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Abstract—We uncover a close relationship between combinato-
rial and syntactic proofs for first-order logic (without equality).
Whereas syntactic proofs are formalized in a deductive proof
system based on inference rules, a combinatorial proof is a
syntax-free presentation of a proof that is independent from any
set of inference rules. We show that the two proof representations
are related via a deep inference decomposition theorem that
establishes a new kind of normal form for syntactic proofs. This
yields (a) a simple proof of soundness and completeness for first-
order combinatorial proofs, and (b) a full completeness theorem:
every combinatorial proof is the image of a syntactic proof.

I. INTRODUCTION

First-order predicate logic is a cornerstone of modern logic.

Since its formalisation by Frege [1] it has seen a growing

usage in many fields of mathematics and computer science.

Upon the development of proof theory by Hilbert [2], proofs

became first-class citizens as mathematical objects that could

be studied on their own. Since Gentzen’s sequent calculus [3],

[4], many other proof systems have been developed that allow

the implementation of efficient proof search, for example

analytic tableaux [5] or resolution [6]. Despite the immense

progress made in proof theory in general and in the area of

automated and interactive theorem provers in particular, we

still have no satisfactory notion of proof identity for first-order

logic. In this respect, proof theory is quite different from any

other mathematical field. For example in group theory, two

groups are the same iff they are isomorphic; in topology, two

spaces are the same iff they are homeomorphic; etc. In proof

theory, we have no such notion telling us when two proofs are

the same, even though Hilbert was considering this problem as

a possible 24th problem [7] for his famous lecture in 1900 [8],

before proof theory existed as a mathematical field.

The main reason for this problem is that formal proofs, as

they are usually studied in logic, are inextricably tied to the

syntactic (inference rule based) proof system in which they are

carried out. And it is difficult to compare two proofs that are

produced within two different syntactic proof systems, based

on different sets of inference rules. Consider the derivations in

Figure 1, showing two proofs of the formula ((p∨ q)∧ p)∨ p
and two proofs of the formula ∃x.(px ∨ (∀y.py)), in sequent

calculus (top) and in a deep inference system (bottom). It is,

a priori, not clear how to compare them.

ax
⊢ p, p

wk
⊢ p, q, p

∨
⊢ p ∨ q, p

ax
⊢ p, p

∧
⊢ (p ∨ q) ∧ p, p, p

ctr
⊢ (p ∨ q) ∧ p, p

∨
⊢ ((p ∨ q) ∧ p) ∨ p

ax
⊢ pz, pz

wk
⊢ pw, pz, pz

wk
⊢ pw, pz, pz, ∀y.py

∨
⊢ pw, pz, pz ∨ (∀y.py)

∃
⊢ pw, pz, ∃x.(px ∨ (∀y.py))

∀
⊢ pw, ∀y.py, ∃x.(px ∨ (∀y.py))

∨
⊢ pw ∨ (∀y.py), ∃x.(px ∨ (∀y.py))

∃
⊢ ∃x.(px ∨ (∀y.py)), ∃x.(px ∨ (∀y.py))

ctr
⊢ ∃x.(px ∨ (∀y.py))

↓ ↓

p q p p x

px
y

py

↑ ↑

t
ai
p ∨ p

w
(p ∨ p) ∨ q

≡
p ∨ (p ∨ q)

t
(p ∨ (p ∨ q)) ∧ t

ai
(p ∨ (p ∨ q)) ∧ (p ∨ p)

s
(p ∨ (p ∨ q)) ∧ p) ∨ p

≡
(p ∧ ((p ∨ q) ∨ p)) ∨ p)

s
(p ∧ (p ∨ q)) ∨ p) ∨ p

≡
((p ∨ q) ∧ p) ∨ (p ∨ p)

ac
((p ∨ q) ∧ p) ∨ p

t
∀
∀y.t

ai
∀y.(py ∨ py)

w
∀y.((py ∨ py) ∨ (pw ∨ (∀y.py)))

≡
∀y.((pw ∨ py) ∨ (py ∨ (∀y.py)))

∃
∀y.((pw ∨ py) ∨ (∃x.(px ∨ (∀y.py))))

≡
(pw ∨ (∀y.py)) ∨ (∃x.(px ∨ (∀y.py)))

∃
(∃x.(px ∨ (∀y.py))) ∨ (∃x.(px ∨ (∀y.py)))

m∃
∃x.((px ∨ (∀y.py)) ∨ (px ∨ (∀y.py)))

≡
∃x.((px ∨ px) ∨ ((∀y.py) ∨ (∀y.py)))

ac
∃x.(px ∨ ((∀y.py) ∨ (∀y.py)))

m∀
∃x.(px ∨ (∀y.(py ∨ py)))

ac
∃x.(px ∨ (∀y.py))

Fig. 1. Left: syntactic proofs in sequent calculus (above) and the calculus
of structures (below) which translate to the same propositional combinatorial
proof (centre). Right: syntactic proofs in sequent calculus (above) and the new
calculus KS1 introduced in this paper (below), which translate to the same
first-order combinatorial proof (centre).

[Long version of the LICS 2021 paper, with full proofs in the appendix.]

http://arxiv.org/abs/2104.13124v1


This is where combinatorial proofs come in. They were

introduced by Hughes [9] for classical propositional logic as

a syntax-free notion of proof, and as a potential solution to

Hilbert’s 24th problem [10] (see also [11]). The basic idea is

to abstract away from the syntax of the inference rules used

in inductively-generated proofs and consider the proof as a

combinatorial object, more precisely as a special kind of graph

homomorphism. For example, a propositional combinatorial

proof of Peirce’s law ((p⇒q)⇒p)⇒p = ((p ∨ q) ∧ p) ∨ p
is shown mid-left in Fig. 1, a homomorphism from a 4-

vertex graph with two colours (above) to a 4-vertex graph

labelled with propositional variables (below); dotted vertical

lines define the homomorphism, from above to below.

Several authors have illustrated how syntactic proofs in

various proof systems can be translated to propositional

combinatorial proofs: for sequent proofs in [10], for deep

inference proofs in [12], for Frege systems in [13], and for

tableaux systems and resolution in [14]. This enables a natural

definition of proof identity for propositional logic: two proofs

are the same if they are mapped to the same combinatorial

proof. For example, the left side of Fig. 1 translates syntactic

proofs from sequent calculus and the calculus of structures

into the same combinatorial proofs, witnessing that the two

syntactic proofs, from different systems, are the same.

Recently, Acclavio and Straßburger extended this notion to

relevant logics [15] and to modal logics [16], and Heijlties,

Hughes and Straßburger have provided combinatorial proofs

for intuitionistic propositional logic [17].

In this paper we advance the idea that combinatorial

proofs can provide a notion of proof identity for first-order

logic. First-order combinatorial proofs were introduced by

Hughes in [18]. For example, a first-order combinatorial

proof of Smullyan’s drinker paradox ∃x(px⇒∀y py) =
∃x.(px ∨ (∀y.py)) is shown on the right of Fig. 1, a homo-

morphism from a 5-vertex partially coloured graph (with one

colour) to a 4-vertex labelled graph. However, even though

Hughes proves soundness and completeness, the proof is un-

satisfactory: (1) the soundness argument is long, intricate and

cumbersome, and (2) the completeness proof does not allow

a syntactic proof to be read back from a combinatorial proof,

i.e., completeness is not sequentializable [19] nor full [20]. A

fundamental problem is that not all combinatorial proofs can

be obtained as translations of sequent calculus proofs.

We solve these issues by moving to a deep inference system.

More precisely, we introduce a new proof system, KS1, for

first-order logic, that (a) reflects every combinatorial proof,

i.e., there is a surjection from KS1 proofs to combinatorial

proofs, (b) yields simpler proofs of soundness and complete-

ness for combinatorial proofs, and (c) admits new decomposi-

tion theorems establishing a precise correspondence between

certain syntactic inference rules and certain combinatorial

notions. The right of Fig. 1 illustrates surjection in (a), and

since the syntactic proofs in the two systems translate to the

same combinatorial proof, they can be considered the same.

In general, a decomposition theorem provides normal forms

of proofs, separating subsets of inference rules of a proof

system. A prominent example of a decomposition theorem

is Herbrand’s theorem [21], which allows a separation be-

tween the propositional part and the quantifier part in a first-

order proof [4], [22]. Through the advent of deep inference,

new kinds of proof decompositions became possible, most

notably the separation between the linear part of a proof

and the resource management of a proof. It has been shown

by Straßburger [23] that a proof in classical propositional

logic can be decomposed into a proof of multiplicative linear

logic, followed by a proof consisting only of contractions and

weakenings (see also [10, §4]). In this paper we show that the

same is possible for first-order logic.

Combinatorial proofs and deep inference can be seen as

opposite ends of a spectrum: whereas deep inference allows

for a very fine granularity of inference rules—one inference

rule in a standard formalism, like sequent calculus or semantic

tableaux, is usually simulated by a sequence of different

deep inference rules—combinatorial proofs have completely

abolished the concept of inference rule. And yet, there is

a close relationship between the two, realized through a

decomposition theorem, as we establish in this paper.

Outline: This paper has three parts. First, in Sections II–V

we present the preliminaries on first-order logic, first-order

graphs, first-order combinatorial proofs, and the first-order

proof system KS1. Second, in Section VI we state the main

results. And third, in Sections VII–X we give their proofs.

II. PRELIMINARIES: FIRST-ORDER LOGIC

A. Terms and Formulas

Fix pairwise disjoint countably infinite sets VAR =
{x, y, z, . . .} of variables, FUN = {f, g, . . .} of function

symbols, and PRED = {p, q, . . .} of predicate symbols. Each

function symbol and each predicate symbol has a finite arity.

Each predicate symbol p has a dual p with p 6= p. The

grammars below generate the set TERM of terms, denoted by

s, t, u, . . ., the set ATOM of atoms, denoted by a, b, c, . . ., and

the set FORM of formulas, denoted by A,B,C, . . .:

t ····= x | f(t1, . . . , tn)

a ····= t | f | p(t1, . . . , tn) | p(t1, . . . , tn)

A ····= a | A ∧ A | A ∨ A | ∃x.A | ∀x.A

where the arity of f and p is n. For better readability we

often omit parentheses and write ft1 . . . tn or pt1 . . . tn. We

consider the truth constants t (true) and f (false) as additional

atoms, and consider all formulas in negation normal form,

where negation (·) is defined on atoms and formulas via De

Morgan’s laws:

t = f p(t1, . . . , tn) = p(t1, . . . , tn)

f = t p(t1, . . . , tn) = p(t1, . . . , tn)

∃x.A = ∀x.A A ∧B = A ∨ B

∀x.A = ∃x.A A ∨B = A ∧ B

Note a = a. We write A ⇒ B as an abbreviation for A ∨B.

2



A formula is rectified if all bound variables are distinct

from one another and from all free variables. Every for-

mula can be transformed into a logically equivalent rectified

form by bound variable renaming, e.g. (px ∨ ∃xqx) ∧ ∃xr
7→ (px ∨ ∃yqy) ∧ ∃zrz. If we consider formulas equivalent

modulo bound variable renaming (α-conversion), the rectified

form of a formula A is unique, and we denote it by Â.

A substitution is a function σ : VAR → TERM that is the

identity almost everywhere. We denote substitutions as σ =
[x1/t1, . . . , xn/tn], where σ(xi) = ti for i = 1..n and σ(x) =
x for all x /∈ {x1, . . . , xn}. Write Aσ for the formula obtained

from A by applying σ, i.e., by simultaneously replacing all

occurrences of xi by ti. A variable renaming is a substitution

ρ with ρ(x) ∈ VAR for all variables x.

B. Sequent Calculus LK1

Sequents, denoted by Γ,∆, . . ., are finite multisets of for-

mulas, written as lists, separated by comma. The correspond-

ing formula of a (non-empty) sequent Γ = A1, A2, . . . , An is

the disjunction of its formulas:
∨
(Γ) = A1 ∨ A2 ∨ · · · ∨ An.

A sequent is rectified iff its corresponding formula is.

In this paper we use the sequent calculus LK1, shown in

Figure 2, which is a one-sided variant of Gentzen’s original

calculus [3] for first-order logic. To simplify some technicali-

ties later in this paper, we include the mix rule.

Theorem 1. LK1 is sound and complete for first-order logic.

For a proof, see any standard textbook, e.g. [24].

The linear fragment of LK1, i.e., the fragment without

the rules ctr (contraction) and wk (weakening) defines first-

order multiplicative linear logic [19], [25] with mix [26],

[27] (MLL1+mix). We denote that system here with MLL1
X

(shown in Figure 2 in the dashed box).

We will use the cut elimination theorem. The cut rule is

⊢ Γ, A ⊢ A,∆
cut

⊢ Γ,∆
(1)

Theorem 2. If a sequent ⊢ Γ is provable in LK1+cut then it

is also provable in LK1. Furthermore, if ⊢ Γ is provable in

MLL1X+cut then it is also provable in MLL1X.

As before, this is standard, see e.g. [24] for a proof.

III. PRELIMINARIES: FIRST-ORDER GRAPHS

A. Graphs

A graph G = 〈VG , EG〉 is a pair where VG is a finite set of

vertices and EG is a finite set of edges, which are two-element

subsets of VG . We write vw for an edge {v, w}.

Let G = 〈VG , EG〉 and H = 〈VH, EH〉 be graphs such that

VG ∩ VH = ∅. A homomorphism ϕ : G → H is a function

ϕ : VG → VH such that if vw ∈ EG then ϕ(v)ϕ(w) ∈ EH.

The union G +H is the graph 〈VG ∪ VH, EG ∪ EH〉 and the

join G × H is the graph 〈VG ∪ VH, EG ∪ EH ∪ {vw | v ∈
VG , w ∈ VH}〉. A graph G is disconnected if G = G1 +G2 for

two non-empty graphs G1,G2, otherwise it is connected.

A graph G is labelled in a set L if each vertex v ∈ VG

has an associated label ℓ(v) ∈ L. A graph G is (partially)

ax
⊢ a, a

⊢ Γ, A,B
∨
⊢ Γ, A ∨B

⊢ Γ, A ⊢ B,∆
∧

⊢ Γ, A ∧B,∆

t
⊢ t

⊢ Γ
f
⊢ Γ, f

⊢ Γ ⊢ ∆
mix

⊢ Γ,∆

⊢ Γ, A[x/t]
∃

⊢ Γ, ∃x.A

⊢ Γ, A
∀ (x not free in Γ)
⊢ Γ, ∀x.A

⊢ Γ, A,A
ctr

⊢ Γ, A

⊢ Γ
wk

⊢ Γ, A

Fig. 2. Sequent calculi LK1 (all rules) and MLL1X (rules in the dashed box)

coloured if it carries a partial equivalence relation ∼G on

VG ; each equivalence class is a colour.1 A vertex renaming

of G = 〈VG , EG〉 along a bijection (̂·) : VG → V̂G is the

graph Ĝ = 〈V̂G , {v̂ŵ | vw ∈ EG}〉, with colouring and/or

labelling inherited (i.e., v̂ ∼ ŵ if v ∼ w, and ℓ(v̂) = ℓ(v)).
Following standard graph theory, we identify graphs modulo

vertex renaming.

A directed graph G = 〈VG , EG〉 is a set VG of vertices and a

set EG ⊆ VG×VG of direct edges. A directed graph homomor-

phism ϕ : 〈VG , EG〉 → 〈VH, EH〉 is a function ϕ : VG → VH

such that if (v, w) ∈ EG then (ϕ(v), ϕ(w)) ∈ EH.

B. Cographs

A graph H = 〈VH, EH〉 is a subgraph of a graph G =
〈VG , EG〉 if VH ⊆ VG and EH ⊆ EG . It is induced if

v, w ∈ VH and vw ∈ EG implies vw ∈ EH. An induced

subgraph of G = 〈VG , EG〉 is uniquely determined by its set

of vertices V and we denote it by G[V ]. A graph is H-free if it

does not contain H as an induced subgraph. The graph P4 is

the (undirected) graph 〈{v1, v2, v3, v4}, {v1v2, v2v3, v3v4}〉. A

cograph is a P4-free undirected graph. The interest in cographs

for our paper comes from the following well-known fact.

Theorem 3 ([28], [29]). A graph is a cograph iff it can be

constructed from the singletons via the operations + and ×.

In a graph G, the neighbourhood N(v) of a vertex v ∈ VG

is {w | vw ∈EG}. A module is a set M ⊆VG with N(v)\M =
N(w) \M for all v, w ∈ M . A module M is strong if for

every module M ′ we have M ′ ⊆M , M ⊆M ′ or M∩M ′ = ∅.

A module is proper if it has two or more vertices.

C. Fographs

A cograph is logical if every vertex is labelled by either an

atom or variable, and it has at least one atom-labelled vertex.

An atom-labelled vertex is a literal and a variable-labelled

vertex is a binder. A binder labelled with x is an x-binder.

The scope of a binder b is the smallest proper strong module

1In [9] and [18] adjacent vertices must have distinct colours, following
the standard definition of colouring in graph theory. We choose to omit this
condition here, as it is implied by the preclusion of bimatchings in Def. 10.

3



containing b. An x-literal is a literal whose atom contains the

variable x. An x-binder binds every x-literal in its scope. In

a logical cograph G, a binder b is existential (resp. universal)

if, for every other vertex v in its scope, we have bv ∈ EG

(resp. bv /∈ EG). An x-binder is legal if its scope contains no

other x-binder and at least one literal.

Definition 4 ([18, §3]). A first-order graph or fograph G is a

logical cograph whose binders are all legal. The binding graph

of G is the directed graph ~G = 〈VG , {(b, l) | b binds l}〉.

We define a mapping J·K from formulas to (labelled) graphs,

inductively as follows:

JaK = •a (for any atom a)

JA ∨BK = JAK + JBK J∃x.AK = •x× JAK

JA ∧BK = JAK × JBK J∀x.AK = •x+ JAK

where we write •α for a single-vertex labelled by α.

Example 5. Here is the fograph of the drinker formula

∃x(px⇒∀y py) = ∃x.(px ∨ (∀y.py)): x

px
y

py

Lemma 6. If A is a rectified formula then JAK is a fograph.

Proof. That JAK is a logical cograph follows immediately from

the definition and Theorem 3. The fact that every binder of

JAK is legal can be proved by structural induction on A.

Remark 7. Note that JAK need not be a fograph if A is not

rectified. If A = (∀x.px) ∨ (∀x.qx), then JAK = •x • px •
x •qx, the scope of each x-binder contains all the vertices, in

particular, the other x-binder. On the other hand, there are non-

rectified formulas which are translated to fographs by J·K. For

example, in the graph of (∃x.px)∨(∃x.qx), both x-binders are

legal, as they are not in each other’s scope: x px x qx.

We define a congruence relation ≡ on formulas, called equiv-

alence, by the following equations:

A ∧B ≡ B ∧ A (A ∧B) ∧C ≡ A ∧ (B ∧ C)
A ∨B ≡ B ∨ A (A ∨B) ∨C ≡ A ∨ (B ∨ C)

∀x.∀y.A ≡ ∀y.∀x.A ∀x.(A ∨B) ≡ (∀x.A) ∨B
∃x.∃y.A ≡ ∃y.∃x.A ∃x.(A ∧B) ≡ (∃x.A) ∧B

(2)

where x must not be free in B in the last two equations.

Theorem 8 ([18, §10]). Let A,B be rectified formulas. Then

A ≡ B ⇐⇒ JAK = JBK

Proof. A straightforward structural induction on formulas.

Example 9. ∃x.(px ∨ (∀y.py)) ≡ ∃x∀y (py ∨ px), and both

formulas have the same (rectified) fograph D, below-left.

x px

y py

×

x
+

y px py

x px

y py

Above-center we show the cotree of the underlying cograph

(illustrating the idea behind Theorem 3) and above-right is its

binding graph ~D.

x
px

y
qy

pz

qfz

z
x

px

y
qy

pz

qfz

z

Fig. 3. A fonet (left) with dualizer [x/z, y/fz] and its leap graph (right).

IV. FIRST-ORDER COMBINATORIAL PROOFS

A. Fonets

Two atoms are pre-dual if they are not t or f, and their

predicate symbols are dual (e.g. p(x, y) and p(y, z)) and two

literals are pre-dual if their labels (atoms) are pre-dual. A

linked fograph 〈C,∼C〉 is a coloured fograph C such that every

colour (i.e., equivalence class of ∼C), called a link, consists

of two pre-dual literals, and every literal is either t-labelled or

in a link. Hence, in a linked fograph no vertex is labelled f.

Let C be a linked fograph. The set of links can be seen as

a unification problem by identifying dual predicate symbols.

A dualizer of C is a substitution δ unifying all the links of C.

Since a first-order unification problem is either unsolvable

or has a most general unifier, we can define the notion of

most general dualizer. A dependency is a pair {•x, •y} of an

existential binder •x and a universal binder •y such that the

most general dualizer assigns to x a term containing y. A leap

is either a link or a dependency. The leap graph CL of C is

the undirected graph 〈VC , LC〉 where LC is the set of leaps of

C. A vertex set W ⊆ VC induces a matching in C if W 6= ∅
and for all w ∈ W , N(w)∩W is a singleton. We say that W
induces a bimatching in C if it induces a matching in C and

a matching in CL.

Definition 10 ([18, §5]). A first-order net or fonet is a linked

fograph which has a dualizer but no induced bimatching.

Figure 3 shows a fonet with its dualizer and leap graph.

B. Skew Bifibrations

A graph homomorphism ϕ : 〈VG , EG〉 → 〈VH, EH〉 is a

fibration [30], [31] if for all v ∈ VG and wϕ(v) ∈ EH, there

exists a unique w̃ ∈ VG such that w̃v ∈ EG and ϕ(w̃) = w
(indicated below-left), and is a skew fibration [9, §3] if for

all v ∈ VG and wϕ(v) ∈ EH there exists w̃ ∈ VG such

that w̃v ∈ EG and ϕ(w̃)w /∈ EH (indicated below-centre). A

directed graph homomorphism is a fibration if for all v ∈ VG

and (w,ϕ(v)) ∈ EH, there exists a unique w̃ ∈ VG such that

(w̃, v) ∈ EG and ϕ(w̃) = w (indicated below-right).

w̃∃!

w

v

ϕ(v)

v

ϕ(v)
ϕ(w̃)

w̃∃

w

w̃∃!

w

v

ϕ(v)
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x px y py pfy

(∀xpx) ⇒ ∀y (py∧pfy)

x
pa pb

px

∃x(pa∨ pb⇒ px)

qab qba x y qxy

qab ∨ qba ⇒ ∃x ∃y qxy

x
pfx

px y pffy py

(
∀x(pfx⇒px)

)
⇒ ∀y (pffy⇒py)

Fig. 4. Four combinatorial proofs, each shown above the formula proved. Here x and y are variables, f is a unary function symbol, a and b are constants
(nullary function symbols), p is a unary predicate symbol, and q is a binary predicate symbol. For each skew bifibration ϕ, the variable substitution ρϕ is an
identity, thus we can omit labels from each (coloured) source fograph (since the label of v in the source is that of ϕ(v) in the target).

(∀xpx) ⇒ ∀y (py∧pfy) ∃x(pa∨ pb⇒ px) qab ∨ qba ⇒ ∃x ∃y qxy
(
∀x(pfx⇒ px)

)
⇒ ∀y (pffy⇒ py)

Fig. 5. Condensed forms of the four combinatorial proofs in Figure 4. We do not show the lower graph, and indicate the mapping by the position of the
vertices of the upper graph.

A fograph homomorphism ϕ = 〈ϕ, ρϕ〉 is a pair where

ϕ : G → H is a graph homomorphism between the underlying

graphs, and ρϕ, also called the substitution induced by ϕ,

is a variable renaming such that for all v ∈ VG we have

ℓ(ϕ(v)) = ρϕ(ℓ(v)), and ρϕ is the identity on variables not

in G. Note that ϕ necessarily maps binders to binders and

literals to literals. Since ρϕ is fully determined by ϕ alone, we

often leave ρϕ implicit. A fograph homomorphism ϕ : G → H
preserves existentials if for all existential binders b in G, the

binder ϕ(b) is existential in H.

Definition 11 ([18, §4]). Let G and H be fographs. A skew

bifibration ϕ : G → H is an existential-preserving fograph

homomorphism that is a skew fibration on 〈VG , EG〉 →
〈VH, EH〉 and a fibration on the binding graphs ~G → ~H.

Example 12. Below-left is a skew bifibration, whose binding

fibration is below-centre. When the labels on the source

fograph can be inferred (modulo renaming), we often omit

the labelling in the upper graph, as below-right.

x

px
y

py

x

x y
px

py

x

px
y

py

x

x y
px

py

x

px
y

py

Definition 13 ([18, §6]). A first-order combinatorial proof

(FOCP) of a fograph G is a skew bifibration ϕ : C → G where

C is a fonet. A first-order combinatorial proof of a formula

A is a combinatorial proof of its graph JAK.

Figure 4 shows examples of FOCPs (taken from [18]), each

above the formula it proves. The same FOCPs are in Figure 5

in condensed form, with the formula graph left implicit.

Theorem 14 ([18, §6]). FOCPs are sound and complete for

first-order logic.

Remark 15. Our definition of FOCP is slightly more lax

S{t}
∀
S{∀x.t}

S{t}
ai
S{a ∨ a}

S{A}
t
S{A ∧ t}

S{A ∧ (B ∨ C)}
s
S{(A ∧B) ∨ C}

S{A ∧B}
mix

S{A ∨B}

S{A[x/t]}
∃

S{∃x.A}

S{B}
≡ (where A ≡ B)

S{A}

S{A}
w
S{A ∨B}

S{(A ∧ C) ∨ (B ∧D)}
m

S{(A ∨B) ∧ (C ∨D)}

S{a ∨ a}
ac

S{a}

S{(∀x.A) ∨ (∀x.B)}
m∀

S{∀x.(A ∨B)}

S{(∃x.A) ∨ (∃x.B)}
m∃

S{∃x.(A ∨B)}

S{A}
w∀ (x not free in A)

S{∀x.A}

S{∀x.∀x.A}
c∀

S{∀x.A}

Fig. 6. Deep inference systems KS1 (all rules) and MLS1X (rules in the
dashed box)

than the original definition of [18], as we allow for a variable

renaming ρϕ which was restricted to be the identity in [18].

V. FIRST-ORDER DEEP INFERENCE SYSTEM KS1

In contrast to standard proof formalisms, like sequent calculi

or tableaux, where inference rules decompose the principal

formula along its root connective, deep inference rules apply

like rewriting rules inside any (positive) formula or sequent

context, which is denoted by S{·}, and which is a formula

(resp. sequent) with exactly one occurrence of the hole {·} in

the position of an atom. Then S{A} is the result of replacing

the hole {·} in S{·} with A.

Figure 6 shows the inference rules for the deep inference

system KS1 introduced in this paper. It is a variation of the

systems presented by Brünnler [32] and Ralph [33] in their
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PhD-theses. The main differences are (i) the explicit presence

of the mix-rule, (ii) a different choice of how the formula

equivalence ≡ is defined, (iii) an explicit rule for the equiv-

alence, and (iv) new inference rules w∀ and c∀. The reason

behind these design choices is to obtain the correspondence

with combinatorial proofs and the full completeness result.

We consider here only the cut-free fragment, as cut-

elimination for deep inference systems has already been dis-

cussed elsewhere (e.g. [22], [34]).2 As with the sequent system

LK1, we also need for KS1 the linear fragment, MLS1
X, and

that is shown in Figure 6 in the dashed box.

We write

B

S Φ

A

to denote a derivation Φ from B to A using

the rules from system S. A formula A is provable in a system

S if there is a derivation in S from t to A.

We will for some results also employ the general (non-

atomic) version of the contraction rule:

S{A ∨ A}
c

S{A}
(3)

VI. MAIN RESULTS

We state the main results of this paper here, and prove them

in later sections. The first is routine and expected, but must

be proved nonetheless:

Theorem 16. KS1 is sound and complete for first-order logic.

Our second result is more surprising, as it is a very strong

decomposition result for first-order logic.

Theorem 17. For every derivation

t

KS1 Φ

A

there are f-free

formulas A1, . . . , A5 and a derivation

t

{∀,ai,t}

A5

{s,mix,≡}

A4

{∃}

A3

{m,m∀,m∃,≡}

A2

{ac,c∀}

A1

{w,w∀,≡}

A

This theorem is stronger than the existing decompositions for

first-order logic, which either separate only atomic contraction

and atomic weakening [32] or only contraction [33] or only

the quantifiers in form of a Herbrand theorem [35], [33].

2In the deep inference literature, the cut-free fragment is also called the
down-fragment. But as we do not discuss the up-fragment here, we omit the
down-arrows ↓ in the rule names.

t
∀
∀y.t

t
∀y.(t ∧ t)

ai
∀y.((py ∨ py) ∧ t)

ai
∀y.((py ∨ py) ∧ (pfy ∨ pfy))

≡
∀y.(py ∨ (py ∧ (pfy ∨ pfy)))

s
∀y.(py ∨ ((py ∧ pfy) ∨ pfy))

≡
∀y.((py ∨ pfy) ∨ (py ∧ pfy))

∃
∀y.((py ∨ (∃x.px)) ∨ (py ∧ pfy))

∃
∀y.(((∃x.px) ∨ (∃x.px)) ∨ (py ∧ pfy))

≡
((∃x.px) ∨ (∃x.px)) ∨ (∀y.(py ∧ pfy)

m∃
(∃x.(px ∨ px) ∨ (∀y.(py ∧ pfy))

ac
(∃x.px) ∨ (∀y.(py ∧ pfy))

Fig. 7. Example derivation in decomposed form of Theorem 17

Theorem 17 is also the reason why we have the rules w∀ and

c∀ in system KS1, as these rules are derivable with the other

rules. However, they are needed to obtain this decomposition.

Figure 7 shows an example of a decomposed derivation in

KS1 of the formula (∃x.px) ∨ (∀y.(py ∧ pfy)).
A weaker version of Theorem 17 will also be useful:

Theorem 18. For every derivation

t

KS1 Φ

A

there is a formula A′

with no occurrence of f and a derivation

t

MLS1
X

A′

{w,c,≡}

A

Here A′ corresponds to A3 of Theorem 17.

We now establish the connection between derivations in

KS1 and combinatorial proofs.

Theorem 19. Let ϕ : C → A be a combinatorial proof and

let A be a formula with A = JAK. Then there is a derivation

t

MLS1
X

Φ1

A′

{w,w∀,ac,c∀,m,m∀,m∃,≡} Φ2

A

(4)

for some A′ ≡ Cρϕ where C is a formula with JCK = C
and ρϕ is the variable renaming substitution induced by ϕ.

Conversely, whenever we have a derivation as in (4) above,

such that f does not occur in A′, then there is a combinatorial

proof ϕ : C → JAK such that C = JÂ′K.

Furthermore, in the proof of Theorem 19, we will see that

(i) the links in the fonet C correspond precisely to the pairs of

atoms that meet in the instances of the ai-rule in the derivation

Φ1, and (ii) the ”flow-graph” of Φ2 that traces the quantifier-
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and atom-occurrences in the derivation corresponds exactly

to the vertex-mapping induced by ϕ. To give an example,

consider the derivation in Figure 7 which corresponds to the

left-most combinatorial proof in Figures 4 and 5.

Thus, combinatorial proofs are closely related to derivations

of the form (4), and since by Theorem 17 every derivation can

be transformed into that form, we can say that combinatorial

proofs provide a canonical proof representation for first-order

logic, similarly to what proof nets are for linear logic [36].

Finally, Theorems 16, 17 and 19 imply Theorem 14, which

means that we have here an alternative proof of the soundness

and completeness for first-order combinatorial proofs which

is simpler than the one given in [18], and improves with

completeness being full (a surjection from syntactic KS1

proofs onto combinatorial proofs).

VII. TRANSLATING BETWEEN LK1 AND KS1

We prove Theorems 16, 17, and 18, mainly by translating

derivations to and from the sequent calculus, and by rule

permutation arguments.

A. The Linear Fragments MLL1X and MLS1X

We show that MLL1X and MLS1X are equivalent.

Lemma 20. If ⊢ Γ is provable in MLL1X then
∨
(Γ) is provable

in MLS1X.

Proof. This is a straightforward induction on the proof of ⊢ Γ
in MLL1

X, making a case analysis on the bottommost rule

instance. We show here only the case of
⊢ ∆, A

∀
⊢ ∆, ∀x.A

(all other

cases are simpler or have been shown before, e.g. [32]): By

induction hypothesis, there is a proof of
∨
(∆)∨A in MLS1X.

We can prefix every line in that proof by ∀x and then compose

the following derivation:
t

∀
∀x.t

MLS1
X

∀x.
∨
(∆) ∨ A

≡ ∨
(∆) ∨ ∀x.A

where we can apply the ≡-rule because x is not free in ∆.

Lemma 21. Let
S{A}

r
S{B}

be an inference rule in MLS1X. Then

the sequent ⊢ A,B is provable in MLL1X.

Proof. A routine exercise.

Lemma 22. Let A,B be formulas, and let S{·} be a (pos-

itive) context. If ⊢ A,B is provable in MLL1X, then so is

⊢ S{A}, S{B}.

Proof. A straightforward induction on S{·}. (see e.g. [37])

Lemma 23. If a formula C is provable in MLS1X then ⊢ C
is provable in MLL1

X.

Proof. We proceed by induction on the number of inference

steps in the proof of C in MLS1X. Consider the bottommost

rule instance
S{A}

r
S{B}

. By induction hypothesis we have a

MLL1X proof Π of ⊢ S{A}. By Lemmas 21 and 22, we have

a MLL1X proof of ⊢ S{A}, S{B}. We can compose them via

⊢ S{A} ⊢ S{A}, S{B}
cut

⊢ S{B}

and then apply Theorem 2.

B. Contraction and Weakening

The first observation here is that Lemmas 20–23 from above

also hold for LK1 and KS1. We therefore immediately have:

Theorem 24. For every sequent Γ, we have that ⊢ Γ is

provable in LK1 if and only if
∨
(Γ) is provable in KS1.

Then Theorem 16 is an immediate consequence. Let us now

proceed with providing further lemmas that will be needed for

the other results.

Lemma 25. The c-rule is derivable in {ac,m,m∀,m∃,≡}.

Proof. This can be shown by a straightforward induction on

A (for details, see e.g. [32]).

Lemma 26. w∀, c∀,m,m∀,m∃ are derivable in {w, c,≡}.

Proof. We only show the cases for w∀ and c∀ (for the others

see [32]):
A

w
A ∨ (∀x.A)

≡
∀x.(A ∨ A)

c
∀x.A

∀x.∀x.A
w
∀x.((∀x.A) ∨ A)

≡
(∀x.A) ∨ (∀x.A)

c
∀x.A

(5)

where in the first derivation, x is not free in A, and in the

second one not free in ∀x.A.

Lemma 27. Let A and B be formulas. Then

A

{w,c,≡}

B

⇐⇒

A

{w,w∀,ac,c∀,m,m∀,m∃,≡}

B

Proof. Immediately from Lemmas 25 and 26.

Remark 28. Observe that Lemma 27 would also hold with

the rules w∀ and c∀ removed.

C. Rule Permutations

Theorem 29. Let Γ be a sequent. If ⊢ Γ is provable in LK1

(as depicted on the left below) then there is a sequent Γ′ not

containing any f, such that there is a derivation as shown on

the right below:

LK1 Φ

⊢ Γ

=⇒

MLL1
X

Φ1

⊢
∨
(Γ′)

{w,c,≡} Φ2

⊢
∨
(Γ)

Proof. First, we can replace every instance of the f-rule in

Φ by wk. Then the instances of wk and ctr are replaced by
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w and c, which can then be permuted down. Details are in

Appendix A.

Lemma 30. For every derivation

t

MLS1
X

A

there are formulas

A′ and A′′ such that t

{∀,ai,t}

A′′

{s,mix,≡}

A′

{∃}

A

Proof. First, observe that the ∃ rule can be permuted under all

the other rules since A[x/t] has the same structure as A and

none of the other rules has a premise of the form S{∃x.A}. It

suffices now to prove that all rules in {∀, ai, t} can be permuted

over the rules in {s,mix,≡}, which is straightforward. For s,

mix, and the ≡-instances that do not involve the quantifiers,

the details can be found in [38]. The ≡-instances concerning

the quantifiers are admissible if the ∃-rule is not present.

Lemma 31. For every derivation

A

{w,w∀,ac,c∀,m,m∀,m∃,≡}

B
there are formulas A′ and B′ such that

A

{m,m∀,m∃,≡}

A′

{ac,c∀}

B′

{w,w∀,≡}

B

Proof. Permute all w and w∀ instances to the bottom of the

derivation, then permute all c and c∀ below {m,m∀,m∃}. This

involves a tedious but routine case analysis. However, unlike

most other rule permutations in this paper, this has not been

done before in the deep inference literature. For this reason,

we give the full case analysis in Appendix B. This Lemma is

the reason for the presence of the rules w∀ and c∀, as without

them the permutation cases in (5) could not be resolved.

We can now complete the proof of Theorems 17 and 18.

Proof of Theorem 18. Assume we have a proof of A in KS1.

By Theorem 24 we have a proof of ⊢ A in LK1 to which we

can apply Theorem 29. Finally, we apply Lemma 20 to get

the desired shape.

Proof of Theorem 17. Assume we have a proof of A in KS1.

We first apply Theorem 18, and then Lemma 30 to the upper

half and Lemmas 27 and 31 to the lower half.

VIII. FONETS AND LINEAR PROOFS

A. From MLL1
X Proofs to Fonets

Let Π be a MLL1X proof of a rectified sequent ⊢ Γ not

containing f. We now show how Π is translated into a linked

fograph JΠK = 〈JΓK,∼Π〉. We proceed inductively, making a

case analysis on the last rule in Π. At the same time we are

constructing a dualizer δΠ, so that in the end we can conclude

that JΠK is in fact a fonet.

1) Π is ax
⊢ a, a

: Then the only link is {a, a}, and δΠ is

empty.

2) Π is t
⊢ t

: Then ∼Π and δΠ are both empty.

3) The last rule in Π is
⊢ Γ′ ⊢ Γ′′

mix
⊢ Γ′,Γ′′

: By induction

hypothesis, we have proofs Π′ and Π′′ of Γ′ and Γ′′,

respectively. We have JΓK = JΓ′K+ JΓ′′K and we can let

∼Π = ∼Π′ ∪ ∼Π′′ and δΠ = δΠ′ ∪ δΠ′′ .

4) The last rule in Π is
⊢ Γ1, A,B

∨
⊢ Γ1, A ∨B

: By induction

hypothesis, there is a proof Π′ of Γ′ = Γ1, A,B. We

have JΓK = JΓ′K and let ∼Π = ∼Π′ and δΠ = δΠ′ .

5) The last rule in Π is
⊢ Γ1, A ⊢ B,Γ2

∧
⊢ Γ1, A ∧B,Γ2

: By induction

hypothesis, we have proofs Π′ and Π′′ of Γ′ = Γ1, A
and Γ′′ = B,Γ2, respectively. We have JΓK = JΓ1K +
(JAK × JBK) + JΓ2K and we let ∼Π = ∼Π′ ∪ ∼Π′′ and

δΠ = δΠ′ ∪ δΠ′′ .

6) The last rule in Π is
⊢ Γ1, A[x/t]

∃
⊢ Γ1, ∃x.A

: By induction hy-

pothesis, there is a proof Π′ of Γ′ = Γ1, A[x/t]. For each

atom in Γ′ = Γ1, A[x/t], there is a corresponding atom

in Γ = Γ1, ∃x.A. We can therefore define the linking ∼Π

from the linking ∼Π′ via this correspondence. Then, we

let δΠ be δΠ′ +[x/t]. Since Γ is rectified x does not yet

occur in δΠ′ . Hence δΠ is a dualizer of JΠK.

7) The last rule in Π is
⊢ Γ1, A

∀ (x not free in Γ1)
⊢ Γ1, ∀x.A

:

By induction hypothesis, there is a proof Π′ of Γ′ =
Γ1, A, which has the same atoms as in Γ = Γ1, ∀x.A.

Hence, we can let ∼Π = ∼Π′ and δΠ = δΠ′ .

Theorem 32. If Π is a MLL1X proof of a rectified f-free

sequent ⊢ Γ, then JΠK is a fonet and δΠ a dualizer for it.

Proof. We must show that none of the operations above

introduces a bimatching. For cases 1–6, this is immediate.

For case 7, observe that there is a potential dependency from

each existential binder in JΓ′K to the new x-binder •x in JΓK.

However, observe that this •x vertex is not connected to any

vertex in JΓ′K, and hence no such new dependency can be

extended to a bimatching. That δΠ is a dualizer for JΠK follows

immediately from the construction. Hence, JΠK is a fonet.
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B. From MLS1X Proofs to Fonets

There is a more direct path from a MLL1X proof Π of

a rectified sequent Γ to the linked fograph JΠK: take the

fograph JΓK, and let the equivalence classes of ∼Π be all the

atom pairs that meet in an instance of ax, and δΠ comprises

the substitutions at the ∃-rules in Π. We chose the more

cumbersome path above because it gives us a direct proof of

Theorem 32. However, for translating MLS1X derivation into

fonets, we employ exactly that direct path.

In a derivation in MLS1X where the conclusion is recti-

fied, every line is also rectified, as the only rules involving

bound variables are ∀ and ∃ which (upwards) both remove

a binder. Therefore, we can call such a derivation rectified,

and for a non-rectified MLS1
X derivation Φ we can define its

rectification Φ̂ inductively, by rectifying each line, proceeding

step-wise from conclusion to premise.3

A rectified derivation

t

MLS1
X

Φ

A

determines a substitution

which maps the existential bound variables occurring in A
to the terms substituted for them in the instances of the ∃-rule

in Φ. We denote this substitution by δΦ and call it the dualizer

of Φ. Furthermore, every atom occurring in the conclusion A
must be consumed by a unique instance of the rule ai in Φ.

This allows us to define a (partial) equivalence relation ∼Φ on

the atom occurrences in A by a ∼Φ b if a and b are consumed

by the same instance of ai in Φ. We call ∼Φ the linking of Φ,

and define JΦK = 〈JAK,∼Φ〉.

Theorem 33. Let

t

MLS1
X

Φ

A

be a rectified derivation where A

is f-free. Then JΦK is a fonet and δΦ a dualizer for it.

To prove this theorem, we have to show that no inference

rule in MLS1X can introduce a bimatching. To simplify the

argument, we introduce the frame [39] of the linked fograph

C, which is a linked (propositional) cograph in which the

dependencies between the binders in C are encoded as links.

More formally, let C be a formula with JCK = C, to which

we exhaustively apply the following subformula rewriting

steps, to obtain a sequent C⋆:

1) Encode dependencies as fresh links. For each depen-

dency {•xi, •yj} in C, with corresponding subformulas

∃xi.A and ∀yj .B in C, we pick a fresh (nullary) predi-

cate symbol qi,j , and then replace ∃xi.A by qi,j∧∃xi.A,

and replace ∀yj .B by qi,j ∨ ∀yj .B.

2) Erase quantifiers. After step 1, remove all the quanti-

fiers, i.e., replace ∃xi.A by A and replace ∀yj .B by B
everywhere.

3) Simplify atoms. After step 2, replace every predicate

pt1 . . . tn (resp. pt1 . . . tn) with a nullary predicate sym-

bol p (resp. p)

3As for formulas, the rectification of a derivation is unique up to renaming
of bound variables.

Then ∼C⋆ consists of the pairs induced by ∼C and the new

pairs {qi,j , qi,j} introduced in step 1 above. We call C⋆ the

frame of C and we define the frame of C, denoted C⋆, as

〈JC⋆K,∼C⋆〉.

Lemma 34. If a linked fograph C has an induced bimatching

then so does its frame C⋆.

Proof. Immediately from the construction of the frame.

Proof of Theorem 33. From Φ we construct a derivation Φ⋆

of A⋆ in the propositional fragment of MLS1X, such that

JΦ⋆K = JΦK⋆. The rules ai, t,mix and s are translated trivially,

and for ≡, it suffices to observe that the frame construction is

invariant under ≡. Finally, for the rules ∀ and ∃, proceed as

follows. Every instance of ∀ is replaced by the derivation on

the right below:4

S{t}
∀
S{∀yj.t}

 

t

{ai,t} Ψ1

S{(qh1,j ∨ qh1,j
) ∧ · · · ∧ (qhn,j ∨ qhn,j

) ∧ t}

{s,≡} Ψ2

S{qh1,j ∨ · · · ∨ qhn,j ∨ (qh1,j
∧ · · · ∧ qhn,j

∧ t)}

where h1, . . . , hn range over the indices of the existential

binders dependent on that yj . It is easy to see how Ψ1 is

constructed. The construction of Ψ2, using s and ≡, is stan-

dard, see, e.g. [40], [37], [41], [38]. Then, every occurrence of

∀yj .F is replaced by qh1,j∨· · ·∨qhn,j∨(qh1,j
∧· · ·∧qhn,j

∧F )
in the derivation below that ∀-instance. Now, observe that

all instances of the ∃-rule introducing xi dependent on yj
must occur below in the derivation (otherwise Φ would not

be rectified). Now consider such an instance
S{B[xi/t]}

∃
S{∃xi.B}

.

Its context S{·} must contain all the ∀yj the ∃xi depends on,

such that B is in their scope. Following the translation of the

∀ rules above, we can therefore translate the ∃-rule instance

by the following derivation

S0{qi,k1
∧ S1{qi,k2

∧ · · ·Sl−1{qi,kl
∧ Sl{B′}} · · · }}

{s,≡} Ψ3

S0{S1{· · ·Sl−1{Sl{qi,k1
∧ qi,k2

∧ · · · qi,kl
∧B′}} · · · }}

where k1, . . . , kl are the indices of the universal binders on

which that xi depends, and B′ is B in which all predicates

are replaced by a nullary one (step 3 in the frame construction).

The derivation Ψ3 can be constructed in the same way as Ψ2.

Doing this to all instances of the rules ∀ and ∃ in Φ
yields indeed a propositional derivation Φ⋆ with JΦ⋆K = JΦK⋆.

It has been shown by Retoré [42] and rediscovered by

Straßburger [38] that JΦ⋆K = 〈JC⋆K,∼Φ⋆〉 cannot contain an

induced bimatching. By Lemma 34, JΦK does not have an

induced bimatching either. Furthermore, it follows from the

definition of δΦ that it is a dualizer for JΦK.

Remark 35. There is an alternative path of proving Theo-

rem 33 by translating Φ to an MLL1X-proof Π, observing that

this process preserves the linking and the dualizer. However,

4For better readability we omit superfluous parentheses, knowing that we
always have ≡ incorporating associativity and commutativity of ∧ and ∨.
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for this, we have to extend the construction from the previous

subsection to the cut-rule, and then show that linking and du-

alizer of a sequent proof Π are invariant under cut elimination.

This can be done similarly to unification nets in [39].

C. From Fonets to MLL1X Proofs

Now we are going to show how from a given fonet 〈C,∼C〉
we can construct a sequent proof Π in MLL1

X such that JΠK =
〈C,∼C〉. In the proof net literature, this operation is also called

sequentialization. The basic idea behind our sequentialization

is to use the frame of C, to which we can apply the splitting

tensor theorem, and then reconstruct the sequent proof Π.

Let Γ be a propositional sequent and ∼Γ be a linking for

JΓK. A conjunction formula A ∧ B is splitting or a splitting

tensor if Γ = Γ′, A ∧ B,Γ′′ and ∼Γ = ∼1∪ ∼2, such that

∼1 is a linking for JΓ′, AK and ∼2 is a linking for JB,Γ′′K,

i.e., removing the ∧ from A ∧ B splits the linked fograph

〈JΓK,∼Γ〉 into two fographs. We say that 〈JΓK,∼Γ〉 is mixed

iff Γ = Γ′,Γ′′ and ∼Γ = ∼1∪ ∼2, such that ∼1 is a linking

for JΓ′K and ∼2 is a linking for JΓ′′K. Finally, 〈JΓK,∼Γ〉 is

splittable if it is mixed or has a splitting tensor.

Theorem 36. Let Γ be a f-free propositional sequent contain-

ing only atoms and ∧-formulas, and ∼Γ be a linking for JΓK.

If 〈JΓK,∼Γ〉 does not induce a bimatching then it is splittable.

This is the well-known splitting-tensor-theorem [19], [43],

adapted for the presence of mix. In the setting of linked

cographs, it has first been proved by Retoré [44], [45] and

then rediscovered by Hughes [9]. We use it now for our

sequentialization:

Theorem 37. Let 〈C,∼C〉 be a fonet, and let Γ be a sequent

with JΓK = C. Then there is an MLL1X-proof Π of Γ, such

that JΠK = 〈C,∼C〉.

Proof. Let δC be the dualizer of 〈C,∼C〉. We proceed by

induction on the size of Γ (i.e., the number of symbols in it,

without counting the commas). If Γ contains a formula with ∨-

root, or a formula ∀x.A, we can immediately apply the ∨-rule

or the ∀-rule of MLL1X and proceed by induction hypothesis.

If Γ contains a formula ∃x.A such that the corresponding

binder •x in C has no dependency, then we can apply the

∃-rule, choosing the term t as determined by δC , and proceed

by induction hypothesis. Hence, we can now assume that

Γ contains only atoms, ∧-formulas, or formulas of shape

∃x.A, where the vertex •x has dependencies. Then the frame

〈JΓ⋆K,∼Γ⋆〉 does not induce a bimatching and contains only

atoms and ∧-formulas, and is therefore splittable. If it is mixed,

then we can apply the mix-rule to Γ and apply the induction

hypothesis to the two components. If it is not mixed then

there must be a splitting tensor. If the splitting ∧ is already

in Γ, then we can apply the ∧-rule and proceed by induction

hypothesis on the two branches. However, if Γ⋆ is not mixed

and all splitting tensors are ∧-formulas introduced in step 1

of the frame construction, then we get a contradiction as in

that case there must be a ∨- or ∀-formula in Γ.

D. From Fonets to MLS1X Proofs

We can now straightforwardly obtain the same result for

MLS1X:

Theorem 38. Let 〈C,∼C〉 be a fonet, and let C be a formula

with JCK = C. Then there is a derivation

t

MLS1
X

Φ

C

such that

JΦK = 〈C,∼C〉.

Proof. We apply Theorem 37 to obtain a sequent proof Π
of ⊢ C with JΠK = 〈C,∼C〉. Then we apply Lemma 20, ob-

serving that the translation from MLL1X to MLS1X preserves

linking and dualizer.

Remark 39. Note that it is also possible to do a direct

“sequentialization” into the deep inference system MLS1X,

using the techniques presented in [38] and [46].

IX. SKEW BIFIBRATIONS AND RESOURCE MANAGEMENT

In this section we establish the relation between skew

bifibrations and derivations in {w,w∀, ac, c∀,m,m∀,m∃,≡}.

However, if a derivation Φ contains instances of the rules c∀,

m∀, and m∃ we can no longer naively define the rectification

Φ̂ as in the previous section for MLS1X, as these two rules

cannot be applied if premise and conclusion are rectified. For

this reason we define here rectified versions ĉ∀, m̂∀ and m̂∃,

shown below:

S{∀y.∀x.Ax}
ĉ∀

S{∀x.Ax}

S{(∀y.Ay) ∨ (∀z.Bz)}
m̂∀

S{∀x.(Ax ∨Bx)}

S{(∃y.Ay) ∨ (∃z.Bz)}
m̂∃

S{∃x.(Ax ∨Bx)}

Here, we use the notation A· for a formula A with occurrences

of a placeholder · for a variable. Then Ax stands for the results

of replacing that placeholder with x, and also indicating that

x must not occur in A·. Then ∀x.Ax and ∀y.Ay are the same

formula modulo renaming of the bound variable bound by the

outermost ∀-quantifier. We also demand that the variables x,

y, and z do not occur in the context S{·}.

Note that in an instance of m̂∀ or m̂∃ (as shown above),

we can have x = y or x = z, but not both if the premise is

rectified. If x = y and x = z we have m∀ and m∃ as special

cases of m̂∀ and m̂∃, respectively. And similarly, if x = y then

c∀ is a special case of ĉ∀.

For a derivation Φ in {w,w∀, ac, c∀,m,m∀,m∃,≡}, we can

now construct the rectification Φ̂ by rectifying each line of Φ,

yielding a derivation in {w,w∀, ac, ĉ∀,m, m̂∀, m̂∃,≡}.

For each instance
Q

r
P

of an inference rule in

{w,w∀, ac, ĉ∀,m, m̂∀, m̂∃,≡} we can define the induced

map ⌊r⌋ : VJQK → VJP K which acts as the identity for

r ∈ {m,≡} and as the canonical injection for r ∈ {w,w∀}.

For r = ac it maps the vertices corresponding to the two

atoms in the premise to the vertex of the contracted atom

in the conclusion, and for r ∈ {ĉ∀, m̂∀, m̂∃} it maps the two
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vertices corresponding to the quantifiers in the premise to the

one in the conclusion (and acts as the identity on all other

vertices). For a derivation Φ in {w,w∀, ac, ĉ∀,m, m̂∀, m̂∃,≡}
we can then define the induced map ⌊Φ⌋ as the composition

of the induced maps of the rule instances in Φ.

Lemma 40. Let

A

{w,w∀,ac,c∀,m,m∀,m∃,≡} Φ

B

be given. Then there

is a rectified derivation

Â

{w,w∀,ac,ĉ∀,m,m̂∀,m̂∃,≡} Φ̂

B̂

, such that the

induced maps ⌊Φ⌋ : JAK → JBK and ⌊Φ̂⌋ : JÂK → JB̂K are

equal up to a variable renaming of the vertex labels.

Proof. Immediate from the definition.

A. From Contraction and Weakening to Skew Bifibrations

Lemma 41. Let

A

{w,w∀,ac,ĉ∀,m,m̂∀,m̂∃,≡} Φ

B

be a rectified deriva-

tion. Then the induced map ⌊Φ⌋ : JAK → JBK is a skew

bifibration.

Before we show the proof of this lemma, we introduce

another useful concept: the propositional encoding A◦ of a

formula A, which is a propositional formula with the property

that JA◦K = JAK. For this, we introduce new propositional

variables that have the same names as the (first-order) variables

x ∈ VAR. Then A◦ is defined inductively by:

a◦ = a
(A ∨B)◦ = A◦ ∨B◦

(A ∧B)◦ = A◦ ∧B◦

(∀xA)◦ = x ∨A◦

(∃xA)◦ = x ∧A◦

Lemma 42. For every formula A, we have JA◦K = JAK.

Proof. A straightforward induction on A.

We use ≡◦ to denote the restriction of ≡ to propositional

formulas, i.e., the first two lines in (2).

Proof of Lemma 41. First, observe that for every inference

rule r ∈ {w,w∀, ac, ĉ∀,m, m̂∀, m̂∃,≡} the induced map

⌊r⌋ : VJQK → VJP K defines an existential-preserving graph ho-

momorphism JQK → JP K and a fibration on the corresponding

binding graphs. Therefore, their composition ⌊Φ⌋ has the same

properties of fibration.

For showing that it is also a skew fibration, we construct

for Φ its propositional encoding Φ◦ by translating every line

into its propositional encoding. The instances of the rules m̂∀

and m̂∃ are replaced by:

S{(y ∨ (Ay)◦) ∨ (z ∨ (Bz)◦)}
≡

S{(y ∨ z) ∨ ((Ay)◦ ∨ (Bz)◦)}
âc

S{x ∨ ((Ax)◦ ∨ (Bx)◦)}

S{(y ∧ (Ay)◦) ∨ (z ∧ (Bz)◦)}
m

S{(y ∨ z) ∧ ((Ay)◦ ∨ (Bz)◦)}
âc

S{x ∧ ((Ax)◦ ∨ (Bx)◦)}

respectively, where âc is a ac that renames the variables—the

propositional variable, as well as the first-order variable of the

same name—as everything is rectified, there is no ambiguity

here. Any instance of a rule w, ac, m, or ≡ is translated to

an instance of the same rule, ĉ∀ is translated to âc, and w∀ is

translated to w.

This gives us a derivation

A◦

{w,ac,âc,m,≡◦} Φ
◦

B◦

such that

⌊Φ◦⌋ = ⌊Φ⌋. It has been shown in [23] that ⌊Φ◦⌋ is a skew

fibration. Hence, ⌊Φ⌋ is a skew fibration.

B. From Skew Bifibrations to Contraction and Weakening

Lemma 43. Let A and B be fographs, let ϕ : A → B be a

skew bifibration, and let A and B be formulas with JAK = A
and JBK = B. Then there are derivations

A

{w,w∀,ac,ĉ∀,m,m̂∀,m̂∃,≡} Φ̂

B

and

Aρϕ
{w,w∀,ac,c∀,m,m∀,m∃,≡} Φ

B

such that ⌊Φ̂⌋ = ϕ and Φ̂ is a rectification of Φ, and ρϕ is

the substitution induced by ϕ.

In the proof of this lemma, we make use of the following

concept: Let

P

S Ψ

Q

be a derivation where P and Q are proposi-

tional formulas (possibly using variable x ∈ VAR at the places

of atoms). We say that Ψ can be lifted to S′ if there are (first-

order) formulas C and D such that P = C◦ and Q = D◦ and

there is a derivation

C

S
′

Ψ
′

D

.

We say a fograph homomorphismϕ : G → H is full if for all

v, w ∈ VG , we have that ϕ(v)ϕ(w) ∈ EH implies vw ∈ EG .

Lemma 44. Let ϕ : G → H be full and injective skew

bifibration such that ρϕ is the identity substitution, and let

G and H be formulas with JGK = G and JHK = H. Then

there is a derivation

G

{w,w∀,≡} Φ

H

.

Proof. By [23, Proposition 7.6.1], we have a derivation
G◦

{w,≡◦} Ψ

H◦

. In order to lift Ψ, we need to reorganize the

instances of w. If H contains a subformula ∀x.A which is

not present in G, the w-instances in Ψ could introduce the

parts of the propositional encoding x ∨ A independently. We

say that an instance r1 of w in Φ is in the scope of an instance

r2 of w if r1 introduced formulas that contain a free variable

x (i.e., x occurs in a term in a predicate) and r2 introduces

the atom x as a subformula (i.e. the propositional encoding

of the binder x). We can now permute the w-instances in Ψ
such that whenever a rule instance r1 is in the scope of an

instance r2, then r2 occurs below r1 in Ψ. Then we can lift Ψ
stepwise. First, observe that each line of Ψ is ≡◦-equivalent

to the propositional encoding P ◦ of a first-order formula P .

We now have to show that each instance of w in Ψ is indeed
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the image of a correct application of w or w∀ in first-order

logic. If we have a w of the form

S◦{A◦}
w
S◦{x ∨A◦}

or
S◦{A◦}

w
S◦{(x ∨B◦) ∨ A◦}

then x cannot occur freely in A, as otherwise the fibration

property would be violated. We can therefore lift these in-

stances to

S{A}
w∀

S{∀x.A}
or

S{A}
w
S{(∀x.B) ∨ A}

respectively. If a weakening happens inside a subformula x ∨
C◦ or x ∧C◦ in Ψ, then there are the following cases:

S◦{x ∨ C◦}
w
S◦{x ∨D◦ ∨ C◦}

S◦{x ∧ C◦}
w
S◦{x ∧ (D◦ ∨ C◦)}

S◦{x ∧ C◦}
w
S◦{(x ∨D◦) ∧ C◦}

The first two cases can be lifted to

S{∀x.C}
w
S{∀x.(D ∨ C)}

and
S{∃x.C}

w
S{∃x.(D ∨C)}

respectively. But in the third case, an ∃-quantifier would be

transformed into an ∀-quantifier. But as ϕ has to preserve

existentials, this third case cannot occur. All other situations

can be lifted trivially, giving us

G

{w,w∀,≡} Φ

H

as desired.

Lemma 45. Let ϕ : G → H be a surjective skew bifibration,

and let G and H be formulas with JGK = G and JHK = H.

Then there is a derivation

Gρϕ
{ac,c∀,m,m∀,m∃,≡} Φ

H

where ρϕ is the substitution induced by ϕ.

Proof. By [47, Proposition 7.5], there is a derivation
(Gσϕ)

◦

{ac,m,≡◦} Ψ

H◦

. We can lift Ψ to a first-order derivation in

{ac, c∀,m,m∀,m∃,≡}, in a similar way as in the previous

lemma. The technical details are in Appendix C.

Proof of Lemma 43. Let V ′
B ⊆ VB be the image of ϕ, and let

B1 be the subgraph of B induced by V ′
B . Hence, we have two

maps ϕ′′ : A → B1 being a surjection and ϕ′ : B1 → B being

a full injection. Both, ϕ′ and ϕ′′ remain skew bifibrations.

Furthermore, B1 is also a fograph. Let B1 be a formula with

JB1K = B1. We can apply Lemmas 44 and 45 to obtain

derivations

B1

{w,w∀,≡} Φ
′

B

and

Aρϕ′′

{ac,c∀,m,m∀,m∃,≡} Φ
′′

B1

As ρϕ′ is the identity, we have ρϕ′′ = ρϕ. Hence, the

composition of Φ′′ and Φ′ is the desired derivation Φ. Then

Φ̂ can be constructed by rectifying Φ, where the variables

to be used in A are already given. That ϕ = ⌊Φ̂⌋ follows

immediately from the construction.

X. SUMMARY AND PROOF OF MAIN RESULT

The only theorem of Section VI that has not yet been proved

is Theorem 19 establishing the full correspondence between

decomposed proofs in KS1 and combinatorial proofs. We show

the proof here, by summarizing the results of the previous two

Sections VIII and IX.

Proof of Theorem 19. First, assume we have a combinatorial

proof ϕ : C → A and a formula A with A = JAK. Let C be a

formula with JCK = C, and let ρϕ be the substitution induced

by ϕ. By Lemma 43 there is a derivation

Cρϕ
{w,w∀,ac,c∀,m,m∀,m∃,≡} Φ2

A

Since C is a fonet, we have by Theorem 38 a derivation

t

MLS1
X

Φ
′

1

C

This derivation remains valid if we apply the substitution ρϕ to

every line in Φ′
1
, yielding the derivation Φ1 of Cρϕ as desired.

Conversely, assume we have a decomposed derivation

t

MLS1
X

Φ1

A′

{w,w∀,ac,c∀,m,m∀,m∃,≡} Φ2

A

(6)

Then we can transform Φ1 into a rectified form Φ̂1, proving

Â′. By Theorem 33, the linked fograph JΦ̂1K = 〈JÂ′K,∼
Φ̂1

〉
is a fonet. Then, by Lemma 40, there is a rectified derivation

Â′

{w,w∀,ac,ĉ∀,m,m̂∀,m̂∃,≡} Φ̂2

Â

whose induced map ⌊Φ̂2⌋ : JÂ′K →

JÂK is the same as the induced map ⌊Φ2⌋ : JA′K → JAK of

Φ2. By Lemma 41, this map is a skew bifibration. Hence, we

have a combinatorial proof ϕ : C → JAK with C = JÂ′K.

Note that Theorem 19 shows at the same time soundness,

completeness, and full completeness, as

1) every proof in KS1 can be translated into a combinatorial

proof, and

2) every combinatorial proof is the image of a KS1-proof

under that translation.

XI. CONCLUSION

We uncovered a close correspondence between first-order

combinatorial proofs and decomposed deep inference deriva-

tions of system KS1, and showed that every proof in KS1 has

such a decomposed form.

The most surprising discovery for us was that all technical

difficulties in our work could be reduced (in a non-trivial way)

to the propositional setting.
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The obvious next step in our research is to investigate proof

composition and normalisation of first-order combinatorial

proofs. Even in the propositional setting, the normalisation

of combinatorial proofs is underdeveloped. There exist two

different procedures for cut elimination for combinatorial

proofs in classical propositional logic [10], [12], but both

have their insufficiencies, and have not been extended to other

logics.

We hope to garner new insights on the normalisation of

classical first-order proofs through our work on combinatorial

proofs.
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APPENDIX

A. Proof of Theorem 29

Proof of Theorem 29. Write fv(A) for the set of variables

which occur free in A.

Note that the instances of w, c in Φ2 are deep, but inside

sequent contexts.

First, if an instance of
⊢ Γ

wk
⊢ Γ, A

is followed by a rule in

which A is not in the principal formula, it can be permuted

downwards. Otherwise, the proof can be transformed using the

following rewriting rules.

⊢ Γ
wk

⊢ Γ, A ⊢ B,∆
∧

⊢ Γ, A ∧B,∆

 

⊢ Γ
wk ...

wk
⊢ Γ, A ∧B,∆

⊢ Γ, A
wk

⊢ Γ, A,B
∨
⊢ Γ, A ∨B

 

⊢ Γ, A
w
⊢ Γ, A ∨B

⊢ Γ
wk

⊢ Γ, A[x/t]
∃

⊢ Γ, ∃x.A

 

⊢ Γ
wk

⊢ Γ, ∃x.A

⊢ Γ
wk

⊢ Γ, A
∀
⊢ Γ, ∀x.A

 

⊢ Γ
wk

⊢ Γ, ∀x.A

⊢ Γ, A
wk

⊢ Γ, A,A
ctr

⊢ Γ, A

 ⊢ Γ, A

Note that in the case of ∨, we use the deep rule w which

can be permuted under all the rules. By using these rewriting

rules, we can eventually get a derivation with all the instances

of wk and w at the bottom. Now observe that the instances of

ctr in Φ can be transformed using the following rule:

⊢ Γ, A,A
ctr

⊢ Γ, A
 

⊢ Γ, A,A
∨
⊢ Γ, A ∨ A

c
⊢ Γ, A

Knowing that c can be permuted under all the rules of

MLL1X, we eventually obtain a derivation:

MLL1
X

Φ
′

1

⊢ Γ′

{wk,w,c,≡} Φ
′

2

⊢ Γ

Note that ≡ is required here since the permutation of formulas

is implicit in MLL1X.

By transforming each sequent of Φ′
2

into its corresponding

formula, and by considering the following rewriting rule:

⊢ Γ
wk

⊢ Γ, A
 

⊢
∨
(Γ)

w
⊢
∨
(Γ) ∨ A

, we obtain a derivation

MLL1
X

Φ1

⊢
∨
(Γ′)

{w,c,≡} Φ2

⊢
∨
(Γ)

where Φ1 can be obtained from Φ′
1 by applying the ∨ rule.

B. Rule permutation for the proof of Lemma 31

We construct a rewriting system based on rule permutation

on derivations in {w,w∀, ac, c∀,m,m∀,m∃,≡} that allows us

to reach a derivation of the form

A

{m,m∀,m∃,≡}

A′

{ac,c∀}

B′

{w,w∀,≡}

B

from any derivation. Intuitively, we want to move all the

instances of r ∈ {w,w∀} downwards and all the instances

of r′ ∈ {m,m∀,m∃} upwards.

We first study the interactions between two rules. Certain

cases are unsolved at this stage, and they are considered

later when we study the interactions between two non-≡ rule

instances separated by ≡. Only non-trivial cases are presented

here:

• r1/r2, where r1 ∈ {w,w∀} and r2 ∈ {ac, c∀,m,m∀,m∃}:

a
w
a ∨ a

ac
a

 a

A ∧ C
w
(A ∧ C) ∨ (B ∧D)

m
(A ∨B) ∧ (C ∨D)

 

A ∧ C
w
(A ∨B) ∧ C

w
(A ∨B) ∧ (C ∨D)

∀x.A
w
(∀x.A) ∨ (∀x.B)

m∀
∀x.(A ∨B)

 

∀x.A
w
∀x.(A ∨B)

∀x.A
w∀

∀x.∀x.A
c∀

∀x.A

 ∀x.A

A ∨ (∀x.B)
w∀

(∀x.A) ∨ (∀x.B)
m∀

∀x.(A ∨B)

 

A ∨ (∀x.B)
≡

∀x.(A ∨B)
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where in the last case, x is not free in A.

• r1/r2, where r1 ∈ {ac, c∀} and r2 ∈ {m,m∀,m∃}:

S{(∀x.∀x.A) ∨ (∀x.B)}
c∀

S{(∀x.A) ∨ (∀x.B)}
m∀

S{∀x.(A ∨B)}

 

S{(∀x.∀x.A) ∨ (∀x.B)}
m∀

S{∀x.(∀x.A ∨B)}
≡

S{(∀x.A) ∨ (∀x.B)}
m∀

S{∀x.(A ∨B)}

• c∀/ ≡:

∀x.∀x.∀y.A
c∀

∀x.∀y.A
≡

∀y.∀x.A

 

∀x.∀x.∀y.A
≡

∀y.∀x.∀x.A
c∀

∀y.∀x.A

∀x.∀x.(A ∨B)
c∀

∀x.(A ∨B)
≡

(∀x.A) ∨B

 

∀x.∀x.(A ∨B)
≡

(∀x.∀x.A) ∨B
c∀

(∀x.A) ∨B

(∀x.∀x.A) ∨B
c∀

(∀x.A) ∨B
≡

∀x.(A ∨B)

 

(∀x.∀x.A) ∨B
≡

∀x.∀x.(A ∨B)
c∀

∀x.(A ∨B)

where in the last two cases, x is not free in B.

• w/ ≡:

A
w
A ∨B

≡
B ∨ A

A ∨ C
w
(A ∨B) ∨ C)

≡
A ∨ (B ∨ C)

∀x.A
w
∀x.(A ∨B)

≡
(∀x.A) ∨B

 

∀x.A
w
(∀x.A) ∨B

∀x.B
w
∀x.(B ∨ A)

≡
(∀x.A) ∨B

∀x.A
w
(∀x.A) ∨B

≡
∀x.(A ∨B)

 

∀x.A
w
∀x.(A ∨B)

B
w
B ∨ (∀x.A)

≡
∀x.(A ∨B)

where in the last four cases, x is not free in B.

• w∀/ ≡:

In the following two cases, we assume x 6= y (otherwise

they are trivial).

∀y.A
w∀ (x /∈ fv(∀y.A))

∀x.∀y.A
≡

∀y.∀x.A

 

∀y.A
w∀ (x /∈ fv(A))

∀y.∀x.A

∀y.A
w∀ (x /∈ fv(A))

∀y.∀x.A
≡

∀x.∀y.A

 

∀y.A
w∀ (x /∈ fv(∀y.A))

∀x.∀y.A

A ∨B
w∀

∀x.(A ∨B)
≡

(∀x.A) ∨B

 

A ∨B
w∀

(∀x.A) ∨B

A ∨B
w∀

(∀x.A) ∨B
≡

∀x.(A ∨B)

 

A ∨B
w∀

∀x.(A ∨B)

where in the last two cases, the constraint on x on the

left-hand side implies that of the right-hand side.

• ≡ /c∀:

∀x.∀y.∀x.A
≡

∀x.∀x.∀y.A
c∀

∀x.∀y.A

∀x.∀y.∀x.A
≡

∀y.∀x.∀x.A
c∀

∀y.∀x.A

∀x.((∀x.A) ∨B)
≡ (x /∈ fv(B))

(∀x.∀x.A) ∨B
c∀

(∀x.A) ∨B

∀x.((∀x.A) ∨B)
≡ (x /∈ fv(B))

∀x.∀x.(A ∨B)
c∀

∀x.(A ∨B)

• ≡ /m:

(C ∧ A) ∨ (B ∧D)
≡

(A ∧ C) ∨ (B ∧D)
m

(A ∨B) ∧ (C ∨D)

(B ∧D) ∨ (A ∧ C)
≡

(A ∧ C) ∨ (B ∧D)
m

(A ∨B) ∧ (C ∨D)

 

(B ∧D) ∨ (A ∧ C)
m

(B ∨ A) ∧ (D ∨ C)
≡

(A ∨B) ∧ (C ∨D)

((A ∧ C) ∧E) ∨ (B ∧D)
≡

(A ∧ (C ∧ E)) ∨ (B ∧D)
m

(A ∨B) ∧ ((C ∧ E) ∨D)

(∀x.(A ∧ C)) ∨ (B ∧D)
≡ (x /∈ fv(B ∧D))

∀x.((A ∧ C) ∨ (B ∧D))
m

∀x.((A ∨B) ∧ (C ∨D))

• ≡ /m∀:

(∀x.B) ∨ (∀x.A)
≡

(∀x.A) ∨ (∀x.B)
m∀

∀x.(A ∨B)

 

(∀x.B) ∨ (∀x.A)
m∀

∀x.(B ∨ A)
≡

∀x.(A ∨B)
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(∀y.∀x.A) ∨ (∀x.B)
≡

(∀x.∀y.A) ∨ (∀x.B)
m∀

∀x.((∀y.A) ∨B)

∀x.(A ∨ (∀x.B))
≡

(∀x.A) ∨ (∀x.B)
m∀

∀x.(A ∨B)

• ≡ /m∃: similar to ≡ /m∀

Interactions between two non-≡ rules with the presence of

≡ in between:

• c∀/ ≡ /r where r ∈ {m,m∀,m∃}: First permute c∀ under

≡ and then permute c∀ under r.

• ac/ ≡ /r where r ∈ {m,m∀,m∃}: First permute ac under

≡ and then permute ac under r.

• w/ ≡ /c∀:

∀x.∀x.A
w
∀x.((∀x.A) ∨B)

≡
(∀x.∀x.A) ∨B

c∀
(∀x.A) ∨B

 

∀x.∀x.A
c∀

(∀x.A) ∨B
w
(∀x.A) ∨B

∀x.B
w
∀x.(B ∨ (∀x.A))

≡
(∀x.∀x.A) ∨B

c∀
(∀x.A) ∨B

 

∀x.B
w
∀x.(B ∨ A)

≡
(∀x.A) ∨B

∀x.∀x.A
w
∀x.((∀x.A) ∨B)

≡
∀x.∀x.(A ∨B)

c∀
∀x.(A ∨B)

 

∀x.∀x.A
c∀

∀x.A
w
∀x.(A ∨B)

∀x.B
w
∀x.(B ∨ (∀x.A))

≡
∀x.∀x.(A ∨B)

c∀
∀x.(A ∨B)

 

∀x.B
w
∀x.(B ∨ A)

≡
∀x.(A ∨B)

where in all four cases, x is not free in B.

• w/ ≡ /ac:
a ∨B

w
(a ∨B) ∨ a

≡
(a ∨ a) ∨B

ac
a ∨B

 a ∨B

a
w
a ∨ (a ∨B)

≡
(a ∨ a) ∨B

ac
a ∨B

 

a
w
a ∨B

∀x.a
w
(∀x.a) ∨ a

≡ (x /∈ fv(a))
∀x.(a ∨ a)

ac
∀x.a

 ∀x.a

a
w
a ∨ (∀x.a)

≡ (x /∈ fv(a))
∀x.(a ∨ a)

ac
∀x.a

 

a
w∀ (x /∈ fv(a))

∀x.a

• w/ ≡ /m:

C ∧ A
w
(C ∧ A) ∨ (B ∧D)

≡
(A ∧ C) ∨ (B ∧D)

m
(A ∨B) ∧ (C ∨D)

 

C ∧A
≡

A ∧ C
w
(A ∨B) ∧ C

w
(A ∨B) ∧ (C ∨D)

B ∧D
w
(B ∧D) ∨ (∀x.(A ∧ C))

≡
∀x.((A ∧ C) ∨ (B ∧D))

m
∀x.((A ∨B) ∧ (C ∨D))

 

B ∧D
∀
∀x.(B ∧D)

w
∀x.((B ∨A) ∧D)

w
∀x.((B ∨A) ∧ (D ∨ C))

≡
∀x.((A ∨B) ∧ (C ∨D))

where in the second case, x is free in B ∧D.

• w/ ≡ /m∀:

∀x.B
w
(∀x.B) ∨ (∀x.A)

≡
(∀x.A) ∨ (∀x.B)

m∀
∀x.(A ∨B)

 

∀x.B
w
∀x.(B ∨ A)

≡
∀x.(A ∨B)

∀x.∀x.A
w
∀x.((∀x.A) ∨B)

≡
(∀x.A) ∨ (∀x.B)

m∀
∀x.(A ∨B)

 

∀x.∀x.A
c∀

∀x.A
w
∀x.(A ∨B)

• w/ ≡ /m∃:

∃x.B
w
(∃x.B) ∨ (∃x.A)

≡
(∃x.A) ∨ (∃x.B)

m∃
∃x.(A ∨B)

 

∃x.B
w
∃x.(B ∨ A)

≡
∃x.(A ∨B)

C. Proof of Lemma 45

Proof of Lemma 45. By [47, Proposition 7.5], there is a

derivation

(Gρϕ)
◦

{ac,m,≡◦} Ψ

H◦

, We plan to show that Ψ can be lifted

to {ac, c∀,m,m∀,m∃,≡}. However, observe that not every

formula occurring in Ψ is a propositional encoding. There are

two reasons for this: (i) we might have P ≡◦ Q where P
is a propositional encoding but Q is not, and (ii) the rule ac

can duplicate an atom x ∈ VAR. Let us write acx for such

instances. The problem with (i) is that we could have the

following situation

S{(x ∧ (E ∧C)) ∨ (x ∧ (F ∧D))}
≡◦

S{((x ∧ E) ∧ C) ∨ ((x ∧ F ) ∧D)}
m

S{((x ∧ E) ∨ (x ∧ F )) ∧ (C ∨D)}

(7)
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where x occurs in C ∨ D. Then premise and conclusion are

both propositional encodings, but the whole derivation cannot

be lifted. However, since we demand that the mapping is

a fibration (and therefore a homomorphism) on the binding

graphs, there must be another instance of m further below in

the derivation:
S′{(x ∧ E) ∨ (x ∧ F )}

m
S′{(x ∨ x) ∧ (E ∨ F )}

(8)

We can permute both instances via the following more general

scheme (see [23], [48] for a general discussion on permuta-

tions of the m-rule):

S{(G ∧ E ∧C) ∨ (G ∧ F ∧D)}
m

S{((G ∧E) ∨ (H ∧ F )) ∧ (C ∨D)}
m

S{(G ∨H) ∧ (E ∨ F ) ∧ (C ∨D)}

↔

S{(G ∧ E ∧ C) ∨ (G ∧ F ∧D)}
m

S{(G ∨H) ∧ ((E ∧ C) ∨ (F ∧D))}
m

S{(G ∨H) ∧ (E ∨ F ) ∧ (C ∨D)}

(9)

We omitted some instances of ≡◦ and some parentheses. We

now call instances of m as in (7) illegal, and we can transform

Ψ through m-permutations (9) into a derivation that does not

contain any illegal m-instances. To address (ii), we also apply a

permutation argument, permuting all instances of acx up until

they either reach the top of the derivation or an instance of m

which separates the two atoms in the premise. More precisely,

we consider the following inference rule

S0{S1{x} ∨ S2{x}}
ac≡x S{x}

(10)

where S1{·} ≡ {·} ∨ E and S2{·} ≡ {·} ∨ F and S{·} ≡
S0{{·} ∨E ∨F} for some formulas E and F , where E or F
or both might be empty. The rule ac≡x permutes over ≡, ac,

and other instances of ac≡x , and over instances of m if they

occur inside S0 or S1 or S2. The only situation in which ac≡x

cannot be permuted up is the following:

S{(R1{x} ∧C) ∨ (R2{x} ∧D)}
m

S{(R1{x} ∨R2{x}) ∧ (C ∨D)}
ac≡x S{R{x} ∧ (C ∨D)}

(11)

We can therefore assume that all instances of acx, that contract

an atom x ∈ VAR are either at the top of Ψ or below a m-

instance as in (11). We now lift Ψ to {ac, c∀,m,m∀,m∃,≡},

proceed by induction on the height of Ψ, beginning at the top,

making a case analysis on the topmost rule that is not a ≡.

• acx: We know that the premise of (10) is a propositional

encoding. Hence, S1{·} = {·} ∨ E◦ and S2{·} = {·} ∨
F ◦ and both x are universals, and E◦ ∨ F ◦ contains all

occurrences of x bound by that universal. We have the

following subcases:

– E and F are both non-empty: We have

S◦{(x ∨ E◦) ∨ (x ∨ F ◦)}
ac≡x S◦{x ∨ (E◦ ∨ F ◦)}

which can be lifted to

S{(∀x.E) ∨ (∀x.F )}
m∀

S{∀x.(E ∨ F )}

where S◦{·}, E◦, F ◦ are the propositional encodings

of S{·}, E, F , respectively.

– E◦ is empty and F ◦ is non-empty: We have

S◦{x ∨ (x ∨ F ◦)}
ac≡x S◦{x ∨ F ◦)}

which can be lifted to

S{∀x.∀x.F}
c∀

S{∀x.F}

– E◦ is non-empty and F ◦ is empty: This is similar

to the previous case.

– E◦ and F ◦ are both empty: This is impossible as the

premise would not be a propositional encoding.

• ac (contracting an ordinary atom): This can trivially be

lifted.

• m: There are several cases to consider.

– If none of the four principal formulas in the premise

is x or x∨F for some formula F and x ∈ VAR, then

this instance of m can trivially be lifted, and we can

proceed by induction hypothesis.

– If exactly one of the four principal formulas in the

premise is x for some x ∈ VAR, then this x is the

encoding of an existential in the premise and of an

universal in the conclusion. This is impossible, as ϕ
has to preserve existentials.

– If two of the four principal formulas in the premise

are x for some x ∈ VAR, then we are in the following

special case of (11):

S{(x ∧C) ∨ (x ∧D)}
m

S{(x ∨ x) ∧ (C ∨D)}
ac≡x S{x ∧ (C ∨D)}

which can be lifted immediately to

S{(∃x.C) ∨ (∃x.D)}
m∃

S{∃x.(C ∨D)}

– We have a situation (11) where R1{x} ≡ x ∨ E
for some E and R2{x} ≡ x ∨ F for some F with

R{x} ≡ x ∨ E ∨ F (Otherwise, the application of

ac≡x would not be correct.) That means, we have:

S{((x ∨E) ∧ C) ∨ ((x ∨ F ) ∧D)}
m

S{((x ∨E) ∨ (x ∨ F )) ∧ (C ∨D)}
ac≡x S{(x ∨E ∨ F ) ∧ (C ∨D)}

which can be lifted to

S{((∀x.E) ∧C) ∨ ((∀x.F ) ∧D)}
m

S{((∀x.E) ∨ (∀x.F )) ∧ (C ∨D)}
m∀

S{(∀x.(E ∨ F )) ∧ (C ∨D)}

– In all other cases (e.g. exactly one of the principal

formulas is of shape x ∨ F (and none is x), we can

trivially lift the m-instance, as the quantifier structure

is not affected.

Thus Ψ can be lifted to

Gρϕ
{ac,c∀,m,m∀,m∃,≡} Φ

H

.
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