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Abstract

Lévy walks are random walk processes whose step-lengths follow a long-tailed

power-law distribution. Due to their abundance as movement patterns of biolog-

ical organisms, significant theoretical efforts have been devoted to identifying the

foraging circumstances that would make such patterns advantageous. However, de-

spite extensive research, there is currently no mathematical proof indicating that

Lévy walks are, in any manner, preferable strategies in higher dimensions than

one. Here we prove that in finite two-dimensional terrains, the inverse-square Lévy

walk strategy is extremely efficient at finding sparse targets of arbitrary size and

shape. Moreover, this holds even under the weak model of intermittent detection.

Conversely, any other intermittent Lévy walk fails to efficiently find either large

targets or small ones. Our results shed new light on the Lévy foraging hypothesis,

and are thus expected to impact future experiments on animals performing Lévy

walks.

Introduction

Lévy walks [1, 2, 3] are super-diffusive random walk processes, characterised by frequent short

move-steps and rarer long re-location steps. Their hallmark is a step-length distribution with a

heavy power-law tail: p(`) ∼ 1/`µ, for some fixed 1 < µ ≤ 3. The efficiency of Lévy walks

as a foraging strategy was first suggested by Shlesinger and Klafter in 1986 [4]. An influential

breakthrough was later established in 1999 by Viswanathan et al. [5], arguing that when food

patches are scarce and non-destructive, the Lévy walk with exponent µ = 2, hereafter termed

Cauchy walk, consumes more food than other Lévy walks. This optimality claim initiated a burst

of experimental studies identifying Lévy-like movement patterns in a myriad of biological systems [6,

7, 8, 9, 10, 11, 12, 13, 5, 14, 15, 16, 17, 18, 19, 20], including multiple scenarios identifying Cauchy

patterns [10, 6, 12, 20, 18, 19].

The aforementioned quest for Lévy patterns in biology was largely driven by the Lévy foraging

hypothesis [2], stating that since Cauchy walks can optimize search efficiencies, then natural selection

should have led to the adaptation of Cauchy walks foraging. Despite concerns about susceptibility



to model assumptions [21, 22], the optimality claim of Viswanathan et al. [5] has been the primary

theoretical argument for the optimality of Cauchy walks, and has thus served as the basis on which

the Lévy foraging hypothesis was built. However, while this optimality claim is well-founded in

one-dimensional topologies [23], its validity in higher dimensions has been under debate [24]. In

particular, according to the recent result by Levernier et al. [25], Cauchy walks are not better

than other Lévy walks in the setting of [5]. This controversy suggests that the justification of the

Lévy foraging hypothesis may rely on different foraging assumptions than the ones in the work of

Viswanathan et al. [5].

In this context, it is natural to ask the following question: which natural conditions would make

Lévy walks, and particularly Cauchy walks, a favorable foraging strategy? Conclusive answers to

this question already exist with respect to one-dimensional topologies [26, 5]. For example, Lomholt

et al. [26] restricted attention to intermittent strategies [27, 28], in which detection is possible only

at the short pauses between random steps and not while moving ballistically. By comparing to

other intermittent strategies, the authors argued that the intermittent Cauchy walk is an optimal

search strategy in finite one-dimensional terrains. Regarding two-dimensional terrains, extensive

simulations by Humphries and Sims [29] suggested that Cauchy walks are somewhat favorable

when foraging under heterogeneous prey distributions. However, until now there has not been any

rigorous argument identifying any type of circumstances in two dimensional terrains that make

Lévy walks, of any kind, advantageous.

In this paper, we prove that in finite two-dimensional domains, the (truncated) intermittent

Cauchy walk is an optimal search strategy when the goal is to quickly find targets of arbitrary sizes.

Other Lévy walks may perform as well as the Cauchy walk, however, to do so they must be tuned

to the size of the target. In fact, we prove that every intermittent Lévy walk other than Cauchy

is extremely inefficient with respect to a large range of target sizes. In contrast, and remarkably,

the intermittent Cauchy walk stands out as the only intermittent process that is efficient across all

target scales without the need for any adaptation.

Robustness to target scales is expected to yield fitness advantages as searching for targets

that significantly vary in size is prevalent in biology, including in scenarios where Lévy patterns

have been reported. To name a few examples, this occurs when marine predators search for fish

patches [13, 12], albatrosses forage on patches of squid and fish [30], bees search for assemblages

of flowers [9], fruit flies explore their landscape [18], marine dinoflagellate search for patches of

phytoplankton [19], swarming bacteria search for food concentrations [7], T-cells search for an

invasion of pathogens [6], and even when the eye scans the visual field [31].

Model

We consider an idealized model in which a searcher aims to quickly find a single target in a

finite two-dimensional terrain with periodic boundary conditions, modelled as a square torus Tn =

[−
√
n/2,

√
n/2]2 ⊂ R2, whose area is n. Note that this geometry mimics both relevant situations

of a single target in a finite domain and of infinitely many regularly spaced targets in an infinite
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domain, as considered in [5]. Indeed, given a certain density of targets, one can find n and tile

the space into squares of area n, such that in each square there is approximately one target. Now,

moving ballistically from one square to an adjacent square can be viewed as moving on the torus

with periodic boundaries. Of course, the target in one square is not necessarily located in the

same position as the target in the adjacent square, but this view nevertheless seems as a good

approximation. This perspective is also discussed in [27].

The searcher starts at a random point of the torus, and then moves according to some random

walk strategy X. In this strategy, the length of a step ` is chosen according to a specified distri-

bution p, while its direction is chosen uniformly at random. In particular, for a given µ ∈ (1, 3],

a (truncated) Lévy walk process Xµ on the torus Tn is a random walk whose step-lengths are

distributed according to p(`) ∼ 1/`µ, for ` ≤
√
n/2. We discuss the influence of the choice of

the cut-off later in the paper. For all processes, speed is assumed to be constant, hence the time

duration of a step is proportional to its length. See more details in Methods.

A target S is a connected subset of the torus. A searcher can detect a target S only when it

is located within distance 1 — the sensing range — from the target. We consider several levels of

detection that correspond to different abilities to detect targets while moving. The weakest is the

intermittent model [27, 28], which is especially relevant to the study of saltatory, or stop-and-go,

foragers [32, 33, 34]. In the intermittent setting, two modes of search alternate, and detection can

only occur in one mode. In our intermittent model, one of these modes is static, corresponding to

a short pause between ballistics steps where detected is enabled. Formally, the searcher detects a

target, if and only if, at the end of a ballistic step, it is located at distance at most 1 from the

target (see Fig 1a). On the other extreme, we also consider the continuous detection model, in

which the agent can detect a target also while moving, with a radius of detection 1. (Note that in

the current paper, we focus on the time needed to find a single target, hence there is no need to

specify whether the step is halted or not upon detection of a target, as in [5].)

The detection time of a process X with respect to S, denoted tXdetect(n, S), is the expected time

until X detects S for the first time. Expectation is taken with respect to the randomness of X

and the random initial location. We assume that the pause between ballistic steps takes a constant

time.

As we show, it turns out that the important parameter governing the detection time is not the

area of S, but rather its diameter, namely, the maximal distance between any two points of S.

Since the detection radius is 1, finding targets of smaller diameter takes roughly the same time,

hence, in what follows we assume that D ≥ 1.

To evaluate the search efficiency of X with respect to a target S, we compare tXdetect(n, S) to

opt(n, S), namely, the best achievable detection time of S. Importantly, when computing this

optimal value, we impose no restriction on the search strategy, assuming the permissive continuous

detection setting, allowing the strategy to use infinite memory, and, furthermore, be tuned to the

shape and the diameter of the target. The following tight bound holds for every connected target
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Figure 1: (a) Intermittent Lévy walk. The target S is marked in dark blue. The Lévy searcher starts

at the smaller, green, point, and moves in discrete steps. A red circle signifies the area inspected at

the end of a step - the disc of radius 1 around its location. Here, the target S is detected on the 12th

step of the process. (b) Illustration of the lower bound proof of Eq. 1. Consider a target S (colored

blue) of diameter D (of any given shape). Consider roughly n/(3D + 2)2 discs (colored gray), so

that each has radius D + 1 and is located at distance D from its neighboring discs. Furthermore,

align this symmetric structure so that the S touches the center of one of the discs. Since the initial

location of the searcher is uniform in the torus, with probability 1
2 , at least half of the discs need to

be visited before detecting S. The time required to visit a new disc is at least the smallest distance

between two discs, i.e., D. The detection time is therefore at least roughly D ·n/(3D+ 2)2 ≈ n/D.

S whose diameter is D ∈ [1,
√
n/2]:

opt(n, S) = Θ (n/D) . (1)

The proof of Eq. (1) appears in the Supplementary Materials, see Corollary 8. A sketch of the

lower bound is given in Fig. 1b. For details regarding the asymptotic notation “Θ”, “O” and “Ω”,

see Methods.

We define the overrun of X with respect to S, as an indicator of how well X performs in

comparison to the optimal algorithm:

OverX(n, S) =
tXdetect(n, S)

opt(n, S)
= Θ

(
tXdetect(S) · D

n

)
.

The overrun of X with respect to a given diameter D ≥ 1 is then defined as the worst overrun,

taken over all connected targets of diameter D, that is,

OverX(n,D) = sup{OverX(n, S) | S is of diameter D}. (2)

In Supplementary Materials, Section B.1, we demonstrate the definition of overrun, by providing a

simple computation of the overrun of the intermittent process in which all step-lengths are fixed to
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some predetermined value. As seen there, such a strategy can be tuned to efficiently find targets of

a particular size, however, such an optimization causes inefficiency with respect to finding targets

of other sizes. Hence, when targets appear in unpredictable sizes, it is unclear which intermittent

strategy is best to employ.

Results

The overrun of the Cauchy walk is poly-logarithmic for every target scale. We math-

ematically analyzed the search efficiency of the intermittent Cauchy process Xcauchy. We proved

(Supplementary Materials, Section C, Theorem 18) that on the two-dimensional torus Tn, the

detection time of Xcauchy with respect to any target S of diameter D ≥ 1 is:

tX
cauchy

detect (n, S) = O

(
n log3 n

D

)
. (3)

The following result, which is an immediate corollary of Eq. (3), states that the overrun of the

intermittent Cauchy walk with respect to any target diameter is poly-logarithmic in the size of the

torus:

For every 1 ≤ D ≤
√
n
2 , OverX

cauchy

(n,D) = O(log3 n). (4)

Eq. (4) is proved mathematically, and by its asymptotic nature, it holds for sufficiently large values

of n. Using simulations (see Methods), we demonstrated that the overrun of the intermittent

Cauchy walk is very small also for a relatively small domain (Fig. 2a) and for a medium scale

domain (Fig. 2b). The overrun we see appears to be much smaller even from the poly-logarithmic

upper bound of O(log3 n). Indeed, detection time in T3002 (Fig. 2b) is very close to 2n/(D+ 1) for

disc targets, and 4n/(D + 1) for line targets.

As implied by Eq. (1), all connected targets of a given diameter D share a common unconditional

lower bound of Ω(n/D) for their detection time, regardless of their specific shape. Conversely,

Eq. (3) implies that such targets are found by roughly this time by the intermittent Cauchy process.

These results suggest that, at least asymptotically, the right parameter to consider is indeed the

diameter of the target and not, e.g., its area. We find this insight rather surprising, as, in contrast

to a searcher in the continuous detection model, crossing the target’s boundary by an intermittent

searcher does not suffice for detection. Hence, for example, a disc-shaped target appears to be,

at least at a first glance, significantly more susceptible for detection than its one-dimensional

perimeter. Consistent with our claim, in Figs. 2a and 2b we see that the detection time of the

intermittent Cauchy walk with respect to lines of diameter D (orange curve) is only about twice

larger than the detection time of a disc (blue curve) with the same diameter. This remains true

even when the diameter is relatively large, e.g., D = 16 in Fig. 2b, despite the fact that the area of

the corresponding disc is more than 25 times larger than the area of the domain from which a line

of length 16 can be detected, i.e., a strip of width 1 and length 16. A consequence of this insight

suggests that a large prey aiming to hide from an efficient searcher would benefit by organizing

itself in a bulging shape that minimizes its diameter.
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Figure 2: Detection time of the truncated Cauchy Walk on Tn, searching for a disc (orange color)

or line (blue color) target of diameter D. Green line is used for comparison.

Lower bounds. Eq. (4) establishes the small overrun of the Cauchy process across all target

diameters. We next turn to study the overrun of Lévy walk other than Cauchy (i.e., the cases

µ 6= 2). We proved (Supplementary Materials, Section B.3) that for 1 < µ < 2, the overrun of the

corresponding intermittent Lévy walk is large with respect to small diameter targets, and that for

2 < µ ≤ 3, the overrun is large with respect to large diameter targets. The latter result holds also

in the continuous detection model.

In more details, we first considered the intermittent Lévy walks with 1 < µ < 2, writing

µ = 2 − ε, with 0 < ε < 1. For these cases, it turns out that the expected step length is already

polynomial in n, which means that the process is slow at finding small targets. Specifically, we

proved (Supplementary Materials, Theorem 11) that the detection time of Xµ with respect to S

is:

tX
µ

detect(S) = Ω(n1+ε/2/D2).

Dividing this lower bound by the unconditional optimal detection time of targets of diameter D,

which is Θ(n/D), we obtain the following lower bound on the overrun of Xµ:

OverX
µ
(n,D) = Ω(nε/2/D). (5)

In particular, for targets with constant diameter, the overrun is polynomial in n.

The lower bound established in Eq. (5) indicates that within the range µ ∈ (1, 2), intermittent

Lévy walks with smaller values of µ (i.e., higher ε) would lead to larger overrun, especially with

respect to small diameter targets. Simulations reveal that this tendency is already apparent in

small terrains (Fig. 3a, with n = 302). The tendency clearly sharpens for larger values of n, where

the intermittent Cauchy walk can be seen to outperform intermittent Lévy walks with µ ∈ (1, 2),

for a large range of small target sizes (Fig. 3b, with n = 3002).

Next, we consider the Lévy walks with 2 < µ ≤ 3, writing µ = 2 + ε where 0 < ε ≤ 1. For this

regime of µ we remove the intermittent assumption, allowing the strategy to perfectly detect at
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all times, i.e, we consider the continuous detection model. Intuitively, the lower bounds for these

cases stem from the fact that such processes take long time to reach faraway locations. Hence,

in comparison to the optimal strategy, these strategies are slow at finding large faraway targets.

Specifically, we proved (Supplementary Materials, Theorem 12) that

tX
µ

detect(S) =

Ω(nDε−1) if µ = 2 + ε, where 0 < ε < 1,

Ω( n
logD ) if µ = 3.

Again, dividing these lower bounds by n/D, gives the following lower bounds:

OverX
µ
(n,D) =

Ω(Dε) if µ = 2 + ε, where 0 < ε < 1,

Ω( D
logD ) if µ = 3.

(6)

Comparing with intermittent Lévy walks with µ ∈ (2, 3], simulations demonstrate that the inter-

mittent Cauchy walk outperforms such walks with respect to almost all the range of target sizes,

except for the very small ones (Figs. 3a and 3b). Moreover, the gap between the performances

becomes larger when the target’s diameter D grows. This is consistent with the asymptotic bound

in Eq. (6).

On the impact of weak detection: intermittent vs. continuous. The intermittent detec-

tion model [27, 28, 32, 33, 34] is motivated by the premise that scanning for targets is hard to

effectively maintain continuously, and especially while moving fast [35, 36, 37]. Many biological

processes are considered to be intermittent, or at least partially so [27], however, the extent at

which the detection is worsened by movement is often unclear.

The O(n log3 n
D ) upper bound on the detection time of the Cauchy walk (Eq. (3)) was established

with respect to the intermittent setting. Clearly, it also holds when detection is strengthened.

Since the bound on the optimal detection time, i.e., opt(n,D) = Θ(n/D), holds also under the

continuous detection model, it follows that the O(log3 n) upper bound on the overrun of the Cauchy

walk (Eq.(4)) is valid for all models of detection in-between intermittent and continuous detection.

Furthermore, the established lower bounds for 2 < µ ≤ 3 (Eq. 6) hold also when detection is

continuous. For 1 < µ < 2, however, the overrun lower bounds in Eq. (5) do not hold in the

continuous detection model. Indeed, if detection occurs while moving, then previous simulations

seem to indicate that a straight line movement, i.e., taking µ ≈ 1, is somewhat preferable [29].

To study the influence of the detection abilities while moving on the detection time, we also

simulated the detection times of Lévy walks in continuous settings, in which detection while moving

is weak, or imperfect, (p = 0.1, Fig. 3c), and perfect (p = 1, Fig. 3d). Consistent with the theoretical

results, the simulations reveal that the Cauchy walk outperforms Lévy walks with 2 < µ ≤ 3 with

respect to almost all the range of target sizes, and especially with respect to the larger targets,

regardless of the detection ability while moving.

On the other hand, for 1 < µ < 2, the overrun with respect to small targets is significantly

improved when detection while moving is strengthened. Indeed, in the continuous, perfect, detection
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Figure 3: Comparing the detection times of Lévy walks Xµ on Tn, for different µ ∈ [1, 3], with the

detection time of the Cauchy walk (µ = 2). Search times are evaluated with respect to disc targets

of diameter D. For each diameter D, the data is normalized so that the detection time of the

Cauchy Walk X2 is represented by 1. (a) and (b) consider the intermittent setting, on a relatively

small torus of size n = 302 (a), and a larger one of size n = 3002 (b). (d) considers the continuous,

perfect, detection model, where the target is also detected (with probability p = 1) while moving

ballistically, if the searcher is at distance at most 1 from the target. (c) considers the continuous,

imperfect, detection model, where the target is detected, while moving, with probability p = 0.1

for each unit of time that the searcher spends at distance at most 1 of it, and, if the searcher is

in-between steps (and located at distance at most 1 from the target), then the target is detected

with probability 1.
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model (p = 1, Fig. 3d), we find that regardless of target size, detection is faster when µ tends to

1, as expected. In the continuous, imperfect, detection model (p = 0.1, Fig. 3c), the situation is

intermediate between the perfect and the intermittent settings.

On the influence of the cut-off. We first note that having a cut-off is reasonable for biological

applications, which live in finite domains. Moreover, from a theoretical perspective, in contrast

to the continuous detection model [5], the intermittent setting forces Lévy walks with µ ≤ 2 to

come with a cut-off, as otherwise the expected length of a step would be infinite, implying infinite

expected time to find any target. As a result of the truncation, the variances of the processes

we consider are also finite. However, as we proved in the Supplementary Materials (Lemma 20),

the super-diffusive property of the Cauchy walk, which was used to derive the upper bound on its

detection time, still holds at least up to time Θ(
√
n).

Note that by the nature of our asymptotic results, the upper bound on the overrun of the

Cauchy walk (Eq. (4)) is expected to hold when taking the cut-off `max = Θ(
√
n). Therefore, for

sufficiently large values of n, an efficient Cauchy strategy needs only to be loosely tuned to the size

of the domain.

To quantify the influence of the cut-off on moderate size domains, we simulated the Cauchy

walk with different cut-offs on the torus Tn where n = 3002. For different diameters, Fig. 4 depicts

a comparison between the performances of the Cauchy walk with cut-off `max =
√
n/2 = 150 and

those with cut-offs `max ∈ [112, 1200]. Observe that over-estimating the area n of the domain

by a factor 64 (or, equivalently, its diameter by a factor 8) does not lead to a drastic change in

performance. Indeed, these Cauchy walks perform at most 1.4 times worse than the Cauchy walk

with cut-off `max =
√
n/2. This is significantly less than the relative values observed for other

Lévy walks in Fig. 3b. We conclude therefore that the Cauchy walk performances are not very

sensitive to the value of the cut-off `max. Indeed, intuitively, for `max = Ω(
√
n), the dependency of

the time performances of the Cauchy walk on `max is logarithmic, as the average length of a step

is Θ(log `max).

Discussion

This paper evaluates search strategies according to their efficiency in finding targets of varying

sizes [38]. This measure is motivated by the fact that in multiple foraging contexts, including ones

for which Lévy patterns have been reported, targets appear in varying sizes. Importantly, quickly

finding targets of all sizes means that areas of all scales are visited quickly and regularly. This

has significance also in other tasks than foraging, including, e.g., during eye scanpaths [31], viral

spreading [39], and movement of metastatic cancer cells [40]. For all these examples, intermittent

patterns are of interest and Lévy walk movement has been suggested.

We further stress that target size in the sense we consider here concerns not the physical size

of the target, but rather its effective size, corresponding to the area from which it can be detected.

The effective size of a target is impacted not only by its physical size, but also by the detection
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Figure 4: Effect of the cut-off `max on the detection time of the Cauchy Walk on Tn with n = 3002.

The target is a disc of diameter D. The plot is normalized with a value of 1 for the cut-off

`max =
√
n/2 = 150.

abilities of the searcher with respect to the environmental conditions at the vicinity of the target.

For example, a rabbit in flat open space can be located from a farther distance than if it were

located in a bushy area. Similarly, an eye searching for a red spot in the visual field could detect

it from a larger distance if the background were, e.g., blue instead of pink. Thus, even when the

physical size of the target is fixed, its effective size can vary. In our mathematical analysis, we

normalized detection radius to 1, and allow for varying target sizes. We note, however, that this

modelling can also capture varying detection radii. Indeed, if the actual detection radius is R > 1,

and the physical diameter of the target is D, then the situation is equivalent to searching for a

target of diameter roughly D + 2R using detection radius of 1. Hence, the established robustness

of the Cauchy walk with respect to all target scales also implies robustness to both varying target

scales and varying detection radii.

As proven here, intermittent Cauchy walks are almost optimal when the goal is to quickly find

sparse targets of unpredictable sizes (or when the detection radius varies). Compared to Lévy walks

with 2 < µ ≤ 3, the performances of the Cauchy walk are particularly advantageous with respect

to larger targets. This superiority remains true regardless of whether the detection is intermittent

or not. On the other hand, compared to Lévy walks with 1 < µ < 2, the striking superiority

of the Cauchy walk holds only when the search is intermittent. These results shed a new light

on the Lévy foraging hypothesis [2], and can thus initiate new directions for experimental work on

animals suspected to perform Lévy walks. One suggestion is to experimentally study the correlation

between (1) the distribution of target sizes [12, 30], (2) the exponent µ of the corresponding Lévy

walk, and (3) the animal’s detection abilities. In contexts where the Lévy searcher aims to quickly

find targets of varying sizes, we predict that the exponent µ will not be much higher than 2. This,

for example, is consistent with the albatrosses foraging on heterogeneous patches of squid and

fish [30], whose Lévy movement patterns were estimated to have an exponent of µ ≈ 1.25 [14].

Moreover, if, in addition, the Lévy searcher relies on deficient detection while moving, then we

predict that µ will tend to be closer to 2, giving rise to a Cauchy walk. This is consistent with
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fruit flies whose exploration trajectories were reported to be both intermittent and Cauchy [18].

Accordingly, it is worth inspecting whether other biological searchers that have been identified as

executing Cauchy movement patterns, including multiple species of marine predators [13, 12, 19],

T-cells [6], and honey bees [10], have poor detection abilities while moving.

To conclude, until now there was no rigorous explanation for the superiority of Lévy walks in

dimensions higher than one. This paper is the first to provide such an explanation. First, we

prove that in finite two-dimensional domains, (truncated) Cauchy walks find sparse targets of any

size in almost optimal time. Moreover, under intermittent detection, any other Lévy walk fails to

efficiently find both small and large targets. This highlights the impact of weak detection on the

incentive to perform Cauchy walks.

Methods

Model.

Detailed analytical proofs of the results mentioned in the main text are presented in the Supplemen-

tary Materials. We next provide further details on the model, complementing the ones mentioned

in the main text.

We consider a mobile agent that searches a target over the finite torus Tn identified as the set

[−
√
n/2,

√
n/2]2 in R2. Note that the area of the torus is n. For x = (x1, x2) ∈ Ω, we consider the

standard norm ‖x‖ =
√
x21 + x22.

We consider a general family of random walk processes, composed of discrete randomly oriented

ballistic steps. In these strategies, the length of a step ` is chosen according to a specified distri-

bution p, while its direction is chosen uniformly at random. More precisely, a random walk process

on Tn is a process X such that the initial position X(0) is given by a uniform distribution and for

every integer m ≥ 0,

X(m+ 1) = X(m) + V (m+ 1),

where (V (m))m≥1 are the independent and identically distributed (i.i.d) steps. The sum X(m) +

V (m + 1) is taken modulo the torus Tn. The lengths of ` = ‖V (m)‖ of the steps are chosen

according to some distribution p(`), and the angle of each step is chosen uniformly at random.

A Lévy walk Xµ on Tn, for a given µ ∈ (1, 3] and maximal step `max =
√
n/2, is the random

walk process whose step-lengths are distributed according to

p(`) =


a if ` ≤ 1

a`−µ if ` ∈ (1, `max)

0 if ` ≥ `max

, (7)

where a = (1 +
∫ `max
1 `−µd`)−1 is the normalization factor. Note that as µ grows from 1 to 3, the

behaviour changes from being almost ballistic to being diffusive-like [5]. When µ = 2, we refer to

the process as a Cauchy walk. The Cauchy walk on the torus is denoted Xcauchy. For all processes,
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speed is assumed to be constant. Specifically, doing a step of length ` necessitates Θ(`) time units.

The scanning time is some constant b. Hence, the time used to take a step of length ` (including

the scanning time before the step starts) is Θ(`) + b.

For an integer m, the random time T (m) taken by the walk up to step m is defined as

T (m) =
m∑
s=1

(‖V (s)‖+ b).

As we see in the Supplementary Materials (Section A.1), the average length τ of a ballistic step

is at least some constant. This implies that the average time spent during m steps (including the

scanning time), is proportional to mτ .

Asymptotic notation.

We adopt the Bachmann-Landau classical mathematical asymptotic notation (see Chapter 3 in

[41]). These notations describe the limiting behaviour of functions as their argument, which is

in our case the size of the torus n, tends towards infinity. Specifically, consider two non-negative

function f and g defined on the integers. The “O” notation represents an upper bound in the

following sense. We say that f(n) ∈ O(g(n)) if there exists c > 0 and an integer n0 such that

f(n) ≤ c · g(n) for all n ≥ n0. Conversely, the asymptotic lower bound notation “Ω” is interpreted

as follows. We say that f(n) ∈ Ω(g(n)) if there exists a constant c > 0 and an integer n0 such that

c · g(n) ≤ f(n) for all n ≥ n0. Finally, the “Θ” notation represents a tight asymptotic bound (up

to constant factors). Specifically, f(n) ∈ Θ(g(n)) if both f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)).

Simulations.

Using Python, we simulated an agent performing a Lévy walk starting at a point uniformly

at random in the torus Tn, searching for a target of diameter D located at the center of the

torus. The Lévy distribution was approximated by its discrete equivalent p(`) = aµ,`max`
−µ for

` ∈ {1, . . . , d`maxe}. Aside from Figure 4, we took `max =
√
n/2. 1000 runs were performed for

each couple (µ,D).
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Supplementary Materials

A Preliminary theoretical results

For general definitions regarding the model, see Methods in the main text. Let us, however, recall

here few definitions that will be used extensively.

The torus Tn is identified with the set [−
√
n/2,

√
n/2]2 in the infinite plain R2. Consider

µ ∈ (1, 3] and maximal step `max > 1 (possibly `max = ∞). A Lévy walk Zµ on R2 (or Xµ on

Tn), with maximal step `max > 1, is the random walk process whose step-lengths are distributed

according to

p(`) =


a if ` ≤ 1

a`−µ if ` ∈ (1, `max)

0 if ` ≥ `max

, (8)

where a = (1 +
∫ `max
1 `−µd`)−1 is the normalization factor. When considering a Lévy process on

the torus, we shall take `max =
√
n/2. Recall also, that when µ = 2, we refer to the process as a

Cauchy walk. The Cauchy walk on the torus is denoted Xcauchy.

In addition, we shall extensively use the following definition.

Definition 1. Given a target S, the extended set B(S) is the set of nodes at distance at most

1 from S. Note that since the radius of detection is 1, the searcher detects S if and only if it is

located in B(S).

A.1 Expectations and variances of step-lengths

Claim 2. Consider the Lévy walk Zµ (or Xµ) with maximal step length `max. The average length

of a step (and hence the average time to take a step) is

τ =


Θ(`2−µmax) if µ ∈ (1, 2)

Θ(log `max) if µ = 2

Θ(1) if µ ∈ (2, 3]

, (9)

and the variance σ2 and second moment M of a step-length are

σ2 = Θ(M) =

Θ(`3−µmax) if µ ∈ (1, 3)

Θ(log `max) if µ = 3
. (10)

Proof. Given the definition of p, the expected step-length is

τ =

∫ 1

0
a`d`+

∫ `max

1
a`1−µd`.
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The first term is a
2 , a constant, the second term is Θ(`2−µmax) if µ 6= 2, and Θ(log `max) if µ = 2. The

second moment M is computed likewise:

M =

∫ `max

0
`2pµ(`)d` =

∫ 1

0
a`2d`+

∫ `max

1
a`2−µd`.

We have
∫ 1
0 a`

2d` = a
3 for the first term, and for the second term

∫ `max

1
`2−µd` =

Θ(`3−µmax) if µ < 3

Θ(log(`max)) if µ = 3
.

Now remark that τ2 = o(M), so that σ2 = Θ(M).

A.2 On the connection between time and number of steps

To ease the notation, we drop the dependency on n in several notations when it is clear from the

context. Recall that we assume that the scan phase in-between ballistic step takes τscan = O(1)

time. We next observe, that we may assume without loss of generality that this phase takes zero

time, rather that a constant. Indeed, Claim 3 connects the detection time with the expected number

of moves times the expected length of a step. If we take into consideration that the duration of the

scan phase is τscan = O(1), then we would need to multiply the expected number of moves by the

average time to take a step (including the pause before it) which is τ + τscan instead of by τ . As

shown in Claim 2, we have τ = Ω(1) and thus τ + τscan = Θ(τ). This implies that the asymptotic

detection time is not affected by assuming that τscan = 0.

Let us denote by T (m) the random time taken by the walk up to step m, i.e.

T (m) =

m∑
s=1

‖V (s)‖ ,

where V (s) = (V1(s), V2(s)) is the vector chosen at step s, and ‖V (s)‖ = |V1(s)| + |V2(s)|. Let

us denote by mX
detect(S) the random number of steps before X detects S for the first time (i.e.,

since the searcher has a perception radius 1, mX
detect(S) is the first m such that X(m) ∈ B(S)).

By definition, the expected time before detecting S is tXdetect(S) = E(T (mX
detect(S)). We next argue

that this time equals the average number of steps needed to hit S, multiplied by the average time

τ needed for one step.

Claim 3. For any intermittent random walk X on Tn, and any set S ⊆ Tn,

tXdetect(S) = E(mX
detect(S)) · τ,

where τ = E(‖V (1)‖) is the expected step-length.

Claim 3 reminds of Wald’s identity with respect to the lengths (‖V (s)‖)s. However, Wald’s

identity cannot be applied directly because mX
detect(S) is not a stopping step1 for the sequence

1The usual terminology is stopping time, but we employ the term ”step” here so as to emphasis that the variable

counts steps.
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(‖V (s)‖)s. Instead, we prove the claim by the Martingale Stopping Theorem (that can also be used

to prove Wald’s identity).

Proof. To prove the claim, note that we can suppose that τ <∞ and E(mX
detect(S)) <∞. Indeed, if

τ =∞, then even one step takes an infinite expected time. Moreover, since p(0) < 1 by definition,

there exist ε, δ > 0 such that the probability that a length of a step is at least ε is at least δ. If

E(mX
detect(S)) =∞, then, after m steps, where m is large, there are roughly δm steps of length at

least ε. Hence, if there is an infinite number of steps, then with probability 1 there is an infinite

number of steps, each of which taking time at least ε. In both cases, we have tXdetect(S) =∞, and the

equality is verified. In what follows we therefore assume that both τ <∞ and E(mX
detect(S)) <∞.

We start the proof by defining:

W (m) :=
∑
s≤m

(‖V (s)‖ − τ).

The claim is proven by showing first that (W (m))m is a martingale with respect to (X(m))m. Then,

as mX
detect(S) is a stopping step for (X(m))m (i.e., the event {mX

detect(S) = m} depends only on X(s),

for s ≤ m), we can apply the Martingale Stopping Theorem which gives
∑

s≤mXdetect(S)
(‖Vs‖−τ) = 0.

In more details, recall that a sequence of random variables (W (m))m is a martingale with respect

to the sequence (X(m))m if, for all m ≥ 0, the following conditions hold:

• W (m) is a function of X(0), X(1), . . . , X(m),

• E(|W (m)|) <∞,

• E(W (m+ 1) | X(0), . . . , X(m)) = W (m).

We first claim that W (m) is a martingale with respect to X(0), X(1), . . .. Indeed, since V (s) =

X(s)−X(s− 1), the first condition holds. Since E(|W (m)|) ≤
∑

s≤m E(|Vs − τ |) ≤ 2τm <∞, the

second condition holds. Finally, since W (m+ 1) = W (m) +‖V (m+ 1)‖− τ , we have E(W (m+ 1) |
X(0), . . . , X(m)) = W (m) + E(‖V (m+ 1)‖) − τ = W (m), and hence the third condition holds as

well.

Next, recall the Martingale Stopping Theorem which implies that E(W (M)) = E(W (0)), when-

ever the following three conditions hold:

• W (0),W (1), . . . is a martingale with respect to X(0), X(1), . . . ,

• M is a stopping step for X(0), X(1), . . . such that E(M) <∞, and

• there is a constant c such that E(|W (m+ 1)−W (m)| | X(0), . . . , X(m)) < c.

Let us prove that the conditions of the Martingale Stopping theorem hold. We have already seen

that the first condition holds. Secondly, we have E(mX
detect(S)) < ∞ by hypothesis. Finally, we

need to prove that E(|W (m + 1) −W (m)| | X(0), . . . , X(m)) < c for some c independent of m.
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Since W (m+ 1)−W (m) = ‖V (m+ 1)‖ − τ , we have E(|W (m+ 1)−W (m)| | X(0), . . . , X(m)) =

E(
∣∣ ‖V (m+ 1)‖ − τ

∣∣) ≤ 2τ . Therefore, the conditions hold and the theorem gives:

E(W (mdetect(S))) = E(W (0)) = 0.

Hence,

0 = E(W (mX
detect(S))) = E

−mX
detect(S)τ +

∑
s≤mXdetect(S)

‖V (s)‖


= −E(mX

detect(S))τ + E

 ∑
s≤mXdetect(S)

‖Vs‖


= −E(mX

detect(S))τ + tXdetect(S),

which establishes Claim 3.

A.3 Monotonicity

A function f on R2 is called radial if there is a function f̃ on R+ such that for any x ∈ R2,

f(x) = f̃(‖x‖). In this case we say that f is non-increasing if f̃ is. The goal of this section is to

prove the following.

Claim 4. Let X and Y be two independent random variables with values in R2, admitting probability

density functions respectively f and g. Let h be the probability density functions of X + Y . If f

and g are both radial and non-increasing functions then so is h.

We shall soon prove the claim, but first, let us give a corollary, assuming the claim is true.

Corollary 5 (Monotonicity). Let Z be a random walk process on R2, starting at Z(0) = 0, with

step-length distribution p. If p is non-increasing, then for any m ≥ 1 the distribution pZ(m) of

Z(m) is radial and non-increasing. In particular, for any x, x′ points in R2 with ‖x‖ ≤ ‖x′‖, we

have pZ(m)(x′) ≤ pZ(m)(x). Furthermore, for any x ∈ R2 and any m ≥ 1, pZ(m)(x) ≤ 1
π‖x‖2 .

Proof. The fact that pZ(m) is radial and non-increasing follows from Claim 4 by induction. Indeed,

the step-length vectors V (1), V (2), . . . are independent and, by hypothesis, admit a radial, non-

increasing p.d.f. Hence so does Z(m) = V (1) + V (2) + · · ·+ V (m). The upper bound on pZ(m)(x)

follows easily. Indeed, for x ∈ R2 \ {(0, 0)}, consider the ball B of radius ‖x‖ and centered at 0.

We have
∫
B p

Z
m(y)dy ≤ 1, and by the monotonicity,

∫
B p

Z
m(y)dy ≥ pZm(x)|B| = pZm(x) · π ‖x‖2.

Proof of Claim 4. Let θ ∈ [0, 2π). For x ∈ R2, denote by rotθ(x) the point obtained by rotating x
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around the center 0 with an angle of θ. Then, by a change of variable, we have:

h(rotθ(x)) =

∫
y∈R2

f(rotθ(x)− y)g(y)dy

=

∫
y∈R2

f(rotθ(x)− rotθ(y))g(rotθ(y))dy

=

∫
y∈R2

f(x− y)g(y)dy = h(x),

where we used in the last equality the radiality of f and g. This establishes the fact that h is

radial. Next, we prove, in a manner inspired by Adler et al. [42], that h(x) is non-increasing with

‖x‖. Since h is radial, we can restrict the study to points of the non-negative y-axis. Let us fix

x = (0, x2) ∈ R × R≥0, and x′ = (0, x′2) ∈ R × R≥0 with x′2 ≥ x2. Our goal is to show that

h(x) ≥ h(x′).

Let γ =
x′2−x2

2 . Note that f(0, x2 + y) ≥ f(0, x′2 − y) for every y ∈ (−∞, γ]. Define, for

y = (y1, y2) ∈ R2, the function Hx,y1(y2) = f(x − y)g(y). When y1 is clear from the context, we

shall write Hx(y2) instead of Hx,y1(y2) for simplicity of notation. Now write, beginning with the

change of variable y2 7→ −y2,

h(x) =

∫
y1∈R

∫
y2∈R

Hx(−y2)dy1dy2 =

∫
y1∈R

∫
y2∈R

Hx(−y2 − γ)dy1dy2

=

∫
y1∈R

(∫
y2≥0

Hx(−y2 − γ)dy2 +

∫
y2≤0

Hx(−y2 − γ)dy2

)
dy1

=

∫
y1∈R

∫
y2≥0

Hx(−y2 − γ) +Hx(y2 − γ)dy2dy1,

and

h(x′) =

∫
y1∈R

∫
y2∈R

Hx′(y2)dy1dy2

=

∫
y1∈R

∫
y2≥γ

Hx′(y2) +

∫
y2≤γ

Hx′(y2)dy1dy2

=

∫
y1∈R

(∫
y2≥0

Hx′(y2 + γ)dy2 +

∫
y2≤0

Hx′(y2 + γ)dy2

)
dy1

=

∫
y1∈R

(∫
y2≥0

Hx′(y2 + γ) +Hx′(−y2 + γ)dy2

)
dy1

Hence, we have that h(x)− h(x′) is equal to∫
y1∈R

∫
y2≥0

f(−y1, x2 + y2 + γ)g(y1,−y2 − γ) + f(−y1, x2 − y2 + γ)g(y1, y2 − γ)

− f(−y1, x′2 − y2 − γ)g(y1, y2 + γ)− f(−y1, x′2 + y2 − γ)g(y1, γ − y2)dy1dy2

Since g is radial, we have g(y1,−y2−γ) = g(y1, y2+γ) and g(y1, γ−y2) = g(y1, y2−γ). Furthermore,

using that x2 + γ = x′2 − γ, we obtain that h(x)− h(x′) is equal to:∫
y1∈R

∫
y2≥0

(f(−y1, x2 + y2 + γ)− f(−y1, x2 − y2 + γ)) (g(y1, y2 + γ)− g(y1, y2 − γ)) dy1dy2
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In this summation, since x2 ≥ 0, γ ≥ 0 and y2 ≥ 0, we have |x2 + y2 + γ| ≥ |x2 − y2 + γ| and

|y2 + γ| ≥ |y2 − γ|. Since f and g are non-increasing functions of the distance to 0, both factors of

the integrand are non-negative, hence the integrand is non-negative and h(x)− h(x′) ≥ 0.

A.4 Projections of 2-dimensional Lévy walks are also Lévy

Consider a Lévy walk Zµ with parameter µ on R2, that has maximal step length `max (including

the case `max =∞). It is well-known that the projection of a Lévy walk with parameter µ on each

of the axes is also a Lévy walk with parameter µ. For example, the conservation of the power-law

distribution under projection was established by Sims et al. [13]. Nevertheless, in this section,

we provide another proof for this fact, for completeness purposes, and also because [13] did not

examine the case `max <∞.

Without loss of generality, we may consider only the projection Zµ1 on the x-axis. Hence, we

aim to prove the following.

Theorem 6. The projection Zµ1 of Zµ is a Lévy walk on R with parameter µ, in the sense that the

p.d.f. of the step-lengths of Xµ
1 is p(`) ∼ 1/`µ, for ` ∈ [1, `max2 ]. Furthermore, the variance of Xµ

1

is

σ′2 =

Θ(`3−µmax) if µ ∈ (1, 3)

Θ(log `max) if µ = 3
.

Proof. It is clear that Zµ1 is also a random walk that moves incrementally, with the increments

between Zµ1 (m) and Zµ1 (m+ 1) being the projection Z1(m+ 1) of the chosen 2-dimensional vector

V (m+ 1) = Zµ(m+ 1)−Zµ(m). These projections are i.i.d. variables as the vectors (V (m))m are

i.i.d. variables, and their signs are ± with equal probability. Hence, all that needs to be verified is

that l1 := |V1(1)| has a Lévy distribution with parameter µ.

Let V be one step-length drawn according to a Lévy distribution pµ. Recall that

pµ(`) =


aµ if ` ≤ 1

aµ`
−µ if ` ∈ [1, `max)

0 if ` ≥ `max

,

where aµ is the normalization factor, with aµ = 1

1+
∫ `max
1 `−µd`

= 1

1+
1−`1−µmax
µ−1

∈ [1 − 1
µ ,. Hence the

distribution of V = (V1, V2) ∈ R2 is

pV (x) =
1

2π

1

‖x‖
pµ(‖x‖) =


aµ
2π ‖x‖

−1 if ‖x‖ ≤ 1

aµ
2π ‖x‖

−µ−1 if ‖x‖ ∈ [1, `max)

0 if ‖x‖ ≥ `max

. (11)

21



For x1 ∈ (0, `max), we have

pl1(x1) = 2

∫ √`2max−x21
0

pV (x1, x2)dx2

=
2aµ
2π

∫ √`2max−x21
0

1‖x‖<1
1

‖x‖
+ 1‖x‖≥1

1

‖x‖1+µ
dx2,

where x = (x1, x2). If |x1| ≥ 1, then ‖x‖ ≥ 1 for any x2 ∈ R, so that

pl1(x1) =
aµ
π

∫ √`2max−x21
0

1

(x21 + x22)
1+µ
2

dx2

=
aµ
π

1

xµ1
I(x1),

where

I(x1) :=

∫ √
`2max
x21
−1

0

1

(1 + y2)
1+µ
2

dy.

For any x1 ∈ (1, `max), we have I(x1) ≤
∫∞
0

1

(1+y2)
1+µ
2

dy = O(1) since 1

(1+y2)
1+µ
2

= Θ(y−µ), for

large y, and this function of y is integrable as µ > 1. Furthermore, if |x1| ≤ `max/2, we have

I(x1) ≥
∫ 1
0

1

(1+y2)
1+µ
2

dy which is a positive constant. Hence, if |x1| ∈ (1, `max/2), we have

pl1(x1) = Θ

(
1

xµ1

)
, (12)

and for `max/2 ≤ x1 ≤ `max, we have

pl1(x1) = O

(
1

xµ1

)
. (13)

Hence, the projection of the Lévy walk on the axes are Lévy-like, in the sense that their step-lengths

distributions generally follow a power-law of same exponent µ. The expected length, second moment

and variance of one projected step are computed as in Claim 2. Indeed write, for i ∈ {1, 2},∫ `max

0
xi1p

l1(x1)dx1 = Θ

(∫ 1

0
xi1p

l1(x1)dx1 +

∫ `max/2

1
xi−µ1 dx1 +

∫ `max

`max/2
xi1p

l1(x1)dx1

)
.

We have
∫ 1
0 x

i
1p
l1(x1)dx1 ≤ 1. Also, it is easy to verify from Eq. (12) and (13) that the third

term is dominated by the second term, which in turn, is Θ(
∫ `max
1 xi−µ1 dx1). Hence, the expected

length, second moment and variance of one projected step are of the same order as those of the

non-projected steps given by Claim 2, which concludes the proof of Theorem 6.
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B Lower Bounds

B.1 Random walk with a fixed step-length

In order to illustrate the definition of the overrun, we provide here a simple computation of the

overrun of the intermittent process X in which all step lengths are some pre-determined fixed integer

`. Note that the case ` = 1 corresponds to the simple random walk, and that taking ` = Θ(
√
n)

may be viewed as a ballistic strategy. Consider a disc target of diameter D <
√
n/2. Since the

searcher starts at a random point, with constant probability, the target is located at a distance of

at least
√
n/4 from the initial location of the searcher. In this case, merely traversing this distance

by the random walk process requires Ω((
√
n/`)2) = Ω(n/`2) steps on expectation, and hence

consumes Ω(n/`) time on expectation. This implies that OverX(n,D) = Ω(D/`). Furthermore,

as illustrated in the main text (Fig. 1b), and as shown formally in the next section, there are

Ω(n/D2) possible locations of the target. Since the agent must, on average, visit at least half

of those, it will overall need Ω(n`/D2) time to find the target on expectation, since each step

takes ` time. Thus, we also have OverX(n,D) = Ω(`/D). Altogether, these arguments imply that

OverX(n,D) = Ω(max{`/D,D/`}). While ` can be tuned to optimize the overrun with respect to

a specific value of D, if we know only an upper bound Dmax on the value of D then the overrun

would be large with respect to either D = 1 or D = Dmax. Specifically, for D = 1 we have

OverX(n, 1) = Ω(`), while for D = Dmax, we have OverX(n,Dmax) = Ω(Dmax/`). Hence, for at

least one value of D among the two, we have OverX(n,D) = Ω(
√
Dmax). In particular, if Dmax = nδ

for some δ > 0 then the overrun is polynomial in n.

B.2 General lower bounds

We prove here a general proposition that holds for any search process X on the torus whose speed

is constant (i.e., it takes O(`) units of time to do a ballistic step of length `). We may assume

without loss of generality that the speed is normalized to 1. Note also that, since we aim at a lower

bound, we can suppose, without loss of generality, that the scan time in-between steps is 0.

We next define a quantity, termed Td, which will be used to lower bound the time needed to

detect an extended target B(S) at distance d or more. Formally, we distinguish between two cases,

according to the given process X.

• If X is an intermittent random walk, we let Td be the expected time needed before the end

point of a step is at distance at least d from the initial location.

• Otherwise, we simply define Td = d.

Claim 7. Let X be any search process on the torus. Consider any target S of diameter D <
√
n/6− 1. The expected time to detect S is Ω(nTD

D2 ).

Proof. Consider a target S of diameter D and of an arbitrary shape. Instead of considering that S

is fixed and that the initial location X(0) is chosen u.a.r, we may assume without loss of generality
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that X(0) is fixed, say at the origin, and that the center of mass u? of S is chosen uniformly at

random in the torus.

Let us first construct a grid with s × s nodes, where s = b
√
n/(3D + 2)c. Note that since

D <
√
n/6 − 1, we have s ≥ 2. To make the grid symmetric, we let the distance between two

neighboring nodes be precisely
√
n/s. We next align the grid so that u? is a node of the grid, and

construct a disc of radius D + 1 around each node. Note that the number of discs is M = s2 =

Ω(n/D2), and that the distance between any two discs is at least D. See Figure 1(b) in the main

text. Furthermore, note that the disc U? corresponding to u? fully contains the extended target

B(S). Let us therefore lower bound the time until visiting U? for the first time. This will serve as

the desired lower bound for detecting S.

Assume that the information about the collection of discs is given to the searcher. We may

assume this, since it can only decrease the best detection time. Because the location of S in chosen

u.a.r in the torus, from the perspective of the searcher, each of the discs has an equal probability to

be U?. It follows that with probability 1/2, at least half of the discs are visited, before the searcher

visits U?. Since the discs are separated by distance of at least D, we immediately get that the

expected time until visiting U? is Ω(MD) = Ω(n/D), which is the desired claim when X is not an

intermittent random walk (and hence TD = D).

Let us next consider the case that X is an intermittent random walk. The arguments are similar,

yet slightly more subtle. We aim to lower bound the time until visiting U? for the first time, where

by visiting a disc, we mean that the end of a ballistic step of X is in that disc. For this purpose, we

may assume that the process terminates when it visits U?. Let U1, U2, . . . denote the newly visited

discs, in order of visitation, with all the Ui distinct. Let Ai be the event that U? /∈ {U1, . . . , Ui}.
Note that Pr(Ai) = 1− i

M . Let ti denote the time from visiting Ui (for the first time) until visiting

Ui+1 (for the first time), in the event that Ai occurs. If the event Ai does not occur, we say that

ti = 0. The time before visiting U? can therefore be written as
∑M−1

i=1 ti. Furthermore, we have

E(ti) = E(ti | Ai) Pr(Ai). Hence, the expected time before visiting U? is:

M−1∑
i=1

E(ti | Ai) Pr(Ai).

Now recall that X is an intermittent Markovian process, and that Ai corresponds to an event that

is relevant up to (and including) the detection of Ui. Hence, E(ti | Ai) is lower bounded by the

minimal expected time that the intermittent random walk X, starting at some point u ∈ Ui, visits

another disc, where the minimization is taken w.r.t u ∈ Ui. Since discs are separated by distance

of at least D, the process starting at any such u needs to visit a disc at distance at least D. It

therefore follows that E(ti | Ai) ≥ TD. Altogether, the expected time to detect S is at least:

M−1∑
i=1

TD Pr(Ai) =

M−1∑
i=1

TD(1− i/M) = Ω(TDM) = Ω

(
n
TD
D2

)
,

as desired.
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Corollary 8. For every 1 ≤ D ≤
√
n/2, the best possible detection time is Θ(n/D), when we allow

the strategy to have continuous detection, to be unrestricted in terms of its internal computational

power and navigation abilities, and to be fully tuned to the diameter. In other words, opt(n,D) =

Θ(n/D).

Proof. The fact that opt(n,D) = Ω(n/D) for every D <
√
n/6 − 1 follows immediately from

Claim 7 and the fact that TD ≥ D. For
√
n/6 − 1 < D ≤

√
n/2 the bound Ω(n/D) = Ω(

√
n)

follows simply because with constant probability, the target is at distance Ω(
√
n) from the initial

location of the searcher.

In order to see why opt(n,D) = O(n/D), let us tile the torus with horizontal and vertical lines

partitioning the torus into squares of size D/2 ×D/2 each. In the case that
√
n is not a multiple

of D/2, we might have few of these squares smaller than D/2 × D/2. It is clear that this can

be constructed while maintaining that the number of horizontal and vertical lines is O(
√
n/D).

For any connected target S of diameter D, the set B(S) must intersect at least one of these

lines. Now consider a deterministic strategy that repeatedly walks over this tiling exhaustively,

without doing much repetition in each exhaustive search. E.g., by first walking on the horizontal

lines exhaustively (with occasional steps to move between horizontal lines) and then walking on

the vertical lines exhaustively. It is easy to see that such a strategy exists and requires at most

O(
√
n/D ·

√
n) = O(n/D) time to pass over all the lines, and hence to detect the target. This

establishes the required upper bound.

Claim 7, applied with D = 1, also yields the following corollary, by remarking that for inter-

mittent random walk processes, TD, namely, the expected time until the end point of a step is at

a distance of at least D is at least the expected time for one step τ , i.e., TD ≥ τ .

Corollary 9. Consider an intermittent random walk strategy X on the torus Tn. The detection

time of any target of diameter D is Ω(nτ/D2).

Claim 10. Consider a random walk process X on the torus Tn and let σ′ denote the standard

deviation of the length of the projected steps onto either coordinate.

• The expected maximal distance of X to its origin after m steps, i.e. maxs≤m ‖X(s)−X(0)‖,
is O(

√
mσ′).

• Let md be the number of steps needed to go to distance at least d <
√
n/2, in other words md

is the first step m for which ‖X(m)−X(0)‖ ≥ d. We have E(md) = Ω(d2/σ′2).

• If the process is intermittent and τ denotes the average length of a jump, then the expected

time before reaching distance d <
√
n/2 is Td = Ω(d2/σ′2τ).

In particular, if the process is intermittent and L is the maximal length in the support of the step-

length distribution, then the expected time needed to go to a distance Ω(
√
n) is Ω(nL).

We will use Claim 10 in the next section to get an upper bound on the time needed for a Lévy

walk to reach some distance. The proof of Claim 10 is based on Kolmogorov’s inequality.
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Proof. Let Z be the process on R2, with Z(0) = X(0) and evolving with the same steps as X.

Since the distance between Z(m) and Z(0), in R2, is always at least that of X(m) and X(0), in

Tn, the number of steps needed to go to distance d in Tn is at least as high as in R2. Hence, we

may analyze the process Z instead of X.

Define dZmax(m) as the maximal distance (from the initial point) that the process Z reached

from step 0 up to step m, i.e.,

dZmax(m) = max
s≤m
‖Z(0)− Z(s)‖ .

Now write Z = (Z1, Z2), let p′ be the p.d.f. of the projected step-lengths (i.e. the p.d.f. of the

step-lengths of Zi), and let τ ′ and σ′ be respectively its mean and standard deviation. Next, let

dZi,max(m) be the maximal distance reached by the projection on coordinate i = 1, 2. Since steps

are independent, the standard deviation of Zi(s), for s ≤ m, is
√
sσ′ ≤

√
mσ′.

By Kolmogorov’s inequality, we have for any λ > 0, Pr(dZi,max(m) ≥ λ
√
mσ′) ≤ 1

λ2
. Further-

more, since dZmax(m) ≤
√

2 max{dZ1,max(m), dZ2,max(m)}, we have by a union bound argument, for

any λ > 0,

Pr(dZmax(m) ≥ λ
√
mσ′) ≤ Pr

(
dZ1,max(m) ≥ λ√

2

√
mσ′

)
+ Pr

(
dZ2,max(m) ≥ λ√

2

√
mσ′

)
≤ 4

λ2
.

(14)

Hence,

E(dZmax(m)) =

∫ ∞
s=0

Pr
(
dZmax(m) ≥ s

)
ds ≤

∞∑
λ=0

∫ √mσ′
λ′=0

Pr
(
dZmax(m) ≥ λ

√
mσ′ + λ′

)
dλ′

≤
√
mσ′

∑
λ≥0

Pr(dZmax(m) ≥ λ
√
mσ′)

 = O
(√
mσ′

)
, (15)

which proves the first item of Claim 10. Next, write the md of the statement as mX
d , to distinguish

it from the similarly defined mZ
d , which is the first step for which ‖Z(m)− Z(0)‖ ≥ d. As remarked

above, we have mX
d ≥ mZ

d . Note that for m ≥ mZ
d , we have dZmax(m) ≥ dZmax(md) ≥ d. Therefore,

by Markov’s inequality,

E(dZmax(2E(mZ
d ))) ≥ E(dZmax(2E(mZ

d )) | mZ
d < 2E(mZ

d )) · Pr(mZ
d < 2E(mZ

d )) ≥ d · 1

2
. (16)

Now using Eq. (15) with m = 2E(mZ
d ), we have E(dZmax(2E(mZ

d ))) = O(
√
E(mZ

d )σ′) and hence, by

Eq. (16),

E(mX
d ) ≥ E(mZ

d ) = Ω

(
d2

σ′2

)
,

which proves the second item of Claim 10.

The last item is a lower bound on Td = E(T (mX
d )), the expected time that X needs to reach

distance d. To obtain it, we observe that mX
d is the hitting step of the set of nodes at distance d

or more in the torus. Hence, by Claim 3, we have Td = E(mX
d ) · τ ≥ E(mZ

d ) · τ = Ω( d
2

σ′2 τ), which

was exactly as needed.
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Finally, observe that

σ′2 =

∫ L

0
p′(`)`2d` ≤

∫ L

0
p′(`)` · Ld` = Lτ ′ ≤ Lτ, (17)

where the last inequality is justified by the fact that the projection reduces distances. This com-

pletes the proof of Claim 10.

B.3 Lower bounds for Lévy walks

The goal of this section is to prove lower bounds on the overrun of Lévy walks other than Cauchy.

For 1 < µ < 2, we show that the corresponding intermittent Lévy walks are bad at finding small

targets. For 2 < µ ≤ 3, we show that the corresponding Lévy walks are bad at finding large targets.

The latter result holds also with respect to the continuous detection model.

B.3.1 Intermittent Lévy walks with 1 < µ ≤ 2

Let Xµ be the intermittent Lévy walk on the torus Tn, for some 1 < µ < 2. We start by analyzing

the detection times of small targets.

Theorem 11. Let µ ∈ (1, 2) and D ∈ [1,
√
n/2]. Write µ = 2− ε. The detection time of the Lévy

walk Xµ with respect to a target S of diameter D is

tX
µ

detect(S) = Ω(n1+ε/2/D2), (18)

and the overrun w.r.t. D is:

OverX
µ
(n,D) = Ω(nε/2/D). (19)

Proof. By Corollary 9, the detection time of a target S with diameter D is Ω(nτ/D2) where τ is

the expected step length. Using that `max = Θ(
√
n), Claim 2 implies that this expected step length

is, for µ = 2− ε with ε ∈ (0, 1):

τ = Θ(n1−
µ
2 ) = Θ(nε/2).

Hence, the detection time Xµ for a target of diameter D is Ω(n1+ε/2/D2). Dividing this by the

unconditional optimal time Θ(n/D), we get the desired lower bound on the overrun.

B.3.2 Lévy walks with 2 < µ ≤ 3

Theorem 11 implies that the overrun of the intermittent Lévy walk Xµ for µ ∈ (1, 2) is very large

with respect to small targets, i.e, when D � nε/2. We next aim to prove the case µ ∈ [2, 3]:

Theorem 12. Let µ ∈ (2, 3] and D ∈ [2,
√
n/6 − 1]. Write µ = 2 + ε where 0 < ε ≤ 1. The

following holds with respect to the Lévy process Xµ whether it is intermittent or not. The detection

time of Xµ with respect a target S of diameter D is

tX
µ

detect(S) =

Ω(nDε−1) if µ = 2 + ε, where 0 < ε < 1,

Ω( n
logD ) if µ = 3.
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Hence, the overrun of Xµ with respect to D is:

OverX
µ
(n,D) =

Ω(Dε) if µ = 2 + ε, where 0 < ε < 1,

Ω( D
logD ) if µ = 3.

Since the proof is simpler, let us first prove Theorem 12 for the intermittent setting, i.e., targets

can only be detected in-between steps.

Proof of Theorem 12 for the intermittent setting. Towards proving the theorem, we first

establish the following.

Claim 13. Let Xµ be an intermittent Lévy walk process on the torus Tn, for µ ∈ [2, 3], with

`max =
√
n/2. The expected time required to reach a distance of d ≥ 1 from the starting point is:

Td =


Ω(d log d) if µ = 2

Ω(dµ−1) if µ ∈ (2, 3)

Ω( d2

log d) if µ = 3

.

Proof. We may suppose that d ∈ [1,
√
n/4]. Denote by md the random number of steps before the

process reaches a distance of at least d. Let us define m0 = ddµ−1e, and say that a step is small

if it has length at most d. Define the event A that all the steps 1, 2, . . . ,m0 are small. Note that

since d ≤ `max/2, the probability for any given step not to be small is q =
∫ `max
d

a
`µd` ≥

c
dµ−1 for

some constant c ∈ (0, 1). Hence, the probability for a step to be small is 1− q, and since the steps

are independent, we have:

Pr(A) = (1− q)m0 = exp(m0 log(1− q)) ≥ exp(dµ−1 log(1− cd1−µ)).

We have:

exp(dµ−1 log(1− cd1−µ)) = exp(dµ−1(−cd1−µ + o(d1−µ)) = exp(−c+ o(1)),

which is a positive constant. Since this is a continuous, strictly positive, function of d ∈ [1,∞), we

have Pr(A) ≥ c′ for some constant c′ > 0 independent of d.

Next, note that

E(T (md)) ≥ Pr(A) · E(md | A) = c′ · E(T (md) | A).

Hence, for the purposes of obtaining a lower bound, it is sufficient to examine the process when

conditioned on A. This is a Lévy process of parameter µ, with cut-off `max = d. The expected

length τ of a jump is given by Claim 2:

τ = Θ(1) (20)

and the variance σ′2 of the step-length of a jump projected onto one of the axes is given by

Theorem 6:

σ′2 =

Θ(d3−µ) if µ ∈ (1, 3)

Θ(log d) if µ = 3
.
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To conclude, we use Claim 10:

Td = Ω

(
d2

σ′2
· τ
)

=

Ω(dµ−1) if µ ∈ (2, 3)

Ω( d2

log d) if µ = 3
.

This concludes the proof of Claim 13.

Combining Claim 13 with the fact that the expected time to detect a target of diameter D is

Ω(nTD
D2 ), as established by Claim 7, and comparing to the unconditional optimal detection time

Θ(n/D) for targets of diameter D, Theorem 12 is proved in the intermittent case. Next, we prove

the theorem when the process is able to detect the target while moving.

Proof of Theorem 12 for the continuous detection model. Recall, from the proof of

Claim 7, that we can build a grid of M = Θ(n/D2) discs of diameter D, one of which contains

the target, and separated by distance D. Furthermore, for every strategy, whether intermittent or

not, with probability 1
2 , at least half of the discs are visited before finding the target. Hence, the

expected time to find the target is at least half of the expected time to visit half of the discs. In

the remaining of the proof we aim to lower bound the expected time to visit half of the discs.

Let µ > 2 and write µ = 2 + ε. Define a step to be large if it has length D or more. Divide

the execution into a sequence of consecutive phases, so that each phase is a succession of small

steps, and a final large step (possibly, there are no small steps in the phase if two large steps are

consecutive). In short, in what follows we prove that a phase visits O(1) discs on average when

2 < µ < 3, or O(logD) for µ = 3 (Lemma 14), and lasts, on average, Ω(Dµ−1) time (Lemma 17).

We then conclude that, after R = Θ̃(M) phases, with constant probability, no more than M/2 discs

are visited and the time spent is

Ω̃(MDµ−1) = Ω̃(nDµ−3) = Ω̃(nDε−1).

A straightforward computation then allows to establish the desired bound on the overrun of the

Lévy search in the continuous detection model.

We next proceed to explain the proof in details. Let Ndiscs be the number of discs visited during

a phase.

Lemma 14. E(Ndiscs) =

O(1) if 2 < µ < 3

O(logD) if µ = 3
.

Proof of Lemma 14. Given a phase, by linearity of expectation, E(Ndiscs) equals the expected

number of discs visited by the small steps of the phase plus the expected number of discs visited

by the large step. The latter quantity is easy to bound. Indeed, since discs are separated by a

distance of D, the number of discs visited in a step of length L is O(1 +L/D). Moreover, it is easy

to verify that, as µ > 2, the expected length of a large step is Θ(D). Hence the expected number

of discs visited during the large step of a phase is O(1).
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In the remaining of the proof of Lemma 14, we aim to upper bound the expected number of

discs visited by the small steps of the phase.

Let Dsmall denote the number of discs discovered during the small steps. Towards establishing

an upper bound on E(Dsmall), let α be the probability for one step to be large. This equals

a
∫ `max
`=D `−µd` = a

µ−1(D1−µ − `1−µmax), and so, as D < `max/2 =
√
n/4, we have:

α = Θ(D1−µ).

Let Nsmall be the total number of small steps in one phase. Since a phase ends after performing a

long step for the first time, we have, for every integer m ≥ 0, Pr(Nsmall = m) = α(1 − α)m. We

thus have:

E(Dsmall) =
∑
m≥0

α(1− α)m · E(Dsmall | Nsmall = m). (21)

Claim 15. For any integer m, E(Dsmall | Nsmall = m) = O(1+mσ′′2/D2), where σ′′ is the standard

deviation of the length of a small step, when projected on one of the coordinates.

Note that the direction of each step is chosen uniformly at random, hence σ′′ does not depend

on which coordinate is chosen.

Proof of Claim 15. Let W1 be the number of steps before a distance of 2D from the initial location

is first reached. For r ≥ 1, define recursively both Sr =
∑r

i=1Wi, and Wr+1 to be the number of

steps before we first have ‖X(Sr +Wr+1)−X(Sr)‖ ≥ 2D. Note that the (Wi)i are i.i.d and have

the same law as m2D. Hence, by Claim 10, we have

E(Wi) = Ω(D2/σ′′2). (22)

For a given m ≥ 1, let r(m) be the first r ≥ 1 for which Sr > m (if this never happens then

r(m) = 0). Because in-between steps Wi and Wi+1 only a distance O(D) is travelled, there can only

be O(1) discs visited during this time interval. Hence, up to step m, at most a number O(1+r(m))

discs are visited. We are thus looking for an upper bound on E(r(m)).

Observe that r(m) is a stopping time for the (Wi)i≥1. Furthermore, r(m) ≤ m since Wi ≥ 1

for all i. Since the Wi are i.i.d., and E(W1) is finite also, we can apply Wald’s equation to obtain

E(r(m))E(W1) = E(Sr(m)), and hence:

E(r(m)) =
E(Sr(m))

E(W1)
. (23)

Moreover, we have E(Sr(m)) = E(Sr(m)−1)+E(Wr(m)). By definition of r(m), we have E(Sr(m)−1) ≤
m. Next, we wish to bound E(Wr(m)). Note that Wr(m) is at most the first r > m for which

‖X(r)−X(m)‖ ≥ 4D. Indeed, by definition of r(m) we have
∥∥X(m)−X(Sr(m)−1)

∥∥ ≤ 2D and∥∥X(Sr(m))− Sr(m)−1
∥∥ ≥ 2D. Hence we have E(Wr(m)) ≤ E(m4D)+m. Furthermore, we claim that

E(m4D) = O(E(m2D)). Indeed, consider a circle of radius 4D from the initial location and a step s,

for which the agent is within the circle. Consider E = E(S3) = 3E(m2D). Starting at step s, with
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constant probability, there exists three steps s1, s2, s3 ∈ (s, s+ 2E) for which ‖X(si)−X(si+1)‖ ≥
2D. Furthermore, whenever this happens, a distance of at least 4D from the center of the circle

will be reached if X(s1), X(s2) and X(s3) are aligned approximately in the direction leading to the

shortest exit from the circle, which happens with constant probability. Hence, after 2E steps from

any step s where the agent is within the circle, with constant ability, the walk escapes the circle.

Applying this argument repeatedly implies that, E(m4D) = O(E) = O(E(m2D)). Altogether, we

deduce that

E(r(m)) = O(1 +m/E(mD)) = O(1 +mσ′′2/D2).

As remarked above, up to step m, there are at most O(1 + r(m)) visited discs. Hence, conditioning

on Nsmall = m, there are only O(1+mσ′′2/D2) discs visited in the small steps phase, on expectation.

This completes the proof of Claim 15.

Using Claim 15, we return to Eq. (21), to bound the expected number of discs visited in a small

phase:

E(Dsmall) =
∑
m≥0

α(1− α)m ·O(1 +mσ′′2/D2) = O(1) +O(σ′′2α/D2 · α−2),

where we used that
∑

m≥0(1− α)m = α−1, and that
∑

m≥0m(1− α)m = O(α−2). Thus,

E(Dsmall) = O(1 + σ′′2α−1/D2). (24)

As σ′′2 is the variance of the projected Lévy distribution with cut-off `max = D, it is given by

Theorem 6 as: O(D3−µ) for µ < 3 and O(logD) for µ = 3. Together with the fact that α =

Θ(D1−µ), we get that the expected number of discs visited by the small steps of a phase is O(1)

for µ ∈ (2, 3) and O(logD) for µ = 3. Combining with the expected number of discs visited by the

large step, which was shown to be O(1), the proof of Lemma 14 is complete.

Given a constant c̃, define the following quantity that will refer to the number of phases.

R =

c̃M if µ ∈ (2, 3)

c̃M/ logD if µ = 3
. (25)

Given R, let NR
discs denote the total number of discs visited by the end of the R-th phase.

Lemma 16. For any δ < 1, there exists a constant c̃ > 0 such that the probability to have visited

at most M/2 discs after R phases (as defined in Eq. (25)) is

Pr(NR
discs < M/2) > δ.

Proof of Lemma 16. Note that steps are independent and, hence, phases are independent, implying

that the number of discs visited during a phase does not depend on the phase number. We have,

by linearity of expectation, E(NR
discs) = R · E(Ndiscs), and, by Markov’s inequality, we have

Pr(NR
discs ≥M/2) ≤ 2R · E(Ndiscs)/M.

By Lemma 14, E(Ndiscs) ≤ c for µ ∈ (2, 3) and E(Ndiscs) ≤ c logD for µ = 3, for some constant

c > 0. Hence, we find that 2R · E(Ndiscs)/M is at most 2cc̃, which can be made to be less than

1− δ by choosing c̃ < (1− δ)/(2c).
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Lemma 17. Let TR be the time spent during R phases. There are two constants c > 0 and q > 0

for which

Pr(TR ≥ cDµ−1R) ≥ q.

Proof of Lemma 17. Define a phase to be long if it lasts at least T ? = c1D
µ−1 time for some

constant c1 to be fixed later. Let NR
long−phases be the number of long phases, up to the R-th one.

Note that

TR ≥ T ?NR
long−phases. (26)

Let T be the time duration of the small steps in a phase. Since phases are independent, we have:

E(NR
long−phases) = R · Pr(T ≥ T ?) ≥ R · Pr(N≥ 1

2
≥ 2T ?), (27)

where N≥ 1
2

is the number of steps of length larger than 1
2 among the small steps of a phase. Because

Nsmall, the number of small steps in one phase, follows a geometric distribution of parameter α−1,

we have Nsmall = Ω(α−1) with constant probability. Furthermore, as a small step has length at

least 1
2 with constant probability, we have that

N≥ 1
2

= Θ(Nsmall) = Ω(α−1),

with constant probability. Indeed, N≥ 1
2

follows a binomial distribution, and we are using the median

property of such distributions.

By choosing c1 such that T ? = c1D
µ−1 is small enough, since α−1 = Θ(Dµ−1), we have

Pr(N≥ 1
2
≥ T ?) ≥ c′ for some constant 0 < c′ < 1. This implies that for some constant 0 < c′′ < 1,

E(NR
long−phases) ≥ c′′R.

Hence,

E(NR
short−phases) ≤ (1− c′′)R,

where NR
short−phases is the number of short (i.e., non-long) phases. By Markov’s inequality, for any

c2 > 0, we have Pr(NR
short−phases ≥ c2R) ≤ 1−c′′

c2
, which is a positive, strictly less than 1, constant,

by a suitable choice of c2. For this choice, we have

Pr(NR
long−phases ≥ (1− c2)R) = Pr(NR

short−phases < c2R) ≥ 1− 1− c′′

c2
= Ω(1).

Returning to Eq. (26), we get that with constant probability

TR = Ω(T ?R) = Ω(RDµ−1),

which proves Lemma 17.

We conclude by using Lemmas 16 and 17. Specifically, for the constants c > 0 and 0 < q < 1

of Lemma 17, and the constant δ = 1− q/2 in Lemma 16, for some choice of the constant c̃ > 0 in

the definition of R, we obtain:

• Pr(TR ≥ cRDµ−1) > q, and
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• Pr(NR
discs < M/2) > δ.

Using a union bound argument, this implies that with probability at least q+ δ− 1 = q/2, we have

both NR
discs < M/2 and TR = Ω(RDµ−1). Hence, with constant probability, the searcher takes

time Ω(RDµ−1) to find the target. Therefore, the expected time needed to find the target is

tX
µ

detect(S) = Ω(RDµ−1) =

Ω(MDµ−1) = Ω(nDµ−3) if 2 < µ < 3,

Ω(MD3−1

logD ) = Ω( n
logD ) if µ = 3,

where we used the definition of R in Eq. (25) and the fact that M = Θ(n/D2). Dividing by the

optimal time Θ(n/D), we get

OverX
µ
(n,D) =

Ω(Dε) if µ = 2 + ε, where 0 < ε < 1,

Ω( D
logD ) if µ = 3,

as desired. This completes the proof of Theorem 12 in the continuous detection model.

C Scale-sensitivity of the intermittent Cauchy Walk

We take n > 4 for technical reasons, and let `max =
√
n/2. As stated in the previous section, the

overrun of the intermittent Cauchy walk Xcauchy for a target of diameter D on the torus is Ω(log n).

The goal of this section is to prove the following theorem which states that this lower bound is

nearly matched.

Theorem 18. Consider the Cauchy walk process Xcauchy on the torus Tn. The hitting time of

Xcauchy with respect to a target S of diameter D is

tX
cauchy

detect (S) = O

(
n log3 n

D

)
.

Consequently, the overrun of Xcauchy for a target of diameter D is O(log3D).

Theorem 18 concerns the Cauchy walk on the two-dimensional torus. As the one-dimensional

Cauchy walk is fairly well understood, it is tempting to analyze the two-dimensional walk by pro-

jecting it on the two axes and using the properties of the one-dimensional walk on these projections.

However, this approach needs to somehow handle the fact that these projections are not indepen-

dent of each other. As we could not find an easy way to overcome this dependence issue, we prove

Theorem 18 following a different line of arguments, that directly examine the two-dimensional

process.

To prove Theorem 18, we can assume without loss of generality that the process starts at the

origin, i.e., that Xcauchy(0) = 0.

Claim 3 implies that in order to find the detecting time tX
cauchy

detect (S) of S, it is sufficient to identify

the expected number of steps until detecting S, as

tX
cauchy

detect (S) = E(mXcauchy

detect (S)) · τ = Θ(E(mXcauchy

detect (S)) · log n).
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Now let Z be the process on R2 that evolves with the same steps V (s) as Xcauchy, i.e. Z(m) =∑m
s=1 V (s). Note that the projection of Z on the torus [−

√
n/2,

√
n/2]2 ⊂ R2 is Xcauchy.

The next lemma establishes a connection between E(mXcauchy

detect (S)) and the process Z on R2.

Given a set S, recall that B(S) is the set of points at distance at most 1 from S, and that Z(m)

detects S if and only if Z(m) ∈ B(S).

Lemma 19. Consider a random walk process Z on R2 and its projection X on the torus Tn and

denote by Zz0 the process Z starting at Z(0) = z0. Let S ⊂ Tn. For any m0,

E(mX
detect(S)) = O

(
m0 ·

supz0∈B(S)

∑m0
m=0 Pr(Zz0(m) ∈ B(S)∑2m0

m=m0
Pr(Z(m) ∈ B(S))

)
. (28)

We provide a formal proof of Lemma 19 in Section C.1. The proof is based on the technique

in Adler et al. [42], relying on the identity Pr(N ≥ 1) = E(N)
E(N |N≥1) , that holds for any non-negative

random variable N .

Lemma 19 allows to deduce Theorem 18 from pointwise bounds on the Cauchy process Z on

R2, defined by Eq. (8). The next lemma provides a lower bound on the p.d.f pZ(m), of the process

at step m.

Lemma 20. For any constant α > 0, there exists a constant c > 0 such that for any integer

m ∈ [1, α`max], and any x ∈ R2, with ‖x‖ ≤ m,

pZ(m)(x) ≥ c

m2
.

From Lemma 20, we immediately deduce that the probability that Z(m) detects a point x ∈ R2

is Ω(
∫
y∈B(x) cm

−2dy) = Ω(cm−2), where B(x) = B({x}). This lower bound is complemented by

the following upper bound.

Lemma 21. For any constant α > 0, there exists a constant c′ > 0 such that, for any integer

m ∈ [2, α`max] and any x ∈ R2, we have

Pr(Z(m) ∈ B(x)) ≤ c′ log2m

m2
.

Lemmas 20 and 21 are formally proved in Section C.2. Let us give here a sketch of the proofs.

Using the monotonicity property, the lower bound stated in Lemma 20 follows once we prove that

with at least some constant probability, the process at stepm belongs to the ring {x | ‖x‖ ∈ [m, cm]}
for some constant c > 1. This is because the area of this ring is roughly m2, and each point in it is

further from 0 than x, and hence, by monotonicity, less likely to be visited at step m. In order to

establish the lower bound on the probability to be in the ring at step m, we first prove that with

some constant probability, at some step before m, the walk goes to a distance at least 2m.

Next, conditioning on that event, we prove that with a constant probability, the walk does not

get much further away, i.e., it stays at a distance of at least m. To prove the latter claim, we use

Chebyshev’s inequality. It implies, for a one-dimensional process, that the distance traveled in m
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steps is governed by
√
m times the standard deviation of the step-length process. Here the standard

deviation is too large (roughly
√
n), however, we can reduce it by conditioning on the event that

none of the m step-lengths are significantly larger than m, which occurs with a constant probability.

Finally, we prove that by taking a sufficiently large constant c, it can be guaranteed that with a

large constant probability, the walk at step m is at most at distance cm. Making sure that all these

constant probability events happen simultaneously, we then establish the desired constant lower

bound on the probability to be in the aforementioned ring at step m.

For the proof of the upper bound in Lemma 21, we first show that because of the monotonicity

property, it is sufficient to prove that the probability to detect 0 at step m is small, i.e., that

Pr(Z(m) ∈ B(0)) = O

(
log2m

m2

)
.

Intuitively, to establish this, we first argue that with high probability in m, at some step before

step m, the process has gone to a distance d = Ω( m
logm). By Corollary 5, the probability density

function at any point in B(0) would then be at most O( 1
d2

), which is the desired bound.

Proof of Theorem 18, assuming the aforementioned Lemmas. Given the connected set S of diame-

ter D ≥ 1, we first construct a subset S′, containing Θ(D) isolated points of S that stretch over

distance of roughly D, as follows. Take two points u = (u1, u2) and v = (v1, v2) in S that are at

distance D from each other, so that max{|u1 − v1|, |u2 − v2|} ≥ D/2. Let us assume, without loss

of generality, that v1−u1 ≥ D/2. Since S is connected, for every z ∈ [u1, v1], there exists φ(z) such

that (z, φ(z)) ∈ S. Let d = dv1 − u1e = Θ(D). For integer i ∈ {0, 1, . . . , bdc}, define

s(i) = (u1 + i, φ(u1 + i)),

and let S′ = {s(i) | i = 0, 1, . . . , bdc}. Note that |S′| = Θ(D). Since S′ ⊆ S, an upper bound on

the detecting time of S′ is an upper bound on the detecting time of S. It is therefore sufficient to

restrict attention to S′ and upper bound its detecting time. For that purpose we need to bound

the time until visiting a point in B(S′), the set of points of distance at most 1 from S′. Note that

the area of B(S′) is |B(S′)| = Ω(D). We also remark, that although B(S′) may not be connected,

it may help the reader to imagine B(S′) as a horizontal cylinder of length Θ(D) and radius 1, i.e.,

to consider that φ(u1 + i) does not depend on i. Indeed, we will not require any condition on the

y-coordinates of the s(i)’s.

In order to upper bound E(mXcauchy

detect (B(S′))) we shall apply Lemma 19 with m0 =
√
n. Note

that 2m0 ≤ α`max for α = 4. We shall furthermore lower bound the denominator in the r.h.s of

Eq. (28) and upper bound the numerator. Both these terms concern the Cauchy process Z with

cut off `max on R2.

Let us begin with the lower bound. With this setting of m0, any x ∈ B(S′) ⊆ B(Tn) ⊆
[−
√
n/2 − 1,

√
n/2 + 1]2 trivially satisfies ‖x‖ ≤ m, for any m ≥ m0 + 1, and we can apply

Lemma 20 to get a lower bound on the denominator in the r.h.s of Eq. (28):

2m0∑
m=m0+1

Pr(Z(m) ∈ B(S′)) =

2m0∑
m=m0+1

∫
x∈B(S′)

pZm(x)dx ≥
2m0∑

m=m0+1

c

m2
|B(S′)| = Ω

(
D√
n

)
.

35



Next, we provide an upper bound to the numerator of the r.h.s of Eq. (28) which is the number

of returns to S′ conditioning on the fact that Z(0) = z, for some z ∈ B(S′). Let us denote this

process by Zz (note that Z = Z0). Then,

m0∑
m=0

Pr(Zz(m) ∈ B(S′)) ≤ 2 +

m0∑
m=2

Pr(Zz(m) ∈ B(S′)). (29)

Clearly, the probability density function pZ
z(m) of Zz(m) is obtained by a translation from pZ(m).

Thus, by Corollary 5, we have for any y ∈ R2:

pZ
z(m)(y) ≤ 1

‖y − z‖2
.

In particular, for y such that ‖y − z‖ ≥ 2,

Pr(Zz(m) ∈ B(y)) ≤ 1

(‖y − z‖ − 1)2
, (30)

since every w ∈ B(y) satisfies ‖w − z‖ ≥ ‖y − z‖ − 1 ≥ 0.

Next, as z ∈ B(S′), consider an index iz ∈ {0, . . . , d − 1} for which z ∈ B(s(iz)). Let rm =
m√
c logm

with c being the constant c′ mentioned in Lemma 21. To exploit Eq. (30), we define

I = {i ∈ {0, . . . , d− 1} | |s(i)1 − s(iz)1| = |i− iz| ≤ rm + 2},

and Ic = {0, . . . , d− 1} \ I. We proceed with the following decomposition:

Pr(Zz(m) ∈ B(S′)) ≤
∑
i∈I

Pr (Zz(m) ∈ B(s(i))) +
∑
i∈Ic

Pr (Zz(m) ∈ B(s(i))) . (31)

By construction, |I| ≤ 2(rm + 2) + 1. Hence, using Lemma 21, the first sum in the r.h.s of Eq. (31)

is at most: ∑
i∈I

Pr(Zz(m) ∈ B(s(i))) ≤ |I|
r2m

= O

(
1

rm

)
.

Next, we aim to upper bound the sum on Ic. By the triangle inequality, for any i ∈ Ic, we have

‖s(i)− z‖ ≥ ‖s(i)− s(iz)‖ − 1 ≥ |i− iz| − 1 > 1. Hence, by Eq. (30), we get:∑
i∈Ic

Pr(Zz(m) ∈ B(s(i))) ≤
∑
i∈Ic

1

(‖s(i)− z‖ − 1)2

≤
∑
i∈Ic

1

(|i− iz| − 2)2

≤
∑

k∈Z,|k|≥drme

1

k2
= O

(
1

rm

)
,

where we used in the last line that i ∈ Ic ⊂ {iz + k | k ∈ Z and |k| > rm + 2}. Thus, we get by

Eq. (31):

Pr(Zz(m) ∈ B(S′)) = O

(
1

rm

)
.
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Plugging this in Eq. (29), together with the definition rm = m√
c logm

, and the fact that m0 = O(
√
n),

we get:

m0∑
m=0

Pr(Zz(m) ∈ B(S′)) = 2 +O

(
m0∑
m=2

logm

m

)
= O(log2 n),

which stands for any z ∈ B(S′). Altogether, the fraction in Eq. (28) satisfies:

supz∈B(S′)

∑m0
m=0 Pr(Zz(m) ∈ B(S′))∑2m0

m=m0
Pr(Z(m) ∈ B(S′))

= O

(√
n

D
· log2 n

)
.

Together with the fact that m0 = O(
√
n), Lemma 19 implies that E(mX

detect(S)) = O( nD log2 n).

Finally, using Claim 3 and the fact that τ = Θ(log n), we have

tXdetect(S) = O

(
n log3 n

D

)
,

and since this is true for any connected set S ⊆ Tn of diameter D, we obtain tXdetect(n,D) =

O
(
n log3 n
D

)
, as desired.

C.1 Proof of Lemma 19

The goal of this section is to prove of Lemma 19. Recall, we consider a random walk process Z on

R2 and its projection X on the torus Tn. Let S ⊂ Tn. Our goal is to show that for any m0,

E(mX
detect(n,D)) = O

(
m0

supz0∈B(S)

∑m0
m=0 Pr(Zz0(m) ∈ B(S))∑2m0

m=m0
Pr(Z(m) ∈ B(S))

)
. (32)

Proof. We begin with the following claim that shows that if the probability to detect S by step m

is at least p for any starting point, then the expected detecting step is at most m/p. The claim

will then be used to prove the lemma by showing that the inverse of the supremum in Eq. (28) is

a lower bound for Pr(mX
detect(S) ≤ 2m0).

Claim 22. Fix an integer m > 0 and a real number q > 0 and a set S ⊆ Tn. Denote by Xx

the process X starting at X(0) = x. If, for any x ∈ Tn, we have Pr(mXx

detect(S) ≤ m) ≥ q then

E(mX
detect(S)) ≤ mq−1.

Proof of Claim 22. The proof of the claim is simple. Given a set S, define a Bernoulli variable χ

as follows. Consider m steps of the process and define χ to be “success” if and only if the process

hits S within these m steps. Note that χ has probability at least q to be “success” regardless of

where the process starts, by hypothesis. Hence, the expected number of trials until χ succeeds is

at most 1/q. This translates to E(mX
detect(S)) ≤ mq−1, and establishes Claim 22.

To conclude the proof of Lemma 19, relying on Claim 22, it is sufficient to prove that, for any

S ⊂ Tn,

Pr(mX
detect(S) ≤ 2m0) ≥

∑2m0
m=m0

Pr(Z(m) ∈ B(S))

supz0∈B(S)

∑m0
m=0 Pr(Zz0(m) ∈ B(S))

. (33)
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For this, we rely on the following identity (see also Adler et al. [42]). If N is a non-negative

random variable then:

Pr(N ≥ 1) =
E(N)

E(N | N ≥ 1)
. (34)

We employ this identity for the random variable NS(m0, 2m0) which is the number of times Z visits

B(S) between steps m0 and 2m0 included. Note that this quantity is positive if and only if B(S)

is visited during this interval by Z. Moreover, since S ⊂ Tn and X is the projection of Z on the

torus, then Z(m) ∈ B(S) implies that also X(m) ∈ B(S). Therefore,

Pr(mX
detect(S) ≤ 2m0) ≥ Pr (NS(m0, 2m0) ≥ 1) . (35)

Note that NS(m0, 2m0) =
∑2m0

m=m0
1Z(m)∈B(S), so that

E(NS(m0, 2m0)) =

2m0∑
m=m0

Pr(Z(m) ∈ B(S)). (36)

Note also that the denominator in Eq. (34) applied to NS(m0, 2m0) verifies

E (NS(m0, 2m0) | NS(m0, 2m0) ≥ 1) = E (NS(m0, 2m0) | Z(m) ∈ B(S) for some m ∈ [m0, 2m0])

≤ sup
z0∈B(S)

E (NS(m0, 2m0) | Z(m0) = z0)

≤ sup
z0∈B(S)

E (NS(0,m0) | Z(0) = z0) ,

where the first inequality comes from the fact that visiting B(S) earlier (i.e., for m = m0 instead

of m > m0) can only increase the number of returns to B(S), and the second inequality is a

consequence of the Markov property. Finally, write, as above,

sup
z0∈B(S)

E (NS(0,m0) | Z(0) = z0) = sup
z0∈B(S)

m0∑
m=0

Pr(Zz0(m) ∈ S). (37)

Therefore, when applied to NS(m0, 2m0), Eq. (34), combined with Eqs. (35), (36) and (37), implies

that

Pr0(m
X
detect(S) ≤ 2m0) ≥

∑2m0
m=m0

Pr(Z(m) ∈ B(S))

supz0∈B(S)

∑m0
m=0 Pr(Zz0(m) ∈ B(S))

.

This establishes Eq. (33), and thus completes the proof of Lemma 19.

C.2 Proofs of Lemmas 20 and 21

In this section we aim to prove the following lower and upper bounds, stated in Lemmas 20 and

21, respectively. The proof of Lemma 20 is given in Section C.2.2, and the proof of Lemma 21 is

given in Section C.2.3. Before presenting these proofs, let us first first establish lower and upper

bounds on the distance traveled by the walk at step m.
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C.2.1 Superdiffusive properties of the Cauchy walk on R2

We first remark that the probability to choose a length in a given interval is easily computed from

Eq. (8).

Observation 23. The probability to do a step of length at most ` > 0 is a` if ` ≤ 1 and a(2− 1
` )

if ` > 1. For integers `max ≥ `2 ≥ `1 ≥ 1, the probability to choose a length in [`1, `2] is a( 1
`1
− 1

`2
).

The next claim quantifies the probability that the Cauchy process goes to a distance of at least

d after m steps. In particular, it shows that in step m, the process is at a distance of Ω(m) with

constant probability, and that it is at a distance of Ω(m/ logm) with high probability in m.

Claim 24. For any integer m ≥ 2 and any real d ∈ [1, `max3 ] we have,

Pr (∃s ≤ m s.t. ‖Z(s)‖ ≥ d) ≥ 1− e−cm/d,

for some constant c > 0. In particular this lower bound is at least

• 1−O(m−2) if d = c′ m
logm with c′ > 0 a small enough constant,

• Ω(1) if d = c′m for any constant c′ > 0 with c′m ≤ `max/3.

Proof. By Observation 23, the probability that a given step has a length at least 2d is a( 1
2d−

1
`max

) ≥
a
6d . Since the steps are independent, the probability of the event A that at least one of the steps

1, . . . ,m has a length at least 2d is

Pr(A) ≥ 1−
(

1− a

6d

)m
.

Writing (1− a/6d)m = em log(1− a
6d

) ≤ e−cm/d, for some constant c > 0, we get

Pr(A) ≥ 1− e−cm/d.

To conclude, it suffices to show that A implies that there exists a step s ≤ m for which ‖Z(s)‖ ≥ d.

Indeed, suppose that A occurs and let s ≤ m be the first step of length 2d or more. Then,

• Either ‖Z(s− 1)‖ ≥ d, in which case we are done.

• Or ‖Z(s− 1)‖ < d. In this case, as Z(s) = Z(s − 1) + V (s), we have ‖Z(s)‖ ≥ ‖V (s)‖ −
‖Z(s− 1)‖ > 2d− d = d.

This concludes the proof of Claim 24.

Claim 24 asserts that, with some probability, the walk goes far from 0. Conversely, the next

claim says that with some constant probability, the walk does not get too far.

Claim 25. • For any constant c > 0, there exists a constant δ > 0 such that, for any two

integers 1 ≤ s ≤ m, we have Pr(‖Z(s)‖ ≤ cm) ≥ δ.
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• For any constant 0 < δ < 1, there exists a (large enough) constant c > 0 such that, for any

two integers 1 ≤ s ≤ m, we have Pr(‖Z(s)‖ ≤ cm) ≥ δ.

Proof. Fix an integer m ≥ 1 and let c′′ be a constant, to be chosen later. Let A denote the event

that each of the first m steps has length at most ` = c′′m. We have, for any integer s ≤ m, and

any constant c > 0,

Pr(‖Z(s)‖ ≤ cm) ≥ Pr(A) · Pr(‖Z(s)‖ ≤ cm | A). (38)

We shall study separately each term in the r.h.s of Eq. (38), and establish the following:

• For the first item of Claim 25, we shall take c′′ > 0 so that both factors are constants (hence

their multiplication is at least some constant δ),

• For the second item of Claim 25, where the bound δ is given, we will show that both terms

can be made at least
√
δ by choosing c and c′′ appropriately.

Proceeding with the first term in the r.h.s of Eq. (38), by Observation 23, we have:

Pr(A) =


(ac′′m)m if c′′m ≤ 1

(2a)m(1− 1
2c′′m)m if c′′m ∈ [1, `max]

1 if c′′m ≥ `max

.

For 1 ≤ m ≤ 1
c′′ , we have (ac′′m)m ≥ (ac′′m)

1
c′′ as ac′′m ≤ c′′m ≤ 1, and (ac′′m)

1
c′′ ≥ (ac′′)

1
c′′

as m ≥ 1. For the second item, note that the function (1 − α
x )x = ex log(1−

α
x
) is increasing in

x ≥ α and thus, for x ≥ 2α, we have (1 − α
x )x ≥ 2−2α. Applying this with α = 1

2c′′ , we have,

(1− 1
2c′′m)m ≥ 2−

1
c′′ , for m ≥ 1

c′′ . Overall, using 2a ≥ 1, we get

Pr(A) ≥


( c
′′

2 )
1
c′′ if c′′m ≤ 1

2−
1
c′′ if c′′m ∈ [1, `max]

1 if c′′m ≥ `max

.

Hence,

• Pr(A) = Ω(1) for any given c′′ > 0.

• Furthermore, with respect to the second item of Claim 25 where 0 < δ < 1 is given, we

can choose c′′ large enough (in particular, we take c′′ ≥ 1 so that c′′m ≥ 1), to ensure that

Pr(A) ≥ 2−
1
c′′ ≥

√
δ.

We are now ready to lower bound the second factor in Eq. (38), namely, Pr(‖Z(s)‖ ≤ cm | A).

We begin with a notation: If X is a random variable, let us write XA for the random variable X

conditioned on the occurrence of A. Our first goal is to prove that

Pr(
∥∥ZA(s)

∥∥ ≤ cm) ≥ 1−
8sE(

∥∥V B∥∥2)
c2m2

, (39)

40



where V B = (V B1 , V
B
2 ) is one step-vector of the walk on R2, conditioned on the event B that it

is at most c′′m. Eq. (39) will be established by applying Chebyshev’s inequality on each of the

projections on the axes and using a union bound argument. Specifically, decomposing the walk Z

on the two axes, by writing Z = (Z1, Z2), we first use a union bound to obtain:

Pr(
∥∥ZA(s)

∥∥ > cm) ≤ Pr(∃i = 1, 2 s.t. |ZAi (s)| > cm/2)

≤ Pr(|ZA1 (s)| > cm/2) + Pr(|ZA2 (s)| > cm/2)

≤ 2 Pr(|ZA1 (s)| > cm/2),

where we used the symmetry to deduce that Z1 and Z2 share the same distribution. Hence,

Pr(
∥∥ZA(s)

∥∥ ≤ cm) ≥ 1− 2 Pr(|ZA1 (s)| > cm/2).

Next, we aim to lower bound the r.h.s. Relying on the fact that the expectation of ZA1 (s) is 0 for

any s, by Chebyshev’s inequality, we have:

Pr(|ZA1 (s)| > cm/2) ≤ 4Var(ZA1 (s))

c2m2
.

Since ZA1 (s) is the sum of s independent steps that follow the same law as V B1 , we have:

Var(ZA1 (s)) = sVar(V B1 ).

As the expectation of V B1 is zero, we have Var(V B1 ) = E((V B1 )2). Furthermore, since |V B1 | ≤
∥∥V B∥∥,

we obtain:

Var(ZA1 (s)) ≤ sE(
∥∥V B∥∥2),

which concludes the proof of Eq. (39). Next, let us estimate E(
∥∥V B∥∥2). If, on the one hand,

c′′m ≤ 1, then, when conditioning on A, the length of a step is chosen uniformly at random in

[0, c′′m]. Thus, its second moment is

E(
∥∥V B∥∥2) =

∫ c′′m

0
`2

d`

c′′m
=

(c′′m)2

3
. (40)

On the other hand, if c′′m ≥ 1, then V B is a Cauchy walk with cut off `max = c′′m. Hence, its

second moment is

E(
∥∥V B∥∥2) = a′

∫ 1

0
`2d`+ a′

∫ c′′m

1
`2`−2d`

≤ a′
∫ c′′m

0
1d` = a′c′′m ≤ c′′m. (41)

Overall, by Eqs. (39), (40) and (41) we find that, for s ≤ m,

Pr(
∥∥ZA(s)

∥∥ ≤ cm) ≥

1− 8sc′′2

3c2
if c′′m ≤ 1

1− 8sc′′

c2m
if c′′m ≥ 1

≥

1− 8c′′

3c2
if c′′m ≤ 1

1− 8c′′

c2
if c′′m ≥ 1

.

We then conclude the proof of Claim 25 by observing the following.
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• For the first item of Claim 25, we have proved that Pr(A) = Ω(1) for any constant c′′ > 0.

Hence, we may now choose c′′ small enough so that Pr(
∥∥ZA(s)

∥∥ ≤ cm) = Ω(1).

• For the second item of Claim 25, we have already chosen c′′ to be large (in order to have

Pr(A) ≥
√
δ, but we are free to choose c large enough so that Pr(

∥∥ZA(s)
∥∥ ≤ cm) ≥

√
δ.

C.2.2 Proof of Lemma 20 (lower bound)

In this section we prove the following:

Lemma 20 (restated). For any constant α > 0, there exists a constant c > 0 such that for any

integer m ∈ [1, α`max], and any x ∈ R2, with ‖x‖ ≤ m,

pZ(m)(x) ≥ c

m2
.

Proof. First note that for m = 1, the lemma holds by the definition of the Lévy process. Let us

therefore consider an integer m ≥ 2.

By the monotonicity property (Corollary 5), it is enough to prove that there is some constant

c′ > 1 such that,

Pr(m ≤ ‖Z(m)‖ ≤ c′m) = Ω(1). (42)

Indeed, if this holds, then, since the area of the ring {y ∈ R2 s.t. m ≤ ‖y‖ ≤ c′m} is Θ(m2), then we

would have that for at least one point u in this ring, pZ(m)(u) = Ω(m−2). Then, by monotonicity,

for x ∈ R2 such that ‖x‖ ≤ m, we would have pZ(m)(x) ≥ pZ(m)(u) = Ω(m−2) which is the desired

lower bound.

We thus proceed to prove Eq. (42). For this, let us define, for a given m ∈ [2, α`max], the event

Afar = ∃s ≤ m s.t. ‖Z(s)‖ ≥ 2m.

We next prove the following claim.

Claim 26. Pr(Afar) = Ω(1), where the constant in lower bound does not depend on m.

Proof of Claim 26. By Claim 24, we immediately get that the claim holds for any m ∈ [2, `max/6].

We next show that the claim holds also for m ∈ [`max/6, α`max]. Intuitively, we prove this using

a constant number of iterations. Each iteration consists of at most m′ = α′`max steps, with α′ a

small constant, during which we are guaranteed to go a distance of `max/3 with constant probability.

Because the direction is chosen uniformly at random, at the cost of reducing this probability by a

constant factor, we can further impose that the x-coordinate increases by a factor of, say, `max/5.

As these iterations are independent, and since α is a constant, we can guarantee that up to step

m = α`max, the process goes away to a distance of at least 2α`max with constant probability.
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Formally, first notice that we can take α > 1 without loss of generality. Note now that since

m ∈ [`max/6, α`max], the second item in Claim 24 implies that:

Pr

(
∃s ≤ m

10α
s.t. ‖Z(s)‖ ≥ `max

3

)
≥ c′α,

for some constant c′α > 0. As a consequence, since the direction of Z(s) is distributed uniformly at

random, we have:

Pr

(
∃s ≤ m

10α
,Z1(s) ≥

`max
4

)
≥ cα, (43)

for some constant cα > 0. When this occurs, let s1 ≤ m
10α be such that Z1(s1) ≥ `max

4 . By the

Markov property, starting from step s1, we can then apply again (43) to show that with probability

cα, there is a s2 ≤ s1+ m
10α ≤ 2 m

10α such that Z1(s2) ≥ Z1(s1)+ `max
4 ≥ 2 `max4 . Overall, this happens

with probability c2α. Repeating this d9αe times, we finally get:

Pr

(
∃s ≤ d9αe m

10α
,Z1(s) ≥ d9αe

`max
4

)
≥ cd9αeα ,

which is a positive constant. Because α > 1, this implies Pr(∃s ≤ m,Z1(s) ≥ 2α`max) = Ω(1). As

2α`max ≥ 2m and ‖Z‖ (s) ≥ |Z1(s)|, this, in turn, implies Pr(Afar) = Ω(1), completing the proof

of Claim 26.

Next, conditioning on Afar, we write:

Pr(‖Z(m)‖ ≥ m | Afar) ≥ min
s≤m

Pr(‖Z(m)‖ ≥ m | ‖Z(s)‖ ≥ 2m) (44)

≥ min
s≤m

Pr(‖Z(m− s)‖ ≤ m), (45)

where we used the Markov property, and the spatial homogeneity of the process, in the latter

inequality. In words, in the r.h.s. of Inequality (44), we examine the probability to be at a high

distance (i.e., m), knowing that the process was even further (at some point x at distance at

least 2m). In Inequality (45) we bound this by the probability of staying within distance m.

By the first item of Claim 25, the r.h.s of Inequality (45) is at least some positive constant

(again, independent of m). Overall, for any m ≥ 2, we have:

Pr(‖Z(m)‖ ≥ m) ≥ Pr(‖Z(m)‖ ≥ m | Afar) · Pr(Afar) ≥ γ,

for some constant γ > 0 (independent of m). Next, using the second item of Claim 25, with

δ = 1− γ
2 , we get that there exists a large enough constant c′ > 0 (again, independent of m), such

that:

Pr(‖Z(m)‖ ≤ c′m) ≥ δ. (46)

Hence, using a union bound argument, we have:

Pr(m ≤ ‖Z(m)‖ ≤ c′m) ≥ Pr(‖Z(m)‖ ≥ m) + Pr(‖Z(m)‖ ≤ c′m)− 1

≥ γ + δ − 1 =
γ

2
> 0.

This establishes Eq. (42) and thus concludes the proof of Lemma 20.
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C.2.3 Proof of Lemma 21 (upper bound)

This section is dedicated to the proof of Lemma 21:

Lemma 21 (restated). For any constant α > 0, there exists a constant c′ > 0 such that, for any

integer m ∈ [2, α`max] and any x ∈ R2, we have

Pr(Z(m) ∈ B(x)) ≤ c′ log2m

m2
.

Proof. Let α > 0 and m ∈ [2, α`max]. Due to the monotonicity property stated in Corollary 5,

it is sufficient to prove this result for x = 0. Indeed, for any x ∈ R2, the sets B(0) \ B(x) and

B(x) \B(0) have the same area A, and

Pr (Z(m) ∈ B(x) \B(0)) ≤ A max
y∈B(x)\B(0)

{p‖Z(m)‖(y)}

≤ A min
y∈B(0)\B(x)

|{p‖Z(m)‖(y)}

≤ Pr (Z(m) ∈ B(0) \B(x)) ,

where the second inequality is due to the monotonicity property and the fact that any point in

B(x)\B(0) is at distance more than 1 from the origin, and hence, further from 0 than any point in

B(0) \B(x). This shows that Pr(Z(m) ∈ B(x)) ≤ Pr(Z(m) ∈ B(0)), hence it is sufficient to prove

the required upper bound for x = 0.

Intuitively, to establish this, we say that with high probability, there is some step s ≤ m for

which Z(s) is “distant” (at least cm/ logm). Conditioning on this, the probability to be located

in B(0) at step m is found out to be small, due to the monotonicity of the process (Corollary 5).

Formally, consider a (small) positive constant c, and let A be the event that there is some s ≤ m

for which ‖Z(s)‖ ≥ cm/ logm.

Consider B(0) the ball of radius 1 with center 0. Write

Pr(Z(m) ∈ B(0)) = Pr(Z(m) ∈ B(0) ∩ A) + Pr(Z(m) ∈ B(0) ∩ ¬A)

≤ Pr(Z(m) ∈ B(0) | A) + Pr(¬A), (47)

By the first item of Claim 24, taking c to be sufficiently small, we have

Pr(¬A) = O(m−2).

In order to express the remaining term of Eq. (47), we will denote in the following equation Zx the

Cauchy process on R2 with cut off `max starting with Z(0) = x. Since our process was defined to

start at 0, we have Z = Z0. Remark that the law of Zx is obtained by a translation of that of Z0.
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With this notation in mind, we have, using the Markov property for the second inequality:

Pr(Z0(m) ∈ B(0) | A) ≤ max
s≤m

Pr(Z0(m) ∈ B(0) |
∥∥Z0(s)

∥∥ ≥ cm/ logm)

≤ max
s≤m

sup
‖x‖≥cm/ logm

Pr(Zx(m− s) ∈ B(0))

= max
s≤m

sup
‖x‖≥cm/ logm

Pr(Zx(s) ∈ B(0))

= max
s≤m

sup
‖x‖≥cm/ logm

Pr(Z0(s) ∈ B(−x))

= max
s≤m

sup
‖x‖≥cm/ logm

Pr(Z(s) ∈ B(x))

Use now Corollary 5 that gives pZ(m)(x) ≤ 1
π‖x‖2 . Hence, for any x ∈ R2 with ‖x‖ > 1, we have

Pr(Z(m) ∈ B(x)) =

∫
B(x)

pZ(m)(y)dy ≤
∫
B(x)

1

π(‖x‖ − 1)2
dy =

1

(‖x‖ − 1)2
.

Let m(c) be the largest integer m > 0 such that cm/ logm ≤ 2. For m > m(c), we have

Pr (Z(s) ∈ B(x)) ≤ max
s≤m

1

(cm logm− 1)2
=

1

(cm logm− 1)2

Overall, we find that, for m > m(c)

Pr (Z(m) ∈ B(0)) ≤ 1

(cm/ logm− 1)2
+

c′

m2
,

which we can bound by c2 log
2m

m2 for some constant c2 > 0. Since m(c) is a constant, there is some

other constant c3 > 0 for which, for any m ∈ [2,m(c)], we have Pr(Z(m) ∈ B(0)) ≤ c3 log
2m

m2 . We

then obtain, for any m ≥ 2,

Pr(Z(m) ∈ B(0)) ≤ max{c2, c3} log2m

m2
,

which concludes the proof of Lemma 21.
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