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Jérôme Saracco, ASTRAL, Inria BSO, Talence, France

October 7, 2021

Abstract

In the supervised high dimensional settings with a large number of variables and a low number of
individuals, variable selection allows a simpler interpretation and more reliable predictions. That subspace
selection is often managed with supervised tools when the real question is motivated by variable prediction.
We propose a Partial Least Square (PLS) based method, called data-driven sparse PLS (ddsPLS), allowing
variable selection both in the covariate and the response parts using a single hyper-parameter per component.
The subspace estimation is also performed by tuning a number of underlying parameters. The ddsPLS
method is compared to existing methods such as classical PLS and two well established sparse PLS methods
through numerical simulations. The observed results are promising both in terms of variable selection and
prediction performance. This methodology is based on new prediction quality descriptors associated with
the classical R2 and Q2 and uses bootstrap sampling to tune parameters and select an optimal regression
model.

Keywords PLS regression, Supervised learning, Variable selection, Soft thresholding, Multi-block data

1 Introduction

While recent biotechnologies offer more and more descriptors (denoted as p) for monitoring biological pro-
cesses, the number of observations (denoted as n) does not increase, which implies the ill-posed problem
n<<p in supervised settings (such as regression framework). Different methods have been developed in the
past century to tackle this high dimensional problem and, Partial Least Squares (PLS), particularly gathers
attention since its introduction by Wold (1966). Indeed, this methodology has firstly become a standard in
chemometrics calibration Martens et al. (1992) and is now used in biology Zoong Lwe et al. (2020), animal
genetics Kautt et al. (2020), in human genetics Rechtien et al. (2017) and in many other areas. However, to
keep the ease of regression models’ interpretation as p grows further, variable selection has also started to
be needed by PLS users.
Following the L1-penalization of the regression coefficients introduced by Tibshirani (1996), models that
handle variable selection solutions (denoted as sparse methodologies in the following) and produce model
regularization allowing to keep confidence in the built models have been introduced by Lê Cao et al. (2008);
Chun and Keleş (2010). Even if Chun and Keleş (2010) proved that PLS consistency is lost as n shrinks
and p grows, the PLS and sparse PLS methods have allowed authors to analyze real datasets meaningfully.
The PLS estimation goes through R ∈ N? identical processes which can be generally described as follows.

(a) Estimate the covariance matrix between covariate (x) and response (y) parts.
(b) Estimate the singular-space associated with the largest singular-value of the previous matrix.
(c) Project the covariate and response parts on the previously defined subspace.
(d) Estimate the linear regression matrix of the response part on the covariate part in the subspace.
(e) Remove the information carried by the current subspace from the covariate and response parts.

The step (a) corresponds to the estimation of a covariance matrix between the response and the covariate
parts. The chosen estimator is very often M = 1/n

∑n
i=1(yi − ȳ)(xi − x̄)′, for a data-set (xi, yi)i=1..n of

size n with empirical means x̄ and ȳ. This estimator is very sensitive to the curse of dimensionality, when
the sample size is small and/or the number of variables is large, see for example Bickel and Levina (2008).
However, the works previously mentioned only apply regularization methods in step (b), trying to overcome
the failure to estimate the covariance matrix.
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Therefore, the present work focuses on a regularized estimation of the covariance matrix directly in step (a).
More precisely, the considered solution and its associated optimization problem are

Sλ(M) = arg minΣ∈Rq×p ||M−Σ||2 + 2λ |Σ| , (1)

where the soft-thresholding operator, an element-wise matrix operator, is defined as

∀X ∈ Rp,q, Sλ(X) = (Sλ(xi,j))(i,j)∈[[1,p]]×[[1,q]] = (sign(xi,j) max(0, |xi,j | − λ))(i,j)∈[[1,p]]×[[1,q]] ,

|| • || and | • | are respectively the Frobenius and the L1 norms. Note that if λ = 0, the chosen estimator is
the empirical estimator of the variance-covariance matrix.
So far, no theoretical development has been conducted to study the behavior of this estimator but for the case
of a variance matrix, that is when x = y. Indeed, this case has been widely analyzed for the soft-thresholding
operator but also for different thresholding operators. Johnstone and Lu (2009) have explored the pertinence
of thresholding the diagonal of the empirical covariance matrices in the objective of building sparse versions
of the Principal Components Analysis (PCA). Bickel and Levina (2008) have put forward theoretical and
numerical arguments to various types of thresholding operators. Also, Deshpande and Montanari (2016)
have shown the interest of such an idea where the whole empirical covariance matrix is thresholded, and the
diagonal is removed.
In the PLS context, the number of components must be tuned, which is generally performed using prediction
error. For sparse models, other parameters must also be adjusted by cross-validation and, more specifically,
the leave-one-out method in the context of PLS. Recently, a sparse PLS approach (denoted as sgPLS for
sparse group PLS and introduced in Sutton et al. (2018); Liquet et al. (2016)) has used bootstrap approach
in Broc et al. (2021) to efficiently overcome the difficulty of the “large p, small n” multi-block framework to
select optimal models.

Recently, a meta-analysis of sparse PLS methodologies was performed by Mehmood et al. (2020) over 16
different types of strategies divided in 3 classes which are “filter”, “wrapper” and “embedded” methods. The
first class “filter” corresponds to a filter which is applied on the output of a PLS model (on the regression
coefficients for example) and allows to classify variables according to their importance. The second class
“wrapper” considers methodologies where the result of a “filter” is used to refit a PLS model. This operation
is produced a certain amount of times. The most classical methods in this context are the backward (and
also forward even if this has not been studied in the PLS case yet) variable selection methodologies. It also
takes into account randomized methodologies regarding to the studied variables or sub samples. This list
is non exhaustive and we encourage the reader to refer to the section “3.2 Wrapper methods” of Mehmood
et al. (2020) to appreciate the richness of the solutions devised. The third class “embedded” corresponds to
context where variable selection is performed in the PLS model building.

In the following, the proposed sparse PLS model, based on empirical covariance thresholding, soft-
thresholding more specifically, is studied. The thresholds and the number of components are tuned thanks
to bootstrap operations. Following the classification of sparse PLS methods described in Mehmood et al.
(2020), the proposed methodology is close to the third class “embedded”. Yet this methodology modifies
the PLS algorithm working on the covariance matrix before the PLS model is actually built, this closeness
to the data gave its name: data-driven sparse PLS (ddsPLS). This ddsPLS methodology opens a new class
of sparse PLS methods.

In Section 2, the underlying statistical model associated with latent variables is introduced. Section 3
describes the PLS (NIPALS-PLS/PLS2) algorithm and details the existing sparse PLS solutions. Section 4
introduces the proposed ddsPLS solution and the associated model selection algorithm. Based on numerical
studies, Section 5 reports the quality of the proposed methodology and compares it to the above-presented
methods through simulation designs. Finally, Section 6 provides some concluding remarks.

2 A latent variable model

Let x (resp. y) be a p-dimensional (resp. q-dimensional) random variable. Let assume that the variables of
x and of y are centered and of unit variance. Let n ∈ N? be the sample size. Let X and Y be n×p and n×q
random matrices where, for each row i ∈ [[1, n]], xi ∼ x and yi ∼ y. Let us further assume that the xi’s,
respectively the yi’s, are independent to each other. Different methods such as PCA and PLS are based
on the principle of generative latent vector common to x and y, denoted by φ hereafter, a R-dimensional
random variable. The corresponding latent variable model can be written as

x = A′φ+ ε where A = [a1, · · · ,aR]′ ∈MR×p(R) with ||ar|| 6= 0,
y = D′φ+ ξ where D = [d1, · · · ,dR]′ ∈MR×q(R) with ||dr|| 6= 0,
with var(φ) = IR, Eφ = 0R, Eε = 0p, Eξ = 0q,
cov(φ, ε) = 0R×q, cov(φ, ξ) = 0R×q, cov(ε, ξ) = 0p×q.

(2)

This model implies that var(x) = A′A+var(ε) and var(y) = D′D+var(ξ). Furthermore, if the components
of the random errors ε and ξ are independent and share the same variance, denoted by σ2, it comes var(x) =
A′A + σ2I and var(y) = D′D + σ2I. In all cases, the relation holds cov(y,x) = D′A.
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Remark 1 Helland and Almøy (1994) have studied the number R of latent variables shared by y and x. They
specified in which measure R is different from R in the general case. They have shown that the dimension
R is equal to the largest number of eigen-vectors of A′A = var (x), which have non-null projections on
A′D = cov (x,y). In the PLS framework, R is the dimension of interest and is retrieved in the methodology
as the estimated number of components.

The underlying latent variable model (2) intuitively implies the following regression model

y = B′x + e, (3)

where B ∈ Rp×q is a non-stochastic matrix, e ∈ Rq is a centered residual q-dimensional random vector, and
e and x are independent. Matrix B must satisfy

(AB)′ φ = D′φ =⇒
E · �′

AB = D. (4)

In the general case, without any additional hypothesis, B is not unique, but for the trivial cases or when
AA′ is invertible, the ordinary least-squares estimator of B only uses Equation (3), minimizing the l2-norm

of e, and provides B̂ = X+Y, which is known to be unstable in the case of multicollinearity in the X matrix.
Let us notice that the latent variable model (2) is also not identifiable. Indeed, for any matrix G ∈ GLR(R),
denoting by t = G′φ, P = G−1A and C = G−1D, model (2) implies the following latent decomposition
used by most of the authors. 

x = P′t + ε,
y = C′t + ξ,
with var(t′, ε′, ξ′)′ diagonal,

(5)

where t is called the score and P and C are called the loadings. Since the score and loadings are not
identifiable, the PLS method concentrates on building a subspace that covers the space drawn by φ through
an unknown matrix G. Note that, only when numerical simulations are carried out, Equation (4) allows to

screen the quality of structural reconstruction of the current estimator B̂ of B thanks to the metrics (for
example)

||AB̂−D||2

||D||2 , (6)

which is as close to 0 as the estimated model is close to the theoretical one.

The PLS algorithm is a multi-linear regression method able to estimate regression matrices even in the
context of degenerate datasets, i.e. when X′X is singular. The principle of this algorithm is to iteratively
estimate, here for the rth-iteration, the first right and left singular vectors, ur and vr, of the empirical
covariance matrix M(r) = Y(r)′X(r)/(n− 1) where Y(r) and X(r) are the residual matrices of the previous
steps, see technical details in next section.

3 NIPALS-PLS and sparse PLS solutions

This section recalls three different PLS algorithms. First the original PLS-Nipals algorithm, denoted by
NIPALS-PLS Wold (1966) hereafter, is presented. Then the sparse PLS algorithm using L1-weights regular-
ization, denoted by sPLS Lê Cao et al. (2008) hereafter, is detailed. Finally, a modification of the previous
sparse solution to control the non-convex part of the optimization problem, denoted by SPLS Chun and
Keleş (2010) hereafter, is provided.

3.1 NIPALS-PLS (PLS2) solution

The NIPALS-PLS Wold (1966) algorithm, often referred to as PLS2 algorithm in the literature, solves the
optimization problem given at the first row of Table 1. The r-th iteration of this algorithm is described in (7):
using the initializations X(1) = X and Y(1) = Y,

∀r ∈ [[1, R]]



(a) ur =
−−→
RSV

(
M(r)

)
, vr =

−−→
RSV

(
M(r)′

)
,

(b) tr = X(r)ur,

(c) pr = X(r)′tr/t
′
rtr,

(d) cr = Y(r)′tr/t
′
rtr,

(e) X(r+1) = X(r) − trp
′
r, Y(r+1) = Y(r) − trc

′
r,

(7)

where
−−→
RSV (for Right-Singular-Vector) is the function that returns the first right singular vector of its

argument. In this algorithm, step (a) estimates the weights, step (b) estimates the scores, steps (c) and
(d) estimate the linear regression matrices of X(r) on tr and Y(r) on tr, and finally step (e) applies deflation.
The regression matrix estimation is performed using the relation

B̂ = U
(
P′U

)−1
C′ (8)
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where U = [u1, . . . ,uR], P = [p1, . . . ,pR] and C = [c1, . . . , cR]. If one wants to build the scores from an
x-matrix, potentially different from the one used to build the model, it must not use the matrix U directly
but the matrix U (P′U)

−1
: XU (P′U)

−1
= (t1, . . . , tR) = (X(1)u1, . . . ,X

(R)uR).

Remark 2 In its original form, the PLS2/NIPALS-algorithm details the step (a) alternating estimations
of ur and vr until convergence of ur such as

ur = X(r)′sr/||X(r)′sr||
tr = X(r)ur/(u

′
rur)

cr = Y(r)′tr/(t
′
rtr)

sr = Y(r)cr/(c
′
rcr)

,

where sr is initialised as the first column of Y(r), see Tenenhaus (1998) for example. This alternating

algorithm and the
−−→
RSV operators both build ur and the form associated to the operator will be kept in the

following due to its compact aspect.

3.2 Two sparse PLS solutions

Variable selection can be performed during the computation of the components used to construct the PLS
models. Based on L1-penalization, two sparse PLS solutions have been developed, denoted sPLS Lê Cao
et al. (2008) and SPLS Chun and Keleş (2010) hereafter. More precisely, the NIPALS-PLS maximization
criterion is then modified such as detailed in the second and third rows, respectively, of Table 1.

sPLS Lê Cao et al. (2008) introduces sparsity both in the X and in the y parts through 2R+1 parameters.
The underlying idea is to construct a solution using the soft threshold operator Sλ (·). The r-th step of the
associated algorithm is detailed in (9): using the initializations X(1) = X and Y(1) = Y,

∀r ∈ [[1, R]]



(a†) Initialize vr normalized, iterate until convergence of the two steps :

(i†) ur = S
λ

(r)
u

(
M(r)′vr

)
, ur = ur/||ur||,

(ii†) vr = S
λ

(r)
v

(
M(r)ur

)
, vr = vr/||vr||,

(b) tr = X(r)ur,

(c) pr = X(r)′tr/t
′
rtr,

(d) cr = Y(r)′tr/t
′
rtr,

(e) X(r+1) = X(r) − trp
′
r, Y(r+1) = Y(r) − trc

′
r,

(9)

where the regression matrix estimation is performed using the relation (8). One might notice that λ
(r)
v fixes

the sparsity of vr. However, since Equation (e) in Algorithm (7) does not explicitly impose sparsity in the

y part, then the estimated matrix B̂ is not constrained to be sparse in Y. In the implementation, the search
for parameters (λ

(r)
u , λ

(r)
v ) is driven, in an equivalent way, by two new parameters (keepX , keepY )r which

respectively correspond to the number of selected variables in both x and y parts for the rth component.
SPLS Chun and Keleş (2010) concentrates on the x part sparsity and needs only 4 parameters to be

tuned. Looking at the optimization problem of SPLS Chun and Keleş (2010), the sparse solution c, relying
on a L1-penalization via the parameter λ1, is not directly sought. Instead the algorithm defines c as a
direction relatively close to w, the “associated PLS-based solution”. This distance is measured according to
the SX,(r)-metric and the importance of each of these two terms in the overall optimization problem is tuned
by a parameter κ ∈ [0, 1]. If κ is high (equal 1 at the limit), the problem yields to the PLS Wold (1966)
solution, while a low κ means that c and w must be very close to each other but not necessarily to the
classical PLS solution. According to Chun and Keleş (2010), λ2 can be tuned to +∞ as to preserve the soft-
thresholding solution and κ < 1/2 avoids local solution issues. There are now only 3 parameters (R, κ, λ1)
left to be tuned. Algorithm (10) is the associated algorithm in the case of so-called NIPALS deflation, as
described by the authors where NIPALS-PLS(.) is a function that takes a covariate and a response matrix
for the two first arguments and a number of components in third and sends the NIPALS-PLS regression
matrix such as described in Algorithm (7). In the following, the regression matrix is estimated as B̂ = B(R),
also A is the index set of active variables, updated at each iteration, such as

∀r ∈ [[1, R]] :



Z(r) = X′Y(r) and SX,(r) = Z(r)Z(r)′

Initialize c(r), iterate until convergence of the two steps :

w(r) = arg min
w,w′w=1

−κw′SX,(r)w + (1− κ)(c(r) −w)′SX,(r)(c(r) −w),

c(r) = arg min
c

(
Z(r)′c− Z(r)′w(r)

)′ (
Z(r)′c− Z(r)′w(r)

)
+ λ1|c|,

A =
{
i ∈ [[1, p]]|w(r)

i 6= 0 ∨B
(r−1)
i,. = 0

}
,

B
(r)
A = NIPALS-PLS

(
XA,Y

(r), r
)

and B
(r)
−A = 0,

(e’) Y(r+1) = Y(r) −XB(r).

(10)

The deflation in sPLS Lê Cao et al. (2008) is performed as in the classical NIPALS-PLS algorithm (see row
(e) of Algorithm (7)), while only the Y part is deflated in the SPLS Chun and Keleş (2010) algorithm (using
row (e’) of Algorithm (10), instead of row (e) of Algorithm (7)).
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Table 1: Core optimization problem of each PLS-based, where M(r) = Y(r)0X(r)=n� 1 and SX;(r) =

X0Y(r)Y(r)0X.

Method Optimization Problem Constraints Parameters

NIPALS-PLS Wold (1966) max
u,v

v′M(r)u u′u = v′v = 1 R

sPLS Lê Cao et al. (2008) min
u,v

������(n� 1)M(r) � vu′
������2

+ �(r)
u juj+ �(r)

v jvj u′u = v′v = 1 R;
�
�(r)
u ; �(r)

v

�
r

SPLS Chun and Kele�s (2010) min
w,c

� �wSX,(r)w + (1� �)(c�w)′SX,(r)(c�w) + �1jcj+ �2jjcjj w′w = 1 R; �; �1; �2

ddsPLS arg max
u,v

v′Sλr

�
M(r)′

�
u u′u = v′v = 1 R; (�r)r

The method proposed in the next section is a new sparse PLS methodology based on a soft-thresholding
operation of the empirical covariance matrix, where the associated hyperparameters are ajusted via boot-
strap.

4 Data-driven sparse PLS

This section details the ddsPLS method. First, Section 4.1 provides the underlying algorithm. Then Sec-
tion 4.3 introduces the main quality descriptors generally used in PLS regression and their adaptations to the
bootstrap context with slight modifications. Section 4.4 explains how to tune the different hyperparameters
of the ddsPLS method, and an illustration based on an “easy” example is given in Section 4.6. Finally
Section 4.2 provides the extension of the ddsPLS approach to the case of multi-block x datasets.

Remark 3 Since the underling latent variable model (2) assumes centered and scaled x and y variables,
the data are (marginally) standardized on the overall dataset before applying the ddsPLS methodology. So
data are standardized by subtracting the empirical mean and dividing by the empirical standard deviation.
This standardization step makes the ddsPLS methodology sensitive to potential extreme observations’ adverse
effects and thus to outliers.

4.1 ddsPLS algorithm

As noticed in Mehmood et al. (2020), sPLS Lê Cao et al. (2008) and SPLS Chun and Keleş (2010) are
embedded sparse methodologies. But those methodologies are based on the penalization of the x parts
from the eigendecomposition of Y’X (and also of the y part for sPLS Lê Cao et al. (2008), but through a
different regularization coefficient). The idea of the ddsPLS method is to soft-threshold directly the empirical
covariance matrix right, using the Sλ(.) operator, before building the weights. This operation naturally tends
to remove non-interesting variables since their associated soft-thresholded empirical covariance coefficients
are equal to 0, for a threshold λ large enough, and the associated weight goes to 0. This regularization of the
“data itself” (actually the empirical covariance matrix) and not of the associated weights (which are first
eigenvectors of the empirical covariance matrices) led to the name “data-driven sparse PLS (ddsPLS)” to
the proposed method. The corresponding optimization problem is provided in the last row of Table 1. One
might notice that if λr = 0, it corresponds to the usual NIPALS-PLS Wold (1966) solution. The associated
algorithm of the ddsPLS method is detailed below. Note that, to introduce sparsity in the response in the
regression matrix B̂, the step (d) of the Algorithm (7) is modified such as

cr =
(
Y(r)Πr

)′
tr/t

′
rtr

where Πr = diag({δ6=0(vr)j}j∈[[1,q]]) is sparse since “vr” is sparse for λ large enough. Here also, if λ = 0,
the result is equal to the solution offered by the NIPALS-PLS Wold (1966) solution.

The algorithm of ddsPLS is then

∀r ∈ [[1, R]]



(a?) ur =
−−→
RSV

(
Sλ(r)

(
M(r)

))
, vr =

−−→
RSV

(
Sλ(r)

(
M(r)′

))
,

(b) tr = X(r)ur,

(c) pr = X(r)′tr/t
′
rtr,

(d?)

 Πr = diag({δ6=0(vr)j}j∈[[1,q]])
cr = arg min

V

∣∣∣∣∣∣Y(r)Πr − trV
′
∣∣∣∣∣∣2 =

(
Y(r)Πr

)′
tr/(t

′
rtr).

(e) X(r+1) = X(r) − trp
′
r, Y(r+1) = Y(r) − trc

′
r,

(11)

where the regression matrix estimation is also performed using the relation (8).
Notice that R+ 1 parameters need to be tuned to obtain an optimal solution: the number R of components
and the associated regularization coefficient λ(r) for each component. Based on different well-known quality
descriptors used in PLS and on new appealing ones introduced in our ddsPLS context (see next subsection),
a way to calibrate these different parameters is provided in Section 4.4.
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4.2 Adaptation to the multi-block structure

A multi-block generalization of the latent variable model (2) is

∀t ∈ [[1, T ]], xt = A′tφ+ εt and y = C′φ+ ξ, (12)

where T is the total number of blocks. The corresponding underlying regression model can be written as

y =
∑T
t=1 B′tbt + e. (13)

Let’s introduce the following notation:

x = (x′1, . . . ,x
′
T )
′

, A = [A1, . . . ,AT ] and B = [B′1, . . . ,B
′
T ]
′
. (14)

Model (12) can be rewritten in the form of Model (2), thus it is possible to use the ddsPLS methodology as
previously in this multi-block framework.

Remark 4 The adaptation of the PLS method to the multi-block context has firstly been described in Wold
(1984) and finally defined in Vivien (2002) to take the form

max
wt,v,ct

v′Y(r)′∑T
t=1

(
ctX

(r)
t wt

)
,

s.t. ||wt|| = ||v|| = 1

and
∑T
t=1 c

2
t = 1.

(15)

If u is associated to a solution of any of the previous algorithms (except for SPLS Chun and Keleş (2010)) in
steps (a), (i†) or (a?), and ut is the extracted matrix from u associated with block t, then by identification

wt = ut/||ut|| and ct = ||ut||. (16)

Remark 5 For the deflation steps (see steps (e) and (e’)), the “mbPLS” algorithm (for multi-block PLS)
uses the super-score deflation where the super-score gathers information from the T different blocks: tr =∑T
t=1 ctX

(r)
t wt. Hence, in the following, when NIPALS-PLS Wold (1966) or sPLS Lê Cao et al. (2008) are

used in the multi-block framework, the super-score deflation is always used. Moreover, for the multi-block
version of the ddsPLS algorithm, the super-score deflation strategy is also used.

Note different authors consider that deflating each block on the super-score might mix block information
and, therefore, might also drive to senseless conclusions. For example, Westerhuis and Smilde (2001) present
specific designs where no deflation on the X blocks provides better prediction results. This corresponds to the
solution chosen in the SPLS Chun and Keleş (2010) algorithm.

Remark 6 When the response variable y has multi-blocks, the proposed methodology remains the same where
the different blocks are concatenated, as done in this section if x has multi-blocks, see (14), and the ddsPLS
methodology can again be applied on the resulting data-set.

4.3 Model quality descriptors

The PLS methodology is known to provide the correct common subspaces between the x and the y parts if
there is indeed information to catch. Whereas, if this cross structure is poor, the methodology sometimes
over-fits focusing on the x part variance in particular when the dimension p of x is large, see for exam-
ple Wakeling and Morris (1993); Cloarec (2014). Its side effect artificially increases the R2 statistics, also
denoted as explained variance or determination coefficient, which only describes the goodness of fit on the
train dataset:

R2 = 1−
∑q
j=1

∑n
i=1 (yi,j − ŷi,j)2∑q

j=1

∑n
i=1 (yi,j − ȳj)2

, (17)

where ȳj is the empirical mean of the jth-variable of the y part and ŷi,j is the estimation of yi,j thanks to the
current model. The numerator is often denoted as the RSS (Residual Sum of Squares) and the denominator
as the TSS (Total Sum of Squares) and thus R2 = 1−RSS/TSS. This statistics can actually be interpreted
as an estimator of

γ(p) = 1−
∑q
j=1 var(yj − y(p)

j )∑q
j=1 var(yj)

, (18)

built on the (potentially stochastic) prediction model p where y
(p)
j is an estimator of yj based on the

prediction model p. This metrics is as close to 1 as the prediction error is low. Its interest is to take into
account the different scales of the variables yj . As an interpretation, asymptotically (when n → +∞), if
this metric is equal to 0, then the associated prediction model performs equivalently to the mean prediction
model, and if it is below 0, it performs worse. In the oracle context (a prediction model which knows the
true relations between the informational variables), the estimator of y by the oracle predictor model p? is
y? = A′φ according to Model (2), and the previous metrics can be written as

γ? = 1−
∑q
j=1 var(εj)∑q
j=1 var(yj)

. (19)
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Remark 7 The two previous statistics are global in the sense of the q-dimensional response variable y
and therefore do not allow for a marginal critique of the model. Another interesting statistics would be
γj(p) = 1 − var(yj − y(p)

j )/var(yj), for j = 1 . . . q, which exhibits the marginal effects of each variable on
the response variable. However, the response variables have been standardized in order to be processed on
the same scale (see Remark 3), which rationalizes the definition of the γ. Although this does not make it
possible to identify marginally the variables of y that can potentially degrade the criterion, their deleterious
effects remain observable. Moreover, in the case of marginal γj, it would have been necessary to define a
transformation aggregating the q marginal criteria making it possible to define a decision algorithm on the
conservation or not of the current component. The definition of such a transformation is not trivial and,
therefore, will not be considered in this work. For all these reasons, the global statistics γ is used in the
proposed methodology.

The R2 estimator is subject to over-fitting, this is due to the fact that the quality of the model is assessed
on the whole sample used to build the model.

To circumvent this over-fitting drawback, the criterion Q2 has been introduced by Stone (1974); Geisser
(1974). It is based on F -folds cross-validation such as

Q2 = 1−

∑q
j=1

∑F
f=1

∑
i/∈cvf

(
yi,j − ŷ

(cvf )

i,j

)2
∑q
j=1

∑F
f=1

∑
i/∈cvf

(yi,j − ȳj)2
, (20)

where ŷ
(cvf )

i,j is the estimation of yi,j thanks to the current model where the observations in “cvf” are used
as the train sample for fold “f”. The numerator is often denoted as the PRESS (PRediction Error Sum of
Squares) and thus Q2 = 1− PRESS/TSS.

Thanks to R2 and Q2, different rules have been used to select “optimal” models. In the general prediction
context, the most popular maximizes Q2, which is equivalent to minimize the Mean Squared Error in
Prediction (MSEP) since the denominator of the right-hand side term of Q2 does not use the model’s
prediction (but the mean estimator). In the context of PLS, a rule of thumb is to favor models for which the
difference between R2 and Q2 is minimum, which is supposed to correspond to a minimum of over-fitting,
see for example Cloarec (2014).

Those metrics R2 and Q2 are helpful to evaluate the quality of a complete model. Other metrics have
been introduced to evaluate the quality of a current rth-component of the model and are denoted as R2

r and
Q2
r, see for example Tenenhaus (1998). Let us suppose that the first (r − 1) components have already been

built, then the quality of the rth-component can be screened thanks to

R2
r = 1−

∑q
j=1

∑n
i=1

(
yi,j −

(
ŷ
(r)
i,j − ŷ

(r−1)
i,j

)
− ȳj

)2
∑q
j=1

∑n
i=1 (yi,j − ȳj)2

, Q2
r = 1−

∑q
j=1

∑F
f=1

∑
i/∈cvf

(
yi,j − ŷ

(cvf ,r)

i,j

)2
∑q
j=1

∑F
f=1

∑
i/∈cvf

(
yi,j − ŷ

(cvf ,r−1)

i,j

)2 ,
(21)

where ŷ
(r)
i,j , resp. ŷ

?,(r)
i,j , is the prediction of the ith-observation and the jth-response variable thanks to

model based on components the first r and all observations, resp. all observations except the ith one. By
convention, ŷ

(0)
i,j = ȳj and ŷ

?,(0)
i,j = 1

n−1

∑
i′ 6=i yi′,j . The metrics R2

r represents the proportion of variability

which is explained by the new component r and not by the (r − 1) previous ones, while the Q2
r does the

same but based on out-of-fold samples from the cross-validation fold.
Rules of thumb exist to validate the current component based on the value of Q2

r, for example Q2
r ≥ 0.0975

following for instance Tenenhaus (2005); Lê Cao et al. (2008), or Q2
r ≥ 0.05 according to Pérez-Enciso and

Tenenhaus (2003); Tenenhaus (2004)) or Q2
r ≥ 0 (or ≥ 0.05 if n ≤ 100) according to Thévenot (2016).

Based on theses descriptors Q2
r, another metrics which describes the overall quality of a R-components

model is the cumulative Q2 criterion, denoted as Q2
R,(cum) hereafter, and defined as an aggregation of the R

criteria (Q2
1, . . . , Q

2
R) such as

Q2
R,(cum) = 1−

R∏
r=1

(
1−Q2

r

)
.

This metric Q2
R,(cum) is used in Tenenhaus (1998) with the rule that the current component R is retained if

Q2
R,(cum) >> Q2

R−1,(cum).

In the previous statistics Q2
r (and thus in the metric Q2

R,(cum)), the performances of numerous predic-
tion models are simultaneously mixed, over the F folds, in the numerator and in the denominator. One
consequence of this is that model selection is driven by prediction models for which the errors are the most
important. To circumvent this drawback, for F -folds cross-validation, one way is first to consider the F
different “marginal” Q2-like statistics, denoted as

1−

∑q
j=1

∑
i/∈cvf

(
yi,j − ŷ

(cvf )

i,j

)2
∑q
j=1

∑
i/∈cvf

(
yi,j − ȳ

(cvf )

j

)2 , for f = 1, . . . , F, (22)
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and then to combine them a posteriori using the empirical mean. To the best of our knowledge, this approach
has never been proposed in the PLS literature. However, when the sample size n is small, using F -folds
cross-validation is not relevant and the use of bootstrap is interesting to enrich the underlying information
of the available data. This is the strategy chosen for the continuation of this work.

Based on B bootstrap samples, the bootstrapped versions of R2 and Q2 are given by

R̄2
B =

1

B

B∑
b=1

R2
b and Q̄2

B =
1

B

B∑
b=1

Q2
b (23)

with, for the current bootstrap sample b,

R2
b = 1−

∑q
j=1

∑
i∈IN(b)

(
yi,j − ŷbi,j

)2∑q
j=1

∑
i∈IN(b)

(
yi,j − ȳbj

)2 , Q2
b = 1−

∑q
j=1

∑
i∈OOB(b)

(
yi,j − ŷbi,j

)2∑q
j=1

∑
i∈OOB(b)

(
yi,j − ȳbj

)2 ,
(24)

where IN(b) and OOB(b) are respectively the set of the in-bag observations and the set of the out-of-bag
observations, ŷbi,j is the prediction of the ith-observation and the jth-response variable and ȳbj is the empirical
mean of the jth-response variable estimated on the bootstrap sample b.

In the same way, bootstrapped versions of R2
r and Q2

r are given by

R̄2
B,r =

1

B

B∑
b=1

R2
b,r and Q̄2

B,r =
1

B

B∑
b=1

Q2
b,r (25)

where

R2
b,r = 1−

∑q
j=1

∑
i∈IN(b)

(
yi,j −

(
ŷ
b,(r)
i,j − ŷb,(r−1)

i,j

)
− ȳbj

)2
∑q
j=1

∑
i∈IN(b)

(
yi,j − ȳbj

)2 , Q2
b,r = 1−

∑q
j=1

∑
i∈OOB(b)

(
yi,j − ŷb,(r)i,j

)2
∑q
j=1

∑
i∈OOB(b)

(
yi,j − ŷb,(r−1)

i,j

)2 .
(26)

Remark 8 Those metrics, R̄2
B, Q̄2

B, R̄2
B,r and Q̄2

B,r, share the same philosophies as those discussed for (17), (20)
and (21), but they introduce two innovative ideas (except for the bootstrap analysis itself). Firstly, they are
empirical means over all bootstrap replications. This allows not mixing bootstrap quadratic errors, which is
a good feature since estimations can vary from one bootstrap sample to another. Secondly, the “R2”-spirit
metrics are based directly on the bth bootstrap replication but use the associated in-bag sample, while the
“Q2”-spirit metrics use the associated out-of-bag sample. This implies that the estimators R2

b and R2
b,r are

even more subject to over-fitting and lead the difference “R̄2
B− Q̄2

B” to be more discriminant and informative
in the presence of over-fitting case.

The following section details how these metrics are used to adjust the hyperparameters of the ddsPLS
method by following the spirit of their cross-validation versions.

4.4 Selection of the hyperparameters

The ddsPLS algorithm detailed in (11) and the other sparse PLS methods require hyperparameters to be
adjusted. In the case of ddsPLS, the following regularization parameters, R and ΛR = {λr, r = 1, . . . , R},
must be optimally tuned. Due to the variance constraints of the variables x and y, we know that λr ∈ [0, 1]
where

• λr = 0, corresponds to the NIPALS-PLS solution,

• λr = 1, leads to no variable selected and thus to the prediction model equal to empirical mean estima-
tion.

This optimal hyperparameter selection is based on the minimization of R2
r −Q2

r (that might correspond to
a minimum in over-fitting for the rth-component). To this end, the proposed ddsPLS strategy considers
R̄2
B,r − Q̄2

B,r, the bootstrapped version of the corresponding metrics defined in (23).

More precisely, the selected model must satisfy that, for a current model built on (r−1) components with

estimated values for regularization parameters Λ̂r−1 = {λ̂1, · · · , λ̂r−1}, the rth-component is acceptable if

1. the rth-component performs better than the mean estimation (i.e. Q̄2
B,r > 0),

2. the model built on r components performs better than the one built on (r − 1) components (i.e. Q̄2
B

is increasing with the number of components),

3. the bootstrapped explained variance is close to the bootstrapped cross-validated explained variance
(i.e. R̄2

B − Q̄2
B is minimum on the set of hyperparameters).

This hyperparameter selection procedure is illustrated on a toy example in Section 4.6.
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4.5 A theoretical lower bound for the regularisation coefficients

Among the sparse covariance estimators the solution developed by Cai and Liu (2011) uses a fully data-
driven estimator for each element of the covariance matrix. Even if they consider the variance case (where
y = x) and assume that random parts are normally distributed, they use the adaptive threshold

λi,j = δ

√
θ̂i,j log p

n
, (27)

where δ can be whether taken equal to 2, whether empirically chosen though cross-validation and θi,j =
var ((xi − Exi)(xj − Exj)), the variance of the covariance coefficient between xi and xj .
As n decreases/p increases, the probability for a covariance coefficient to be larger than a given value
increases. The value of λi,j estimates the variability of the covariance coefficient below which non null
coefficient can be considered as null with a high probability.
Inspired from the previous work, let us introduce the following value

λ
(0)
r = 1

pq

∑q
j=1

∑p
i=1

√
θ
(r)

(j,i) log (max(p, q))

n

where θ
(r)

(j,i) = 1
n

∑n
k=1

(
x
(r)

(k,i)y
(r)

(k,j) −m
(r)

(j,i)

)2
,

where x
(r)

(k,i), y
(r)

(k,j) and m
(r)

(j,i) are the elements of the matrices X(r), Y(r) and M(r) respectively at positions

(k, i), (k, j) and (j, i) respectively. This value λ
(0)
r is the lowest accessible value by the algorithm detailed in

the previous section. It prevents from building components in which a large number of variables would be
selected. This lower bound for λ is implemented in the package.

4.6 A toy example

Consider the latent variable model (2) with the following “easy” data structure

A =
√

1− σ2
(

1′50 0′950
)
, D =

√
1− σ2

(
1
)
, (28)

where 1− σ2 = 0.9025 and

ψ = (φ′, ε′1...50/σ, ε
′
51...1000, ξ/σ)′ ∼ N (0, I1+1000+1) .

The dependent variable y is only associated with the first 50 variables of x while the last 950 variables of
x are not linked to y. According to Remark 1, the true value for the number of components is R = 1.
Thus, in this simulation framework, one of the objectives of the ddsPLS method is to properly retain one
component for which the first 50 variables of x are selected in the final model. Moreover the corresponding
prediction squared error is expected around “γ = 1− σ2 = 0.9025”, for a sample with a reasonable number
n of observations.

Figure 1gathers results of 3 simulations based on 3 sample sizes, respectively, n = 50, 100, 200. For the
bootstrap-based selection criterion, B = 50 bootstrap samples are used. For each of these samples, the
proposed algorithm keeps only one component. The 3 graphs at the top of Figure 1provide the plot of R̂2

B,1

and Q̂2
B,1 versus λ, for each sample size. The “optimal” λ̂1’s (for which R̄2

B,1 − Q̄2
B,1 are minimum) are also

located in these graphs. One might notice that selecting model considering only Q̄2
B,1 would lead to bad

conclusions, where its maximum (see the colored star on the curve of Q̄2
B,1) is around λ = 0.8 (for n = 50

or 200) or 0.3 (for n = 100) which is an over-fitting region according to the difference R̄2
B,1 − Q̄2

B,1.
The graph at the bottom left of Figure 1shows the number of selected variables for each value of λ and

each of the 3 samples (n = 50, 100 and 200). These curves are decreasing until a first loss of the 950 non-
informative variables of x which occurs naturally at lower λ values when n is large. Then one can observe a
large plate, and finally, the curves become decreasing again, resulting in the loss of the 50 relevant variables
of x in the model. Indeed, as n increases, the minimum correlation to remove the 950 non-informative
variables of x is small, and the maximum correlation keeping the 50 informative variables is high. For
the 3 selected models (with the optimal λ̂1 values), only the 50 relevant variables of x are selected. The
right bottom graph of Figure 1shows boxplots of the corresponding first 50 regression coefficients for the 3
sample sizes. As the variables share the same distribution and are independent, the regression coefficient
associated with the first 50 variables of x should naturally be close to 1/50, while the last 950 coefficients
regression coefficient associated with the last 950 variables of x are equal to 0. One might notice from the
three boxplots, the coefficients of the first 50 relevant variables get closer to this expected value 1/50 as n
increases.

In the following, let’s define the True Positive Rate (TPR) and the False Positive Rate (FPR) of variable
(of x) selection as TPR = TP/P and FPR = FP/N where TP is the number of selected variables among
those that should be selected, P is the total number of variables that should be selected, FP is the number
of selected variables among those that should not be selected, and N is the total number of variables that
should not be selected. Naturally, the optimal target is to have TPR = 1 and FPR = 0. In this simulation
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Figure 1: Simulation results for the toy example.

study, the TPR and FPR of variables of x selection are optimal for the 3 sample sizes. Note that the TPR
and FPR are also optimal for the variable of y selection since the one-dimensional dependant variable is
always retained in the final selected models.

Finally, according to Equation (6), the metrics ||AB̂−D||2/||D||2 can be calculated in this simulation
framework: its value is approximately equal to 0.002 << 1 and so shows reliable results.

This “toy” example illustrated the principle of the selection criterion for the ddsPLS method. In Section 5,
others simulations will lead to estimate its good numerical behavior in more complex contexts.

5 Simulation study

Different synthetic structures have been used to evaluate the numerical behavior of the proposed ddsPLS
methodology. Since the multi-block framework can be reduced to a mono-block framework, only mono-block
structure in the x part are considered in this simulation study via three specific designs.

The first design corresponds to two groups of variables in the x part, which are not correlated, and
a 3-dimensional response variable y. The second design simulates spectroscopic data and will be detailed
below.

For each design, 100 replications will be considered.

In this simulation study, various methodologies are compared with the proposed “ddsPLS” approach.
The different methodologies are based on what has already been proposed by other authors and adapted to
the bootstrap versions of γ. More precisely,

• “sPLS 1” , “sPLS 2” and “sPLS 3” build sparse PLS models as detailed in Lê Cao et al. (2008). The
additional notation “1” refers to the solution minimizing the difference R̄2

B,r−Q̄2
B,r for each component

r. The notation “2” refers to the solution maximizing Q̄2
B,r for each component r, which is the closest

solution to what is done currently using this model, corresponding to minimizing the cross-validation
error (here replaced with maximizing the out-of-bag normalized error). Finally the notation “3” refers
to model which builds variables while there exists (keepX , keepY ) such as Q̄2

R,(cum) > 0.0975 (based

on CV results) where the couple (keepX , keepY )r is then choosing maximizing Q̄2
R,(cum). This is what

the most popular methodology for this method, see for example Tenenhaus (1998).

• “NIPALS-PLS” corresponds to classical PLS algorithm where the number of components is chosen
minimizing R̄2

B,r − Q̄2
B,r for each component.

• “SPLS” builds sparse PLS models as detailed in Chun and Keleş (2010). The parameter κ is left to
the value “κ = 0.5” (knowing that κ ∈ ]]0, 1]]) which provides a balanced compromise between sparsity
(low κ) and prediction results close to the classical PLS problem (high κ). Using a grid of values
corresponding to η = {0.1, 0.2, . . . , 0.9} and R = {1, 2, . . . , 10}, the considered best model corresponds
to the minimum of the mean squared prediction error.

For “SPLS” and “sPLS 3” , the maximum number of possible components is fixed to 10. Also, for
those two methodologies, the metric Q2, based on the F -folds cross-validation, is used, with a number F
of folds equal to F = (25, 50, 100, 100, 100) for n = (25, 50, 100, 200, 400) respectively. Note that, when
n = (25, 50, 100), leave-one-out cross-validation is performed.
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For the other approaches (“sPLS 1” , “sPLS 2” , “NIPALS-PLS” and “ddsPLS” ), Bootstrap
versions of Q2 or R2 metrics are used with a number B of bootstrap samples adapted to the sample size n:
more specifically B = (1000, 500, 300, 100, 100) for n = (25, 50, 100, 200, 400) respectively.

5.1 Design 1: simulated data

The first design considers

A =
√

1− σ2

(
α313,50 03,50 03,900

02,50 α212,50 02,900

)
(5,1000)

and D =
√

1− σ2

(
α313,1 03,1 03,1

02,1 α212,1 02,1

)
(5,3)

,

(29)
where ∀k ∈ N?, αk = 1/

√
k,
√

1− σ2 = 0.99 and

ψ = (φ′, ε′1...100/σ, ε
′
101...1000, ξ

′
1...2/σ, ξ3)′ ∼ N (0, I5+1000+3) .

The corresponding latent variable model is then:

xj =


√

1− σ2(φ1 + φ2 + φ3)/
√

3 + εj for j = 1 . . . 50√
1− σ2(φ4 + φ5)/

√
2 + εj for j = 51 . . . 100

εj for j = 101 . . . 1000

and


y1 =

√
1− σ2(φ1 + φ2 + φ3)/

√
3 + ξ1

y2 =
√

1− σ2(φ4 + φ5)/
√

2 + ξ2
y3 = ξ3

(30)
An analysis of matrices A and D described in (29) shows that R = 5, but there are multi-colinearities

in A and the real objective for a relevant number of components might be R = 2, which is proved according
to Helland and Almøy (1994), as noticed in Remark 1. Also, only 100 variables over the 1000 variables of
the variable x should be selected, moreover 2 out of the 3 variables of the dependent variable y should be
selected. The theoretical γ is equal to γ∗ = 2(1− σ2)/3 = 0.6534 according to (19).

According to Figure 2and for large n (=200 or 400), all the methodologies almost always build the
correct number of components, with the exception of the “SPLS” approach. For low n (=25, 50 or 100),
the “NIPALS-PLS” and “sPLS 3” methodologies mostly build far too many components, which is also
the case for the “sPLS 2” and “SPLS” methodologies but in a mitigate manner with median values equal
to 3. The “ddsPLS” methodology and “sPLS 1” almost always build the correct number of components
with a clear advantage for the first-mentioned method.

According to Figure 3, when n = 400 (large sample size), all the methodologies correctly provide “Q2”
values close to γ∗. For all the cases, “ddsPLS” underestimates the value of Q2. When n = 25, the bootstrap
based versions of Q2 seem to under-estimate γ∗ while the “sPLS 3” over-estimates it and “SPLS” shows
high variability around this value. For “NIPALS-PLS” , “sPLS 3” and “SPLS” methodologies, the bad
performances are due to over-fitting because of the high values retained for R for these approaches. However,
the proposed Q2 metric, Q̄2

B , used for “NIPALS-PLS” (and for “sPLS 1” and “sPLS 2” ), detects over-
fitting providing low Q2 values, while “sPLS 3” provides high values of Q2 which are often larger than the
true expected value, this being essentially due to how Q2 is calculated and not representative of the actual
quality of the model. Finally, the “sPLS 1” and “sPLS 2” methodologies show slightly better results than
“ddsPLS” in that low n context. Even if this metric seems worse for “ddsPLS” , this might be subject
to over-fitting and other descriptors (such as ||AB̂ − D||2/||D||2, or a prediction error on an independent
data-set) should be used. This results have been observed and are accessible on the right part of the Figure 3
and in the Figure 4. Those figures are commented below.

In Figure 3, from the boxplots of ||AB̂−D||2/||D||2, for each methodology and each sample size, the
methodologies ranked in descending order of performance are: “ddsPLS” , “sPLS 3” , “SPLS” , “sPLS
1” , “sPLS 2” and “NIPALS-PLS” for low n. As n increases, this order is maintained and all the
methodologies get better results for this metric.

We define the scaled RMSE (Root Mean-Squared Error) such as

∀j ∈ [[1, q]], scRMSEj =

√∑ntest
i=1 (yi,j − ŷi,j)2∑ntest
i=1 (yi,j − ȳj)2

,

estimated on a independent sample of size ntest where ȳj is estimated on the independent test sample and
ŷi,j is estimated according to the current prediction model. The Figure 4shows the scaled RMSE for the
different methodologies in all cases, for each response variable separately. Methodologies “ddsPLS” and
“sPLS 3” show the best performances for low y1 and y2 while “ddsPLS” and “NIPALS-PLS” are the
best for y3. More interestingly, “sPLS 3” and “SPLS” are especially not precise for y3, this is associated
with the remark formulated in the previous paragraph associated with the potential over-fitting of those
methodologies.

In terms of variable selection, the Figure 5insures that the True Positive Rate (TPR) of variable of x
selection is mostly equal to 1 for all methodologies, except for “ddsPLS” . On the contrary, the False
Positive Rate (FPR) is mostly equal to 0 only for “ddsPLS” and is closely equal to 0 for “SPLS” . Other
methodologies based on “sPLS” decrease their FPR with n until n reaches 100. More precisely, the FPR
of “sPLS 1” indeed slowly decreases with n, “sPLS 2” and “sPLS 3” increase their FPR for n ≥ 100.
This shows that Q2 maximization based methods (both for cross-validation and bootstrap versions) seem to
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Figure 2: Number of components built for design 1, gray areas correspond to the objective, that is R = 2
components.

build sparser models as the number n of individuals grows. On the contrary, Q2 − R2 minimization based
methods decrease their FPR as n grows.
In the y part, regardless of n, all methodologies select always y1 and y2, and so the FPR equal 1 in all cases.
According to Figure 5(b), all methodologies naturally decreases the selection rate of y3 as n increases, except
for “sPLS 3” . Furthermore, among the bootstrapped methodologies, “ddsPLS” outperforms the others.
In terms of variable selection, this can lead to the conclusion that bootstrap-based versions provide better
results than those based on cross-validation, and more precisely the one associated with the minimization of
R̄2
B,r − Q̄2

B,r which perform better than those based on the maximization of Q̄2
B,r, for both x and y parts.
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Figure 3: Main performance metrics for design 1. The horizontal line represents the value of Q2 = ? = 2"2=3 �
0:6534 which corresponds to the objective, where " =

p
1� �2.

Design 1 with varying q As to evaluate the performance of the proposed methodology if q varies, it has
been considered to add extra response variables, as to reach q = {10, 50, 100}. Each of these extra response
variables is not associated nor with the other response variables nor with the other response variables.
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Figure 4: Scaled RMSE (Root Mean Squared Errors) for design 1, for each response variable, on an independent
test sample of size ntest = 1000. Horizontal lines represent the objective values � (0:141; 0:141; 1).

As previously, N = 100 different data sets (with n = 50) have been generated to build different prediction
models. Different information can be highlighted.

• All the models are built on 2 components.

• All the models select, in the response part, only the two relevant variables (the two first ones).

• The first row of Figure 6gives the scaled RMSE of the N models, for each scenario and for each response
variable. An independent data set of size ntest = 1000 has been used to estimate those distributions.
It is clear that all the models predict well the two selected variables (y1 and y2) and do not ”predict”
for others but returns the empirical mean values.

• The Second row of Figure 6shows the frequency of selection in the covariate part for each scenario.
Only the 100 first covariates, associated with y1 and y2, are selected.

This experiment shows that the proposed “ddsPLS” methodology is robust to an increasing number q
of response variables.

5.2 Design 2: simulated data inspired by real data

In this design, datasets with structures similar to spectroscopic data have been generated. Using the routine
already used by Cloarec (2014), the x part contains spectra observations and is divided into two blocks.
The first one (X1) corresponds to spectroscopy with large overlapping peaks and a low number of variables,
such as Ultraviolet, Visible and Near-Infrared spectrophotometry. The second block (X2) has narrow peaks
and a high number of variables but with much less overlap between peaks. The blocks Xt, t = 1, 2 are built
using the following procedure:

Xt =
√

1− σ2
tCtSt + σtEt (31)

with
St =

[
(st,r,j)(r,j)

]
∈ RR×pt , Ct =

[
(ct,i,r)(i,r)

]
∈ Rn×R and Et =

[(
e′t,i
)
i

]′ ∈ Rn×pt

where

∀(r, j) ∈ [[1,R]]× [[1, pt]], st,r,j =

Kr∑
k=1

hr,k exp
{
− (j − πr,k)2 /

(
2ωr,k

2)} , et,i ∼ N (0pt , Ipt) and σt = 0.05.

The score matrix is here denoted Ct for “Concentration”, and the matrix of the weights is denoted St
for “Spectrum”. Let pt be the number of variables in each block t and Rt the number of latent variables
(Rt = 10 for both blocks). For each latent variable, r ∈ [[1,Rt]], the number Kr of peaks is selected randomly
from a uniform discrete random distribution U [[1, 5]] in order to generate, ∀k ∈ [[1,Kr]], a spectrum with the
following characteristics:

• position of the peaks is sampled from a discrete uniform distribution πr,k ∼ U [[2, pt]];

• relative peak heights are sampled from a continuous uniform distribution hr,k ∼ U(0, 1);

• peak widths are sampled from a continuous uniform distribution ωr,k ∼ U(2, 3) and are proportional
to the number of variables.

The previous parameters allow to build the matrix St. To build the matrix Ct such as the intensity of each
latent variable in each observation, the following Gaussian distribution is used: ct,i,r ∼ N (µt,r, σ

2
t,r) where

• the expected intensity of each latent variable is randomly sampled from an exponential distribution:
log (µt,r) ∼ U(0, 1),
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(a) Variable selection performances in the x part.
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(b) Variable selection performance in the y part measured by the number of selected y variables where the gray
areas correspond to theoretical objectives, that is two selected variables: y1 and y2 (which are always selected,
providing a TPR equal to 1).

Figure 5: Variable selection performances in the x and y parts for design 1
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Figure 6: Scaled RMSE for each response variable and selection frequencies in the covariate part for the three
scenarii q = f10; 50; 100g.

• the variance of the intensity for each latent variable is randomly sampled from a uniform distribution
σ2
t,r ∼ U(0, σµµt,r) where σµ, when low enough, allows to generate positive values for ct,i,r with high

probability.

Moreover, in order to get the correlation between the two blocks X1 and X2, the first five columns of C2

have been replaced by the first five columns of C1. Figure 7provides a visualization of an extract from the
x part for a dataset simulated according to the procedure.

The 5-dimensional y part is generated from the model Y =
√

1− σ2
yCy + σyEy, where each row of Ey
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follows N (0, I), σy = 0.2 corresponds to the standard deviation of this observation noise, and the matrix Cy

is used to manage the link with the x part. More precisely, the first 3 columns of Cy are the standardized
first 3 columns of C1. The last two columns of Y are generated from a standardized normal distribution.
Hence only the first 3 variables of the y part are related to the x part.

According to the way the spectra are generated, the objective number R of components of the underlying
model is equal to 3 with a high probability.
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Figure 7: First five observations of simulated datasets X1 and X2 from design 2.

Figures 8(a) and 8(b) respectively show, for 100 replications, the number R̂ of components retained in each
model and the associated number of selected variables in the x part. Since the correct dimension is equal to
R = 3, all the methodologies (apart from “NIPALS-PLS” , which builds far too many components) succeed
to get most of times models with three components, and only “ddsPLS” has a clear majority of models built
on three components. Moreover, according to Figure 8(b), “sPLS 1” and “sPLS 2” build often non-sparse
models with very large numbers of selected variables. “sPLS 3” also builds models with various numbers
of selected variables and also builds non sparse models. The methodologies “ddsPLS” and “SPLS” build
the sparsest models, with a clear advantage for the first methodology even if “ddsPLS” sometimes builds
non sparse models. Note that these graphs do not make it possible to appreciate the quality of the selection
procedure and the corresponding estimated model different methodologies; this point is discussed below.
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(a) Number R̂ of components built for each methodology for design 2. Gray area corresponds to the correct
value R = 3.
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(b) Number of selected variables in the x part for each methodology for design 2.

Figure 8: Estimated number of components bR (top) and number of selected variables (bottom) for design 2.

Since the simulated spectra are not sparse, it is not possible to directly evaluate the relevance of the
variable selections. However, the 3 spectra, which are common to X1, X2 and Y are known in this simulation
framework. It is reasonable to assume that the relevance of a variable is associated with the intensity of
this variable in these three spectra of interest. Then, the selected variables are described in terms of TPR
and FPR by varying a threshold α over the maximum values of the spectra for each variable along with
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the three spectra of interest as to build ROC (Receiver Operating Characteristic) curves and so create a
common score of selectivity corresponding to the Area Under the Curve (AUC). For a relevant analysis, a
common distribution of α for all methodologies has been used.

The top right graph of the Figure 9shows the AUC metrics computed for the models built over the 100
replications of datasets. It allows evaluating the performance of the methodologies in terms of variable
selection. It seems that “sPLS 1” and “sPLS 2” are the least efficient methodologies to select the correct
variables efficiently. The methodologies “sPLS 3” and “SPLS” get better AUC but keep high variability.
Finally, the proposed “ddsPLS” approach provides the best AUC.

Top left graphs (density plots) of the Figure 9detail more precisely the quality of the selection procedure
of the five competing methodologies (in columns), via the TPR versus α (first row), the FPR versus α
(second row) and the FPR versus the TPR (third row).

• From the first row, one might notice that “sPLS 1” and “sPLS 2” present a huge loss of TPR for
very low α and do not succeed to keep TPR close to 1 for low values of α. “sPLS 3” also suffers from
a fall although less important and even succeeds to keep TPR close to 1 for low values of α. “SPLS”
keeps this tendency, and “ddsPLS” performs even better.

• According to the second row, it seems that “sPLS 1” and “sPLS 2” quickly (in terms of α) fall
in FPR, which is encouraging in a certain way, while the three other methodologies keep it high for
low values of α. This actually, quite paradoxically, allows considering that “ddsPLS” , “SPLS” and
“sPLS 3” are, in fact, better methodologies because they do not tend to remove too quickly variables;
feature that is often criticized in sparse methods.

• The third row shows the ROC curves in density and once again confirms the previous observations:
“ddsPLS” , “SPLS” and “sPLS 3” , in decreasing order of performance, outperform the other
methodologies since the high densities are concentrated at the top of their respective plot, corresponding
to high TPR. Unfortunately, the precision is not sufficient to allow a correct differentiation of each
distribution for high TPR’s.

The five histograms in Figure 9 (bottom right graphs) show the conditional distribution of the FPR given
TPR > 0.9. “ddsPLS” clearly provides the heaviest distribution in that TPR area and gets the heaviest
lower distribution tail, which are the two reasonable objectives of a selection method.
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Figure 9: Variable selection performances for design 2. Top left graphs: density plots for the five competing
methodologies (in colums) of the TPR versus � (first row), of the FPR versus � (second row) and of FPR versus
TPR (third row), red areas correspond to densities higher than 4000 for the first two rows and 3000 otherwise.
Top right graph: boxplots of AUC for the five competing methodologies. Bottom right graphs: histograms of
FPR given TPR¿0.9 for the five competing methodologies.

In terms of Q2 results (not provided here), “ddsPLS” , “SPLS” , “sPLS 1” and “sPLS 2” are the
most efficient methodologies (respectively equal to 0.47, 0.46, 0.47 and 0.43 in median for the all simulated
datasets) for R̂ = 3 components built models. Note that those four methodologies get lower Q2 than expected
(γ = 3ε2y/5 = 0.597 in the considered simulation framework). Only “sPLS 3” gets higher median for Q2,

equal to 0.55. For more complex models built with R̂ > 3 components, the results also show that “sPLS
3” give a median Q2 equal to 0.64 for R̂ = 4, 0.75 for R̂ = 5, 0.93 for R̂ = 6, 0.91 for R̂ = 8 and 0.99 for
R̂ = 10, while the four other methodologies get decreasing values for median Q2. Finally, in the context of
that simulation design, it seems again that “sPLS 3” does not succeed to beat over-fitting.

Concerning the selection in the y part (which is only available for “ddsPLS” , “sPLS 1” , “sPLS 2”
and “sPLS 3” methodologies), the following results were obtained. Below, the notation (yj , Nj) means that
variable yj has been selected Nj times over the 100 replications:
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• “ddsPLS” : (y1, 87), (y2, 87), (y3, 81), (y4, 18), (y5, 19),

• “sPLS 1” : (y1, 83), (y2, 86), (y3, 74), (y4, 37), (y5, 36),

• “sPLS 2” : (y1, 88), (y2, 84), (y3, 82), (y4, 53), (y5, 51),

• “sPLS 3” : (y1, 89), (y2, 91), (y3, 81), (y4, 32), (y5, 33).

It is clear that “ddsPLS” outperforms other methodologies regarding the FPR’s in y part selection, while
the TPR’s appear to be equivalent for the four methodologies.

6 Conclusion

The proposed ddsPLS methodology is a sparse PLS method, both in x and y, based on soft-thresholding
using bootstrap operations for model selection. This solution fixes sparsity in both x and y parts using a
single parameter, which is also interpretable in terms of minimal empirical covariance allowed to be selected
in the model. Moreover this solution shows very good results both in prediction and in selection, through
the various simulation models analysed.
While most of the other sparse PLS are based on cross-validation approaches, our solution uses bootstrap.
This allows building smooth curves of the chosen criterion even in the ill-conditioned contexts of low n and
large p data.
Based on the proposed bootstrap version of sparse PLS, a new relevant definition of the Q2 and the R2

statistics denoted as Q̄2
B and R̄2

B where B is the number of bootstrap samples, has been introduced. Those
new versions of Q2 and R2 do not mix the errors of the different folds but aggregate the fold estimations
through the bootstrap mean estimator.
Different aspects must be highlighted regarding those new statistics. The newly introduced γ? is a theo-
retical limit for the Q2 and R2 statistics that our criterion respects while the tested competing methods
violate it in the n << p context even for simple simulation schemes. The chosen criterion R̄2

B − Q̄2
B allows

to efficiently select sparse models.
Finally, the ddsPLS methodology can be applied to different data contexts such as biological data, omics
data and chemometrics, where the sample size n is indeed much lower than the number p of variables.

An implementation of the proposed ddsPLS methodology is available at https://github.com/hlorenzo/

ddsPLS2. A vignette is also available to facilitate the use of the corresponding R package and the associated
functions for any user not necessarily specialised in R or statistical modelling. Note that this package uses the
foreach (v.1.5.0) package to parallelize the computations associated with the different bootstrap samples.
These codes are written in C++ thanks to the packages Rcpp (v.1.0.5) and RcppEigen (v.0.3.3.7.0) in order
to reduce the computation time and to ensure a portability towards other languages, Python in particular.

Whatsmore, all simulation codes (regarding Toy Example, Design 1 and Design 2) are accessible via
the repository https://github.com/hlorenzo/simulation_ddspls, where two files (README.md and
simulation ddspls.html) help to use the different simulation functions.
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