvv and `i,iww for an edge vw ∈ E(G). First, u has degree
k − 2λt + 1 in its (k − 2λt + 1)-degree-gadget. Moreover, since either φ(v) 6= i or φ(w) 6= i, then u has
degree less than λt in one of Si,jvv , Si,jww . Therefore, u has degree at most k in G∗.

Consequently, G∗ is an (F,H, k)-graph.

Theorem 20. Let F be a graph with α1 vertices of positive degree λ1 and α2 = p − α1 vertices of degree
λ2 = λ1 + 1. Then (∆ ≤ k)-F -Overlay is NP-complete for some k.
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There are several cases in the proof, depending on the structure of graph F . In each case, we give a
reduction from (3,4)-Sat problem, which follows the same general idea as the proof of Theorem 13 : we
construct variable gadgets Ht containing some negated and non-negated literal vertices and identify some
of them in such a way that for an assignment φ satisfying Φ, φ(xt) = true (resp. false) if and only if
non-negated (resp. negated) literal vertices in the variable gadget are adjacent to wt in an (F,H, k)-graph.

Lemma 21. Let F be a graph on p vertices with α1 vertices of degree λ1 and α2 = p−α1 vertices of degree
λ2 > λ1 such that F [Vλ2

] is µ-regular but neither complete nor anticomplete. Then there exists k such that
(∆ ≤ k)-F -Overlay is NP-complete.

Proof. Set γ = λ2 − µ and k = max{4γ(α2 − 1) + 4µ+ λ1, 3γ(α2 − 1) + 6µ− 1 + λ1}.
We give a reduction from (3,4)-Sat. Given a formula Φ of (3,4)-Sat with variables xt, t ∈ [n] and

clauses Cj , j ∈ [m], we construct a hypergraph H as follows.
1. For each variable xt, we construct a variable gadget Ht in the following way.

We first create a center vertex wt, a set of 4(α2 − 1) vertices Ut = {u1t , . . . , u4(α2−1)
t }, and for each

i ∈ [4(α2 − 1)], create a set of α1 new vertices W i
t , and a hyperedge Sit = W i

t ∪ {wt, uit, . . . , ui+α2−2
t }

(superscripts are modulo 4(α2 − 1)).
For r ∈ [4], let xrt = u

r(α2−1)−α2+2
t and x̄rt = u

r(α2−1)−α2+3
t . Set Xt = {x1t , x2t , x3t , x4t} and Xt =

{x̄1t , x̄2t , x̄3t , x̄4t}. The vertices of Xt (resp. Xt) are called the non-negated (resp. negated) literal vertices
of Ht.

2. For each clause Cj = (`1∨ `2∨ `3), we identify y1, y2, y3 into a clause vertex cj , where yi = xrt if `i = xt
and `i is the r-th occurrence of xt, and yi = x̄rt if `i = x̄t and is the r-th occurrence of xt.

3. Finally, we add degree-gadgets on some vertices.
- We add a (k − 4γ(α2 − 1)− 4µ)-degree gadget on vertex wt.
- We add a (k − λ1)-degree gadget at every vertex in W i

t for all i ∈ [4(α2 − 1)].
- For i ∈ [µ− 1], we add a (k − γ(α2 − 1)− 2µ+ 1)-degree-gadget on each u(α2−1)r−j

t for r ∈ [4].

Observe that every vertex inW i
t , for i ∈ [4(α2−1)], has degree at least k−λ1 in its (k−λ1)-degree-gadget,

and so degree at most λ1 in Sit . Thus, each of those vertices must have degree λ1 in Sit . It implies that all
the other vertices must have degree at least λ2 in any hyperedge of Ht. In particular, wt has degree λ2 in
any hyperedge of Ht. Since wt is in a (k − 4γ(α2 − 1) − 4µ)-degree-gadget and is adjacent to γ vertices in
every W i

t for i ∈ [4(α2 − 1)], it has degree at most 4µ in
⋃4(α2−1)
i=1 Sit \W i

t .

Moreover, each vertex uit ∈ Ut is a λ2-vertex in every hyperedge Si
′
t of Ht containing it, and so adjacent

to γ vertices in W i′
t . Since uit belongs to α2 − 1 hyperedges of Ht, thus uit is adjacent to γ(α2 − 1) vertices

in
⋃4(α2−1)
i′=1 W i′

t . For i ∈ [µ− 1], u(α2−1)r−i is in a (k− γ(α2− 1)− 2µ+ 1)-degree-gadget, then it has degree
at most γ(α2 − 1) + 2µ− 1 in Ht, and so at most 2µ− 1 in

⋃4(α2−1)
i′=1 Si

′
t . Moreover, F [Vλ2

] is µ-regular (but
not complete or anticomplete). The following is then similar to the proof of Theorem 13 for F [Vλ2

]. So we
just sketch it.

Assume that there exists a truth assignment φ satisfying Φ. Let G be the graph obtained as follows.
We let (v0, v1, . . . , vα2−1) be an ordering of Vλ2 such that NF (v0) = {vα2−µ+1, . . . , vα2−1} ∪ {v1} if

φ(xt) = true and such that NF (v0) = {vα2−µ+1, . . . , vα2−1}∪{v2} if φ(xt) = false). For every i ∈ [4α2− 4],
we let G[Sit ] be the copy of F in which every vertex in W i

t is a λ1-vertex, wt corresponds to v0 and ui
′
t for

i′ ∈ {i, . . . , i + α2 − 1} corresponds to the vertex vi′′ such that i′ ≡ i′′ mod α2 − 1. In addition, for every
d-degree-gadget D at some vertex v, we let G[D] be an (F,D, k)-graph in which v has degree d.

The graph G F -overlays H and one can check that ∆(F ) ≤ k.
Conversely, assume that G is an (F,H, k)-graph. One can prove the following claim.

Claim 21.1. For every t ∈ [n] the following hold.
(a) Every vertex in W i

t for i ∈ [4α2 − 4] is a λ1-vertex in Sit.
(b) wt is a λ2-vertex in every hyperedges of Ht. Furthermore, it is adjacent to γ vertices in each W i

t and
the vertices u(α2−1)r−i

t for r ∈ [4], i ∈ [µ− 1].

Therefore the truth assignment φ defined by φ(xt) = true (resp. false) if wt is adjacent to Xt (resp.
Xt), satisfies Φ.
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Proof of Theorem 20. Let Vd be the set of vertices of degree d in F and d = (d1, . . . , dp) be the non-
decreasing degree sequence of F . Let Ns be the set of vertices of Vλ2 having exactly s neighbors in Vλ1 , and
let N≥s =

⋃
s′≥sNs′ .

For technical reasons, we distinguish several cases as follows.
If F [Vλ1

] is not anticomplete, then see Case A. Otherwise, F [Vλ1
] is anticomplete.

Assume first that F [Vλ2 ] is regular. If F [Vλ2 ] is neither complete nor anticomplete, then we have the
result by Lemma 21. If F [Vλ2 ] is anticomplete, then F is a disjoint union of Kλ1,λ1+1 and we have the result
by Theorem 15.

Hence we may assume that F [Vλ2
] is complete. Observe α2 ≥ λ1 because a vertex of Vλ1

has all its
neighbors in Vλ2

and α2 ≤ λ1 + 1 because every vertex of Vλ2
is adjacent to all other vertices of Vλ2

and at
least one in Vλ1 . If α2 = λ1+1, then every vertex of Vλ2 has exactly one neighbor in Vλ1 , and so α2 = λ1×α1.
Hence α2 = 2 = α1 and λ1 = 1. Thus F = K−3 and we have the result by Theorem 14. If α2 = λ1, then
every vertex of Vλ1

is adjacent to all vertices of Vλ2
. Thus F is K−λ1+2 and we have the result by Theorem

14.
Assume now that F [Vλ2

] is not regular, that is F [Vλ2
] has at least two degree values. In particular,

α2 ≥ 2.
If N≥2 is empty, then Vλ2 = N0 ∪N1 and both N0, N1 are non-empty. See Case B-(i).
If there is a vertex in N≥2 which is not adjacent to a vertex in Vλ1

, see Case C-(i).
Otherwise, every vertex in N≥2 is adjacent to all vertices in Vλ1

(so here N≥2 = Nα1
with α1 ≥ 2). If

N1 = ∅, then see Case C-(ii). Otherwise, N1 6= ∅ and any vertex in Vλ1
is not adjacent to all vertices in N1,

see Case B.

Case A: We set k depending on the subgraph F [Vλ1 ] of F .
(1) If F [Vλ1

] is not complete, then k = 6λ1 − 1.
(2) If F [Vλ1

] is complete, then every vertex of Vλ1
is not adjacent to some vertex in Vλ2

. We set k = 6λ1+3.

We give a reduction from (3,4)-Sat .
Given a formula Φ of (3,4)-Sat with variables xt, t ∈ [n] and clauses Cj , j ∈ [m], we build a hypergraph

H as follows.
1. For each variable xt, we construct a variable gadget Ht in the following way.

We first create a center vertex wt, a set of 4p− 4 vertices Ut = {u1t , . . . , u4p−4t }, and 4p− 4 hyperedges
Sit = {wt, uit, . . . , ui+p−2t } (superscripts are modulo 4(p− 1)) for i ∈ [4p− 4].
For r ∈ [4], let xrt = u

r(p−1)−p+2
t and x̄rt = u

r(p−1)−p+3
t . Set Xt = {x1t , x2t , x3t , x4t} and Xt =

{x̄1t , x̄2t , x̄3t , x̄4t}. The vertices of Xt (resp. Xt) are called the non-negated (resp. negated) literal
vertices of Ht.

2. For each variable xt, we add a set of p−λ1 verticesWt, and a hyperedge S′t = Wt∪{up−1t , . . . , up−λ1+1
t }

and we add a (k − 4λ1 − 1)-degree-gadget at wt.
3. For each clause Cj = (`1 ∨ `2 ∨ `3), we identify y1, y2, y3 into a clause vertex cj , where for all i ∈ [3],
yi = xrt if `i = xt and `i is the r-th occurrence of xt, and yi = x̄rt if `i = x̄t and is the r-th occurrence
of xt.

Let z be a vertex in Vλ1
which is adjacent to the minimum number a > 0 of vertices in this set. Let

(z, z1, . . . , zp−1) be an ordering of F such that :
- zj has degree λ1 and is adjacent to z for all j ∈ [a],
- zj has degree λ1 and is not adjacent to z for all a+ 1 ≤ j ≤ α1 − 1,
- zj has degree λ2 and is adjacent to z for all α1 ≤ j ≤ α1 + λ1 − a− 1.
- zj has degree λ2 and is not adjacent to z for all α1 + λ1 − a ≤ j ≤ p− 1.

We will show that there is an assignment φ satisfying Φ if and only there is an (F,H, k)-graph G.
Assume that φ satisfies Φ, then we construct G as follows. For all i ∈ [4p − 4], let G[Sit ] be copies of F

such that wt corresponds to the vertex z and the following hold.
In Case A-(1),
- if φ(xt) = true (resp. φ(xt) = false), then each vertex in Xt (resp. Xt) corresponds to z1, and each
of Xt (resp. Xt) corresponds to zα1−1.

- for all r ∈ [4] and 2 ≤ i ≤ α1 − 2, u(p−1)r+1−i corresponds to zi.
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- for all r ∈ [4] and α1 ≤ i ≤ p− 1, u(p−1)r+2−i corresponds to zi.
In Case A-(2),
- if φ(xt) = true (resp. φ(xt) = false), then each vertex in Xt (resp. Xt) corresponds to z1, and each
of Xt (resp. Xt) corresponds to zp−1.

- for all r ∈ [4] and 2 ≤ i ≤ p− 2], u(p−1)r+1−i corresponds to zi.
For any d-degree-gadget D at a vertex v, let G[D] be an (F,D, k)-graph in which v has degree d.

Let us check that ∆(G) ≤ k.
- wt is adjacent to 4λ1 vertices in Ht and one more in Wt ⊂ V (S′t), and it has degree k − 4λ1 − 1 in its
degree-gadget. Thus wt has degree k in total.

- Any literal vertex which is not identified to any clause vertex and is not in S′t has degree has degree at
most 2λ2 in its variable gadget. So, it has degree less than k.

- Any literal vertex which is in S′t has degree has degree at most 2λ2 in its variable gadget and it is
adjacent to at most λ1 vertices in Wt. So, it has degree less than k.

- Each clause vertex cj is in three literal variable gadgets. In Case A-(1) (resp. Case A-(2)), cj has
degree at most 2λ1 (resp. 2λ2) in each variable gadget. Moreover at least one of the literals is true
so its corresponding literal vertex has degree 2λ1 − 1 (resp. 2λ2 − 1) Therefore cj has degree at most
6λ1 − 1 (resp. 6λ2 − 1) in its variable gadget. Now it has degree k − 6λ1 + 1 (resp. k − 6λ2 + 1) in its
degree-gadget, and so at most k in total.

- Any vertex which is in a degree-gadget but in no variable gadget has degree at most 2λt ≤ k since it
belongs to at most two hyperedges.

- Any vertex in Wt has degree at most λ2 < k.
Hence, G is an (F,H, k)-graph.

Conversely, let G be an (F,H, k)-graph.

Claim 21.2. For every t ∈ [n] the following hold.
(a) wt has degree 4λ1 in Ht and wt has degree exactly λ1 in every hyperedge containing it.
(b) There is I ∈ [p − 1] of size λ1 such that for all i ∈ I and r ∈ [4], u(p−1)r−i+1

t is adjacent to wt; and
[λ1 − 1] ⊂ I.

Proof of Claim. Observe that wt is in a (k − 4λ1 − 1)-degree-gadget, so it has degree at most 4λ1 + 1 in
Ht ∪S′t. Since wt is in S′t which intersects S1

t in λ1− 1 vertices and it is at least λ1 in S′t, then wt is adjacent
to at least one vertex in Wt ⊂ V (S′t). Thus, wt has degree at most 4λ1 in Ht. Now for every i ∈ [p − 1],
wt belongs to the four hyperedges S(p−1)r−i

t , r ∈ [4], which pairwise intersect in {wt}. Hence wt has degree
exactly λ1 in each S(p−1)r−i

t and then 4λ1 in Ht. This proves (a).

Now, if a vertex uit is adjacent to wt, then so is ui+p−1t because wt has degree exactly λ1 in both Sit and
Si+1
t . Therefore there is I ∈ [p− 1] of size λ1 such that wt is adjacent to u

(p−1)r−i+1
t for all i ∈ I and r ∈ [4].

Since wt has degree 4λ1 in Ht, then wt is adjacent to exactly one vertex in Wt and so must be adjacent to
λ1 − 1 vertices in S′t \Wt which are up−1t , . . . , up−λ1+1. It implies that [λ1 − 1] ⊂ I. This proves (b). ♦

Claim 21.2 implies that the vertices of Xt (resp. Xt) are either all adjacent to wt or all non-adjacent to
wt. Moreover, wt is adjacent to λ1 − 1 vertices not in Xt ∪Xt. Hence if the vertices of Xt are adjacent to
wt, the vertices of Xt are not (and vice-versa).

Let φ be the truth assignment defined by φ(xt) = true if wt is adjacent to Ht, and φ(xt) = false
otherwise. In any clause vertex cj , we identified three literal vertices corresponding to the three literals.

- In Case A-(1), cj has degree at most k = 6λ1 − 1, so it has degree less than 2λ1 in one of its three
variable gadgets Ht. Since any vertex uit for i ∈ [4p − 4] belongs to two hyperedges Sit and Si−p+2

t

which intersect in {uit, wt} and has degree at least λ1 in each, then it has degree 2λ1 − 1 in Ht only if
it is adjacent to wt. Hence, cj is adjacent to wt.

- In Case A-(2), cj has degree at most k = 6λ1 + 3 < 6λ2, so it has degree less than 2λ2 in one of its
three variable gadgets Ht.
Moreover, F [Vλ1

] is complete, then wt is adjacent to all λ1-vertices in every hyperedges of Ht (because
it is a λ1-vertex in every hyperedge of Ht). If cj is not adjacent to no center vertex of the three variable
gadgets it belongs to, then it must be a λ2-vertex in each hyperedge of those gadgets. Thus it has

20



degree at least 2λ2 in each variable gadget and so at least 6λ2 in total, a contradiction. Thus cj is
adjacent to the center of at least one variable gadget wt.

Hence, the corresponding literal to the literal vertex adjacent to wt for variable xt is true and clause Cj is
satisfied.

Consequently, φ satisfies Φ.

Case B: Recall that in that case N1 6= ∅. Let γ = max{|N(v)∩Vλ1 | | v ∈ Vλ2}. We have Vλ2 =
⋃γ
s=0Ns.

Let k as follows.
(i) If N0 6= ∅, then set k = max{6λ2 − 1 + λ1, γα2 + 2(λ2 − γ) + λ1}.
(ii) If N0 = ∅, N≥2 6= ∅ and every vertex of N≥2 is adjacent to all vertices of Vλ1

, then set k = max{6λ1 +
3α2 − 1 + λ1, γα2 + 2(λ2 − γ) + λ1}. Note that in that case every vertex in Vλ1

is adjacent to a vertex
in N1 but not all.

We give a reduction from (3,4)-Sat.
Given a formula Φ of (3,4)-Sat with variables xt, t ∈ [n] and clauses Cj , j ∈ [m], we build a hypergraph

as follows.
1. For each variable xt, we construct a variable gadget Ht in the following way.

We first create a center vertex wt, 4α2 sets of α1 − 1 vertices Ait for i ∈ [4α2], a set of 4α2 vertices
Ui = {u1t , . . . , u4α2

t }, and 4α2 hyperedges Sit = Ait ∪ {wt, uit, . . . , ui+α2−1
t } (superscripts are modulo

4α2) for i ∈ [4α2].
For r ∈ [4], let xrt = u

α2(r−1)+1
t and x̄rt = u

α2(r−1)+2
t . SetXt = {x1t , x2t , x3t , x4t} andXt = {x̄1t , x̄2t , x̄3t , x̄4t}.

The vertices of Xt (resp. Xt) are called the non-negated (resp. negated) literal vertices of Ht.
2. For each variable xt,

- we create a set of p− λ1 vertices Bt and a hyperedge S′t = Bt ∪ {wt, uα2
t , . . . , uα2−λ1+2

t }.
- add a (k − 4λ1 − 1)-degree-gadget on wt.
- add a (k − λ1)-degree-gadget on every vertex in Ait for i ∈ [4α2].

3. For each clause Cj = (`1∨ `2∨ `3), we identify y1, y2, y3 into a clause vertex cj , where yi = xrt if `i = xt
and `i is the r-th occurrence of xt, and yi = x̄rt if `i = x̄t and is the r-th occurrence of xt. We also
add a (k − 6λ2 − 1)-degree vertex at cj in Case B-(i), and a (k − 6λ1 − 3α2 + 1)-degree vertex at cj
in Case B-(ii).

We will show that there is an assignment φ satisfying Φ if and only there is an (F,H, k)-graph G.

Let z be a vertex in Vλ1 adjacent to a vertex yin N1 and let ȳ be a vertex in N0 in in Case B-(i) or a
vertex in N1 not adjacent to z in Case B-(ii). Note that ȳ and z are not adjacent. Let (y1, . . . , yα2−2) be
an ordering of Vλ2

\ {y, ȳ} such that y1, . . . , yλ1−1 are adjacent to z and yλ1
, . . . , yα2−2 are not adjacent to z.

Assume that there is φ satisfying Φ, we construct a graph G as follows. Let G[S′t] be a copy of F such
that wt has degree λ1 and is adjacent to the λ1 − 1 vertices uα2

t , . . . , uα2−λ1+2
t .

In a variable gadget Ht, for every i ∈ [4α2], we let G[Sit ] be a copy of F such that wt corresponds to the
vertex z, and

- Ait corresponds to Vλ1 \ {z}.
- if φ(xt) = true (resp. φ(xt) = false), then each vertex in Xt (resp. Xt) corresponds to y, and each
vertex in Xt (resp. Xt) to ȳ.

- for i ∈ [α2 − 2], u(p−1)r−i+1
t corresponds to yi.

For any d-degree-gadget D at a vertex v, let G[D] be an (F,D, k)-graph in which v has degree d.

Let us check that ∆(G) ≤ k.
- wt is adjacent to 4λ1 vertices in Ht and one more in Wt ⊂ V (S′t), and it has degree k − 4λ1 − 1 in its
degree-gadget, then wt has degree k in total.

- Any literal vertex which is not identified to any clause vertex and not in S′t has degree at most
γα2 + 2(λ2 − γ) in its variable gadget (it is adjacent to at most γ vertices in each Ait in a hyperedge
to which it belongs and there are α2 such hyperedges; and f(x) = xα2 + 2(λ2 − x) is increasing). So,
it has degree less than k.

- Any literal vertex which is not identified to any clause vertex and in S′t has degree at most γα2+2(λ2−γ)
in its variable gadget and is adjacent to at most λ1 vertices in Bt. So it has degree at most k.
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- Each clause vertex cj is in three variable gadget. In Case B-(i), cj (resp. Case B-(ii)), in each of
these gadgets, cj has degree either 2λ2−1 if it is adjacent to wt or 2λ2 (resp. α2 + 2(λ2−1) otherwise.
Moreover at least one of the literals is true, its corresponding literal vertex has degree 2λ2 − 1 in its
variable gadget. Therefore cj at most 6λ2−1 neighbors (resp. 2α2 + 6(λ2−1) + 1) in variable gadgets.
It also has k − 6λ2 + 1 (resp. k − 6λ1 − 3α2 + 1) neighbors in its degree-gadget. Hence, in G, it has
degree at most k.

- Any vertex which is in a degree-gadget but in no variable gadget has degree at most 2λt ≤ k since it
belongs to at most two hyperedges.

- Any vertex in Bt has degree at most λ2 < k.
Hence, G is an (F,H, k)-graph.
Conversely, let G be an (F,H, k)-graph.

Observe that any vertex in Ait for i ∈ [4α2] is in a (k − λ1)-degree-gadget, then it has degree at most λ1 in
Sit . Since any vertex has degree at least λ1 in a hyperedge, then every vertex in

⋃4α2

i=1 A
i
t is a λ1-vertex in

any hyperedge to which it belongs.

Claim 21.3. For every t ∈ [n] the following hold.
(a) wt has degree 4λ1 in Ht and wt is a λ1-vertex in every hyperedge of Ht.
(b) There is I ∈ [α2] of size λ1 such that for all i ∈ I and r ∈ [4], uα2r−i+1

t is adjacent to wt; and
[λ1 − 1] ⊂ I.

This claim can be proved in exactly the same way as Claim 21.2.

We have that every vertex in Ut is a λ2-vertex in any hyperedge to which it belongs (since wt and α1− 1
vertices of Ait for i ∈ [4α2] are λ1-vertices).
Claim 21.3 implies that the vertices of Xt (resp. Xt) are either all adjacent to wt or all non-adjacent to wt.
Moreover, wt is adjacent to λ1− 1 vertices in Ut but not in Xt ∪Xt. Hence if the vertices of Xt are adjacent
to wt, the vertices of Xt are not (and vice-versa).

Let φ be the truth assignment defined by φ(xt) = true if wt is adjacent to all vertices of Xt in Ht, and
φ(xt) = false otherwise.
A clause vertex cj has degree at most k. Because of its degree-gadget, in Case B-(i) (resp. Case B-(ii)),
it has degree at most 6λ2 − 1 (resp. 6λ1 + 3α2 − 1) in Ht. Now, since it is the identification of three literal
vertices, cj has degree less than 2λ2 (resp. 2λ1 + α2) in one variable gadget Ht.

Claim 21.4. Let i ∈ [4α2]. If uit is not adjacent to wt, then the following holds.
(i) uit has degree at least 2λ2 in G[Ht];
(ii) If N0 = ∅, then uit has degree at least 2λ1 + α2 in G[Ht];

Proof of Claim. uit has at least λ2 neighbors in each of Sit and Si−α1+1
t . But the intersection of those

hyperedges is {wt, uit}. As it is not adjacent to wt, uit has at least 2λ2 neighbors in Sit ∪Si−α1+1
t . This proves

(i).
If N0 = ∅, then for all i− α2 + 1 < i′ < i. uit must be adjacent to at least one λ1-vertex of Si

′
t which is

in Ai
′
t . Hence uti has at least α2 − 2 in

⋃
i−α2+1<i′<iA

i′
t which is disjoint from Sit ∪ Si−α1+1

t . Hence uit has
degree at least 2λ2 + α2 − 2 = 2λ1 + α2 in G[Ht]. This proves (ii). ♦

This claim implies that there is at least one variable gadget Ht in which cj is adjacent to wt. It implies
that the corresponding literal of this vertex in Cj is true, and so Cj is satisfied.
Consequently, φ satisfies Φ.

Case C: In this case, F [Vλ1
] is anticomplete, F [Vλ2

] is not regular, and Vλ2
satisfies one of the following.

(i) there is a vertex of N≥2 that is not adjacent to all vertices in Vλ1 in F .
(ii) Vλ2 = N≥2∪N0 and every vertex of N≥2 is adjacent to all vertices of Vλ1 . Since F [Vλ2 ] is not complete,

then there is a vertex in N≥2 which is not adjacent to a vertex in either N0 Case C-(ii)-a or N≥2
Case C-(ii)-b.

We set a = max
u∈Vλ1
v∈N(u)

∣∣N(v) ∩N(u)
∣∣, and let k = 4(p− 2)(2λ1 − a) + 4λ1 + 1.
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For conveniences, we denote some vertices of graph F as follows. Let z0 be a vertex in N≥2 such that
there is z1 ∈ Vλ1 adjacent to z0 with a = |N(z0) ∩N(z1)|. Let z ∈ N≥2 which is adjacent to the minimum
number of vertices in N0, and y, y′ ∈ Vλ1

be vertices adjacent to z and
• in Case C-(i), let ȳ ∈ Vλ1

be a vertex not adjacent to z.
• in Case C-(ii), let ȳ be a vertex not adjacent to z such that ȳ ∈ N0 if z is not adjacent to all vertices

in N0 and ȳ ∈ N≥2 otherwise.

We give a reduction from (3,4)-Sat.
Given a formula Φ of (3,4)-Sat with variables xt, t ∈ [n] and clauses Cj , j ∈ [m], we build a hypergraph

as follows.
1. For each variable xt, we construct a variable gadget Ht in the following way.

We first create a center vertex wt, a set of 4(p − 2) vertices Dt = {d1t , . . . , d4(p−2)t }, a set of 4(p − 2)

vertices Ut = {u1t , . . . , u4(p−2)t }, and 4(p− 2) hyperedges Sit = {wt, dit, uit, . . . , ui+p−3t } (superscripts are
modulo 4(p− 2)) for i ∈ [4(p− 2)].
For r ∈ [4], let xrt = u

r(p−2)−p+3
t and x̄rt = u

r(p−2)−p+4
t . Set Xt = {x1t , x2t , x3t , x4t} and Xt =

{x̄1t , x̄2t , x̄3t , x̄4t}. The vertices of Xt (resp. Xt) are called the non-negated (resp. negated) literal
vertices of Ht.

2. For each variable xt,
- We create a set Yt of p− λ1 vertices and a hyperedge S′t = Yt ∪ {wt} ∪ {up−2t , . . . , up−λ1

t }.
- For any i ∈ [4(p − 2)], we add two sets of p − λ1 − 1 vertices Ait, Bit and a set of λ1 − 1 vertices
Cit , and two hyperedges Ait ∪Cit ∪ {dit, wt} and Bit ∪Cit ∪ {dit, wt}. We call this a fickle-gadget F it .

- We add a (k − 2λ1 + 1)-degree-gadget on every vertex in Dt.
3. For each clause Cj = (`1∨ `2∨ `3), we identify y1, y2, y3 into a clause vertex cj , where yi = xrt if `i = xt

and `i is the r-th occurrence of xt, and yi = x̄rt if `i = x̄t and is the r-th occurrence of xt. We also add
at cj a (k− 6λ1 + 1)-degree-gadget in Case C-(i), a (k− 6λ1− 3)-degree-gadget in Case C-(ii)-a, and
a (k − 6λ1 − 3p+ 6)-degree-gadget in Case C-(ii)-b.

We will show that there is an assignment φ satisfying Φ if and only if there is an (F,H, k)-graph G.
Assume that there is φ satisfying Φ, we construct a graph G as follows.
Let (y1, . . . , yp−4) be an ordering of V (F ) \ {z, y, y′, ȳ} such that y1, . . . , yλ1−2 are adjacent to z and

yλ1−1, . . . , yp−4 are not adjacent to z.
In both hyperedges of any fickle-gadget F it , wt corresponds to z0 and dit corresponds z1. dit is adjacent

to wt and all vertices in Cit , while wt is adjacent to a vertices in Cit and λ2 − a other ones in each of Ait, Bit.
Let G[S′t] be a copy of F such that wt has degree λ1 and is adjacent to the λ1 − 1 vertices up−2t , . . . , up−λ1

t .
For each variable gadget Ht, for every i ∈ 4[α2], let G[Sit ] be a copy of F such that wt corresponds to z,

and
- if φ(xt) = true (resp. false), then each vertex of Xt (resp. Xt) corresponds to y and each vertex of
Xt (resp. Xt) corresponds to ȳ.

- in any Sit , dit corresponds to y′.
- for i ∈ [p− 4] and r ∈ [4], u(p−2)r+1−i

t corresponds to yi.
For any d-degree-gadget D at a vertex v, let G[D] be an (F,D, k)-graph in which v has degree d.

Let us check that G has degree at most k.
- Any vertex dit ∈ Dt has degree (k − 2λ1 + 1) in its degree-gadget and λ1 in the fickle-gadget F it and
λ1 − 1 other vertices in V (Sit \ {wt}), thus it has degree k.

- Any vertex in Yt ⊂ V (S′t) has degree at most λ2.
- wt has (2λ1 − a) neighbor in each of the 4(p − 2) fickle-gadgets and is adjacent to 4λ1 vertices in Ut
and one more in Yt. Thus it has degree k in G.

- Any vertex in a degree-gadget which is not in Ht has degree at most 2λ2.
- Any vertex in Ut but not in Xt ∪Xt ∪ S′t has degree at most 2λ2 if it is not adjacent to any vertex in
Dt or at most 2λ2 + p− 2 if adjacent to a vertex in Dt for each hyperedge to which it belongs.

- Any vertex in Ut ∩ S′t has degree at most 2λ1 + p− 2 in Ht and it is adjacent to at most λ1 vertices in
Yt, so it has degree less than k.

- Any clause vertex cj has degree d in its d-degree-gadget. Moreover, in each of its variable gadget, cj
has degree either 2λ1−1 if it adajcent to the center vertex or 2λ1 in Case C-(i), 2λ2 in Case C-(ii)-a,
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and 2λ1 + p− 2 in Case C-(ii)-b otherwise. Since there at least one of three literals of the clause Cj
is true, cj has 2λ1 − 1 in one of its variable gadget, and thus degree at most k in total.

Hence, G is an (F,H, k)-graph.

Conversely, let G be an (F,H, k)-graph.

Claim 21.5. For every t ∈ [n] the following hold.
(a) For all i ∈ [4(p− 2)], dit is adjacent to wt and has degree λ1 in any hyperedge of F it ∪ Sit.
(b) wt is a λ2-vertex in every hyperedge of Ht. Furthermore, there is I ∈ [p − 2] of size λ1 such that for

all i ∈ I and r ∈ [4], u(p−2)r−i+1 is adjacent to wt and [λ1 − 1] ⊂ I.
(c) wt has degree k in G.

Proof of Claim. Observe that any vertex dit ∈ Xt is in a (k − 2λ1 + 1)-degree-gadget, then it has degree at
most 2λ1 − 1 in G[F it ∪ Sit ]. Since Sit and F it intersect only in {dit, wt} and dit has degree at least λ1 in each,
then dit has degree at least 2λ1 − 1 in G[F it ∪ Sit ]. The equality holds when dit is adjacent to wt and λ1 − 1
vertices in Cit . Thus, dit has degree λ1 in all hyperedges of F it ∪ Sit and is adjacent to wt. This proves (a).

In any fickle-gadget F it , from (a), every vertex in {wt} ∪Cit is adjacent to dit and must be a λ2-vertex in
the two hyperedges of F it . Thus, wt is adjacent to at most a vertices in Cit , and so has degree at least 2λ2−a
in G[F it ]. Since wt is in 4(p− 2) fickle-gadgets, then it has degree at least 4(p− 2)(2λ2−a) in G[

⋃4(p−2)
i=1 F it ].

Moreover, from (a), for i ∈ [4(p − 2)], wt is adjacent to dit which has degree λ1 in Sit . Thus wt must be a
λ2-vertex in Sit because F is anticomplete.
Since wt is in S′t which intersects Ht in λ1−1 vertices and wt must have degree at least λ1 in G[S′t], then it is
adjacent to at least one vertex in Yt ⊂ V (S′t). Therefore, wt is adjacent to at most k−4(p−2)(2λ2−a)−1 =
4λ1 vertices in Ht.
Now for every i ∈ [p− 2], wt belongs to four hyperedges S(p−2)r−i

t , r ∈ [4], which pairwise intersect in {wt}.
Hence wt has degree exactly λ1 in each S(p−2)r−i \ {d(p−2)r−it } and then is adjacent to 4λ1 vertices in Ut.

If a vertex uit is adjacent to wt, then so is ui+p−2t because wt has degree exactly λ1 in both Sit \ {dit} and
Si+1
t \ {di+1

t }. Therefore there is I ∈ [p − 2] of size λ1 such that wt is adjacent to u(p−2)r−i+1
t for all i ∈ I

and r ∈ [4].
Since wt has degree 4λ1 in Ht, then wt is adjacent to exactly one vertex in Yt and so must be adjacent to
λ1 − 1 vertices in S′t \ Yt which are up−2t , . . . , up−λ1

t . It implies that [λ1 − 1] ⊂ I. This completes the proof
of (b).

From (a), (b) we have that wt has degree 4(p−2)(2λ2−a) in G[
⋃4(p−2)
i=1 F it ], it is adjacent to 4λ1 vertices

in Ut and one in Yt. Thus, wt has degree k in total. This proves (c). ♦

Claim 21.5(b) implies that the vertices of Xt (resp. Xt) are either all adjacent to wt or all non-adjacent
to wt. Moreover, wt is adjacent to 4(λ1−1) vertices in Ut \(Xt∪Xt). Hence if the vertices of Xt are adjacent
to wt, the vertices of Xt are not (and vice-versa).

Let φ be the truth assignment defined by φ(xt) = true if wt is adjacent to all vertices of Xt in Ht, and
φ(xt) = false otherwise. Observe the following.

• In Case C-(i), any clause vertex cj is in a (k−6λ1 +1)-degree-gadget, so it has degree at most 6λ1−1
in the union of its three variable gadgets. Thus it has degree less than 2λ1 in one of its variable gadgets
Ht. Since any vertex in Ut has degree at least 2λ1 − 1 in G[Ht], with equality only if it is adjacent to
wt, the vertex cj is adjacent to wt. Hence, the corresponding literal to this literal vertex is true and so
Cj is satisfied.

• In Case C-(ii), any clause vertex cj is in a k−d-degree-gadget, then has degree at most d in the union
of its three variable gadgets. Hence cj has degree at most bd/3c neighbors in one of those variable
gagdget, say Ht. Let i be the index such that cj = uit.

Suppose for a contradiction that cj is not adjacent to wt. Then it is a λ2-vertex in every hyperedge of
Ht.
Vertex cj has at least λ2 neighours in each of Sit and Si−p−3t which intersect in {cj , wt}. Hence cj
has at least 2λ2 neighours in Sit ∪ Si−p−3. In Case C-(ii)-a, bd/3c = 2λ1 + 1 < 2λ2, so we get a
contradiction.
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In Case C-(ii)-b, since wt is adjacent to all dit by Claim 21.5 (b), cj corresponds to a vertex in N≥2 in
every hyperedge of Ht to which it belongs. Therefore it is adjacent to all λ1-vertices in these hyperedges
and thus in particular to all di

′
t for all i − p + 3 < i′ < i. Hence cj has degree at least 2λ2 + p − 4 in

V (Ht). But bd/3c = 2λ1 + p− 3 = 2λ2 + p− 5 , a contradiction.

In both subcases, the vertex cj is adjacent to wt. Hence, the corresponding literal to this literal vertex
is true and so Cj is satisfied.

Consequently, φ satisfies Φ.

6 Further research
Problem 1 asks for a characterization of the pairs (F, k) for which (∆ ≤ k)-F -Overlay is polynomial-time
solvable and those for which it is NP-complete. As a partial answer, we proved that np(F ) < +∞ if and
only if F is standard, that is neither a complete graph nor an anticomplete graph. We believe that the
following holds.

Conjecture 22. For every graph F , (∆ ≤ k)-F -Overlay is polynomial-time solvable when k < np(F )
(and NP-complete otherwise).

Thus answering Problem 1 is equivalent to determining np(F ). However, it would already be interesting
to prove that for any pair (F, k), (∆ ≤ k)-F -Overlay is either polynomial-time solvable or NP-complete.
A first step to prove this is to prove Conjecture 2.

Furthermore, we made no attempt to minimize the upper bound on np(F ), our goal was just to prove
such a bound exists. In fact, our proof in Section 5 shows the general upper bound np(F ) ≤ 8|F |δ(F ) for
every standard graph F . However, there are many graphs for which the proof shows np(F ) ≤ 6∆(F ). It
motivates the following questions.

Problem 23. Does there exist a constant c such that np(F ) ≤ c ·∆(F ) for every standard graph F ?

Moreover, better upper bounds can certainly be obtained for certain classes of graph F . For example,
for every path Pp with p ≥ 4, Theorem 20 Case B (i) yields np(Pp) ≤ p + 1, and if F is a disjoint union
of paths, then Theorem 20 yields np(F ) ≤ 8|F | − 11 (the worst case is given by Case C (i) when F has a
component which is a P3). In Appendix A, we show np(Pp) ≤ 4. We also obtain a better upper bound for
disjoint union of paths: we prove that np(F ) ≤ 5 for such a graph F .

Getting lower bounds would also be interesting. The trivial lower bound is np(F ) ≥ ∆(F ). There are
graphs for which this lower bound is attained (the graphs with one edge of order at least 4 for example),
and other for which it is not t(he paths for example, see Havet et al. [10]). It would be nice to characterize
the graphs such that np(F ) = ∆(F ). It would also be nice to find graphs F such that np(F ) − ∆(F ) is
large. The largest known difference is 2 for C4, the cycle on four vertices. Indeed Havet et al. [10] proved
np(C4) ≥ 4 = ∆(C4) + 2.

There are very few standard graphs F for which np(F ) is known. The only ones are the graphs with one
edge. Havet et al. [10] proved np(O3) = 2 and np(Op) = 1 for all p ≥ 4. It would be nice to determine np(F )
for other graphs. A first problem is to do it for paths. Havet et al. [10] proved that np(Pp) > 2 for all p. In
Appendix A of this paper, we prove np(Pp) ≤ 4 for p ≥ 3. Hence it is open to answer whether np(Pp) = 3.
Note that paths have minimum degree 1, so by Lemma 12, Conjecture 2 holds for such graphs. A second
natural step is to determine np(F ) when F is a cycle. Indeed, Conjecture 2 is not yet proved for such graphs
and there are non-trivial polynomial-time algorithms when F is a cycle, as shown by the example of C4.

In this paper, we only considered the case when the family F of admissible graphs has size 1. It is natural
and interesting to study the more general case when F can have an arbitrary size, finite or infinite.

Problem 24. Characterize the pairs (F , k) for which (∆ ≤ k)-F-Overlay is polynomial-time solvable and
those for which it is NP-complete.

We believe that Conjectures 25 and 2 extends to any family F .
Conjecture 25. For every family of graphs F , there exists an integer k0 such that (∆ ≤ k)-F-Overlay is
polynomial-time solvable when k < k0 and NP-complete otherwise.
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Conjecture 26. If (∆ ≤ k)-F-Overlay is NP-complete, then (∆ ≤ k+1)-F-Overlay is also NP-complete.

We also strongly believe that Theorem 3 can be extended to any family F . Defining np(F) as the
minimum integer k0 such that (∆ ≤ k)-F-Overlay is NP-complete for all k ≥ k0 or +∞ if no such k0
exists, we conjecture the following.

Conjecture 27. np(F) = +∞ if and only if all elements of F are complete or anticomplete.
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A Disjoint union of paths
In this appendix, we study on the family of disjoint union of paths and aim to prove the following theorem.

Theorem 28. Let F be a disjoint union of paths with δ(F ) ≥ 1. If F 6= K2, then np(F ) ≤ 5.
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A disjoint union of paths contains several paths with their lengths. The following result allows us to
consider only a longest path in a disjoint of paths which is simpler.

Lemma 29. Let F be a disjoint union of paths among which P is a shortest one. If (∆ ≤ k)-(F − P )-
Overlay is NP-complete, then (∆ ≤ k)-F -Overlay is NP-complete. Hence np(F ) ≤ np(F − P ).

Proof. Set |F | = p, |P | = q, and F ′ = F − P . So |F ′| = p− q.
We give a reduction from (∆ ≤ k)-F ′-Overlay to (∆ ≤ k)-F -Overlay.
Let H ′ be a (p − q)-uniform hypergraph. Let us build a p-uniform hypergraph H from H ′. For every

hyperedge S of H ′, we do the following: we create a set US = {u1S , . . . , uqS} of q vertices, and a set WS of
p − q vertices; we add the hyperedges S ∪ US and US ∪WS to E(H); we add k − 1 pendant hyperedges at
u1S and uqS , and k − 2 pendant hyperedges at each uiS for 2 ≤ i ≤ q − 1.

We shall prove that there is an (F,H, k)-graph G if and only if there is an (F ′, H ′, k)-graph G′.
Assume first that there is an (F,H, k)-graph G. Note that every vertex in a hyperedge S of H has degree

at least 1 in G[S]. For each hyperedge S of H ′, the vertex u1S is in k−1 pendant hyperedges, in each of which
it has degree 1. Therefore u1S has degree at most 1 in G[S ∪ US ∪WS ]. Now u1S has degree 1 in G[S ∪ US ]
and G[US ∪WS ], so necessarily u1S has a unique neighbor in US and no neighbor in S ∪WS . Similarly, uqS
has a unique neighbor in US and no neighbor in S ∪WS . If q = 2, then G[US ] = P and there is no edge
between US an S in G. If q > 2, then the neighbor of u1S in US cannot be uqS for otherwise G[{u1S , uqS}]
would be a connected component of G[S ∪ US ] on two vertices, a contradiction to the fact that P is the
smallest component of F . Hence, without loss of generality, we may assume that the unique neighbor of
u1S in US is u2S . But now since q > 2, the vertex u2S has at least two neighbors in both G[S ∪ US ] and
G[US ∪WS ]. Moreover, u2S is in k − 2 pendant hyperedges. Therefore u2S has exactly two neighbors in US
and no neighbor in S ∪WS . If q = 3, then G[US ] = P and there is no edge between US an S in G. If
q > 3, then the neighbor of u2S distinct from u1S in US cannot be uqS for otherwise G[{u1S , u2S , uqS}] would be
a connected component of G[S ∪US of order 3, a contradiction to the fact that P is the smallest component
of F . Hence, without loss of generality, we may assume that the neighbor of u2S distinct from u1S in US is
u3S . And so on, by induction on i ≤ q− 1, one can show that the neighbors of uiS in G[S ∪US ∪WS ] are ui−1S

and uiS . Therefore, G[US ] = P and there is no edge between US and S in G, and so G[S] = F − P = F ′.
Consequently, G′ = G[H ′] F ′-overlays H ′ and so is an (F ′, H ′, k)-graph G′.

Assume now that there is an (F ′, H ′, k)-graph G′. Let G be the graph built from G′ as follows. For
each hyperedge S, we let G[Us ∪WS ] be a copy of F such that G[US ] = P , and the subgraph of G induced
by every pendant hyperedge at some vertex x is any copy of F in which x as degree 1. Observe that
G[S ∪ Us] = G′[S] ∪ P . Thus G[S ∪ Us] contains F because G′[S] contains F ′. Therefore G F -overlays H.
One easily checks that ∆(G) ≤ k, so G is an (F,H, k)-graph.

By Lemma 29, it is sufficient to prove Theorem 28 for paths, and 2K2 – the 1-regular graph on four
vertices. By Theorem 13, we have np(2K2) ≤ 5, so it suffices to prove the result for paths.

Theorem 30. np(Pp) ≤ 4 for all p ≥ 4 .

Proof. By Lemma 12, it suffices to prove that (∆ ≤ 4)-Pp-Overlay is NP-complete for p ≥ 4 . We give a
reduction from (3,4)-Sat.

Given a formula Φ of (3,4)-Sat with n variables xt, t ∈ [n], and m clauses Cj , j ∈ [m], we construct a
hypergraph H as follows.

• For each variable xt, we add a variable gadget H(xt) containing a center vertex ct, four pairs of
literal vertices x1t , x̄1t , . . . , x4t , x̄4t , and eight sets of p − 3 vertices U1

t , . . . , U
4
t and T 1

t , . . . , T
4
t . Set

Xt = {xit | i ∈ [4]} and Xt = {x̄it | i ∈ [4]}. We add the four hyperedges {ct, xit, x̄i} ∪ U it for i ∈ [4],
and the four hyperedges {ct, x̄it, xi+1

t } ∪ T it for i ∈ [4] (superscripts are modulo 4).
• For each clause Cj = (`1 ∨ `2 ∨ `3), we add a clause gadget H(Cj) containing two clause vertices yj , zj ,

one set of p − 2 vertices Vj , three sets of p − 3 vertices W 1
j ,W

2
j ,W

3
j , and we distinguish a vertex

wij ∈W i
j for each i ∈ [3]. We add one hyperedge Sj = {yj , zj} ∪ Vj , and for each literal `i which is the

ri-th occurrence of this variable, ri ∈ [4], we add one hyperedge S`ij = {yj , zj , `rii } ∪W i
j . Finally, for

i ∈ [3] we add three pendant hyperedges at each wij (with new vertices).
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We will prove that there exists a truth assignment φ satisfying Φ if and only if there is a (Pp, H, 4)-graph
G. The general idea is that a variable xt = true (resp. false) if and only if the center vertex ct is adjacent
to all vertices of Xt (resp. Xt) (so each xit has degree 2 (resp. 3) in G[H(xt)] for all i ∈ [4]).

Assume that there exists a truth assignment φ satisfying Φ. Let G be the graph obtained as follows.
• We first consider each variable xt, t ∈ [n]. If φ(xt) = true (resp. false), then any subgraph induced

by a hyperedge S of H(xt) is a copy of Pp whose two endpoints are ct and the vertex of S ∩Xt (resp.
S ∩ X̄t), and in which ct is adjacent to the vertex of S ∩ X̄t (resp. S ∩Xt). Then G[H(xt)] is called
a true variable subgraph (resp. false variable subgraph) on xt, if in this subgraph the literal vertices in
Xt have degree 2 (resp. 3) and the literal vertices in Xt have degree 3 (respectively 2).

• We then consider each clause Cj = (`1 ∨ `2 ∨ `3), j ∈ [m]. The induced subgraph G[Sj ] is a copy of
Pp where yj is an endpoint and yj is adjacent to zj (therefore yj has degree 1 and zj has degree 2 in
G[Sj ]. Let i ∈ [3]. If φ(`i) = true, then let G[S`ij ] be a true literal subgraph, that is it is a copy of
Pp starting with (zj , yj , `

αi
i ) and ending at wij ; it increases the degree of yj by 1 in G and does not

increase the degree of zj in G. If φ(`i) = false, then let G[S`ij ] be a false literal subgraph, that is a
copy of Pp starting with (wij , zj , yj) and ending at `αii ; it increases the degree of both yj and zj by 1
in G.
Finally for any hyperedge pendant at wij , the subgraph induced by this hyperedge is a copy of Pp in
which wij as degree 1.

Observe that all the vertices of G have degree at most 4. In particular, for each clause Cj , the vertex zj has
degree 4 because there is a literal such that φ(`i) = true. Hence, G is a (Pp, H, 4)-graph.

Conversely, assume that G is a (Pp, H, 4)-graph.
Observe that the subgraph induced by the hyperedges of each variable gadget is either a true or a false

variable subgraph. Indeed, ct has degree at most 4, and degree 1 in each of the eight hyperedges of the
variable gadget. In order to have all hyperedges Pp-overlaid it must contain either the four edges ctxit, i ∈ [4]
(true vertex subgraph), or the four edges ctx̄it for i ∈ [4] (false vertex subgraph). Thus, we define a truth
assignment φ by setting φ(xt) = true (resp. false) if H(xt) is a true (resp. false) variable subgraph. We
shall prove that φ satisfies Φ. We need the following claim.

Claim 30.1. For any clause gadget H(Cj), yjzj ∈ E(G) and at least one of three literal vertices in H(Cj)
has at least two neighbors in V (H(Cj)).

Proof of Claim. Observe that in each G[Sl
i

j ], the vertex wij must have degree 1, because it has three neighbors
in its three pendant hyperedges.

Assume for contradiction that yjzj 6∈ E(G), then both yj and zj have a neighbor in Vj . Moreover, in
each G[Sl

i

j ] at least one of yj , zj has degree at least 2 because wij has degree 1. Consequently, at least one
of yj , zj has degree more than 4 in G, a contradiction. Therefore, yjzj ∈ E(G).

Assume for a contradiction that the three literal vertices have only one neighbor in V (H(Cj)). Then
both yj and zj have at least two neighours in each S`ij . Moreover, one of them, say zj , has two neighbors in
Sj . Thus zj is adjacent to yj and at least one vertex in each of the four disjoints sets S`ij \ {yj , zj}, i ∈ [3]
and Vj . Hence zj has degree 5 in G, a contradiction. ♦

From this claim, in any G[H(Cj)], at least one of the three literal vertices in H(Cj), say `αii , has at least
two neighbors in V (H(Cj)). But then `αii must have degree 2 in its variable gadget. Therefore, by definition
of φ, we have φ(`i) = true. We conclude that φ satisfies Φ.

Theorem 31. np(P3) ≤ 4.

Proof. By Lemma 12, it suffices to prove that (∆ ≤ 4)-P3-Overlay is NP-complete. We give a reduction
from (3,4)-Sat problem. The proof is very similar to that of Theorem 30, the differences lying in the
construction of the clause gadgets. Therefore, we just give a sketch of the proof and leave the details to the
reader.

Given a formula Φ of (3,4)-Sat with n variables xt, t ∈ [n], and m clauses Cj , j ∈ [m], we construct a
3-uniform hypergraph H as follows.
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• For each variable xt, we add a variable gadget H(xt) containing ct, four couples (xit, x̄
i
t) and the

hyperedges are of the form {ct, xit, x̄it} and {ct, x̄it, xi+1
t } for i ∈ [4] (superscript are modulo 4).

• For each clause Cj = (`1∨ `2∨ `3), we add a clause gadget H(Cj) six new vertices y1j , y2j , y3j , w1
j , w

2
j , w

3
j .

We add the hyperedge Sj = {y1j , y2j , y3j }. For each literal `i for i ∈ [3] which is the ri-th occurrence of
its variable, we add S`ij = {yij , `rii , wij}. For each i ∈ [3], we add three pendant hyperedges at wij and
a pendant hyperedge at yij .

One that then can easily prove the following analogue of Claim 30.1.

Claim 31.1. For any clause gadget H(Cj), in any (P3, H, 4)-graph, at least one of three literal vertices in
H(Cj) has at least two neighbors in V (H(Cj)).

This allows to show that there exists a truth assignment φ satisfying Φ if and only if there is a (P3, H, 4)-
graph G.

Lemma 29 and Theorems 30, 31, and 13 directly imply Theorem 28.

29


