
HAL Id: hal-03375049
https://hal.inria.fr/hal-03375049

Submitted on 12 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Early timing analysis based on scenario requirements
and platform models

Jörg Holtmann, Julien Deantoni, Markus Fockel

To cite this version:
Jörg Holtmann, Julien Deantoni, Markus Fockel. Early timing analysis based on scenario requirements
and platform models. Software and Systems Modeling, Springer Verlag, In press. �hal-03375049�

https://hal.inria.fr/hal-03375049
https://hal.archives-ouvertes.fr

Softw Syst Model manuscript No.
(will be inserted by the editor)

Early timing analysis based on
scenario requirements and platform models

Jörg Holtmann · Julien Deantoni · Markus Fockel

Received: date / Accepted: date

Abstract Distributed, software-intensive systems
(e.g., in the automotive sector) must fulfill communi-
cation requirements under hard real-time constraints.
The requirements have to be documented and val-
idated carefully using a systematic requirements
engineering (RE) approach, for example, by applying
scenario-based requirements notations. The resources
of the execution platforms and their properties (e.g.,
CPU frequency or bus throughput) induce effects on
the timing behavior, which may lead to violations
of the real-time requirements. Nowadays, the plat-
form properties and their induced timing effects are
verified against the real-time requirements by means
of timing analysis techniques mostly implemented
in commercial-off-the-shelf tools. However, such
timing analyses are conducted in late development
phases since they rely on artifacts produced during
these phases (e.g., the platform-specific code). In
order to enable early timing analyses already dur-
ing RE, we extend a scenario-based requirements

This work is an improved and condensed version of a part of the
first author’s Ph.D. thesis [60, Chapter 4], with the main work
conducted at his former affiliation at Fraunhofer IEM.

Jörg Holtmann
Software Engineering Division
Department of Computer Science and Engineering
Chalmers | University of Gothenburg
Gothenburg, Sweden
E-mail: jorg.holtmann@gu.se

Julien Deantoni
Universite Cote d’Azur, CNRS, I3S/INRIA Kairos
Sophia Antipolis Cedex, France
E-mail: julien.deantoni@univ-cotedazur.fr

Markus Fockel
Software Engineering & IT Security, Fraunhofer IEM
Paderborn, Germany
E-mail: markus.fockel@iem.fraunhofer.de

notation with allocation means to platform models
and define operational semantics for the purpose of
simulation-based, platform-aware timing analyses.
We illustrate and evaluate the approach with an
automotive software-intensive system.

Keywords scenario-based requirements · platform
modeling · real-time systems · timing analysis

1 Introduction

Distributed, software-intensive systems are becoming
more and more complex. For instance, in the auto-
motive domain, the growing number of functionali-
ties has led to thousands of software operations dis-
tributed across hundreds of electronic control units
(ECUs) that communicate via multiple bus systems
[103]. Cyber-physical systems additionally commu-
nicate among themselves via wireless ad-hoc net-
works (e.g., automotive vehicle-to-X communication)
to provide more advanced functionalities. More gener-
ally, these systems increasingly rely on message-based
communications. Additionally, the correctness of such
systems does not only rely on the functional correct-
ness but also on the time at which actions are per-
formed: They are real-time systems. Since a timing er-
ror can lead to human life threat, these systems have
to fulfill hard real-time requirements.

For example, the so-called Emergency Braking &
Evasion Assistance System (EBEAS) [63, Chapter 4] is
an automotive vehicle-to-vehicle driver assistance sys-
tem, which coordinates with other vehicles (and other
in-vehicle ECUs) to autonomously perform actions
like emergency braking or evasion of obstacles. Per-
forming emergency braking or evasion only millisec-
onds too late can harm the life of the passengers and

2 Jörg Holtmann et al.

other lives in the environment. Usually, such function-
ality is subject to end-to-end real-time requirements
(e.g., the EBEAS has to perform emergency braking
within 50 time units after it detected an obstacle).

Violations of such real-time requirements can oc-
cur for various reasons: The ECUs executing the soft-
ware have restricted resources (e.g., processing power,
memory) that increase execution times; the buses
and wireless communication media have restricted re-
sources (e.g., throughput, latency) increasing trans-
mission times; the preemption induced by scheduling
policies increase response times; etc. More generally,
the various properties of the particular resources of
the execution platform (resource properties) impact the
timing behavior by inducing timing effects (i.e., delays)
during the provision of the actual functionality.

Hence, safety standards for the development
of software-intensive systems like the automotive-
specific ISO 26262 [66] require the estimation of ex-
ecution times and needed communication resources.
Additionally, to make sure that real-time requirements
are fulfilled, timing analyses particularly for the highly
safety-critical parts of the system under development
shall be performed.

Most of the state-of-the-art approaches for timing
analyses taking into account the execution platform
apply simulative techniques typically implemented in
commercial-off-the-shelf tools (e.g., [101,112]). How-
ever, such approaches are applied late in the devel-
opment process, mostly because they rely on the ex-
istence of the execution platform or the compiled
platform-specific code [28,89,90] (e.g., to compute or
measure a worst-case execution time [106]). The de-
tection and fixing of such problems in later engineer-
ing phases causes costly development iterations [13,
102]. Consequently, there is a need to apply platform-
aware timing analyses earlier in the development pro-
cess, ideally in the requirements engineering (RE)
phase. Particularly, the timing-relevant platform re-
source properties are typically known or well esti-
mated in such early engineering phases due to the
knowledge from prior development projects [90,59].

For enabling timing analyses already in the early
RE phase, related work provides means to specify
and analyze timed behavioral models (typically rely-
ing on scenario- or automata-based notations), thereby
abstracting from the final platform-specific artifacts.
However, approaches analyzing timed scenario-based
models require to pre-calculate the timing effects in-
duced by the resource properties and to specify them
as part of the time-constrained scenarios [55,54,118,
44] or as part of design models that are verified
against the scenarios [76,77,81,80]. Approaches an-

alyzing automata-based models likewise require to
specify the pre-calculated timing effects as part of
the automata [69,70,97,2,78,11], require detailed task
models like the state-of-the-art approaches mentioned
above [4,5], or provide neither simulation nor visual-
ization means to reveal the causes of real-time require-
ment violations [39]. Summarizing, most of the related
work on analyzing timed models requires to reenact,
pre-calculate, and explicitly specify the timing effects
(i.e., delays) induced by the resource properties (e.g.,
CPU processing power, bus throughput) in a low-level
manner as part of the behavioral models. Thus, timing
analysts cannot pragmatically (re-)use platform mod-
els with specified resource properties stemming from
other sources in the development process (e.g., for doc-
umentation and design review purposes) and verify
them against the real-time requirements, thereby hin-
dering a broad acceptance of such approaches.

In this article, we propose an approach to en-
able early and platform-aware timing analyses already
during the RE phase. Since the targeted real-time
software-intensive systems strongly rely on message-
based communication, we base the real-time require-
ments on our timed and component-based dialect [17,
64] of Live Sequence Charts [22] and Modal Sequence
Diagrams (MSDs) [47]. Like the related work, the mod-
eling and analysis means provided by our dialect en-
able specifying and validating real-time requirements
but incorporate platform-specific aspects only insuffi-
ciently. Thus, to provide both an abstract specification
of the execution platform with its particular resource
properties and the allocation of software on the exe-
cution platform, we furthermore apply and extend the
real-time modeling UML profile MARTE [92].

As the main contribution of this article, we
introduce—based on the modeling languages men-
tioned above—a new operational semantics for
platform-aware MSDs dedicated to timing analyses.
This semantics enables the consideration of the plat-
form resource properties through encoding and au-
tomatically computing their effects on the timing be-
havior and verifying them w.r.t. the real-time require-
ments specified through timed MSDs. In contrast to re-
lated work, this relieves the timing analysts from the
burden to pre-calculate and to specify the timing ef-
fects induced by the resource properties as part of be-
havioral models. To operationalize the semantics, we
apply our approach GEMOC [21,79,26] for the speci-
fication of executable modeling languages. This facil-
itates early timing analyses applying simulation and
model checking in our tool suite TIMESQUARE [27]. We
illustrate and evaluate the approach with the automo-
tive software-intensive system EBEAS.

Early timing analysis based on scenario requirements and platform models 3

In the upcoming Section 2, we introduce the foun-
dations that our approach relies on. Section 3 out-
lines an overview of the approach. Subsequently, we
present it in more detail by first presenting our mod-
eling language for execution platforms and the allo-
cation from requirement scenarios to them (cf. Sec-
tion 4). In Section 5, we provide conceptual extensions
and definitions for message event semantics and tim-
ing effects to be considered by timing analyses. Based
on these ingredients, Section 6 presents our opera-
tional semantics for timing analyses. Section 7 illus-
trates the results through an exemplary timing anal-
ysis and model checking. We describe the evaluation
in Section 8 and related work in Section 9. Finally, we
conclude and sketch future work in Section 10.

2 Foundations

In the following, we present the foundations for the
comprehension of the particular ingredients that our
approach relies on. Section 2.1 introduces general
foundations on the kind of timing analysis we focus
on. In Section 2.2, we present the basics of MSDs. Sec-
tion 2.3 outlines the MARTE profile and Section 2.4 in-
troduces the basics of a language for the specification
of executable time models. Finally, Section 2.5 outlines
the GEMOC approach.

2.1 Timing analysis for hard real-time systems

We focus on hard real-time systems, for which the viola-
tion of a hard real-time requirement may cause catas-
trophic consequences (e.g., people are harmed) [18].
Hard real-time systems must be designed to tolerate
worst-case conditions [71]. Typically, a schedulability
analysis (e.g., [18]) for hard real-time systems investi-
gates whether jobs with each an activation time, a pro-
cessing time, and a deadline w.r.t. the activation time
can be scheduled on resources so that always all dead-
lines are met. As motivated in the introduction, such
schedulability analyses are demanded by standards
for the development of safety-critical systems.

Response time analysis [111,8] is a well-established
a-priori analysis technique to check the timing prop-
erties of hard real-time systems, which is imple-
mented in many commercial-off-the-shelf tools (e.g.,
[101,112]). It computes upper bounds on the response
times of all jobs and checks whether all response times
fulfill the corresponding timing requirements. In sim-
plified terms, the response time of a job is defined as its
activation time plus its processing time plus the sum of
potential preemption times by other jobs. A job can be

a task to be executed on a processing unit or a message
to be transmitted via a communication medium.

In the case of tasks, the job processing time is the
execution time that a processing unit needs to execute
the task. The worst-case execution times of the tasks
are inputs to task response time analyses [104]; and
their computation requires the final platform-specific
code or a very detailed model of the system [106].

In the case of messages, the job processing time
is the transmission time that the communication
medium needs to transmit the message. Its computa-
tion relies on the properties of the physical medium
which influence the transmission time (e.g., technol-
ogy or protocol). Additionally, the activation time also
encompasses a queuing jitter that is inherited from the
worst-case response time of the sending task [116].
Thus, the results of message response time analyses
also depend on the final platform-specific code.

Beyond the timing properties of individual tasks
and messages, determining the overall timing proper-
ties of distributed real-time systems requires a more
holistic view on the system [74]. These timing prop-
erties are usually based on event chains starting with
an initial system stimulus; involving multiple software
components that may be deployed on different ECUs;
until the production of an externally observable re-
sponse event. The timing behavior of event chains con-
verges from the occurrence of task start and comple-
tion events as well as of different events involved in
the message transmission. The most used event chain
timing property is the end-to-end response time, which
is defined as the amount of time elapsed between the
arrival of an event at the first task and the production
of the response by the last task in the chain [89].

This is of specific importance in our approach, be-
cause high-level real-time requirements are usually
formulated w.r.t. such end-to-end response times of
the event chains. That is, such requirements impose
timing constraints between an initial system stimulus
and an externally observable response of event chains.

To verify such high-level real-time requirements,
existing approaches for end-to-end response time
analysis like [115,35,87,88,28,89] still rely ultimately
on the response times of the individual jobs and conse-
quently require the final platform-specific implemen-
tation. Thus, they can be applied only in late develop-
ment phases like the techniques and tools for the anal-
ysis of the individual response times.

Here, we rely on the fact that coarse-grained in-
formation about the timing-relevant resource proper-
ties is mostly known in the early RE phase from prior
projects or expert knowledge [90,59]. Also, we propose

4 Jörg Holtmann et al.

to express the real-time requirements based on Modal
Sequence Diagrams introduced in the next section.

2.2 Modal sequence diagrams (MSDs)

Scenario-based notations enable the intuitive specifica-
tion and comprehension of message-based interaction
requirements, and UML Interactions [95, Clause 17]
provide such a notation as a visual modeling language
by means of sequence diagrams.

To make UML Interactions more suitable regard-
ing universal/existential properties, the Modal profile
[47] syntactically extends UML Interactions with mod-
eling constructs as known from Live Sequence Charts
(LSCs) [22]. Thereby, this profile introduces a UML-
compliant form of LSCs, called Modal Sequence Dia-
grams (MSDs). In previous works, based on the Play-
out algorithm [49], we extended MSDs with modeling
constructs and operational semantics for component-
based software architectures [64] and for high-level
real-time requirements [17]. The resulting Real-time
Play-out approach [17] defined the operational seman-
tics of such timed MSD requirements and thereby en-
ables their simulative validation.

In this paper, we focus on providing modeling con-
structs and an operational semantics for the early con-
sideration of execution platform impacts on the timing
requirements. However, in order to ease the reading of
the proposition, we introduce MSD constructs and se-
mantics (and later our approach) based on the EBEAS
example (see Figure 1). The proposed excerpts of the
EBEAS example in Figure 1 highlights a real-time re-
quirement on the automatic emergency braking ma-
neuver in the case of an obstacle detection.

Figure 1 represents a component-based MSD spec-
ification (in the middle) together with involved types
(in the top) and one of the MSDs (in the bottom). The
next sections describe more in detail the structure of
component-based MSD specifications (Section 2.2.1) as
well as their basic and timed semantics (Section 2.2.2).

2.2.1 Structure of MSD specifications

A component-based MSD specification is structured by
means of MSD use cases. Each MSD use case encap-
sulates for a specific functionality several interrelated
scenarios, which specify requirements on the message-
based interaction behavior to be provided by the sys-
tem under development.

An MSD use case encompasses the participants in-
volved in providing the functionality, as well as a set of
MSDs describing the requirements on the interactions
between these participants. Such an MSD specification

Electronic
Stability
Control

Electronic
Stability
Control

Vehicle

Control

Vehicle

Control

Situation

Analysis

Situation

Analysis

«EnvironmentAssumption» msd ...«EnvironmentAssumption» msd ...

msd BeaconAcknowledgementmsd BeaconAcknowledgement

msd EmcyBrakingmsd EmcyBraking

c1

+ emcyBraking()

«interface»

Braking

Commands

+ emcyBraking()

«interface»

Braking

Commands

+ obstacle()

«interface»
ObstacleInfo

+ obstacle()

«interface»
ObstacleInfo

+ enableBraking()

«interface»
Decisions

+ enableBraking()

«interface»
Decisions

class [Package] ObstacleDetection::Interfacesclass [Package] ObstacleDetection::Interfaces

+ emcyBrakeWarning()
+ trajectoryBeacon()

«interface»
V2VMessages

+ emcyBrakeWarning()
+ trajectoryBeacon()

«interface»
V2VMessages

ObstacleDetection

ObstacleDetection

esc2sa
esc:

Electronic
Stability
Control

esc:
Electronic
Stability
Control

acc:
Adaptive
Cruise
Control

acc:
Adaptive
Cruise
Control

v2x:V2X
Comm-

unication

v2x:V2X
Comm-

unication

sa:
Situation
Analysis

sa:
Situation
Analysis

sa:
Situation
Analysis

vc:
Vehicle
Control

vc:
Vehicle
Control vc2esc

acc2sa

vv2sa

sa2vv

sa2vc

class [Package] ObstacleDetection::Typesclass [Package] ObstacleDetection::Types

:Braking
Com-

mands

:~Velocity
Info

:~V2V
Messages

:~Decisions

:Obstacle
Info

:V2V
Messages

:~Braking
Commands

:Decisions

class [Package] ObstacleDetection::Types

:Braking
Com-

mands

:~Velocity
Info

:~V2V
Messages

:~Decisions

:Obstacle
Info

:V2V
Messages

:~Braking
Commands

:Decisions

obstacle

emcy
Braking

v2x:V2X
Commu-
nication

v2x:V2X
Commu-
nication

sa:

Situation

Analysis

sa:

Situation

Analysis

enable
Braking

...

...

esc:
Electronic
Stability
Control

esc:
Electronic
Stability
Control

signature

standstill

c2

c0

c3

acc:
Adaptive
Cruise
Control

acc:
Adaptive
Cruise
Control

c = 0c = 0

c4

vc:

Vehicle

Control

vc:

Vehicle

Control

c < 50c < 50

Directed Connector

from sa to vc

Directed Connector

from sa to vc

represents

legend

Abstract Syntax Link

System Component Role

Environment Component Role

owned
Behavior

connector

Required
Interface
Required
Interface

Provided
Interface
Provided
Interface

PortPort

type

typetype

Clock

Reset

Clock

Reset

Time
Condition
(Maximal
Delay)

Time
Condition
(Maximal
Delay)

CutsCuts
MSD

Message

MSD

Message

Message

Locations

Message

Locations

:Velocity
Info

Fig. 1 Example of a component-based MSD specification

is subdivided into three parts: Types, collaborations,
and interaction behaviors, explained in the following.

UML interfaces and components provide reus-
able types for all MSD use cases of the specification.
The interfaces encompass operations that are used as
message signatures in the MSDs. For example, the
class diagram for the UML package ObstacleDetec-
tion::Interfaces in the top of Figure 1 contains an inter-
face Decisions, which contains an operation enableBrak-
ing. This interface is used as required and provided in-
terface in each one port of the components Situation-
Analysis and VehicleControl, respectively (see package
ObstacleDetection::Types in Figure 1).

Early timing analysis based on scenario requirements and platform models 5

For any MSD use case, the actual component-
based software architecture is defined by roles of the
components. More precisely, we specify component
roles and their interconnections by using an UML col-
laboration (dashed ellipse symbol) [95, Clause 11.7]
(ObstacleDetection in Figure 1). We distinguish be-
tween system component roles that are controlled by the
system under development (component symbols) and
environment component roles that are controlled by the
environment (cloud symbols).

For example, the system components sa: Situa-
tionAnalysis and vc: VehicleControl communicate with
each other via the connector sa2vc. The interface De-
cisions typing the ports of the corresponding com-
ponent types determine which messages can be ex-
changed through this connector. Additionally, both
system component roles in turn interact with the envi-
ronment component role esc: ElectronicStabilityControl
via dedicated connectors.

The MSDs define the behavior of the collaboration
(cf. abstract syntax links ownedBehavior). We distin-
guish MSDs into requirement MSDs (no stereotype ap-
plied) and assumption MSDs (an MSD with the stereo-
type «EnvironmentAssumption» applied). The former
ones specify requirements on the interaction behavior
of the system under development, whereas the latter
ones specify assumptions on the behavior of the en-
vironment. For example, the MSD EmcyBraking in the
bottom of Figure 1 is a requirement MSD specifying
the emergency braking behavior of the EBEAS in the
case the adaptive cruise control detects an obstacle,
whereas an assumption MSD is only indicated.

An MSD itself encompasses MSD messages, which
are associated with a sending and a receiving lifeline,
an operation signature, and a connector. For exam-
ple, the lifeline vc: VehicleControl (receiving the enable-
Braking message) represents the equally named role
in the collaboration. Consequently, the enableBraking
message is associated with the operation signature
from the Decisions interface and is specified to be sent
via the connector sa2vc in the software architecture.

Based on the kind of the sender role, MSD mes-
sages are further distinguished into environment mes-
sages and system messages. The former ones are mes-
sages sent by the environment to the system (e.g, obsta-
cle and standstill), whereas the latter ones are messages
sent by the system internally (e.g., enableBraking) or to
the environment (e.g., emcyBraking).

After this short introduction about the structure of
component-based MSD specifications, we explain the
basic and timed MSD semantics in the following.

2.2.2 MSD semantics

An MSD progresses as message events corresponding
to the specified MSD messages occur in the system at
runtime (i.e., during Play-out or an actual system exe-
cution). Each MSD message is of two different kinds,
where both kinds determine for the corresponding
message events their safety and liveness properties,
respectively. In this article, we focus on MSD mes-
sages that allow no occurrences of message events that
the scenario specifies to occur earlier or later (safety)
and whose corresponding message events must oc-
cur eventually (liveness). Message events that do not
correspond to any MSD messages are ignored, that is,
they do not influence the progress of the MSDs and the
MSDs do not impose requirements on them.

As message events occur that can be correlated by
the Play-out algorithm with MSD messages, the MSDs
progress. This progress is captured by the cut, which
marks for every lifeline the locations of the MSD mes-
sages that were correlated with the message events.
For example, Figure 1 shows for the depicted MSD in
the bottom its particular cuts c0–c4.

Timed MSDs allow defining real-time requirements
by referring to clock variables, which are adopted from
Timed Automata [2] and represent real-value variables
that increase synchronously and linearly with time. We
distinguish clock resets and time conditions. Clock resets
are visualized as rectangles with an hour-glass icon,
containing an expression of the form c = 0 over a clock
variable c. Time conditions are visualized as hexagons
with an hour-glass icon and define assertions w.r.t.
clock variables. To this end, each time condition de-
fines an expression of the form c ./ value, with a clock
c, an operator ./∈ {<,≤,>,≥}, and an Integer value
value. We distinguish minimal delays (./∈ {>,≥}) and
maximal delays (./∈ {<,≤, }). For example, the MSD
in Figure 1 contains a clock reset and a maximal de-
lay defining that the message events corresponding to
all enclosed MSD messages must occur within 50 time
units after the message event occurrence correspond-
ing to the MSD message obstacle prior to the clock re-
set. Such a combination of a clock reset and a time
condition forms a real-time requirement. More com-
plex real-time requirements can be formed by speci-
fying multiple MSDs with constraints on overlapping
message events (see also our MSD requirement pattern
catalog [37] for details).

We opt for applying these existing timed MSD
modeling constructs and semantics, instead of ignor-
ing them and adding real-time requirements to the sce-
narios by means of the MARTE profile (cf. next section).
By doing so, we do not introduce a further variant

6 Jörg Holtmann et al.

of the MSD language and thereby can use the timed
MSDs both in Real-time Play-out and in the approach
presented in this article.

2.3 Platform modeling and allocation with MARTE

The UML profile Modeling and Analysis of Real-Time
Embedded Systems (MARTE) [92,110] provides model-
ing means for design and analysis aspects for the em-
bedded software part of software-intensive systems.
MARTE consists of several subprofiles; and we have
sought to reuse as much as possible existing suit-
able concepts from these subprofiles. In the following,
we introduce the subprofiles we use and/or extend:
Non-functional properties; generic resource modeling;
generic quantitative analysis; and allocations.

– From the MARTE subprofile Non-functional Proper-
ties Modeling (NFPs) [92, Chapter 7/Annex F.2] and
its model library MARTE_Library [92, Annex D] we
used pre-defined measurement units. We mostly
reused measurement units for the time. We also
reused intervals for numeric data types, percent-
ages, durations, data sizes, and transmission rates.

– The MARTE subprofile Generic Resource Modeling
(GRM) [92, Chapter 10/Annex F.4] provides mod-
eling means for the specification of generic re-
sources of execution platforms. From this subpro-
file, we reuse modeling concepts for memory re-
sources, processing resources (with a relative speed
factor), communication media (with a transmis-
sion rate and blocking time), schedulers (with a
scheduling policy), and resource usages (with op-
eration execution times and message sizes).

– The MARTE subprofile Generic Quantitative Analy-
sis Modeling (GQAM) [92, Chapter 15/Annex F.10]
provides modeling means for the specification of
generic and quantitative aspects relevant to auto-
matic analysis techniques. From this subprofile, we
reused so-called analysis contexts, which encompass
workload behaviors based on the distribution of
stimulus events.

– The MARTE subprofile Allocation Modeling (Alloc)
[92, Chapter 11/Annex F.5] provides modeling
means for the specification of allocations of logical
elements (i.e., application software) to physical and
technical elements (i.e., execution platform). From
this subprofile, we reused the «allocate» stereo-
type, which enable the specification of a directed al-
location link between software and execution plat-
form components, which are part of an MSD spec-
ifications (cf. Section 2.2.1).

2.4 Clock Constraint Specification Language (CCSL)

Associated to the MARTE profile, we proposed in pre-
vious work [27] the Clock Constraint Specification Lan-
guage (CCSL) dedicated to timing specifications. This
language is formally defined and tooled to enable the
analysis of resulting specifications. CCSL is a formal
declarative language for the modeling and manipu-
lation of time in real-time embedded systems [7], ini-
tially and informally introduced in MARTE [92, Chap-
ter 9/Annex C.3]. The formalism bases on the notion
of logical time [75,36], which was originally designed
for distributed and concurrent systems, but which was
also used in synchronous languages. CCSL general-
izes different descriptions of time, based on the no-
tion of clocks, a clock being an ordered set of instants
(or ticks) named I . The notion provides a sound way
to mix synchronous and asynchronous constraints be-
tween clocks. Such a mix enables the symbolic speci-
fication of partial order sets on the instants of clocks,
which are well-suited for the description of a large set
of model control flow (e.g., [72,41,40,100,84]).

Solving a CCSL model (i.e., doing a run) results in
a schedule. A schedule σ over a set of clocks C is a pos-
sibly infinite sequence of steps, where a step is a set of
ticking clocks σ : N → 2C. For each step, one or sev-
eral clock(s) can tick depending on the constraints.

The operational semantics of CCSL models [6]
specifies how to construct the acceptable schedules
step by step, and is given as a mapping to a Boolean
expression on C , where C is a set of Boolean variables
in bijection with C. For any c ∈ C , if c is valued to true
then the corresponding clock ticks; if valued to false
then it does not tick. Note that if no constraints are de-
fined, each Boolean variable can be either true or false
and, consequently, there are 2n possible futures for all
steps, where n is the number of clocks.

Each time a constraint is added to the specifica-
tion, it adds Boolean constraints on C . The Boolean
constraints depend on the definition of the constraint
and its internal state. When several constraints are de-
fined, their Boolean expressions are put in conjunction
so that each added constraint reduces the set of ac-
ceptable schedules (it is a trace refinement according
to [3]).

CCSL models are inputs to our tool suite
TIMESQUARE [27], which supports their simulation
with the generation of timing diagrams, the animation
of UML models, etc. It also supports the exhaustive
simulation (when the state space is bounded), enabling
the model checking of CCSL models. TIMESQUARE

has been applied for the timing analysis (cf. Sec-

Early timing analysis based on scenario requirements and platform models 7

tion 2.1) of software-intensive systems (e.g., [40,41,
100,119,84,83]).

For a CCSL model, the actual constraints can be
specified by means of two ways explained in the fol-
lowing sections. On the one hand, CCSL provides
pre-defined constraints on language level (metamodel
level M2) that the engineer can call and pass argu-
ments to at model level (metamodel level M1) (cf. Sec-
tion 2.4.1). On the other hand, a CCSL extension en-
ables the engineer to specify user-defined constraints
that can be used like the pre-defined ones afterward
(cf. Section 2.4.2). Finally, a CCSL model, either based
on pre- or user-defined constraints, can be used to per-
form an exhaustive state space exploration (if the state
space is finite) and model checking (cf. Section 2.4.3).

2.4.1 Pre-defined CCSL constraints

CCSL defines the two constraint kinds clock expressions
and clock relations. André [6] formalizes a set of pre-
defined CCSL constraints, which TIMESQUARE pro-
vides as a model library so that these constraints can
be conveniently used during the specification and the
TIMESQUARE-based simulation of CCSL models. In
the following, we explain the pre-defined clock expres-
sions and relations that we apply in this article.

Clock relations impose (synchronous or asynchronous)
orderings between the instants of participating clocks.

⊂ : SubClock (subClock: Clock, superClock: Clock)
This relation constrains all ticks of subClock to co-
incide with a tick of superClock but not vice versa.
That is, subClock can only tick when superClock
ticks, but it does not have to.

I |= a ⊂ b⇔ ∀ia ∈ Ia, ∃ib ∈ Ib, ia ≡ ib (1)

where the coincidence relation≡ is an equivalence relation (reflex-
ive, symmetric and transitive). It reflects the fact that two instants
have the exactly same logical time.

= : Coincides (clock1: Clock, clock2: Clock) This rela-
tion constrains all instants of clock1 and clock2 to
coincide. That is, the events represented by clock1
and clock2 must occur simultaneously.

I |= a = b⇔
∀i ∈ Ia, ∃j ∈ Ib, i ≡ j

∧ ∀i ∈ Ib, ∃j ∈ Ia, i ≡ j
(2)

≺ : Precedes (leftClock: Clock, rightClock: Clock) This
relation constrains the kth instant of leftClock to
precede the kth instant of rightClock ∀k ∈ N. That

clock1

0 5

t

clock2

Relation cl1PrecedesCl2 [Precedes] (
 leftClock->clock1, rightClock->clock2)

relation dependency

legend

clock tick

Relation <relationName>
 [<relationType>] (
 parameter1->argument1, ...)

CCSL model syntax

Fig. 2 Exemplary TIMESQUARE simulation run of the CCSL
clock relation Precedes

is, the event represented by leftClock always occurs
before rightClock.

I |= a ≺ b⇔
∃h : Ib → Ia, (∀i ∈ Ib, (h(i) ≺ ia)

∧ ∀i, j ∈ I , (i ≺ j)⇒ (h(i) ≺ h(j)))
(3)

where the precedence relation ≺ is a strict order relation (irreflex-
ive, asymmetric, and transitive) between two instants.

Figure 2 depicts an exemplary TIMESQUARE sim-
ulation run of this clock relation. In this example,
the relation enforces that clock1 always ticks before
clock2 ticks.

4 : NonStrictPrecedes (leftClock: Clock, rightClock: Clock)
This non-strict version of the Precedes relation con-
strains the kth instant of leftClock to coincide with
or precede the kth instant of rightClock ∀k ∈ N.
That is, the events can also occur simultaneously.

I |= a 4 b⇔
∃h : Ib → Ia, (∀i ∈ Ib, (h(i) 4 ia)

∧ ∀i, j ∈ I , (i 4 j)⇒ (h(i) 4 h(j)))
(4)

where the non-strict precedence relation 4 is defined by ≺ ∨ ≡.

Clock expressions define a new clock based on other
clocks and possibly extra parameters. In the following,
we describe the expressions used in this article.

+: Union (clocks: Set(Clock)) The clock specified by
this expression ticks whenever one of the clocks
in its parameter set clocks ticks. consequently the
instant set of the resulting clock (named c here) is
such that:

Ic |= c := a + b⇔

∀ia ∈ Ia, ∃i ∈ Ic, (i ≡ ia))
∧ ∀ib ∈ Ib, ∃i ∈ Ic, (i ≡ ib))
∧ ∀i ∈ Ic, (∃ia ∈ Ia, (i ≡ ia))

∨(∃ib ∈ Ib, (i ≡ ib))

(5)

where ≡ means coincides with.

Intuitively, for all instants of the clocks a and b,
there exists an instant of the clock c and there is no
instant of c that does not coincide with an instant
of a, or b, or both.

8 Jörg Holtmann et al.

clock1

0 5

t

unionOfCl1Cl2

clock2

Expression unionOfCl1Cl2 = Union (
 clocks-> { clock1, clock2 })

legend

CCSL model syntax

"results from"

clock tick

Expression <clockName> =
 <expressionType> (
 parameter1->argument1, ...)

Fig. 3 Exemplary TIMESQUARE simulation run of the CCSL
clock expression Union

Figure 3 depicts an exemplary TIMESQUARE sim-
ulation run of this clock expression. In this exam-
ple, a new clock unionOfCl1Cl2 is specified that ticks
whenever one or both of the argument clocks clock1
and clock2 tick.

$: DelayFor (clockForCounting: Clock, clockToDe-
lay: Clock, delay: Integer) This expression delays
any tick of the clock clockToDelay by delay ticks
w.r.t. a reference clock clockForCounting. Note that
we apply in this article an always ticking clock
globalTime as argument for the reference clock pa-
rameter clockForCounting, so that the clock defined
by this expression simply ticks delay instants after
clockToDelay (named a below).

I |= c := a $ delay w.r.t. b⇔
∃h : Ic → Ib, ∀i ∈ Ic, (i ≡ h(i))

∧ ∀ia ∈ Ia, ∃ic ∈ Ic, ∃X ⊆ Ib,
((|X|= delay)∧ ∀ib ∈ Ib, (ib ∈ X ⇔ ia ≺ ib 4 ic))

(6)

meaning that it exists X instants of b between instants of a and the
delayed instant of c, and instants of c coincides with some instants
of b.

every ... on: PeriodicOffsetP (baseClock: Clock, pe-
riod: Integer) The clock specified by this expression
ticks any periodth tick of the baseClock. Note that
we apply in this article an always ticking clock
globalTime as argument for baseClock so that the
clock defined by this expression simply ticks any
periodth tick.

I |= c := every period on bc⇔
∀i ∈ Ic, ∃ibc ∈ Ibc, (i ≡ ibc)∧ (idx(ibc)%period = 0)

(7)

where idx(ibc) is the index of the ibc instant in Ibc.

∨: Sup (clocks: Set(Clock)) The clock specified by this
expression ticks with a clock in the parameter set
that does not precede the other clocks, that is, it
specifies the supremum of the particular instant

sets.

I |= c := a ∨ b⇔
I |= a 4 c ∧ I |= b 4 c

∧ /∈ d, Id |= a 4 d ∧ Id |= b 4 d ∧ d ≺ c
(8)

meaning that there is no clock d being slower than a or b or being
faster than c.

We provide the whole formal semantics definition
in [23]. These clock constraints are integrated in our
tool suite TIMESQUARE. Additionally, to ease the ap-
plication of constraints to specific domains, it is possi-
ble to specify user-defined constraints as introduced in
the next subsection.

2.4.2 User-defined constraints

To ease the specification of domain-specific CCSL con-
straints, we extended CCSL in prior work with the
Model of Concurrency and Communication Modeling Lan-
guage (MoCCML) [25,24]. MoCCML is a specific form
of automata that integrates seamlessly with the seman-
tics of CCSL. The automata are a way to specify clock
relations, which can be simulated in TIMESQUARE and
stored in user-defined model libraries.

For example, Figure 4 depicts the MoCCML rela-
tion MyUser-definedRelation, which has three clock pa-
rameters and a local Integer variable counter initial-
ized with zero. Figure 5 depicts a corresponding ex-
emplary TIMESQUARE simulation run that initializes
three clocks and applies the clock relation myRelation
typed by the MoCCML relation on them. The automa-
ton specifies two states A and B with a transition from
one state to the other for each of the states. Such transi-
tions specify possibly coincident parameter clock trig-
gers, guards, and effects. For example, the transition
from A to B fires when both the clock parameters cl1
and cl2 (i.e., the clock arguments clock1 and clock2 in
the simulation run) tick simultaneously and addition-
ally the guard [counter< 1] holds. When the transition
fires, its effect counter++ increments the counter. The
transition from state B to A fires on the tick of the clock
parameter cl3 (i.e., the clock clock3 in the simulation
run) and sets the counter to zero.

The triggers of a transition that leave a state spec-
ify which clocks are allowed to tick in this state. For
example, the clock parameter cl3 is not allowed to tick
in state A, and the clock parameters cl1 and cl2 are not
allowed to tick in state B. Furthermore, when in state
A, the clocks cl1 and cl2 are forced to tick simultane-
ously to fire the transition. We provide all the details
on the formal semantics in [24].

Early timing analysis based on scenario requirements and platform models 9

MoCCML-Relation MyUser-definedRelation (
 cl1: Clock, cl2: Clock, cl3: Clock)

cl1, cl2
[counter < 1] /

counter++

A

cl3 /
counter = 0

local variable counter: Integer = 0

B

Fig. 4 Exemplary MoCCML relation

clock1

t

clock3

clock2

myRelation in state “A”
(clock3 not allowed to occur)

/* Initialize clocks and apply
 MoCCML relation: */
Clock clock1
Clock clock2
Clock clock3

Relation myRelation
 [MyUser-definedRelation] (
 cl1->clock1, cl2->clock2,
 cl3->clock3)

myRelation:
Transition “cl1,
cl2 [counter < 1] /
counter++” from
state “A” to “B”
(clock1/2 must
occur
simultanously)

myRelation: Transition “cl3 /
counter = 0” from state “B” to “A”

legend

clock tick

Relation <relationName>
 [<relationType>] (
 parameter1->argument1, ...)

CCSL model
syntax

myRelation in state “B”
(clock1/2 not allowed to occur)

Fig. 5 Exemplary TIMESQUARE simulation run of the MoCCML
relation depicted in Figure 4

2.4.3 Model checking CCSL models

TIMESQUARE is a direct implementation of the for-
mal operational semantics as specified in our previous
work [24]. As such, the state of each constraint dur-
ing the simulation is clearly defined, so that it is also
for a CCSL model. Consequently it is possible, based
on a CCSL model, to exhaustively explore its accept-
able simulations. Each time a new state is reached, it is
compared to already visited states. If it does not exist,
it is add to the visited states, otherwise, a new transi-
tion to an existing visited state is created and it creates
a loop representing an acceptable periodic behavior of
the CCSL model. In case the set of possible simulations
is computed completely, it means that the whole state
space is also computed completely and can be serial-
ized. In TIMESQUARE, such state spaces are typically
serialized in the dot language [29] as well as in the
Aldebaran format [1]. The resulting files (and conse-
quently the CCSL model) can be verified against prop-
erties written in the Model Checking Language [85].

2.5 Specifying operational semantics with GEMOC

According to Harel and Rumpe [50], a modeling lan-
guage consists of an abstract syntax specifying the lan-
guage concepts and their relations, a semantic domain
describing the language meaning, and a semantic map-
ping relating the language concepts to the semantic do-
main elements. Our GEMOC approach [21,79] enables

to flexibly specify operational semantics for a model-
ing language following these definitions.

Specifically, the semantic domain is specified by
means of a Model of Concurrency and Communication
(MoCC). This MoCC is defined by semantic con-
straints in the form of pre-defined CCSL constraints
(cf. Section 2.4.1) as well as user-defined MoCCML
constraints (cf. Section 2.4.2). The MoCC defines the
concurrency, the synchronizations, and the possibly
timed way the elements of a program interact during
an execution. The semantic mapping is specified by the
declaration of Domain-Specific Events (DSEs), which as-
sociate the abstract syntax and the MoCC. The DSEs
are specified by means of our declarative Event Con-
straint Language (ECL) [26]. ECL is an extension of
the Object Constraint Language [93], augmented with
the notions of DSEs as well as behavioral invariants,
which use CCSL and MoCCML constraints.

The approach is implemented in our modeling lan-
guage workbench GEMOC Studio [16] for building and
composing executable modeling languages. GEMOC

Studio takes a language metamodel, an ECL map-
ping specification, and semantic constraints specified
through a MoCC as inputs and automatically derives
a modeling workbench with simulation and debug-
ging facilities. Specifically, it automatically derives a
dedicated QVTo model transformation [94]. This de-
rived model transformation takes an instance of the
language metamodel as input and generates a CCSL
model that parametrizes an execution engine based on
TIMESQUARE. The model transformation maps the as-
sociated DSEs to CCSL clocks based on the ECL map-
ping specification and applies the semantic constraints
from the behavioral invariants on these clocks.

3 Approach overview

As outlined in the introduction, our approach encom-
passes three main ingredients:

1. We propose a MARTE-based (cf. Section 2.3) UML
profile to augment the timed and component-
based version of the scenario notation Modal Se-
quence Diagrams (MSDs) (cf. Section 2.2) with
platform aspects. This encompasses specification
means for a) an execution platform model together
with timing-relevant resource properties, b) the al-
location of MSD specifications onto these platform
models, and c) analysis contexts to be considered
during the timing analyses. We call the resulting
models platform-specific MSD specifications and de-
scribe them in Section 4.

10 Jörg Holtmann et al.

Mapping

SpecificationAbstract Syntax

«metamodel»

UML

«profile»

Modal

«profile»

TAM

«profile»

MARTE

«reference» «import»«reference»

«import»

«reference»

Metamodel Level M2

Metamodel Level M1

«reference»«model»
ECL

Specification

Declaration of Domain-
specific Events (DSEs)

«instanceOf»

«model»

CCSL Model

«transformation»

MSD-to-CCSL

Transformation

«derivedFrom» «uses»

«model»

Platform-specific

MSD Specification

Semantic

Constraints

«modelLibrary»
Pre-defined

CCSL
Constraints

«modelLibrary»
User-defined

MoCCML
Constraints

Model of Concurrency
and Communication (MoCC)

Metamodel Level M0 (Runtime) «executes»

t

«transformation»

Preprocessing

«model»
Platform-specific

MSD Specification
with Computed
Static Delays

«instanceOf»

Fig. 6 Specifying MSD semantics for timing analyses with GEMOC

2. We conceptually extend the message event seman-
tics for scenario notations in general and MSDs in
particular by introducing additional event kinds
that occur during the execution of the software on
its target platforms. This enables time to elapse
between such events during our end-to-end re-
sponse time analyses, and consequently to intro-
duce platform-specific delays (cf. Section 2.1). We
also provide means to compute these different de-
lays based on the resource properties defined in
platform-specific MSD specifications, which we de-
scribe in Section 5.

3. The main contribution is the specification of
platform-aware MSD operational semantics ded-
icated to timing analyses. We apply the GEMOC

approach (cf. Section 2.5) to declaratively specify
these operational semantics, which formalizes and
spawns the platform-induced timing behavior of
MSD specifications. Based on the semantics speci-
fication, GEMOC automatically derives CCSL mod-
els that are input to the timing simulation and
model checking tool TIMESQUARE (cf. Section 2.4).
We present the semantics specification in Section 6
and an illustrating timing analysis in Section 7.

Figure 6 gives an overview of our application of
the GEMOC approach. The Abstract Syntax of conven-
tional (i.e., component-based and timed) MSD speci-
fications is defined at the language level (metamodel
level M2) by several parts of the UML metamodel
and the Modal profile (cf. Section 2.2). We extended
this Abstract Syntax by introducing platform and tim-
ing analysis aspects through our MARTE-based TAM
profile. The Mapping Specification declares Domain-
Specific Events (DSEs) in the context of Abstract Syntax
concepts and constrains their behavior through Se-
mantic Constraints applied by using the Event Con-

straint Language (ECL) (cf. Section 2.5). The set of Se-
mantic Constraints defines the Model of Concurrency
and Communication (MoCC) by means of Pre-defined
CCSL Constraints (cf. Section 2.4.1) as well as User-
defined MoCCML Constraints (cf. Section 2.4.2).

At the model level (metamodel level M1), we pro-
vide a Preprocessing QVTo [94] model transformation
that takes a Platform-specific MSD Specification as in-
put and computes derived properties. That is, based
on the resource properties, this transformation com-
putes delays, which we conceptually present in Sec-
tion 5. The output is a Platform-specific MSD Spec-
ification with Computed Static Delays, which is in-
put to another QVTo model transformation MSD-to-
CCSLTransformation. This model transformation is au-
tomatically derived by GEMOC Studio from our de-
clared DSEs and their MoCC. It encodes the func-
tional and real-time requirements as well as the pre-
computed delays and further timing-relevant resource
properties into constrained timing effects as part of a
CCSL Model. At runtime level (M0), a timing analyst
can simulate such CCSL models in TIMESQUARE to re-
veal potential real-time requirement violations.

4 The TAM profile for platform-specific interactions

Conventional component-based and timed MSD spec-
ifications as introduced in Section 2.2 define platform-
independent requirement specifications with real-time
constraints; i.e., the software architecture and the MSD
specifications have no correlation to any concrete tar-
get execution platform. In this paper, we propose to
consider the timing behavior emerging from the allo-
cation of component-based MSD specifications to con-
crete target execution platforms, which we together
call platform-specific MSD specifications.

Early timing analysis based on scenario requirements and platform models 11

In order to support the modeling of platform-
specific MSD specifications, we present in this section
the most important concepts of our Timing Analysis
Modeling (TAM) UML profile: Execution platforms in-
cluding the specification of the resource properties that
have to be considered in the timing analysis (and con-
sequently in the proposed platform-specific MSD se-
mantics), allocations of logical software components to
the platform elements, and analysis contexts. All these
concepts extend existing concepts from the MARTE

UML profile [92] (cf. Section 2.3). The overall pro-
file (as fully presented in [60, Section 4.6.1]) encom-
passes 5 subprofiles containing 29 stereotypes with
54 tagged values (including tagged values inherited
from MARTE) and stems from a literature review on re-
source properties that impact the timing behavior [12,
Chapter 3]. We do not present the full TAM profile here
but illustrate its use through a platform-specific MSD
specification for the EBEAS example, which will also
be used as basis to explain the extension of the MSD
semantics amenable to timing analysis (cf. Section 6).

In the following, we explain the most impor-
tant stereotypes by illustrating their application to an
EBEAS execution platform model depicted in Figure 7.
Thereby, we add platform-specific information to the
platform-independent MSD specification introduced
in Figure 1. In Section 4.1, we explain how we spec-
ify execution platforms with our TAM profile. Subse-
quently, we explain the allocation of the software com-
ponents to the resulting execution platform elements
in Section 4.2. Finally, we present the specification of
application software timing properties in Section 4.3
and the definition of analysis contexts in Section 4.4.

4.1 Specifying execution platforms

We provide three subprofiles for the specification of
concrete execution platforms together with the prop-
erties that impact the timing behavior of the system.
For instance, the bottom of Figure 7 (Platform Model
package) illustrates the use of the subprofiles to define
the EBEAS execution platform model. In the following
subsections, we use this package to illustrate the ap-
plication of the three subprofiles: The hardware exe-
cution platform (Section 4.1.1), the real-time operating
system (Section 4.1.2), and the communication infras-
tructure (Section 4.1.3).

4.1.1 Specifying the hardware processing

In this section, we illustrate means for the specifica-
tion of hardware elements and processing units. The
TamECU is an extension of the MARTE stereotype

GRM::Resource, which serves as a container for other
elements of the hardware platform (e.g., the memory
units, the communication media, the peripherials, the
processing units or the operating system). The stereo-
type TamProcessingUnit, contained by the TamECU, ex-
tends the MARTE stereotype GRM::ProcessingResource.
It describes the properties of the processing unit of
an ECU or of a micro controller. Amongst further
properties, it inherits the tagged value speedFactor,
which describes the relative speed w.r.t. to the nor-
malized speed of a reference processing unit [92, Sec-
tion 10.3.2.10]. Furthermore, it adds the tagged value
numCores, which specifies the amount of cores that the
processing unit provides and consequently the num-
ber of tasks that can be handled concurrently.

For example, the EBEAS execution platform
(Platform Model package of Figure 7) contains
two micro controllers («TamECU») :µC1 and
:µC2. Both of them specify each 1 processing unit
(«TamProcessingUnit»), respectively :PUµC1 and
:PUµC2; and both of them are single-core. However,
according to their speed factor value, the :PUµC2
processing unit is two times faster than :PUµC1.

4.1.2 Specifying the real-time operating system

In this section, we illustrate means to specify timing-
related properties of real-time operating systems,
which run on ECUs or micro controllers and provide
services for the application software. The stereotype
TamRTOS describes properties of such real-time op-
erating systems. Amongst others, it enables the spec-
ification of shared resources, operating system ser-
vices, and communication channels on operating sys-
tem level for ECU-internal communication. In the fol-
lowing, we focus on the specification of the oper-
ating system’s scheduler since the scheduling strat-
egy strongly impacts the timing behavior of the sys-
tem. For this purpose, we provide the stereotype
TamScheduler, which extends the MARTE stereotype
GRM::Scheduler. Besides specifications means of prop-
erties like the overhead introduced by the scheduler,
it inherits two tagged values: The scheduling policy
(schedPolicy, e.g., fixed Priority or round robin), and
the preemption capability (isPreemptible).

For example, in the execution platform of the
EBEAS, the schedulers of both :PUµC1 and :PUµC2
processing units depicted in Figure 7 implement the
most prominent [91,111] real-time operating system
scheduling policy FixedPriority and are specified to be
non-preemptible. In this policy, all tasks have fixed pri-
orities so that the scheduler dispatches the highest pri-
ority task amongst the ready tasks again and again af-

12 Jörg Holtmann et al.

ObstacleDetection

ObstacleDetection

sa:
Situation
Analysis

sa:
Situation
Analysis

sa:
Situation
Analysis

vc:
Vehicle
Control

vc:
Vehicle
Control:Deci-

sions
:Deci-
sions

sa2vc

class [Package] Platform Modelclass [Package] Platform Model

«TamResource-
 Platform»
EBEASPlatform

«TamResource-
 Platform»
EBEASPlatform

«TamResource-
 Platform»
EBEASPlatform

«TamECU»

:µC1

«TamECU»

:µC1

numCores = 1
speedFactor = 1

«TamProcessingUnit»
:PUµC1

numCores = 1
speedFactor = 1

«TamProcessingUnit»
:PUµC1

...

«TamECU»

:µC2

«TamECU»

:µC2

...

CANBusCANBus

«TamComConnection»
blockT = 1ms
capacity = 100kbit/s

«TamComConnection»
blockT = 1ms
capacity = 100kbit/s

«allocate»«allocate»«allocate»«allocate» «allocate»«allocate»

numCores = 1
speedFactor = 2

«TamProcessingUnit»
:PUµC2

numCores = 1
speedFactor = 2

«TamProcessingUnit»
:PUµC2

~:V2V-
Messages

«TamRTOS»
:OSEK/VDX-µC2

«TamRTOS»
:OSEK/VDX-µC2

isPreemptible
 = false
schedPolicy
 = FixedPriority

«TamScheduler»
:OSEK/VDX

-Scheduler-µC2

isPreemptible
 = false
schedPolicy
 = FixedPriority

«TamScheduler»
:OSEK/VDX

-Scheduler-µC2

«TamRTOS»
:OSEK/VDX-µC1

«TamRTOS»
:OSEK/VDX-µC1

isPreemptible
 = false
schedPolicy
 = FixedPriority

«TamScheduler»
:OSEK/VDX

-Scheduler-µC1

isPreemptible
 = false
schedPolicy
 = FixedPriority

«TamScheduler»
:OSEK/VDX

-Scheduler-µC1

v2x:
V2XComm-

unication

v2x:
V2XComm-

unication

acc:
Adaptive
Cruise
Control

acc:
Adaptive
Cruise
Control

«TamECU»

:ACC-ECU

«TamECU»

:ACC-ECU

«TamECU»

:v2x-

Transceiver

«TamECU»

:v2x-

Transceiver «TamCom-
Connection»
DSRCAccess

«TamCom-
Connection»
DSRCAccess

«TamCom-
Connection»

FlexRay

«TamECU»

:ESC-ECU

«TamECU»

:ESC-ECU

«TamCom-
Connection»

FlexRay

«TamCom-
Connection»

FlexRay

«TamCom-
Connection»

FlexRay

«TamCom-
Connection»

FlexRay

esc:
Electronic
Stability
Control

esc:
Electronic
Stability
Control

«allocate»«allocate»

«allocate»«allocate»

«allocate»«allocate»

«allocate»«allocate» «allocate»«allocate»

«allocate»«allocate»

«allocate»«allocate»

«allocate»«allocate»

class [Package]

ObstacleDetection::

 Interfaces

class [Package]

ObstacleDetection::

 Interfaces

...

...

«TamComInterface»
commTxOvh = 1ms
«TamComInterface»
commTxOvh = 1ms

«TamComInterface»
commRcvOvh = 1ms
«TamComInterface»
commRcvOvh = 1ms

+ enableBraking()

«interface»
Decisions

+ enableBraking()

«interface»
Decisions

+ trajectoryBeacon()

«interface»
V2VMessages

+ trajectoryBeacon()

«interface»
V2VMessages

«TamOperation»

execTime = 5ms

«TamOperation»

execTime = 5ms

«TamOperation»

execTime = [6..9]ms

msgSize = 500bit

«TamOperation»

execTime = [6..9]ms

msgSize = 500bit

+ obstacle()

«interface»
ObstacleInfo

+ obstacle()

«interface»
ObstacleInfo

«TamOperation»

execTime = 5ms

«TamOperation»

execTime = 5ms

...

Fig. 7 Platform-specific MSD specification excerpt for the EBEAS

ter the task that is executing has finished. This schedul-
ing strategy is supported by the widespread real-time
operating systems of AUTOSAR [9] and OSEK/VDX
[65], for example.

4.1.3 Specifying the communication infrastructure

In this section, we illustrate means for the specifica-
tion of the infrastructure for the communication be-
tween distributed components. We provide the stereo-
type TamComConnection, which extends the MARTE

stereotype GRM::CommunicationMedia. It provides ad-
ditional properties compared to the communication
media stereotype but we focus here on the most im-
portant ones that are inherited from MARTE. The first
important property of a communication medium is
its latency, which is specified through the inherited
blockT tagged value. The second important property
of a communication medium is its throughput, speci-
fied through the inherited capacity tagged value.

Furthermore, the network interfaces between a
TamECU and a TamComConnection need time to en-
code messages from the software representation to a
representation suitable for the transport via a com-
munication medium and vice versa. Such properties
are captured as part of the TamComInterface stereo-
type for ports of TamECUs, inter alia. The TamCom-
Interface stereotype extends the MARTE stereotype
GQAM::GaExecHost and inherits two tagged values

representing the overhead duration implied by the en-
coding/decoding of the information to and from a
communication media: commTxOvh and commRcvOvh.

For example, in the execution platform of the
EBEAS, one bus (CanBus) is used to communi-
cate between the two ECUs. The throughput of
the «TamComConnection» CanBus connector is set
to 100kbit/s and its latency is set to 1ms. Addi-
tionally, the communication interface of :µC1’s port
(«TamComInterface») specifies a message encoding
overhead of 1ms (commTxOvh=1ms), and the commu-
nication interface of :µC2’s port specifies a message de-
coding overhead of 1ms (commRcvOvh=1ms).

4.2 Specifying allocations

The MARTE subprofile Alloc provides means to allo-
cate software elements to resources of execution plat-
forms (cf. Section 2.3). We reuse the Alloc::Allocate
stereotype to specify allocations of MSD application
elements onto TAM execution platform elements. This
stereotype defines a link that can be used to allocate
software components onto processing units as well as
logical connectors onto communication media.

For instance, in the platform-specific EBEAS ex-
ample, the software components sa: SituationAnalysis
and vc: VehicleControl are respectively allocated to the
:µC1 and :µC2 micro controllers. This is illustrated
in Figure 7 by the «allocate» links from the logical

Early timing analysis based on scenario requirements and platform models 13

software components as part of the collaboration to
the «TamECU» micro controllers as part of the exe-
cution platform. Analogously, logical connectors be-
tween the software components in the collaboration
are allocated to «TamComConnection» links in the Plat-
form Model. For instance, the logical connector sa2vc
between sa: SituationAnalysis and vc: VehicleControl is
allocated to the CanBus connecting :µC1 and :µC2.

4.3 Defining the software timing properties

In this section, we illustrate means to specify infor-
mation about the estimated resource consumption of
the application software. Its most important element
is the TamOperation stereotype, which inherits tagged
values from the MARTE stereotype GRM::Resource-
Usage [92, Section 10.3.2.13]. It is used to specify the
platform-specific timing related aspects of the opera-
tions used as MSD message signatures. We consider
here only the two most important tagged values: exec-
Time and msgSize. The tagged value execTime speci-
fies the best-/worst-case execution time of an opera-
tion with respect to a processing unit with a speed fac-
tor of 1. The msgSize specifies the size of the message
associated to the operation.

For instance, in the EBEAS example, both the
«TamOperation»s obstacle and trajectoryBeacon on the
right-hand side of Figure 7 have a worst-case execu-
tion time of 5ms (i.e., the worst-case execution time is
specified through one value). In contrast, the opera-
tion enableBraking has, specified by the interval value,
a best-case execution time of 6ms and a worst-case ex-
ecution time of 9ms. Note that since the enableBraking
operation is part of the vc: VehicleControl, which is al-
located to the :µC2 processing unit; and that :µC2 has
a speed factor of 2, then the actual best-/worst-case
execution time of enableBraking spans an interval of
[3 .. 4.5]ms. Additionally, the enableBraking operation
is associated to a message whose size is 500bit, and its
actual message transmission time has to be calculated
based on this size w.r.t. the throughput of the CanBus.
These are concrete examples of timing effects (i.e., con-
crete delay times in an execution context) that are in-
duced by the specified resource properties.

4.4 Specifying analysis contexts

In this section, we illustrate means to specify the tim-
ing behavior of the system environment. More pre-
cisely, it defines a set of timed scenarios that make ex-
plicit the hypothesis under which the timing behavior

«EnvironmentAssumption»

msd BeaconFrequency

«EnvironmentAssumption»

msd BeaconFrequency

trajectory
Beacon

sa:

Situation

Analysis

sa:

Situation

Analysis

v2x:
V2XComm-

unication

v2x:
V2XComm-

unication

«TamAssumptionMSD»
pattern =
 TamPeriodicPattern {
 period = 25ms
 }

«TamAssumptionMSD»
pattern =
 TamPeriodicPattern {
 period = 25ms
 }

«EnvironmentAssumption»

msd ObstacleArrivalRate

«EnvironmentAssumption»

msd ObstacleArrivalRate

obstacle

sa:

Situation

Analysis

sa:

Situation

Analysis

«TamAssumptionMSD»
pattern =
 TamSporadicPattern {
 minArrivalRate = 50ms
 maxArrivalRate = 55ms
 }

«TamAssumptionMSD»
pattern =
 TamSporadicPattern {
 minArrivalRate = 50ms
 maxArrivalRate = 55ms
 }

acc:
Adaptive
Cruise
Control

acc:
Adaptive
Cruise
Control

platform = [EBEASPlatform]

«TamAnalysisContext»
EBEASAnalysisContext

platform = [EBEASPlatform]

«TamAnalysisContext»
EBEASAnalysisContext

behavior = [EmcyBraking,
 BeaconAcknowledgement]

«TamWorkloadBehavior»
EBEASWorkload

behavior = [EmcyBraking,
 BeaconAcknowledgement]

«TamWorkloadBehavior»
EBEASWorkloadworkloadworkload

demanddemand demanddemand

Fig. 8 Analysis context example

of the system is realized. Such simulation scenarios are
called analysis contexts [110, Chapter 9] (cf. Section 2.3).

The main stereotype of the corresponding TAM
subprofile is the TamAnalysisContext, which extends
the MARTE stereotype GQAM::GaAnalysisContext. This
stereotype references the platform under analysis
and the concrete workload that defines the timed
scenarios. The workload is specified through the
TamWorkloadBehavior stereotype, which extends the
GQAM::GaWorkloadBehavior stereotype. From the ex-
tension, it inherits the tagged values demand and be-
havior that respectively define the analysis (timing)
assumptions on the environment on the one hand
and the system expected (timing) requirements on the
other hand. In our context, the behaviors are the re-
quirement MSDs as presented earlier while the de-
mands are assumption MSDs (cf. Section 2.2) triggering
the system behavior, where the timing of the environ-
ment message is constrained by an arrival pattern. For
this purpose, we provide the TAM stereotype TamAs-
sumptionMSD that refines the Modal stereotype Envi-
ronmentAssumption and references an arrival pattern.

We support periodic and sporadic arrival patterns.
A periodic arrival pattern, specified by the stereotype
TamPeriodicPattern, constrains the environment mes-
sage to occur periodically every period time units. We
currently do not support explicit jitter deviations from
the periodical occurrences, as this timing information
would be very detailed in the early RE phase. How-
ever, if a jitter is known and as large that a require-
ments engineer wants to specify it, sporadic arrival
patterns can be applied. These are specified by the
stereotype TamSporadicPattern and constrain an envi-
ronment message to occur with a uniform distribution
between a minArrivalRate and/or a maxArrivalRate.

For example, Figure 8 depicts an analysis con-
text for the EBEAS. The entry point is the «Tam-

14 Jörg Holtmann et al.

AnalysisContext» EbeasAnalysisContext. It references
the EbeasPlatform container depicted in the bottom
of Figure 7 as well as the «TamWorkloadBehavior»
EbeasWorkload. The EbeasWorkload references the be-
havior MSDs depicted or indicated in Figure 1. Fur-
thermore, the workload references demand assumption
MSDs. These specify that the trajectoryBeacon message
occurs periodically every 25ms and that the obstacle
message occurs sporadically with a rate ranging from
50ms to 55ms, respectively.

5 Definition of interaction events and delays
required for timing analyses

The existing operational semantics for platform-
independent MSD specifications as defined by Real-
time Play-out [17] only considers synchronous mes-
sages, where the events of sending and receiving a
message at runtime coincides and no notion of tasks
exists. This abstraction is well-suited to analyze ideal-
ized systems but is not adequate for platform-aware
analyses. Such analyses require to consider different
delays introduced by the actual execution on a plat-
form. In order to define these delays, we introduce in
this section additional message event kinds in between
which the delays are defined. We associate each mes-
sage event kind with an equally named lifeline loca-
tion for MSD messages. To ease readability, we refer to
the event kinds and the associated lifeline locations in
an undifferentiated way.

According to Tindell et al. [114], four kinds of de-
lays are required for the analysis of distributed real-
time systems: the message dispatch delay, the message
transmission delay, the message consumption delay
and the task execution delay (see Figure 9). These de-
lays are based on locations allowing a more fine-grain
cut progression. In the case the execution platform
does not introduce some of the delays, then the associ-
ated events occur immediately one after the other (i.e.,
at the next instant). In the other case, these delays usu-
ally contain two parts, a so-called static part, which can
be computed statically according to the properties of
the system; and a so-called dynamic part which dynam-
ically emerges from certain workload situation at run-
time due to mutual resource exclusion. The static part
of the delays and their computation are defined in the
remainder of the section and technically implemented
as part of the preprocessing transformation mentioned
in Section 3, whereas the handling of the dynamic part
is presented in Section 6.2.2.

Figure 9 illustrates the location kinds, the fine-
grained cuts, and the delays for the enableBraking and
emcyBraking MSD messages.

Task Start

Task Completion

c1.1

c1

c1.3

c1.4

c1.5

c2

Message
Creation

sa:

Situation

Analysis

esc:
Electronic
Stability
Control

vc:

Vehicle

Control

c1.2

...

c2.1
Message
Creation

c2.2
Message
Send ...

Message
Dispatch

Delay

Message
Transmission

Delay

Message
Consumption

Delay

Task
Execution

Delay

Immediately

Immediately
when task can
be dispatched

Message
Send

Message
Consumption

Message
Reception

Fig. 9 Additional lifeline location kinds for MSD messages

In the definitions of the delays, instead of consider-
ing only the worst case (execution/transmission) de-
lays, we also consider their best cases, which are like-
wise of high interest since they potentially modify the
access orders to mutually exclusive resources [10,99,
19]. Thus, we compute both lower and upper bounds
for all delays and define them as intervals (cf. the spec-
ification of best-/worst-case execution times in Sec-
tion 4.3). For space reasons, we only show hereafter
the formulas for each upper bound, where the corre-
sponding lower bounds are computed analogously.

The delay definitions presented in the following
encompass derived properties (prefixed with a / as in
UML). These derived properties are calculated based
on a variety of detailed property values as part of
the TAM platform models. Furthermore, we encapsu-
late behind the derived properties the distinct delay
computations regarding message exchange between
software components allocated to different ECUs (i.e.,
distributed communication) or to the same ECU (i.e.,
ECU-internal communication). We only outline the
particular ingredients of the derived properties in the
following and present the full computations behind
them in detail in [60, Section 4.6.1.2].

5.1 Message transmission delays

The use of communication media and communica-
tion protocols (e.g., the properties of the connector
CanBus in Figure 7) cause a message transmission delay,
which must be taken into account by a timing analysis
[114]. In order to consider this delay, we encompass
the concept of synchronous and asynchronous mes-
sages introduced by Harel’s original Play-out seman-

Early timing analysis based on scenario requirements and platform models 15

tics [49] for Live Sequence Charts (LSCs) [22]. In other
words, we distinguishing between message send events
and message reception events. In case the platform is not
defined, such events coincide and correspond to syn-
chronous messages as in Real-time Play-out [17]. How-
ever, once the platform is defined, these events are not
synchronously correlated with a whole MSD message.
In contrast, a causality is defined between the mes-
sage send and the message reception location of the
corresponding MSD message, respectively. See, for in-
stance, the enableBraking message in Figure 9, where
the cut c1.2 marks that the message is sent but not yet
received, whereas the cut c1.3 marks that the message
is received but not yet consumed.

The message transmission delays encompass the
overall propagation latency (i.e., net latency plus po-
tential overheads) of the communication channel as
well as the time to transmit the message. This trans-
mission time depends on the overall message size (i.e.,
net message size plus control overheads like check
sums) in relation to the overall throughput (i.e., me-
dia throughput minus potential overhead deductions)
of the communication channel. In case of a distributed
communication, this overall throughput encompasses
its net throughput minus the percentage transmission
overhead of the applied transmission protocol and
of the applied middleware communication services.
Thus, we compute the upper bound of the message
transmission delay for an MSD message m as

m.transmissionDelaymax =
m.connector.supplier./overallLatencymax

+
m.signature./overallMsgSizemax

m.connector.supplier./overallThroughputmin

(9)

where m.connector is a UML::Connector associated to m,
m.connector.supplier is a TamComConnection (distributed com-
munication) or a TamOSComChannel (ECU-internal communi-
cation) that the connector is allocated to, and m.signature is a
TamOperation associated to m.

5.2 Message dispatch and consumption delays

The notion of message reception in scenario-based for-
malisms is ambiguous, because it is not clear whether a
message reception is the instant when the message ar-
rives at the receiver communication interface or the in-
stant when the receiver application software consumes
the message [58]. The distinction between message re-
ception and message consumption is necessary in or-
der to take the message consumption delays into account

[114]. Such delays occur due to the decoding of net-
work messages from a representation suitable for the
transport via a network to a logical representation suit-
able to be processed by the application software. Sim-
ilarly, there is a message dispatch delay between the in-
stant when a message is created by the sending soft-
ware component and the instant when it is actually
dispatched to the network by its network interface
[114]. Such delays occur due to the encoding of a logi-
cal representation into a representation suitable for the
transport via a communication medium.

To distinguish between message creation and mes-
sage sending as well as between message reception
and message consumption, we introduced two addi-
tional message event kinds message creation event and
message consumption event. These event kinds capture
the instant when a message is created by the sending
software component and consumed by the receiving
software component, respectively. Figure 9 illustrates
these event kinds and locations. We define the mes-
sage creation location to be positioned on the send-
ing lifeline directly before the message sending loca-
tion (cf. cut c1.1). Similarly, the message consumption
location is positioned on the receiving lifeline directly
after the message reception location (cf. cut c1.4).

The message dispatch delays encompass the over-
head to gain write access to a communication channel
(in case of distributed communication an arbitration
time for gaining access to the overall communication
system is added) as well as the time to encode a mes-
sage from its logical representation to a format suit-
able for the transfer via the communication channel.
This encoding time depends on the overall message
size (i.e., net size plus potential overheads) in relation
to the encoding rate of the communication channel. In
case of distributed communication, this encoding rate
further depends on the encoding rate of the applied
transmission protocol and of the applied middleware
communication services. Thus, we compute the upper
message dispatch delay for an MSD message m as

m.dispatchDelaymax =
m.connector.supplier./dispatchOverheadmax

+
m.signature./overallMsgSizemax

m.connector.supplier./overallEncodeRatemin

(10)

where m.connector is a UML::Connector associated to m,
m.connector.supplier is a TamComConnection (distributed com-
munication) or a TamOSComChannel (ECU-internal communi-
cation) that the connector is allocated to, and m.signature is a
TamOperation associated to m.

Analogously to message dispatch delays, message
consumption delays encompass the time to gain read

16 Jörg Holtmann et al.

access to a communication channel as well as the time
to decode a message from the communication channel
format to its logical representation. The decoding time
depends on the overall message size in relation to the
decoding rate of the communication channel. Thus, we
compute the upper bound of the message consump-
tion delay for an MSD message m as

m.consumptionDelaymax =
m.connector.supplier./consumptionOverheadmax

+
m.signature./overallMsgSizemax

m.connector.supplier./overallDecodeRatemin

(11)

where m.connector is a UML::Connector associated to m,
m.connector.supplier is a TamComConnection (distributed com-
munication) or a TamOSComChannel (ECU-internal communi-
cation) that the connector is allocated to, and m.signature is a
TamOperation associated to m.

5.3 Task execution delays

The semantics for platform-independent MSD specifi-
cations focuses on the message exchange between soft-
ware components. However, it neglects internal pro-
cedures (i.e., tasks) that are executed by the software
components to process consumed messages and to cre-
ate the messages to be sent. This message processing
by tasks leads to task execution delays that affect the
timing behavior of the system [114] (cf. the execution
times of the particular software operations in Figure 7).

In order to consider such effects, we do not specify
explicit task models but rather define that each mes-
sage is associated with exactly one task that is exe-
cuted upon the consumption of the message by the
receiving software component. That is, we introduce
the two new event kinds task start event and task com-
pletion event; which respectively represent the start and
the end of a task execution. Figure 9 illustrates the new
event and location for the enableBraking MSD message.
We define the task start to be positioned on the re-
ceiving lifeline directly after the message consumption
(cf. cut c1.5). Similarly, the task completion is posi-
tioned on the receiving lifeline directly after the task
start, representing also the cut for the next MSD mes-
sage (cf. cut c2). The next location is the message cre-
ation location (cf. cut 2.1), and so on.

Task execution delays encompass the normalized
overall execution time (i.e., net execution time plus po-
tential overheads) required to process a message in re-
lation to the relative speed factor of the executing pro-
cessing unit (cf. Section 4.1) as well as the overall times
for accessing memory and resources (i.e., net access

times plus overheads). Omitting the access times for
comprehensibility reasons, we hence compute the up-
per task execution delay for an MSD message m as

m.executionDelaymax =
m.signature./normalizedOverallExecTimemax

m.connector[receiver].supplier.procUnit.speedFactor
+

m./overallMemoryAccessTimemax
+

m./overallResourceAccessTimemax

(12)

where m.signature is a TamOperation associated to m,
m.connector[receiver] is the receiving software compo-
nent, m.connector[receiver].supplier is a TamECU that
the receiving software component is allocated to, and
m.con[receiver].supplier.procUnit is the TamProcessingUnit
of the ECU.

We define a task to start immediately (i.e., at the
next instant) after it has consumed its corresponding
message if the scheduler can dispatch it (cf. cuts c1.4
and c1.5 in Figure 9). If the scheduler cannot dispatch it
immediately, a dynamic delay occurs (cf. Section 6.2.2).
When a software component completed a task, it cre-
ates a potential subsequent message at the next instant
afterward (cf. c2 and c2.1 in Figure 9).

6 Specifying operational semantics for the timing
analysis of platform-specific interaction models

In Section 4, we introduced the TAM profile to enable
the modeling of platform-specific MSD specifications.
Furthermore, we introduced additional message event
kinds to support platform-specific timing analyses as
well as the computations for the static delays in be-
tween these events (see Section 5). In this section, we
overview the proposed platform-specific MSD opera-
tional semantics dedicated to timing analyses.

This section consequently details the semantics re-
lated parts of Figure 6 from the approach overview
section (Section 3). The section elaborates on the
EBEAS model to illustrate the most important con-
cepts of the semantics; but the reader can refer to [60,
Appendix B] for the illustrations of further concepts
as well as the complete operational semantics of the
TAM profile. Also, to retrieve the artefacts and addi-
tionnal information, the reader can refer to the com-
panion webpage [61].

For each of the following sub-sections, we start by
describing the semantic mapping between the element
of the abstract syntax and the CCSL constraints, real-
ized at the language level (metamodel level M2). At

Early timing analysis based on scenario requirements and platform models 17

Abstract SyntaxAbstract Syntax

«profile» TAM«profile» TAM

Mapping SpecificationMapping Specification

context TamModalMessage

def: msgCreateEvt: Event
def: msgSendEvt: Event
def: msgReceiveEvt: Event
def: msgConsumeEvt: Event
def: taskStartEvt: Event
def: taskCompleteEvt: Event

inv eventOrder:

Relation EventOrderRelation (

self.msgCreateEvt, self.msgSendEvt,
self.msgReceiveEvt, self.msgConsumeEvt,
self.taskStartEvt, self.taskCompleteEvt

)

Semantic ConstraintsSemantic Constraints

User-defined ConstraintsUser-defined Constraints

CCSL ModelCCSL Model

M2

M1

Platform-specific MSD SpecificationPlatform-specific MSD Specification

EBEASEBEAS /* Declaration of CCSL clocks, stemming from the DSEs
defined in the ECL mapping specification: */
Clock enableBraking_msgCreateEvt
Clock enableBraking_msgSendEvt
Clock enableBraking_msgReceiveEvt
Clock enableBraking_msgConsumeEvt
Clock enableBraking_taskStartEvt
Clock enableBraking_taskCompleteEvt

/* Declaration of a clock relation, stemming from the
invariant defined in the ECL mapping specfication: */
Relation enableBraking_eventOrder[EventOrderRelation] (

msgCreateEvt->enableBraking_msgCreateEvt,
msgSendEvt->enableBraking_msgSendEvt,
msgReceiveEvt->enableBraking_msgReceiveEvt,
msgConsumeEvt->enableBraking_msgComsumeEvt,
taskStartEvt->enableBraking_taskStartEvt,
taskCompleteEvt->enableBraking_taskCompleteEvt

)

«transformation»

MSD-to-CCSL

Transformation

«transformation»

MSD-to-CCSL

Transformation

«transformation»

MSD-to-CCSL

Transformation

«instanceOf»«instanceOf» «derivedFrom»«derivedFrom» «uses»«uses»

«references»

enableBraking

Message

Send

Message

Send

Message

Reception

Message

Reception

Message

Consumption

Message

Consumption

Task StartTask Start

Task CompletionTask Completion

Message

Creation

Message

Creation

sa:

Situation

Analysis

sa:

Situation

Analysis

vc:

Vehicle

Control

vc:

Vehicle

Control

... ...

MoCCML-Relation EventOrderRelation (

 msgCreateEvt: Clock, msgSendEvt: Clock,
 …, taskCompleteEvt: Clock)

MoCCML-Relation EventOrderRelation (

 msgCreateEvt: Clock, msgSendEvt: Clock,
 …, taskCompleteEvt: Clock)

11 22

msgCreate
Evt /

msgCreate
Evt /

msgSend
Evt /

msgSend
Evt /

33

44

msgReceive
Evt /

msgReceive
Evt /

55
msgConsume

Evt /
msgConsume

Evt /

66
taskStart

Evt /
taskStart

Evt /

taskComplete
Evt /

taskComplete
Evt /

«stereotype»

Modal::Modal-

Message

«stereotype»

Modal::Modal-

Message

«references»

msd EmcyBrakingmsd EmcyBraking

...

«metaclass»

UML::Message

«metaclass»

UML::Message

«stereotype»

TamModal-

Message

«stereotype»

TamModal-

Message

1
2
3
4
5
6

1
2
3
4
5
6

1

2

3

4

5

6

Fig. 10 Excerpt from the semantics specification of the message event kinds order and some illustrating models

this level, Domain-Specific Events (DSEs) are speci-
fied with the Event Constraint Language (ECL) in the
context of concepts from the abstract syntax, and con-
strained by behavioral invariants (cf. Section 2.5). This
generates a transformation of TAM models into CCSL
specifications. Then, we illustrate the CCSL models
generated for some TAM models (metamodel level
M1). Finally, at the runtime level (metamodel level M0)
we describe the corresponding CCSL simulation runs.

Section 6.1 describes our encoding of the extended
message event handling semantics for MSDs in terms
of CCSL. Section 6.2 describes how we encode timing
effects induced by the resource properties, and Sec-
tion 6.3 describes our encoding of real-time require-
ments on these effects and of timing analysis contexts.

6.1 Encoding of message event kinds and their order

In order to enable simulative timing analyses of
platform-specific MSD requirements, we encoded the
semantics of MSDs in terms of CCSL. This encom-
passes the general occurrences of message events cor-
responding to the specified MSD messages (cf. Sec-
tion 2.2.2) as well as the additional message event
kinds introduced in Section 5.

Language level At the language level, we explicitly de-
fine DSEs and constraints that define the acceptable or-
ders between the occurrences (at runtime) of the DSE

instances (at the model level). The order of the oc-
currences represents the fine-grained cut progression
w.r.t. the MSD message locations (cf. Figure 9).

The upper part of Figure 10 depicts an excerpt from
the semantics specification of MSD message event oc-
currences. It depicts part of the Abstract Syntax, of
the Mapping Specification, and of the applied Seman-
tic Constraints.

Applying ECL, the Mapping Specification in the
middle upper part of Figure 10 defines the DSEs
identified in Section 5 in the context of a Tam-
ModalMessage, like msgCreateEvt (1) and msgSendEvt
(2). Each instance of a TamModalMessage will then be
equipped with an instance of each DSE. The Map-
ping Specification also specifies an invariant eventOrder
in the context of a TamModalMessage. Each instance
of the DSEs will then be constrained according to
this invariant, which specifies the allowed order of
the message event occurrences. This order is speci-
fied by the user-defined MoCCML relation EventOrder-
Relation, whose parameters are DSEs. Consequently,
the DSE definition together with the invariants define
the mapping between the concepts from the abstract
syntax and the semantic constraints.

Looking at the constraint EventOrderRelation, it is
specified by a constraint automaton, which defines the
allowed order of the DSE parameters. Here, it speci-
fies that the events shall only occur in the following
order msgCreateEvt, msgSendEvt, msgReceiveEvt, msg-

18 Jörg Holtmann et al.

ConsumeEvt, taskStartEvt, and taskCompleteEvt; possi-
bly infinitely. Note that there is no notion of time in this
constraint, meaning that an arbitrary time can elapse
between two occurrences.

From this specification, a transformation is auto-
matically generated, to be used at the model level.

Model level At the model level, a timing analyst cre-
ates a platform-specific MSD specification and uses
the previously generated transformation to generate
a CCSL model, which acts as a symbolic represen-
tation of all acceptable schedules of the MSD spec-
ification; as defined by the semantics specification.
The lower part of Figure 10 depicts an excerpt from
the Platform-specificMSDSpecification and the corre-
sponding CCSLModel, generated through the MSD-to-
CCSLTransformation.

The MSD in the left lower part specifies the enable-
Braking MSD message and its event kinds (1–6) as part
of the EmcyBraking MSD (cf. Section 5).

As indicated in the generated CCSLModel in the
right lower part of Figure 10, the derived transforma-
tion translates any MSD message to six clocks. For in-
stance, the enableBraking MSD message is translated to
the six clocks (1–6) of the CCSL model of Figure 10.

Furthermore, for any MSD message the trans-
formation generates a clock relation typed by the
MoCCML relation associated by the ECL invariant
(defined at the language level). For example, for the
MSD message enableBraking the transformation gener-
ates the enableBraking_eventOrder clock relation typed
by the MoCCML relation EventOrderRelation. This re-
lation gets the argument enableBraking_msgCreateEvt
for the parameter msgCreateEvt, the argument enable-
Braking_msgSendEvt for parameter msgSendEvt, etc.

Runtime level The CCSL models generated at the
model level are simulated in TIMESQUARE at the run-
time level. Figure 11 depicts a CCSL run resulting from
the CCSL model depicted in the right lower part of
Figure 10. This CCSL run represents the occurrence or-
der of the particular message event kinds for the MSD
message enableBraking.

The rows depict ticks of the clocks, which them-
selves represent the particular message event occur-
rences. They are ordered from the top to the bottom,
where the topmost row represents the occurrence of a
message creation event and the bottommost row rep-
resents the occurrence of a task completion event. The
ticks correspond to the transitions in the MoCCML re-
lation EventOrderRelation. We assume that at instant 0
the MoCCML relation is in state 1, so that due to the
tick of the clock enableBrakingmsgCreateEvt at instant 1

enableBrakingmsgCreateEvt

enableBrakingmsgSendEvt

enableBrakingtaskCompleteEvt

enableBrakingtaskStartEvt

enableBrakingmsgConsumeEvt

0 5

t

10

legend

Causal dependency

enableBrakingmsgReceiveEvt

clock tick

enableBraking_eventOrder
[EventOrderRelation] in state “2”

enableBraking_eventOrder
[EventOrderRelation] in
state “3”

enableBraking_eventOrder
[EventOrderRelation] in state “1”

1 2 3 3 3 4 4 5 6 1 1

Fig. 11 Example: Simulated order of message event occur-
rences, enforced by the CCSL model clock relation enableBrak-
ing_eventOrder (cf. CCSL Model in the lower right of Figure 10)

the state is changed to 2. After the subsequent tick of
the clock representing the message send event occur-
rence at instant 2, the relation is in state 3 for the next
3 instants, and so on. The arrows visualize the causal
dependencies between the clock ticks.

6.2 Encoding of platform-induced timing effects

In this section, we present how we encoded the se-
mantics of the timing effects that are induced by the
properties of the execution platform. We support two
general classes of timing behavior effects. The first
class encompasses the different kinds of static delays
between the particular message event kinds as dis-
cussed in Section 5. The second class encompasses de-
lays that dynamically emerge from mutual exclusion
of resources when different software components try
to access the same resource (e.g., the processor for the
task execution, peripheral hardware, or an operating
system service) at the same time.

6.2.1 Static delays between message event kinds

As discussed in Section 5, message-based communica-
tion and task processing involves multiple events dur-
ing the actual execution on a target platform, and static
delays occur between such events. In this section, we
present how we encoded these static delays, based on
the example of task execution time. Besides the differ-
ent static delay kinds presented in Section 5, the com-

Early timing analysis based on scenario requirements and platform models 19

Platform-specific MSD Specification

with Computed Static Delays

Platform-specific MSD Specification

with Computed Static Delays

EBEASEBEAS

«TamModalMessage»

minTaskExecutionDelay = 3

maxTaskExecutionDelay = 5

«TamModalMessage»

minTaskExecutionDelay = 3

maxTaskExecutionDelay = 5

«derivedFrom»«derivedFrom»

Abstract SyntaxAbstract Syntax

«profile» TAM«profile» TAM
Mapping SpecificationMapping Specification

context Model
def: globalTime: Event

context TamModalMessage
...
def: taskStartEvt: Event
def: taskCompleteEvt: Event

inv minExecutionDelay:
let taskStartAfterMinExecDelay: Event =

Expression DelayFor (self.getModel().globalTime,
 self.taskStartEvt, self.minTaskExecutionDelay)

Relation NonStrictPrecedes (
taskStartAfterMinExecDelay, self.taskCompleteEvt)

inv maxExecutionDelay:
let taskStartAfterMaxExecDelay: Event =

Expression DelayFor (self.getModel().globalTime,
self.taskStartEvt, self.minTaskExecutionDelay)

Relation NonStrictPrecedes (
self.taskCompleteEvt, taskStartAfterMaxExecDelay)

Semantic ConstraintsSemantic Constraints

Pre-defined ConstraintsPre-defined Constraints

Expression DelayFor (clockForCounting: Clock,
clockToDelay: Clock, delay: Integer): Clock {...}

Relation NonStrictPrecedes (
leftClock: Clock, rightClock: Clock) {...}

…
minTaskExecutionDelay: Integer
maxTaskExecutionDelay: Integer

«stereotype»
TamModalMessage

…
minTaskExecutionDelay: Integer
maxTaskExecutionDelay: Integer

«stereotype»
TamModalMessage

«references»

M2

M1

Platform-specific MSD SpecificationPlatform-specific MSD Specification

EBEASEBEAS

«instanceOf»«instanceOf» «uses»«uses»

«stereotype»

TamOperation

«stereotype»

TamOperation

execTime: NFP_Duration

«stereotype»

MARTE::GRM::ResourceUsage

execTime: NFP_Duration

«stereotype»

MARTE::GRM::ResourceUsage

«metaclass»

UML::Operation

«metaclass»

UML::Operation

«metaclass»

UML::NamedElement

«metaclass»

UML::NamedElement

...

«metaclass»

UML::Message

«metaclass»

UML::Message

signaturesignature

enableBraking.minExecTime

PUµC2.speedFactor

6ms

2
=

«references»

«stereotype»

Modal::ModalMessage

«stereotype»

Modal::ModalMessage

enableBraking... ...
«transformation»

Preprocessing

«transformation»

Preprocessing

«transformation»

Preprocessing

enableBraking

vc:

Vehicle

Control

vc:

Vehicle

Control

...

Task StartTask Start

Task CompletionTask Completion

...

vc:
Vehicle
Control

vc:
Vehicle
Control

+ enableBraking()

«interface»
Decisions

+ enableBraking()

«interface»
Decisions

 «Tam-

 Operation»

execTime = [6..9]ms

 «Tam-

 Operation»

execTime = [6..9]ms

«TamECU» :µC2«TamECU» :µC2

speedFactor = 2

«TamProcessing-
Unit»

:PUµC2

speedFactor = 2

«TamProcessing-
Unit»

:PUµC2

«allocate»«allocate»

signature

type

represents

Task Execution Delay

«instanceOf»«instanceOf»

CCSL ModelCCSL Model

Clock globalTime
Clock enableBraking_taskStartEvt
Clock enableBraking_taskCompleteEvt

Expression enableBraking_taskStartAfterMinExecDelay
= DelayFor (

clockForCounting->globalTime,
clockToDelay->enableBraking_taskStartEvt,
delay->3)

Expression enableBraking_taskStartAfter MaxExecDelay
= DelayFor (

clockForCounting->globalTime,
clockToDelay->enableBraking_taskStartEvt,
delay->5)

Relation enableBraking_minExecutionDelay
 [NonStrictPrecedes] (
 leftClock->enableBraking_taskStartAfter-

MinExecDelay,
 rightClock->enableBraking_taskCompleteEvt)

Relation enableBraking_maxExecutionDelay
 [NonStrictPrecedes] (

 leftClock->enableBraking_taskCompleteEvt,
 rightClock->enableBraking_taskStartAfter-

MaxExecDelay)

CCSL Model

Clock globalTime
Clock enableBraking_taskStartEvt
Clock enableBraking_taskCompleteEvt

Expression enableBraking_taskStartAfterMinExecDelay
= DelayFor (

clockForCounting->globalTime,
clockToDelay->enableBraking_taskStartEvt,
delay->3)

Expression enableBraking_taskStartAfter MaxExecDelay
= DelayFor (

clockForCounting->globalTime,
clockToDelay->enableBraking_taskStartEvt,
delay->5)

Relation enableBraking_minExecutionDelay
 [NonStrictPrecedes] (
 leftClock->enableBraking_taskStartAfter-

MinExecDelay,
 rightClock->enableBraking_taskCompleteEvt)

Relation enableBraking_maxExecutionDelay
 [NonStrictPrecedes] (

 leftClock->enableBraking_taskCompleteEvt,
 rightClock->enableBraking_taskStartAfter-

MaxExecDelay)

«transformation»

MSD-to-CCSL

Transformation

«transformation»

MSD-to-CCSL

Transformation

«transformation»

MSD-to-CCSL

Transformation

3

4

1

2

3

enableBraking.maxExecTime

PU_µC2.speedFactor

9ms

2
=

4

4

3

1
2

1
2

Fig. 12 Excerpt from the semantics specification of the task execution delays and some illustrating models

plete semantics also distinguishes between distributed
and ECU-internal communication.

As outlined in Section 3, we apply a preprocessing
step for the computation of the static delays. The lower
part of Figure 12 exemplifies this Preprocessing trans-
formation at model level by illustrating how some de-
lays are computed based on the information in the
MSD model. The computed lower and upper bound
values are then stored in derived properties specified
by tagged values defined as part of the TamModalMes-
sage stereotype at the language level. In the following,
we present how we specified the operational seman-
tics based on these pre-computed static delays.

Language level In order to consider timing behaviors,
we have to keep track of the global time progress. For
this purpose, we introduced the globalTime DSE de-
fined in the context of a Model (see Mapping Specifi-
cation in the middle upper part of Figure 12). The oc-
currence of the globalTime instance represents the dis-
cretization of the time. This discretization is usually set
to the greatest common divisor of all timing require-

ments; however to simplify, here it is set in the remain-
der of this paper to 1ms. Consequently, we used the
globalTime DSE as a reference for counting time, that
is, to determine the occurrence of the different delayed
DSE instances that are introduced in the following.

Besides the two taskStartEvt (1) and taskCom-
pleteEvt (2) DSEs defined in the context of a
TamModalMessage (cf. Section 6.1), the Map-
ping Specification defines two invariants to encode
the task execution delay interval. The minExecution-
Delay invariant defines the timing behavior for the
lower bound of this interval. To this end, a new DSE
taskStartAfterMinExecDelay (3) is defined through the
CCSL expression DelayFor (cf. Equation 6). According
to the provided parameter arguments (i.e., globalTime,
taskStartEvt, minTaskExecutionDelay), this clock ex-
pression delays the DSE taskStartEvt by the minimum
task execution delay. Then, we specified that the
DSE taskCompleteEvt must not occur earlier than this
delayed event through the CCSL relation NonStrict-
Precedes (cf. Equation 4). Analogously, the invariant
maxExecutionDelay defines the timing behavior for the

20 Jörg Holtmann et al.

upper bound of task execution delay intervals and
restricts the DSE taskCompleteEvt to occur not later
than the maximum execution delay (4).

Model level The excerpt from the MSD in the left
lower part shows the MSD message enableBraking
with the focus on its Task Start (1) and TaskCompletion
(2) events. The MSD message references the equally
named «TamOperation» with a minimum execution
time of 6ms and a maximum execution time of 9ms.
The lifeline vc: VehicleControl represents the equally
named component role allocated to the «TamECU»
:µC2. This ECU contains a «TamProcessingUnit» with
the speed factor 2.

Our Preprocessing model transformation takes
these resource properties as input and computes the
static delay intervals from it as defined in Section 5, re-
sulting in the Platform-specific MSD Specification with
Computed Static Delays. The transformation stores the
computed lower and upper bounds in the correspond-
ing tagged values of «TamModalMessage». For exam-
ple, the minimum and maximum task execution delay
values of the MSD message are stored in the tagged
values minTaskExecutionDelay and maxTaskExecution-
Delay with the values trajectoryBeacon.minExecTime

PUµC2.speedFactor = 6ms
2 =

3ms and trajectoryBeacon.maxExecTime
PUµC2.speedFactor = 9ms

2 ≈ 5ms, respec-
tively (cf. Equation 12).

As indicated by the excerpt from the generated
CCSLModel in the right lower part of Figure 12, the
automatically derived transformation generates a glob-
alTime clock for any MSD specification. Besides the
clocks representing the particular message event kinds
(1/2, cf. Section 6.1), the transformation also gener-
ates, for any MSD message, two clock expressions
delaying the task start clock by the minimum and
maximum execution time, respectively. For instance,
the MSD message enableBraking is translated into two
CCSL clock expressions DelayFor, defining the new
enableBraking_taskStartAfterMinExecDelay (3) and en-
ableBraking_taskStartAfterMaxExecDelay (4) clocks, re-
spectively. These expressions delay the task start event
clock enableBraking_taskStartEvt by the corresponding
minimum and maximum task execution delays w.r.t.
the globalTime clock.

Finally, the transformation generates two clock
relations, which restrict the task completion event
clock to tick in between the minimum task execu-
tion delay clock and the maximum task execution de-
lay clock. For instance, the transformation generates
the CCSL relations enableBraking_minExecutionDelay
and enableBraking_maxExecutionDelay typed by the
CCSL relation NonStrictPrecedes. Both relations en-
force the enableBraking_taskCompleteEvt clock to tick

enableBrakingtaskStartEvt

0 5
t

10

legend

enableBrakingtaskCompleteEvt

clock tick

enableBrakingtaskStartAfterMinExecDelay

globalTime

enableBrakingtaskStartAfterMaxExecDelay

clock relation
NonStrictPrecedes

clock expression
DelayFor

Task execution
time interval

Fig. 13 CCSL run simulating a task execution delay

in between the occurrences of the clocks enable-
Braking_taskStartAfterMinExecDelay and enableBrak-
ing_taskStartAfterMaxExecDelay.

Runtime level Figure 13 depicts a CCSL run resulting
from the CCSL model depicted in the right lower part
of Figure 12. This CCSL run represents the task execu-
tion time interval of the MSD message enableBraking.

The topmost row depicts the ticks of the glob-
alTime reference clock (which always ticks in this
run). The row below depicts the tick of the
enableBrakingtaskStartEvt clock at instant 1. This clock
tick is delayed by 3 and 5 ticks of the globalTime clock
and results in the enableBrakingtaskStartAfterMinExecDelay
and enableBrakingtaskStartAfterMaxExecDelay clocks, re-
spectively. The two NonStrictPrecedes clock relations
enforce the clock enableBrakingtaskCompleteEvt to tick at
some instant between 4 and 6, and it actually ticks at
instant 5 in this run.

6.2.2 Dynamic delays due to mutual resource exclusion

Target execution platforms of software-intensive sys-
tems have restricted resources, which may not be si-
multaneously used by different parts of the applica-
tion. Middleware and operating system services man-
age the access of the competing software parts to these
restricted resources. Typically, such services provide
mechanisms ensuring that the resources are accessed
in a mutually exclusive manner. Thus, our proposed
operational semantics support delays that dynami-
cally emerge from the mutual exclusion of processing
unit cores, communication media, peripherals, and op-
erating system resources. In the following, we illus-
trate this with the scheduling of two tasks (each asso-
ciated to a message processing) that belong to different
software components allocated to a same ECU.

Language level The Mapping Specification in the mid-
dle upper part of Figure 14 defines the taskStartEvt

Early timing analysis based on scenario requirements and platform models 21

Abstract SyntaxAbstract Syntax

«profile» TAM«profile» TAM

Mapping SpecificationMapping Specification

context TamModalMessage
...
def: taskStartEvt: Event
def: taskCompleteEvt: Event

inv claimCoreOnTaskStart:
let relevantScheduler: TamScheduler = “getRelevantScheduler()” in

Relation SubClock (self.taskStartEvt, relevantScheduler.dispatch)
...

context TamScheduler
...
def: dispatch: Event

inv occupyCoreOnTaskStart:
/* get all messages incoming at any software component allocated

 to the TamECU containing the context TamScheduler: */
let relevantMessages: Set(TamModalMessage) =

“getRelevantMessages()” in
let anyTaskStart: Event =

Expression Union (relevantMessages.taskStartEvt) in
let anyTaskComplete: Event =

Expression Union (relevantMessages.taskCompleteEvt) in

Relation NonPreemptiveTaskExecution (

self.dispatch, anyTaskStart, anyTaskComplete,

self.owner.owner.procUnit.numCores)
...

Semantic ConstraintsSemantic Constraints

User-defined ConstraintsUser-defined Constraints

Pre-defined ConstraintsPre-defined Constraints

Relation SubClock (subClock: Clock, superClock: Clock) {...}
Expression Union (clocks: Set(Clock)): Clock {...}«stereotype»

TamModal-

Message

«stereotype»

TamModal-

Message

numCores: Integer

«stereotype»

TamProcessingUnit

numCores: Integer

«stereotype»

TamProcessingUnit

«stereotype»

TamECU

«stereotype»

TamECU

1procUnit 1procUnit

«stereotype»

TamScheduler

«stereotype»

TamScheduler

«stereotype»

TamRTOS

«stereotype»

TamRTOS

11

MoCCML-Relation NonPreemptiveTaskExecution (

 occupy: Clock, newTask: Clock, taskFinish: Clock,

 numCores: Integer)

MoCCML-Relation NonPreemptiveTaskExecution (

 occupy: Clock, newTask: Clock, taskFinish: Clock,

 numCores: Integer)

local variable runningTasks: Integer = 0

occupy, newTask
[runningTasks + 1
== numCores] /
runningTasks++

occupy, newTask
[runningTasks + 1
== numCores] /
runningTasks++

Cores

Available

Cores

Available

All Cores

Busy

All Cores

Busy
taskFinish /

runningTasks--
taskFinish /

runningTasks--

taskFinish /
runningTasks--

taskFinish /
runningTasks--

occupy, newTask
[runningTasks + 1

< numCores] /
runningTasks++

occupy, newTask
[runningTasks + 1

< numCores] /
runningTasks++

«references»

CCSL ModelCCSL Model

M2

M1

Platform-specific MSD SpecificationPlatform-specific MSD Specification

EBEASEBEAS

obstacle

Task StartTask Start

Task CompletionTask Completion

sa:

Situation

Analysis

sa:

Situation

Analysis

...

sa:
Situation
Analysis

sa:
Situation
Analysis

...

«allocate»«allocate»

...

«TamECU» :µC1«TamECU» :µC1

numCores = 1

«TamProcessingUnit»
:PUµC1

numCores = 1

«TamProcessingUnit»
:PUµC1

«TamRTOS»
:OSEK/VDX
«TamRTOS»
:OSEK/VDX

«TamScheduler»
:OSEK/VDX-

Scheduler

«TamScheduler»
:OSEK/VDX-

Scheduler

represents

...
Clock obstacle_taskStartEvt
Clock obstacle_taskCompleteEvt
Clock OSEK/VDX-Scheduler_dispatch

Relation obstacle_claimCoreOnTaskStart [SubClock] (
subClock->obstacle_taskStartEvt,
superClock->OSEK/VDX-Scheduler_dispatch)

Expression OSEK/VDX-Scheduler_anyTaskStart = Union (
clocks->{obstacle_taskStartEvt, ...})

Expression OSEK/VDX-Scheduler_anyTaskComplete = Union (
clocks->{obstacle_taskCompleteEvt, ...})

Relation OSEK/VDX-Scheduler_occupyCoreOnTaskStart
[NonPreemptiveTaskExecution] (

occupy->OSEK/VDX-Scheduler_dispatch,
newTask->OSEK/VDX-Scheduler_anyTaskStart,
taskFinish->OSEK/VDX-Scheduler_anyTaskComplete,
numCores->1)

«transformation»

MSD-to-CCSL

 Transformation

«transformation»

MSD-to-CCSL

 Transformation

«transformation»

MSD-to-CCSL

 Transformation

«instanceOf»«instanceOf» «derivedFrom»«derivedFrom» «uses»«uses»

...

1

1

2

2

1

2

Fig. 14 Excerpt from the semantics specification of the task scheduling, and some illustrating models

and taskCompleteEvt DSEs in the context of a Tam-
ModalMessage as defined in Section 6.2.1. Additionally,
the DSE dispatch defined in the context of a TamSched-
uler represents the instants when the scheduler selects
a task for the execution on a processing unit (i.e., the
scheduler dispatches the task).

Furthermore, we define two behavioral invariants.
The first one, named claimCoreOnTaskStart, is defined
in the context of a TamModalMessage. It expresses the
relation between the taskStartEvt and the DSE dispatch
of the corresponding scheduler (determined via the
simplifying pseudocode function “getRelevantSched-
uler()”) by using the CCSL relation SubClock (cf. Equa-
tion 1). The relation allows the subClock argument
taskStartEvt to tick only when the superClock argument
dispatch ticks. We specified whether the dispatch clock
can tick through the invariant occupyCoreOnTaskStart
defined in the context of a TamScheduler, which we ex-
plain below. By doing so, we prevent a scheduler from
dispatching a task when the corresponding processing
unit is busy with the execution of another task.

To this end, we first determine all MSD messages
that can be send to one of the software components
allocated to the TamECU containing the TamScheduler.

From these messages, we define two DSEs through the
CCSL expression Union (cf. Equation 5): The DSEs any-
TaskStart (1) and anyTaskComplete (2), which represent
the union of all task start and task completion events,
respectively. These DSEs determine whether any task
is started or any task gets completed.

The actual behavior of the occupyCoreOnTaskStart
invariant is specified by using the MoCCML relation
NonPreemptiveTaskExecution. Its arguments are the
DSE dispatch for the parameter clock occupy, the clocks
representing the union of all relevant taskStartEvt and
taskCompleteEvt DSEs for the newTask and the taskFin-
ish clock, respectively, and the amount of cores of the
corresponding processing unit for the Integer param-
eter numCores. Furthermore, we define a local Integer
variable runningTasks that captures the amount of tasks
currently running on the processing unit.

The initial state of the MoCCML relation is
Cores Available, which defines that the scheduler is able
to dispatch new tasks because the processing unit is
not busy with processing other tasks. When a new task
is ready to be dispatched in this state and hence the oc-
cupy parameter clock as well as the newTask parameter
clock tick simultaneously, the variable runningTasks is

22 Jörg Holtmann et al.

incremented if the guard [runningTasks+ 1< numCores]
holds. Analogously, when any task running on the
processing unit is finished in this state and hence the
parameter clock taskFinish ticks, the variable running-
Tasks is decremented. If the amount of currently run-
ning tasks equals the amount of cores in this state,
the transition to the state All Cores Busy is fired. In this
state, dispatching new tasks is not allowed. When any
task running on the processing unit gets completed
in this state and hence the parameter clock taskFinish
ticks, the variable runningTasks is decremented and the
transition to the initial state is fired.

Our semantics support multiple software compo-
nents allocated to one processing unit, multiple cores
per processing unit, and different task priorities, which
we do not further discuss here.

Model level The MSD specification excerpt in the left
lower part of Figure 14 shows the MSD message obsta-
cle focussing on its Task Start (1) and TaskCompletion
(2) events. The lifeline represents the software com-
ponent sa: SituationAnalysis, which is allocated to the
«TamECU» :µC1. This ECU contains a «TamProcess-
ingUnit» :PUµC1 with one core as well as a «Tam-
RTOS» with a «TamScheduler» :OSEK/VDX-Scheduler.

The right lower part of Figure 14 depicts an
excerpt from the generated CCSL Model. Besides
the clocks representing the particular MSD message
events (cf. Section 6.1), the derived transformation
generates for any «TamScheduler» each a scheduler
dispatch clock. For example, the transformation gener-
ates the clock variable OSEK/VDX-Scheduler_dispatch
for the :OSEK/VDX-Scheduler.

Furthermore, the transformation creates for any
MSD message each a SubClock clock relation that re-
stricts the related task start clock to tick only when
the scheduler’s dispatch clock can tick simultane-
ously. For instance, the transformation generates for
the MSD message obstacle the clock relation obsta-
cle_claimCoreOnTaskStart using the SubClock relation.

For any «TamScheduler», the transformation gen-
erates two clocks defined by Union clock expres-
sions that determine the union of ticks of all
task start and completion clocks. For example,
the scheduler :OSEK/VDX-Scheduler is translated to
the clocks OSEK/VDX-Scheduler_anyTaskStart (1) and
OSEK/VDX-Scheduler_anyTaskComplete (2). The clock
expressions get the obstacle_taskStartEvt and obsta-
cle_taskCompleteEvt clocks as a set argument, along
with other task start and completion clocks.

Finally, the transformation generates for any
«TamScheduler» a clock relation that uses the user-
defined MoCCML relation NonPreemptiveTaskExecu-

trajectoryBeaconmsgConsumeEvt

trajectoryBeacontaskStartEvt

obstaclemsgConsumeEvt

OSEK/VDX-ScheduleranyTaskComplete

OSEK/VDX-Schedulerdispatch

0 5

t

10

legend
clock relation
SubClock

trajectoryBeacontaskCompleteEvt

obstacletaskCompleteEvt

obstacletaskStartEvt

clock tick

OSEK/VDX-ScheduleranyTaskStart

clock expression
Union

Dynamic
Delay

State of the NonPreemptiveTaskExecution
MoCCML relation

Cores Available All Cores Busy

Fig. 15 CCSL run simulating task scheduling

tion. For example, the transformation translates the
scheduler :OSEK/VDX-Scheduler into the clock rela-
tion OSEK/VDX-Scheduler_occupyCoreOnTaskStart.
This relation gets the argument OSEK/VDX-
Scheduler_dispatch for the parameter occupy,
OSEK/VDX-Scheduler_anyTaskStart for newTask,
OSEK/VDX-Scheduler_anyTaskComplete for taskFinish,
and 1 for numCores.

Runtime level Figure 15 depicts a CCSL run resulting
from the CCSL model in the right lower part of Fig-
ure 14. This CCSL run represents a situation in which
two different messages request to be processed concur-
rently by the «TamECU» :µC1.

More precisely, let us assume that the MSD Bea-
conAcknowledgement indicated in Figure 1 specifies
that sa: SituationAnalysis is responsible for processing
information about the trajectories of other vehicles via
a message trajectoryBeacon, additionally to processing
the obstacle messages as specified by the MSD Emcy-
Braking. The three topmost rows in Figure 15 depict
the ticks of the clocks representing the consume, task
start, and task completion of the trajectoryBeacon mes-
sage. The processing unit of :µC1 is not busy with an-
other task at instant 1 when the trajectoryBeacon mes-
sage is consumed. Consequently, the MoCCML rela-
tion NonPreemptiveTaskExecution that types the CCSL
relation OSEK/VDX-Scheduler_occupyCoreOnTaskStart
is in the state Cores Available (cf. Figure 14). Thus,
the clock OSEK/VDX-Schedulerdispatch is allowed to
tick, meaning that the scheduler of :µC1 is able to

Early timing analysis based on scenario requirements and platform models 23

dispatch the corresponding task. Hence, the clock
trajectoryBeacontaskStartEvent ticks simultaneously with
the clock OSEK/VDX-Schedulerdispatch at instant 2. Con-
sequently, the clock OSEK/VDX-ScheduleranyTaskStart
ticks at this instant as defined by the clock ex-
pression Union. Analogously, the clock OSEK/VDX-
ScheduleranyTaskComplete ticks at instant 5 due to the tick
of trajectoryBeacontaskStartComplete.

The obstacle message is consumed at instant 2, re-
sulting in the tick of the clock obstaclemsgConsumeEvt at
this instant. Due to the fact that :PUµC1 has only one
core and due to the dispatching of the trajectoryBea-
con processing task at the same instant, the MoCCML
relation NonPreemptiveTaskExecution is in the state
All Cores Busy from instant 2 to instant 4. Thus, :PUµC1
is blocked from instant 2 to 4 so that the task process-
ing of the obstacle message can be dispatched not ear-
lier than instant 6, at which the obstacletaskStartEvt clock
actually ticks. This causes a dynamic delay of 3 time
units between the consumption and the actual process-
ing of the message obstacle.

6.3 Encoding of real-time requirements and timing
analysis contexts

In this section, we present the crucial aspects of the se-
mantics encoding for both the timing analysis results
and the timing analysis setup. In Section 6.3.1, we ex-
plain how we encode the MSD clock resets and time
conditions (i.e., the real-time requirements) in CCSL,
which the timing analysis in TIMESQUARE determines
as fulfilled or violated by the timing behavior of the
system. In Section 6.3.2, we explain how we encode
analysis contexts defined by timing analysts to inves-
tigate the simulation scenarios that interest them.

6.3.1 Clock resets and time conditions

The combination of a clock reset and a time condition
in an MSD represents a real-time requirement (cf. Sec-
tion 2.2.2). A violation of such real-time requirements
can lead to hazards in the case of safety-critical sys-
tems, and our timing analysis approach aims at reveal-
ing such violations in the early RE phase.

In this section, we present how our proposed se-
mantics encode combinations of clock resets and time
conditions. We illustrate the semantics for delays with
a strict upper bound, representing a maximum mes-
sage treatment response time. In the complete seman-
tics specification, we also support minimal delays and
non-strict bounds.

Language level The Mapping Specification in the middle
upper part of Figure 16 shows the invariant rtReq-
StrictUpperBound defined in the context of the Modal
stereotype ClockReset. The invariant initially deter-
mines the time condition associated to the clock reset.
If the operator of the time condition defines a strict up-
per bound (i.e., the operator equals “<”), the implica-
tion becomes true so that the invariant is relevant to
the context clock reset.

Remember that we do not extend the MSD mod-
eling language but refine its semantics for the pur-
pose of timing analysis. For example, we conceptually
introduce more fine-grained event kinds in Section 5
and describe their realization in the GEMOC mapping
specification in Section 6.1. That also implies that we
have to define in the following for the semantics of
real-time requirements which of the new fine-grained
event kinds they constrain, as the clock resets and time
conditions can only be specified between messages.

Thus, for strict upper bound maximal delays, we
define that the real-time requirement constrains the
time elapsed between the message reception (prior to
the clock reset) and the task completion (prior to the
maximal delay). For this purpose, we first determine
the last message reception DSE precedingMessageRe-
ceptionEvent (1) directly preceding the clock reset. We
illustrate this in a simplifying manner with a pseu-
docode function, which applies the clock expression
Sup (reference not depicted in the figure, cf. Equa-
tion 8). Analogously, we determine the last task com-
pletion DSE constrainedTaskCompletionEvent (2), that
is, the completion DSE of the task that precedes the as-
sociated time condition. Then, we define a new clock
upperBoundEvent (3) representing the upper bound of
the time condition by using the clock expression Delay-
For, which delays precedingMessageReceptionEvent by
the upper bound value. Finally, we constrain the ticks
of constrainedTaskCompletionEvent to occur before the
ticks of upperBoundEvent by using the clock relation
Precedes (cf. Equation 3).

Model level The left lower part of the figure shows
an excerpt from the MSD EmcyBraking, which encom-
passes the MSD message obstacle prior to the clock re-
set clockReset1 and the MSD message standstill prior
to the time condition c< tbrake, parameterized by the
tbrake variable. The focus is on the message reception
event for obstacle (1), the task completion event for
standstill (2), and the time condition defining an upper
bound w.r.t. the clock reset (3).

The derived transformation generates the
CCSLModel whose excerpt is represented in the
right lower part of Figure 16. It contains the globalTime

24 Jörg Holtmann et al.

«derivedFrom»«derivedFrom»

Abstract SyntaxAbstract Syntax

«profile» Modal«profile» Modal

Mapping SpecificationMapping Specification

context ClockReset

inv rtReqStrictUpperBound:
self.getAssociatedTimeCondition() = “<”

implies (
/* get last message reception event before context clock reset: */
let precedingMessageReceptionEvent: Event =

“getLastMsgReceptionEvtBeforeClockReset()” in
/* get last task completion event before time condition: */
let constrainedTaskCompletionEvent: Event =

“getLastTaskCompletionEvtBeforeTimeCondition()” in
let upperBoundEvent: Event = Expression DelayFor (

precedingMessageReceptionEvent, self.getModel().globalTime,
“getAssociatedTimeConditionValue()”)

Relation Precedes (
constrainedTaskCompletionEvent, upperBoundEvent)

)

CCSL ModelCCSL Model

M2

M1

Platform-specific MSD SpecificationPlatform-specific MSD Specification

EBEASEBEAS Clock globalTime
Clock obstacle_msgReceiveEvt
Clock standstill_taskCompleteEvt

Expression clockReset1_precedingMessageReceptionEvent =
 Sup (clocks->{…, obstacle_msgReceiveEvt})

Expression clockReset1_constrainedTaskCompletionEvent =
 Sup (clocks->{…, standstill_taskCompleteEvt})

Expression clockReset1_upperBoundEvent =
 DelayFor (

clockToDelay->clockReset1_precedingMessageReceptionEvent,
clockForCounting->globalTime,
delay->t_brake)

Relation clockReset1_rtReqStrictUpperBound [Precedes] (
leftClock->clockReset1_constrainedTaskCompletionEvent,
rightClock->clockReset1_upperBoundEvent)

«transformation»

MSD-to-CCSL

Transformation

«transformation»

MSD-to-CCSL

Transformation

«transformation»

MSD-to-CCSL

Transformation

«instanceOf»«instanceOf» «uses»«uses»

«references»

«metaclass»

UML::CombinedFragment

«metaclass»

UML::CombinedFragment

«stereotype»

TimeCondition

«stereotype»

TimeCondition

«stereotype»

ClockReset

«stereotype»

ClockReset

msd EmcyBrakingmsd EmcyBraking

obstacle

:Situation
Analysis
:Situation
Analysis

:Electronic
Stability
Control

:Electronic
Stability
Control

standstill

:Adaptive
Cruise
Control

:Adaptive
Cruise
Control

c < tbrakec < tbrake

Last message reception
event preceding the
clock reset

Last message reception
event preceding the
clock reset

Last message task
completion event
preceding the
time condition

Last message task
completion event
preceding the
time condition

c = 0c = 0Clock reset with
ID “clockReset1”
Clock reset with
ID “clockReset1” ...

...

Semantic ConstraintsSemantic Constraints

Pre-defined ConstraintsPre-defined Constraints

Expression Sup (clocks: Set(Clock)): Clock {...}

Expression DelayFor (clockToDelay: Clock,
clockForCounting: Clock, delay: Integer): Clock {...}

Relation Precedes (leftClock: Clock, rightClock: Clock) {...}

1

2

3

1

2

3

1

2

Time condition defining
an upper bound w.r.t.
the clock reset

Time condition defining
an upper bound w.r.t.
the clock reset 3

Fig. 16 Excerpt from the semantics specification of the clock resets and time conditions, and some illustrating models

clock keeping track of the overall time progress as
well as the clocks for the occurrences of the message
reception and task completion events for both the
obstacle and standstill MSD messages, respectively
(cf. Section 6.1).

Furthermore, the transformation generates for
any clock reset each three CCSL expressions.
The first expression defines a new clock clock-
Reset1_precedingMessageReceptionEvent (1) that
represents the slowest occurrence of the mes-
sage reception event amongst the MSD messages
that precede the clock reset. In the specific case
of the MSD EmcyBraking, this clock captures the
ticks of the clock obstacle_msgReceiveEvt. The
second Sup expression defines a new clock clock-
Reset1_constrainedTaskCompletionEvent (2) that
represents the occurrence of the task completion event
of the last MSD message prior to the time condition,
that is, the clock standstill_taskCompleteEvt. Third, the
transformation generates a clock expression DelayFor
defining the clock clockReset1_upperBoundEvent (3).
This expression delays the message reception event
clock stemming from the last MSD message prior to
the clock reset by the value of the time condition. In
the case of the MSD model in Figure 16, it delays clock-
Reset1_precedingMessageReceptionEvent by t_brake
time units w.r.t. globalTime.

Finally, the transformation generates for any clock
reset each a CCSL relation Precedes, which enforces

the task completion event clock stemming from the
last MSD message prior to the time condition to
tick before the delayed clock representing the upper
bound value of the time condition. In our example, the
relation clockReset1_rtReqStrictUpperBound applies
the clock clockReset1_constrainedTaskCompletionEvent
as argument for leftClock and the clock clockRe-
set1_upperBoundEvent as argument for rightClock.

Runtime level Figure 17 depicts a CCSL run resulting
from the CCSL model depicted in the right lower part
of Figure 16. This CCSL run represents a fictional situa-
tion, where the time condition value placeholder tbrake
has two distinct concrete values, leading one time to
the fulfillment and another time to the violation of the
real-time requirement.

The ticks of the clocks obstaclemsgReceiveEvt and
standstilltaskCompleteEvt (row 2 and 7) represent the
occurrences of the message reception and task
completion events of the MSD messages obsta-
cle and standstill, respectively. For both, the clock
expression Sup is used to define the new clocks
clockReset1precedingMessageReceptionEvent (row 3) and
clockReset1constrainedTaskCompletionEvent (row 6). Fur-
thermore, the CCSL expression DelayFor delays
the clock clockReset1precedingMessageReceptionEvent
by tbrake time units, defining the new clock
clockReset1upperBoundEvent. This clock is depicted
in both the rows 4 and 5 for the two distinct concrete

Early timing analysis based on scenario requirements and platform models 25

��
���
�������*�����	��
���

�����
�	��

�������*�����	��
��
����

�����������	��
��������

����������
����	�����

������������������	���,���������	�������

��������������������������4�������5%

��������������������������4�������56

�������	����������������

�����������������	�
)����
�������	�������

�4

�4

�4

%4

&4

74

 4

���

����2�	��
��8�	������

� �
�

��

�����,	��

Fig. 17 CCSL run simulating both a real-time requirement ful-
fillment and violation

values of tbrake. The relation Precedes enforces the
tick of clockReset1constrainedTaskCompletionEvent to occur
before the tick of clockReset1upperBoundEvent.

In the example situation,
clockReset1constrainedTaskCompletionEvent ticks at the
instant 7. This clock tick fulfills the Precedes relation
if the value tbrake is 8 so that clockReset1upperBoundEvent
ticks at the instant 9 (row 4). This means that the soft-
ware execution on the specified platform fulfills the
real-time requirement for the given analysis context.

However, if the value of tbrake is 4 (row 5), the tick
of clockReset1constrainedTaskCompletionEvent does not ful-
fill the Precedes relation because the real-time require-
ment is too tight. More precisely, TIMESQUARE can-
not solve the underlying Boolean expression (cf. Sec-
tion 2.4), and the simulation stops with a deadlock in
case tbrake = 4. This situation represents a real-time re-
quirement violation. Note that instead of classically
defining the clockReset1_rtReqStrictUpperBound as a
relation, it is possible to define it as an assertion in
which case TIMESQUARE stipulates where the asser-
tion is violated instead of producing a deadlock.

6.3.2 Timing analysis contexts

To conduct a particular timing analysis, the engineers
have to specify the concrete simulation scenario that
they want to investigate. Such an analysis scenario is
known as an analysis context [110,92]. The analysis con-
text defines how often and at which instants the envi-
ronment events triggering the system behavior can oc-
cur. Like in MARTE, we refer to them as arrival patterns.

We support periodic as well as sporadic arrival pat-
terns in our semantics (cf. Section 4.4). Whereas pe-
riodic arrival patterns specify the triggering of envi-
ronment events that occur repeatedly with a fix period

and without jitter, sporadic arrival patterns specify the
triggering of environment events that occur sporad-
ically with certain restrictions. These restrictions en-
compass a minimum arrival rate before an event may
occur, a maximum arrival rate until an event has to oc-
cur, and combinations of both that can also be applied
to represent jitters. In this section, we exemplify the
semantics of analysis context scenarios with a periodic
arrival rate, whereas we define the semantics of spo-
radic arrival patterns by combining the semantics of
periodic ones and of delay intervals (cf. Section 6.2.1).

Language level The Mapping Specification in the middle
upper part of Figure 18 shows the invariant period-
icPattern defined in the TamAssumptionMSD context.
This invariant enforces MSD message creation events
defined as part of a «TamAssumptionMSD» with a pe-
riodic arrival pattern to occur periodically.

In the invariant periodicPattern, we first determine
whether the associated arrival pattern of the context
TamAssumptionMSD is a periodic one. If this implica-
tion holds, we define a new DSE periodicActivation (1)
that ticks every period ticks due to the CCSL expression
PeriodicOffsetP (cf. Equation 7). Its arguments are the
globalTime DSE and the tagged value period of the Tam-
PeriodicPattern. Subsequently, we determine the initial
MSD message of the TamAssumptionMSD. Finally, we
enforce the msgCreateEvt DSE of this MSD message to
tick simultaneously with the periodicActivation DSE by
using the CCSL relation Coincides (cf. Equation 2).

Model level The excerpt from the MSD in the left
lower part shows the «TamAssumptionMSD» Beacon-
Frequency. It specifies the trajectoryBeacon environ-
ment message to be sent from the environment role
v2x: V2XCommunication to the sa: SituationAnalysis. The
«TamPeriodicPattern» associated to the «TamAssump-
tionMSD» defines that the creation event of this envi-
ronment message occurs periodically every 3ms (1).

As indicated in the excerpt from the generated
CCSLModel in the right lower part of Figure 18, the de-
rived transformation generates for any «TamAssump-
tionMSD» with a periodic pattern each a CCSL expres-
sion PeriodicOffsetP. This CCSL expression gets the
globalTime as argument for the baseClock parameter
and the tagged value period of the «TamPeriodicPat-
tern» as argument for the equally named clock param-
eter. In our example, the transformation generates the
PeriodicOffsetP expression with the value 3 applied as
argument for period, defining the new clock trajectory-
Beacon_periodicActivation (1).

Finally, the transformation generates for any
«TamAssumptionMSD» with a periodic pattern

26 Jörg Holtmann et al.

«derivedFrom»«derivedFrom»

Abstract SyntaxAbstract Syntax

«profile» TAM«profile» TAM

Mapping SpecificationMapping Specification

context Model
def: globalTime: Event

context TamModalMessage

def: msgCreateEvt: Event
...

context TamAssumptionMSD

inv periodicPattern:
self.pattern.isPeriodic() implies (

let periodicActivation: Event = Expression PeriodicOffsetP (
self.getModel().globalTime, self.period) in

let initialMessage: TamModalMessage =
“getInitialMessage()” in

Relation Coincides (
initialMessage.msgCreateEvt, periodicActivation)

)

CCSL ModelCCSL Model

M2

M1

Platform-specific MSD SpecificationPlatform-specific MSD Specification

EBEASEBEAS Clock globalTime

Clock trajectoryBeacon_msgCreateEvt

Expression trajectoryBeacon_periodicActivation
 = PeriodicOffsetP (

baseClock->globalTime,

period->3)

Relation trajectoryBeacon_periodicPattern
 [Coincides] (

 clock1->trajectoryBeacon_msgCreateEvt,

 clock2->trajectoryBeacon_periodicActivation)

«transformation»

MSD-to-CCSL

Transformation

«transformation»

MSD-to-CCSL

Transformation

«transformation»

MSD-to-CCSL

Transformation

«instanceOf»«instanceOf» «uses»«uses»

«EnvironmentAssumption»
msd BeaconFrequency

«EnvironmentAssumption»
msd BeaconFrequency

trajectory
Beacon

sa:

Situation

Analysis

sa:

Situation

Analysis

v2x:
V2XComm-

unication

v2x:
V2XComm-

unication

Message

Creation

Message

Creation

Semantic ConstraintsSemantic Constraints

Pre-defined ConstraintsPre-defined Constraints

Expression PeriodicOffsetP (
baseClock: Clock, period: Integer): Clock {...}

Relation Coincides (
clock1: Clock, clock2: Clock) {...}

«stereotype»
TamArrivalPattern

«stereotype»
TamArrivalPattern

period: NFP_Duration

«stereotype»
TamPeriodicPattern

period: NFP_Duration

«stereotype»
TamPeriodicPattern

«references»

«stereotype»

TamModalMessage

«stereotype»

TamModalMessage

...

«stereotype»
MARTE::GQAM::

GaWorkloadEvent

«stereotype»
MARTE::GQAM::

GaWorkloadEvent

«stereotype»
TamAssumption

MSD

«stereotype»
TamAssumption

MSD

«metaclass»
UML::Comment

«metaclass»
UML::Comment

patternpattern

«TamAssumptionMSD»
pattern =
 TamPeriodicPattern {
 period = 3ms
 }

«TamAssumptionMSD»
pattern =
 TamPeriodicPattern {
 period = 3ms
 }

1

1

1

Fig. 18 Excerpt from the specification of the periodic arrival patterns semantics, including example models

each a CCSL relation Coincides. This clock relation
gets 2 clocks as argument: The clock represent-
ing the message creation event of the initial MSD
message and the newly defined clock represent-
ing the periodic activation. In our example, the
transformation generates the Coincides relation
trajectoryBeacon_periodicPattern with the clocks
trajectoryBeacon_msgCreateEvt and trajectoryBea-
con_periodicActivation as arguments. This relation
forces the clock trajectoryBeacon_msgCreateEvt to
tick every 3 ticks of the globalTime, meaning that the
message creation event of the initial MSD message
trajectoryBeacon occurs every 3ms.

Runtime level Figure 19 depicts a CCSL run resulting
from the CCSL model depicted in the right lower part
of Figure 18. This CCSL run represents the periodic
occurrence of the message creation event of the ini-
tial MSD message trajectoryBeacon defined in the MSD
BeaconAcknowledgement.

The topmost row depicts the ticks of the glob-
alTime reference clock. The middle row depicts
the ticks of the trajectoryBeaconperiodicActivation clock,
which ticks every 3rd tick of the globalTime clock.
The bottommost row depicts the ticks of the
trajectoryBeaconmsgCreateEvt clock, where the Coincides
relation enforces this clock to tick simultaneously with
the trajectoryBeaconperiodicActivation clock.

���-���������������	��	�'��	���	��

��
���

�������	��

���-��������������
��������

�����������	��
��������

�������*�����	��
�������� ����

� �
�

��

�����,	��

Fig. 19 CCSL run simulating a periodic arrival pattern

7 Timing analysis example

In this section, we illustrate how the different as-
pects of the semantics presented in Section 6 work to-
gether. For this purpose, we first explain a simulation
of a CCSL model generated from the whole platform-
specific MSD specification example presented in Sec-
tion 4. Afterward, we illustrate the possibility to per-
form model checking on the CCSL model.

7.1 Simulation of a platform-specific MSD model

As a recapitulation, Figure 20 depicts the MSD speci-
fication parts that are the most relevant for the timing
analysis example illustrated in this section. Let us con-
sider the MSD BeaconAcknowlegement, which was in
Section 2.2 only indicated as part of the MSD specifica-
tion introduced in Figure 1. This MSD specifies the ex-
change of trajectory information between a vehicle and

Early timing analysis based on scenario requirements and platform models 27

msd BeaconAcknowledgementmsd BeaconAcknowledgement

trajectory
Beacon

sa:

Situation

Analysis

sa:

Situation

Analysis

v2x:
V2XComm-

unication

v2x:
V2XComm-

unication

ack

msd EmcyBrakingmsd EmcyBraking

sa:

Situation

Analysis

sa:

Situation

Analysis

enable
Braking

standstill

vc:

Vehicle

Control

vc:

Vehicle

Control

sa:
Situation
Analysis

sa:
Situation
Analysis

sa:
Situation
Analysis

vc:
Vehicle
Control

vc:
Vehicle
Control:Deci-

sions
:Deci-
sions

sa2vc

«TamECU»
:µC1

«TamECU»
:µC1

numCores = 1
speedFactor = 1

«TamProcessingUnit»
:PUµC1

numCores = 1
speedFactor = 1

«TamProcessingUnit»
:PUµC1

«TamECU»
:µC2

«TamECU»
:µC2

CANBusCANBus

«allocate»«allocate»«allocate»«allocate» «allocate»«allocate»

«TamRTOS»
:OSEK/VDX-µC1

«TamRTOS»
:OSEK/VDX-µC1

«TamScheduler»
:OSEK/VDX

-Scheduler-µC1

«TamScheduler»
:OSEK/VDX

-Scheduler-µC1 «TamComInterface»
commTxOvh = 1ms
«TamComInterface»
commTxOvh = 1ms

«TamComInterface»
commRcvOvh = 1ms
«TamComInterface»
commRcvOvh = 1ms

+ trajectory-
 Beacon()

«interface»
V2VMessages

+ trajectory-
 Beacon()

«interface»
V2VMessages

+ obstacle()

«interface»
ObstacleInfo

+ obstacle()

«interface»
ObstacleInfo

c < 50c < 50

c = 0c = 0

«Tam
Operation»
execTime

= 5ms

«Tam
Operation»
execTime

= 5ms

«TamComConnection»
blockT = 1ms
capacity = 100kbit/s

«TamComConnection»
blockT = 1ms
capacity = 100kbit/s

«EnvironmentAssumption»

msd BeaconFrequency

«EnvironmentAssumption»

msd BeaconFrequency

«TamAssumptionMSD»
pattern = TamPeriodicPattern

 { period = 25ms }

«TamAssumptionMSD»
pattern = TamPeriodicPattern

 { period = 25ms }

«EnvironmentAssumption»

msd ObstacleArrivalRate

«EnvironmentAssumption»

msd ObstacleArrivalRate

«TamAssumptionMSD»
pattern = TamSporadicPattern
 { minArrivalRate = 50ms
 maxArrivalRate = 55ms }

«TamAssumptionMSD»
pattern = TamSporadicPattern
 { minArrivalRate = 50ms
 maxArrivalRate = 55ms }

platform = [EBEASPlatform]

«TamAnalysisContext»
EBEASAnalysisContext

platform = [EBEASPlatform]

«TamAnalysisContext»
EBEASAnalysisContext

«TamWorkloadBehavior»
EBEASWorkload

«TamWorkloadBehavior»
EBEASWorkloadworkloadworkload

demanddemand demanddemand

behaviorbehavior behaviorbehavior

trajectoryBeaconobstacle

+ enableBraking()

«interface»
Decisions

+ enableBraking()

«interface»
Decisions

«TamOperation»

msgSize = 500bit

«TamOperation»

msgSize = 500bit

Fig. 20 Relevant excerpt from the MSD model used for the tim-
ing analysis

the other vehicles in its environment (through trajec-
tory beacons). More precisely, it specifies the v2x: V2X-
Communication to send a trajectoryBeacon message to
the sa: SituationAnalysis, which shall acknowledge the
reception by sending back an ack message. These in-
teractions have to be executed on the target platform
in addition to the MSD EmcyBraking.

In our context, an end-to-end response time anal-
ysis has to determine whether such platform-specific
MSD specifications fulfill their high-level real-time re-
quirements (cf. Section 2.1). One key question of such
timing analyses is whether the resources provided by
the platform have a sufficient performance to execute
the application software consuming the resources. For
example, it can reveal that the processing resource ex-
ecuting the software component sa: SituationAnalysis is
not fast enough to process some operations in time;
or that the latency of the communication media is too
high to deliver some messages in time. Answering

such questions is even more important when, at some
points in time, the system workload is high. For exam-
ple, several messages like obstacle and trajectoryBeacon
can arrive at sa: SituationAnalysis within a small time
frame so that the receiving software component has to
process them concurrently. The very same situation oc-
curs when several messages have to be delivered via a
single communication medium at the same time.

In the following, we illustrate the detection of a
real-time requirement violation by means of a simu-
lation in TIMESQUARE. The violation occurs due to a
situation, in which the workload triggered by the en-
vironment is too high so that the target platform is not
able to fulfill the real-time requirement. Figure 21 de-
picts an excerpt of the CCSL simulation run, which re-
sults from the platform-specific MSD specification ex-
cerpt in Figure 20.

Row 1 depicts the tick of the clock trajectory-
BeaconmsgCreateEvt at instant 50. This tick stems
from the environment message trajectoryBeacon
defined in the assumption MSD BeaconFrequency,
where its arrival pattern specifies this message
event to occur periodically every 25ms. As ex-
plained in Section 6.3.2, our semantics enforce the
message creation events to occur exactly at these
periodic instants. Thus, trajectoryBeaconmsgCreateEvt
occurs any 25ms, and the simulation excerpt
depicts its second tick in the overall run.

Row 2 depicts the trajectoryBeacontaskStartEvt clock tick
at instant 54, which emerges due to two aspects.
First, we assume that the (not depicted) clocks rep-
resenting the preceding trajectoryBeacon send, re-
ception, and consumption events occur with small
static delays at the instants 51, 52, and 53. Sec-
ond, the corresponding task can only start when
its scheduler can dispatch it. As described in Sec-
tion 6.2.2, trajectoryBeacontaskStartEvt depends on its
superclock OSEK/VDX-Scheduler-µC1dispatch (row
4), which is able to tick at this instant as explained
in the description for row 4.

Row 3 depicts the subsequent tick of the
trajectoryBeacontaskCompleteEvt clock at instant
60. This instant results from a task execution delay,
which is computed as described in Sections 5.3
and 6.2.1 as follows. The operation signature of
trajectoryBeacon is a «TamOperation» having an
execTime with the value 5ms. The corresponding
receiving component role sa: SituationAnalysis is
allocated to the «TamECU» :µC1, whose «Tam-
ProcessingUnit» :PUµC1 has a speedFactor with the
value 1. Thus, the task executing the operation
needs 5ms

1 = 5ms for the processing.

28 Jörg Holtmann et al.

t
55 60 65 70 75 80 10050

Dynamic delay

2:

1:

5:

4:

6:

8:

9:

3:

16:

15:

11:

12:

13:

14:

10:

17:

trajectoryBeacon
taskStartEvt

trajectoryBeacon
msgCreateEvt

obstacle
msgCreateEvt

OSEK/VDX-Scheduler-µC1
dispatch

clockReset1
precedingMessageReceptionEvent

obstacle
msgConsumeEvt

obstacle
taskStartEvt

trajectoryBeacon
taskCompleteEvt

standstill
taskCompleteEvt

clockReset1
upperBoundEvent

enableBraking
msgCreateEvt

enableBraking
msgSendEvt

enableBraking
msgReceiveEvt

enableBraking
msgConsumeEvt

obstacle
taskCompleteEvt

clockReset1
constrainedTaskCompletionEvent

Row

7: obstacle
msgReceiveEvt

Task executiondelay

Task executiondelay

Message transmission delay

Message
consumption delay

Message
dispatch delay

Scheduler cannot dispatch obstacle task as
long as trajectoryBeacon task is not completed
 dynamic delay occurs

State of the NonPreemptiveTaskExecution
MoCCML relation

Cores Available All Cores Busy

 real-time requirement violation

This clock cannot tick because the Precedes relation
to clockReset1upperBoundEvent cannot be fulfilled

Real-time requirement expects standstill task
completion to occur at last at instant 102, i.e.,
less than 50ms after the obstacle message
reception event that occured at instant 53

Fig. 21 Excerpt from the simulation run of the CCSL model automatically generated from the platform-specific MSD specification
described in Section 4 (only part of the clocks are depicted)

Row 4 depicts the ticks of the OSEK/VDX-Scheduler-
µC1dispatch clock. As described in Section 6.2.2, this
clock can only tick if the corresponding process-
ing unit for the execution of a requested task dis-
patching has a free core. This is the case at in-
stant 54, where the trajectoryBeacon is ready to
be processed by its corresponding task. Thus, the
trajectoryBeacontaskStartEvt clock depicted in row
2 is allowed to tick simultaneously. However,
OSEK/VDX-Scheduler-µC1dispatch cannot tick dur-
ing the 6 following instants because the task for
processing trajectoryBeacon is not completed un-
til then and the processing unit has only one and
thereby no further free core.

Row 5 depicts the tick of the obstaclemsgCreateEvt clock.
This tick stems from the obstacle environment mes-
sage defined in the ObstacleArrivalRate assumption
MSD. The arrival pattern of this message specifies
that the corresponding environment event occurs
sporadically between any 50 and 55ms. Our seman-
tics enforces the corresponding message creation
event to occur at instants inside this interval. In
the proposed run, obstaclemsgCreateEvt occurs within
this instant interval, at instant 51.

Row 6 depicts the tick of the clock clock-
Reset1precedingMessageReceptionEvent at instant 53. This
clock stems from the clock reset (assuming that it
has the identifier clockReset1) defined in the Em-
cyBraking MSD, which is specified directly below

the obstacle environment message. As explained in
Section 6.3.1, the corresponding semantics enforce
clockReset1precedingMessageReceptionEvent to tick on the
last message reception event occurrence before
the clock reset. Thus, this clock ticks on the tick of
obstaclemsgReceiveEvt depicted in row 7.

Row 7 depicts the tick of obstaclemsgReceiveEvt clock at
instant 53. Here, we assume that it ticks immedi-
ately after the preceding (not depicted) message
send clock, which itself ticks immediately after the
tick of obstaclemsgCreateEvt (row 5).

Row 8 depicts the subsequent obstaclemsgConsumeEvt
clock tick at instant 54 without a substantial delay.

Row 9 depicts the tick of the obstacletaskStartEvt clock at
instant 61. This tick emerges from the fact that its
superclock OSEK/VDX-Scheduler-µC1dispatch (row
4) cannot tick earlier than this instant, because the
trajectoryBeacon processing task is completed only
one instant before. Thus, a dynamic delay occurs
until the scheduler can dispatch the obstacle task.

Row 10 depicts the obstacletaskCompleteEvt clock tick at
instant 67 after the obstacle processing task is com-
pleted. The task execution delay of 5ms is com-
puted analogously as described above for trajecto-
ryBeacon in row 3.

We skip the detailed explanation of the computa-
tion and determination of the further static and dy-
namic delays and focus in the remainder on the clocks

Early timing analysis based on scenario requirements and platform models 29

generated from the elements specified at the end of the
MSD EmcyBraking.

Row 15 depicts the tick of the
clockReset1upperBoundEvent clock. As explained
in Section 6.3.1, our semantics use this clock
to represent the maximal delay c< 50 w.r.t.
the preceding clock reset in the EmcyBrak-
ing MSD. As explained in the description for
row 6, this clock reset is represented by the
clock clockReset1precedingMessageReceptionEvent. To
represent the maximal delay value 50 and
span the corresponding real-time require-
ment, clockReset1upperBoundEvent ticks at in-
stant 103, that is, 50 instants after the tick of
clockReset1precedingMessageReceptionEvent at instant 53.

Row 16 depicts the standstilltaskCompleteEvt clock tick,
which represents the final task completion event
for the message standstill at instant 105 due to the
delays between the event occurrences before.

Row 17 depicts the tick of the clock clock-
Reset1constrainedTaskCompletionEvent. As explained
in Section 6.3.1, our semantics enforce this clock
to tick at the same instant as the last task com-
pletion event clock before a clock reset (cf. row
16). Furthermore, this clock tick has to precede
the tick of the clockReset1upperBoundEvent clock
at instant 103 (row 15) to fulfill the real-time
requirement. However, the clock ticks at instant
105 due to the platform-induced timing effects.
Thus, TIMESQUARE cannot solve the underlying
Boolean expression (cf. Section 2.4), and the sim-
ulation stops with a deadlock (or an assertion
is notified, see Section 6.3.1) This represents a
real-time requirement violation for the analysis
context in which the trajectoryBeacon and obstacle
messages are almost simultaneously received by
the software component sa: SituationAnalysis.

The detection of such a real-time requirement vio-
lation typically opens up a variety of potential coun-
termeasures to fix the defect. One possible counter-
measure would be to speed up the «TamECU» :µC1
to which the sa: SituationAnalysis software component
is allocated to: A speedFactor of 2 would allow to pro-
cess trajectoryBeacon and obstacle within each 3 in-
stants. This would reduce the end-to-end response
time until the task completion of standstill by alto-
gether 4 instants, thereby fulfilling the real-time re-
quirement. Other countermeasures are the addition of
a further core to :µC1 enabling the concurrent process-
ing of the two messages, an exchange of the commu-
nication medium between the two TamECUs improv-
ing the message transmission times, the relaxation of

the real-time requirement in communication with all
stakeholders, etc.

7.2 Model checking of a platform-specific MSD model

As presented in Section 2.4.3, TIMESQUARE allows to
construct the state space representing the set of all
possible simulations. The fact that there are different
simulations possible from a single CCSL model re-
sults from different sources of non-determinism. For
example, the clock obstaclemsgCreateEvt in the proposed
model is subject to a sporadic arrival pattern so that it
can tick between any 50 and 55ms. It is important to
verify the status of the requirements for any of these
values. This is also true for all the interval delays de-
fined in Section 5.

We ran the state space construction on the model
generated from the MSD specification in Figure 20.
It contains 9,775 states and 14,865 transitions. More
interestingly, it contains a periodic behavior that ful-
fills the requirements [61]. This happens when the
obstaclemsgCreateEvt ticks at time 55, reducing the dy-
namic delay of the associated task and allowing to the
standstill task to complete before the deadline.

This shows the known fact that simulation and for-
mal verification complement each other [42]. Typically,
there are traces in specification state spaces that fulfill
the requirements, whereas other traces violate them.
This can be dangerous, because timing analysts who
are not aware of the fact that the simulations cover
only a subset of the overall state space could be eas-
ily satisfied with some conducted simulations yield-
ing only positive results. This can happen despite the
debugging environment provided by GEMOC Studio,
which allows for a step-by-step investigation of spe-
cific executions by discovering the state space dynam-
ically, helping the timing analysts to investigate differ-
ent simulations [16].

While we prove the possibility to use the generic
exhaustive simulation feature to model check a
platform-specific MSD specification, it remains very
costly. We are currently investigating if it is possible to
make it more affordable; even if not totally exhaustive,
typically by running parallel simulations as inspired
by Monte Carlo techniques.

8 Evaluation: Example application EBEAS

We evaluate our timing analysis approach by means
of an example application [121] and organize its de-
scription in this section according to the guidelines by
Kitchenham et al. [73] and by Runeson et al. [107]. In

30 Jörg Holtmann et al.

our example application, we investigate the efficacy
of our approach with the running EBEAS example,
serving as a representative for software-intensive dis-
tributed real-time systems. To answer the evaluation
questions, we apply different variants of the platform-
specific MSD specification introduced in Section 4.

In the example application, we evaluate a soft-
ware prototype based on the Eclipse Modeling Frame-
work (EMF) [32]. For the modeling language aspects,
we rely on the EMF-based UML modeling tool Pa-
pyrus [33]. Beyond editors for conventional UML
models, Papyrus enables the specification of UML pro-
files and provides the MARTE profile. Furthermore,
the Papyrus-based tool suite ScenarioTools MSD [108]
provides the Modal profile and corresponding editor
and analysis functionality. We extended both profiles
by our TAM profile as sketched on the left upper side
of Figure 6 in Section 3. For the semantics specifica-
tion (right upper side of Figure 6), we rely on the tool
suite GEMOC Studio [31]. It provides the timing anal-
ysis tool TIMESQUARE [113] as well as the languages
ECL, CCSL (including libraries for the pre-defined
constraints), and MoCCML, which textual editors rely
on the EMF-based language development framework
Xtext [120]. Finally, it applies the EMF-based QVTo im-
plementation [34] for the model transformations. We
provide the application and an evaluation dataset in
our supplementary material [62].

8.1 Context

The objective of our example application is to evalu-
ate whether our approach is useful for timing analysts.
For this purpose, we examine the following evaluation
questions (EQ):

EQ1: Does our timing analysis approach generate syn-
tactically and semantically correct CCSL models?

EQ2: Does our timing analysis approach reduce the
engineering effort for conceiving and specifying
CCSL models?

8.2 Setting the hypotheses

Based on the aforementioned example application ob-
jective and evaluation questions, we define the follow-
ing evaluation hypotheses (H):

H1: Our MSD semantics for timing analyses correctly
encodes the timing effects that are induced by the
resource properties provided as modeling means
by our TAM profile (cf. evaluation question EQ1).

For evaluating H1, two different students prepare
four different platform-specific MSD specifications
that jointly cover all resource properties that are
provided as modeling means by our TAM profile.
Afterward, they generate CCSL models from them
and investigate whether any of the platform prop-
erties induces each the expected timing effect with
the expected delay duration.
We consider H1 fulfilled if the students observe
each a timing effect as we expect to be induced
by all the resource properties specifiable with our
TAM profile.

H2: Manually specifying a platform-specific MSD
specification from scratch and automatically gen-
erating a CCSL model from it is more efficient than
specifying the corresponding CCSL model manu-
ally from scratch (cf. evaluation question EQ2).
For evaluating H2, the first author counts the
number of model elements for the four platform-
specific MSD specifications as well as the CCSL
models. He categorizes each model element w.r.t.
atomic model operation kinds, and measures the
durations for conducting each operation kind. Fur-
thermore, one student measures the transforma-
tion execution times for generating CCSL models
from the four platform-specific MSD specifications.
Finally, on the one hand, the averaged measure-
ment values for each operation kind are multiplied
by the corresponding number of model elements
in the four MSD specifications and summed. The
transformation execution times are also summed
for each model (variable H2.1). On the other hand,
the averaged measurement values for each oper-
ation kind are multiplied by the corresponding
model elements in the generated CCSL models
(variable H2.2). At the end, the results for the MSD
specification and the CCSL models are compared.
We consider H2 fulfilled if H2.1 < H2.2.

H3: The generated CCSL models are syntactically cor-
rect (cf. evaluation question EQ1).
For evaluating H3, all generated CCSL models
used for the evaluation of H1 and H2 are opened
in the CCSL editor and simulated in TIMESQUARE.
We consider H3 fulfilled if all CCSL models gen-
erated during the evaluation of H1 and H2 can be
opened in the CCSL editor and can be simulated in
TIMESQUARE without the occurrence of any error.

8.3 Data collection preparation

In the following two sections, we explain the prepa-
rations on different models that are relevant to all hy-

Early timing analysis based on scenario requirements and platform models 31

potheses and the preparations for conducting the mea-
surements for hypothesis H2, respectively.

8.3.1 Model preparations for all hypotheses

Besides the first author, we employ two different mas-
ter level students student-1 and student-2 to support the
evaluation. Student-1 has approximately four years ex-
perience in modeling and simulating MSD specifica-
tions as well as one year experience with MARTE plat-
form modeling and timing analysis in TIMESQUARE

during the evaluation conduct. Furthermore, he con-
ceived and implemented a very early version of our
timing analysis approach [12]. Student-2 has approxi-
mately one year experience with modeling MSD and
MARTE specifications as well as with TIMESQUARE

during the evaluation conduct.
As a basis for evaluating H1, the students prepare a

set of platform-specific MSD specifications that jointly
cover all resource properties that are supported by our
semantics. A large part of these resource properties is
covered by a platform-specific MSD specification that
is presented in [12, Section 7.2] as a proof of concept
by student-1, which we call MSD-spec-1. In this proof
of concept, typical use cases in the course of a timing
analysis are constructed. This encompasses the deter-
mination of several real-time requirement violations
through the timing analysis and the repeated adap-
tation of the specification until the real-time require-
ments are fulfilled.

For any of the remaining resource properties that
are not covered by MSD-spec-1, student-2 specifies
each a dedicated model (altogether 17 further models)
that covers the respective resource property to repro-
duce the corresponding induced timing effect.

As a basis for evaluating H2 and H3, student-2
copies MSD-spec-1, extends the platform model to five
TamComConnections connecting five TamECUs, and al-
locates the software architecture to it. We present the
resulting model in Figure 7 and call it MSD-spec-
2. Furthermore, student-1 specifies another variant
of a platform-independent MSD specification for the
EBEAS, which encompasses 24 MSDs and hence is
more complex in terms of interaction requirements. He
allocates it to the simple platform model of MSD-spec-
1, which we call MSD-spec-3. Finally, student-2 copies
the variant of the platform-independent MSD specifi-
cation encompassing 24 MSDs, extends the platform
model of MSD-spec-2, and adds the allocation specifi-
cation. We call the resulting model MSD-spec-4, which
is both the most complex of all considered MSD spec-
ifications in terms of interaction requirements and the
platform model.

8.3.2 Measurement preparations for hypothesis H2

Technical preparations To technically prepare the dura-
tion measuring of the different model operation kinds
as part of the evaluation of H2, we apply and adapt
the recently published Eclipse plugin ModRec [105,
86]. ModRec aims at designing and executing empir-
ical studies on modeling in a Papyrus and EMF con-
text. As a prerequisite for this purpose, it provides a
Papyrus model listener to record atomic model opera-
tions, which we consider in H2.

For measuring atomic model operation kinds in
the Papyrus-based ScenarioTools MSD, we slightly
adapt ModRec to simply log timestamps for each of
the model operations. In addition, we implement a
custom listener for the Xtext-based CCSL editor, be-
cause Xtext renders the underlying EMF model on
every keystroke in a new model copy. Furthermore,
we prepare a dedicated measurement model for both
the platform-specific MSD specifications and the CCSL
models. We provide the measurement tool suite and
models in our supplementary material [62].

Empirical preparations To design the actual evaluation
of H2, the first author automatically counts the dif-
ferent model elements for MSD-spec-1 to MSD-spec-4
and categorizes them w.r.t. to different atomic model
operation kinds that are required to specify the model
elements. We distinguish the operation kinds for MSD
specifications into conventional UML model operation
kinds for the platform-independent part and generic
stereotype operation kinds for the platform-specific
part provided by the TAM profile.

The conventional UML model operation kinds
strongly depend on the editor capabilities provided by
Papyrus for the particular type of the considered UML
partial model (e.g., architectural editors, interaction
editors). Consequently, we measure each of them in-
dividually. For example, MSD-spec-1 contains 5 com-
ponent types, and for each of them the requirements
engineer has to 1) create the component type and 2)
specify its name attribute, resulting in 2 atomic model
operation kinds for this model element. We identified
34 of such conventional UML model operation kinds.

As the editor capabilities for all stereotypes pro-
vided by Papyrus are the same, we categorized the
69 TAM stereotype operation listed in the MSD spec-
ification into 7 generic stereotype operation kinds.
These encompass, for example, 1) creating a UML base
model element, 2) applying a stereotype, and 3) spec-
ifying a numeric tagged value. In the data collection
(cf. Section 8.4), we use the measurement values of
these generic stereotype operation kinds in a repre-

32 Jörg Holtmann et al.

sentative manner for each of the 69 TAM stereotype
operations. For example, MSD-spec-1 contains 2 Tam-
ProcessingUnits, and each of them requires creating the
UML base element (generic stereotype operation kind
1), applying the stereotype (operation kind 2), and
specifying the numerical tagged values numCores and
speedFactor (each time operation kind 3).

Similarly, the first author automatically counts the
different element kinds of the corresponding gener-
ated CCSL models CCSL-model-1 to CCSL-model-4
and categorizes them w.r.t. different CCSL editor oper-
ation kinds. These 19 CCSL editor operation kinds en-
compass declaring Integer and clock variables as well
as specifying the particular clock expressions and rela-
tions as presented in Section 2.4.

8.4 Data collection procedure

We describe the respective procedures for the data col-
lection for evaluating the three hypotheses in the fol-
lowing three sections.

8.4.1 Hypothesis H1

For evaluating hypothesis H1 with MSD-spec-1,
student-1 conducts the following specification and
timing analysis process:

1. He specifies a platform-independent MSD specifi-
cation as explained in Section 2.2.1.

2. He specifies a platform model based on informa-
tion about real-world platforms as explained in
Section 4.

3. He specifies an allocation from the MSD specifica-
tion to the platform model and annotates software
component resource consumption properties.

4. He specifies analysis contexts and iteratively con-
ducts the timing analysis in TIMESQUARE. In the
course of the timing analysis, he iteratively en-
counters platform-induced real-time requirement
violations, determines their respective causes, and
adapts the resource properties until all real-time
requirements are fulfilled. This procedure enables
him to reenact every timing effect induced by a
resource property that is both considered by our
semantics and specified in the proof of concept
model. Particularly, he simulatively determines
whether for any specified resource property each
the expected timing effect occurs.

To evaluate hypothesis H1 for the remaining re-
source properties that are not covered by MSD-spec-1,
student-2 proceeds for any dedicated model specific to
a resource property as follows:

1. He specifies the resource property with one value
each so that the expected induced timing effect
in one case fulfills a real-time requirement and in
the other case violates the same real-time require-
ment. For this purpose, he reenacts the semantics
for the corresponding resource property to con-
ceive a property value such that the induced timing
effect leads to each the fulfillment and the violation
of a real-time requirement according to his expecta-
tions. In the case of static delays, he reenacts the re-
spective delay computation formula (cf. Section 5).
One example of dynamic delays is the construction
of a runtime situation in which two software com-
ponents concurrently access one resource.

2. He conducts the timing analysis in TIMESQUARE.
For the static delays, he already determines in the
preprocessed model (cf. Section 6.2.1) whether the
corresponding delay changes according to his ex-
pectations. For both dynamic and static delays, he
simulatively determines whether the correspond-
ing timing effect as well as the real-time require-
ment fulfillment or violation for the resource prop-
erty under investigation occurs as expected.

We documented the test results for all resource
properties that induce timing effects as covered by
our MSD semantics for timing analyses. This includes
how a particular resource property induces a respec-
tive timing effect and how this timing effect sums up
to which kind of delay. Furthermore, the documenta-
tion includes which platform-specific MSD specifica-
tion covers the resource property and whether the stu-
dent observed the delay as expected. We omitted this
documentation in this paper for space reasons; their
details can be found in [62,60].

8.4.2 Hypothesis H2

For each of the 34 UML model operation kinds, the 7
generic stereotype model operation kinds (representa-
tive for the 69 TAM stereotype model operations), and
the 19 CCSL editor operation kinds (cf. Section 8.3.2),
the first author measures 10 times the duration for con-
ducting the operation as fast as possible in dedicated
measurement models. That is, we measure the raw,
time-wise effort for conducting the particular opera-
tions in the corresponding editors, which also includes
typical duration deviations due to wrong mouse clicks
or correcting typing errors. We provide all measure-
ment points as well as minimum/maximum times and
standard deviations in our dataset [62].

We then multiply the average values of the mea-
surements for the operation kinds with the number of
the corresponding modeling elements in MSD-spec-1

Early timing analysis based on scenario requirements and platform models 33

Table 1 Hypothesis H2: Comparison of measured efforts for manually specifying platform-specific MSD specifications and automat-
ically generating CCSL models (H2.1) vs. specifying CCSL models manually (H2.2)

∅∅∅ transf. H2.1: H2.2:
model Σ ∅∅∅measured execution Σ overall # model Σ ∅∅∅measured

MSD specification elements modeling times time time CCSL model elements modeling times
Σ MSD-spec-1 314 ≈ 24:04 min:s ≈ 10 s ≈ 24:14 min:s Σ CCSL-model-1 475 ≈ 87:29 min:s
Platf.-indep. elements 189 ≈ 13:44 min:s Integer & clock variables 124 ≈ 6:37 min:s
Platf.-specific elements 125 ≈ 10:20 min:s Clock expressions 140 ≈ 32:33 min:s

Clock relations 211 ≈ 48:19 min:s
Σ MSD-spec-2 438 ≈ 34:36 min:s ≈ 11 s ≈ 34:47 min:s Σ CCSL-model-2 555 ≈ 104:40 min:s
Platf.-indep. elements 189 ≈ 13:44 min:s Integer & clock variables 143 ≈ 7:56 min:s
Platf.-specific elements 249 ≈ 20:52 min:s Clock expressions & relations 171 ≈ 42:14 min:s

Clock relations 241 ≈ 54:30 min:s
Σ MSD-spec-3 1,014 ≈ 78.33 min:s ≈ 43 s ≈ 79:16 min:s Σ CCSL-model-3 3,466 ≈ 661:49 min:s
Platf.-indep. elements 889 ≈ 68:13 min:s Integer & clock variables 776 ≈ 39:18 min:s
Platf.-specific elements 125 ≈ 10:20 min:s Clock expressions & relations 1,410 ≈ 304:22 min:s

Clock relations 1,280 ≈ 318:09 min:s
Σ MSD-spec-4 1,199 ≈ 95:20 min:s ≈ 53 s ≈ 96:13 min:s Σ CCSL-model-4 4,248 ≈ 821:55 min:s
Platf.-indep. elements 889 ≈ 68:13 min:s Integer & clock variables 853 ≈ 45:09 min:s
Platf.-specific elements 310 ≈ 27:07 min:s Clock expressions & relations 1,648 ≈ 375:37 min:s

Clock relations 1,747 ≈ 401.09 min:s

to MSD-spec-4 and CCSL-model-1 to CCSL-model-4.
Both the second column of the left- and right-hand-
side of Table 1 shows the aggregated amounts of
model elements for the MSD specifications and CCSL
models, respectively. Both the third column of the
left- and right-hand-side of Table 1 shows the aggre-
gated sums of the average measurement values mul-
tiplied by the number of corresponding model ele-
ments, where we again provide the detailed multipli-
cation scheme and values in our dataset [62].

To yield H2.1, we add the averaged transformation
execution times for deriving the corresponding CCSL
model (fourth column on the left-hand-side of Table 1)
to the sum of the multiplied mean average measure-
ment values for the effort on specifying the platform-
specific MSD specification. For measuring the particu-
lar times, student-2 instruments the particular QVTo
transformations in such a way that timestamps are
generated and performs several times the transforma-
tion from any platform-specific MSD specification to
each the corresponding CCSL model. The fifth column
on the left-hand-side of Table 1 lists the summarized
times of specifying the platform-specific MSD specifi-
cations and of executing the transformation, represent-
ing the variable H2.1. The third column on the right-
hand-side of Table 1 yields H2.2 directly.

8.4.3 Hypothesis H3

During the evaluation of H1 and H2, the students open
every generated CCSL models in the CCSL model ed-
itor and simulate them in TIMESQUARE. These mod-
els encompass CCSL-model-1, CCSL-model-2, CCSL-
model-3, CCSL-model-4, and the 17 further CCSL
models dedicated to certain resource properties. The
students were able to open and simulate all models
without the occurrence of any error.

8.5 Interpreting the results

Our documented test results show that our seman-
tics encode the timing effects induced by the re-
source properties as expected. Furthermore, all mod-
eling means as provided by our TAM profile are con-
sidered by the semantics. Thus, we consider our hy-
pothesis H1 fulfilled.

Relating the variables H2.2 and H2.1, we observe
that the raw effort on manually specifying CCSL-
model-1 (H2.2) is ≈ 361% of the summarized effort
on specifying MSD-spec-1 and on generating CCSL-
model-1 (H2.1), ≈ 301% for MSD-spec-/CCSL-model-
2, ≈ 838% for MSD-spec-/CCSL-model-3, and ≈ 856%
for MSD-spec-/CCSL-model-4. Thus, we consider H2
fulfilled as H2.1 < H2.2 always holds.

Finally, we consider hypothesis H3 fulfilled be-
cause 100% of the 21 CCSL models generated during
the evaluation of H1 and H2 were opened in the CCSL
model editor and simulated in TIMESQUARE without
the occurrence of any error.

The fulfilled hypotheses indicate a positive answer
to our evaluation questions. That is, our timing analy-
sis approach generates syntactically and semantically
correct CCSL models and reduces the engineering ef-
fort for conceiving and specifying them. The effort
is even less if we assume that the platform-specific
aspects are added to an already existing platform-
independent MSD specification as presented in Sec-
tion 2.2.1. Summarizing, the fulfilled hypotheses give
rise to the assumption that our timing analysis ap-
proach is indeed useful for a timing analyst.

34 Jörg Holtmann et al.

8.6 Threats to validity

The threats to validity in our example application ac-
cording to the taxonomy of Runeson et al. [107] are:

Construct validity

– During the evaluation conduct, both students had
little knowledge on timing analysis and on the
MARTE platform modeling, and they had a lot
and little knowledge on modeling MSDs, respec-
tively (cf. Section 8.3). Thus, the students’ knowl-
edge is not comparable to the knowledge of tim-
ing analysis experts, who are versed in applying
conventional timing analysis tools for later de-
velopment phases or TIMESQUARE. Such experts
might tend to apply the commercial-off-the-shelf-
tools that they are used to, or might argue that tim-
ing analyses are too imprecise in an early develop-
ment phase with only coarse-grained information.
However, with their limited knowledge, the stu-
dents managed to specify the particular models, to
inject and understand real-time requirement vio-
lations, and to reenact the computation of timing
effects based on resource properties through our
operational semantics. This indicates that the ap-
proach is indeed applicable and efficient, especially
for timing analysis novices.

– Student-1 conceived the initial timing analysis ap-
proach as well as MSD-spec-1 in the context of
[12], and the other platform-specific MSD specifi-
cations are variants of MSD-spec-1. Thus, he knew
the functional principle of the approach and could
have been biased toward it.
However, in addition we employed student-2 for
conceiving the other platform-specific MSD speci-
fications as well as evaluating the hypotheses, and
the first author had comprehensive discussions
with both students.

– Regarding the evaluation of H1, the resource prop-
erties provided as modeling means by our TAM
profile might not be extensive enough, might not
be useful, or might not be applicable during the
early development phase of RE.
However, we argue that the considered resource
properties represent typical timing-relevant ones
at an adequate abstraction level due to their sys-
tematic determination by means of a literature re-
view [12, Chapter 3]. This literature review consid-
ered scientific as well as industrial-grade publica-
tions and investigated which resource properties
influence the timing behavior of software-intensive
systems and which concrete effects on the timing
behavior they induce. Furthermore, it ensured the

applicability during RE by excluding publications
describing resource properties that have a too de-
tailed abstraction level for a timing analysis during
this early development phase.

– Regarding the evaluation of H2, conducting a user
study on specifying complete particular models
might provide more information on the subjective
efforts. In contrast, we measure the raw, time-wise
efforts on conducting the particular model opera-
tion kinds in dedicated measurement models.
Nevertheless, Durisic et al. [30] report that such
simple and atomic metrics based on model oper-
ations are a good and objective indicator for pre-
dicting the overall effort, though having certain
threats to validity as every metric. Particularly, we
do not measure and thereby depend on any cog-
nitive effort that is very subjective and difficult
to measure: Conceiving the models on paper or
whiteboards before modeling in the tool, discus-
sions with peers, design and complexity issues of
the respective modeling languages, diagram lay-
outing or text indenting, error search and debug-
ging, model evolution, general cognitive abilities
or current cognitive state of the engineer, language
expertise, etc.

Internal validity Regarding the evaluation of H2, we
multiply the amount of model elements of the four
complete MSD specifications and CCSL models with
the measured raw, time-wise efforts of correspond-
ing atomic model operation kinds, where the mea-
surements stem from dedicated measurement models.
Under consideration of the transformation execution
times, we then conclude that the effort on specifying
platform-specific MSD specifications and generating
CCSL models is less than the effort on manually speci-
fying the corresponding CCSL models. These relations
might be incorrect. However, comparing the sheer
amounts of model elements for both model kinds, it is
obvious that manually specifying a CCSL model can-
not outperform an automatic CCSL model generation,
even under consideration that platform-specific MSD
specifications have to be created beforehand.

External validity We only considered one example ap-
plication, and the platform-specific MSD specifications
are variants of the same system. Furthermore, exam-
ple applications in general cannot ensure external va-
lidity. Thus, we cannot generalize the conclusions to
all possible platform-independent MSD specifications,
other types of software-intensive systems, or software-
intensive systems in other industry sectors. Neverthe-
less, the example application is typical for software-

Early timing analysis based on scenario requirements and platform models 35

intensive systems, so that we do not expect large devi-
ations for other types of systems.

Reliability

– Regarding the evaluation of H1, the students could
have judged incorrectly whether the platform-
induced timing effects occur as expected. However,
we mitigate this threat by employing two differ-
ent students, whose judgments complement each
other and are critically scrutinized by the first au-
thor. Furthermore, we provide the evaluation data
on H1 and the example application in our supple-
mentary material [62] for the sake of replicability.

– Regarding the evaluation of H2, a different person
could have a different modeling scheme or a dif-
ferent setup of hardware and operating system, so
that this other person’s measurements would yield
different duration values. However, we believe that
we applied the most efficient modeling scheme for
each of the operation kinds and that the hardware
and operating system setup can be neglected on
modern systems in a human interaction context.
Furthermore, we provide all the data in our sup-
plementary material [62], so that interested people
can redo the measurements in other settings.

9 Related work

The approaches described in this section analyze
timed models. Typically, they specify behavioral mod-
els and analyze them for safety and liveness properties
in a timed setting. The expressiveness of the underly-
ing notations and the particular model contents influ-
ence the purposes and capabilities of the analysis tech-
niques, as explained in the following two paragraphs.

Approaches that only specify application behavior
or the requirements on it can only verify that the timed
behavior fulfills the checked properties and can be im-
plemented at all. However, such approaches are not
platform-aware: They are not intended to verify that
an execution platform is sufficient to fulfill the real-
time requirements (cf. Section 2.1). This is due to the
fact that the timing effects induced by the resource
properties are not in the scope of the analysis tech-
niques or the analyzed models. Thus, such approaches
can be compared to our Real-time Play-out approach
[17], which simulatively validates timed MSDs to re-
veal unintended behavior and is the basis for verifying
MSDs for safety/liveness properties [43].

If the models additionally specify the timing effects
induced by the execution platform, the analysis tech-
niques can also include (end-to-end) response time

analyses as outlined in Section 2.1 and addressed by
the approach presented in this article. However, this
causes much effort, because these low-level timing ef-
fects (e.g., ECU, bus, and scheduling behavior) have to
be pre-calculated based on the platform resource prop-
erties and explicitly specified for this purpose (e.g.,
through delays in the particular timed notations)—
additionally to the (requirements on the) timed appli-
cation behavior. Furthermore, such models dedicated
only to the purpose of timing analyses are typically
difficult to reuse for or base on existing models for
other purposes in the design process (e.g., discussing
the requirements models with stakeholders or con-
ducting design reviews of the platform models).

In contrast, our approach enables to reuse existing
timed scenario-based requirements as well as platform
models. The application of de-facto standard, UML-
based modeling languages that are understandable for
many stakeholders, and, particularly, the straightfor-
ward specification of resource properties instead of
their induced timing effects facilitates to (re-)use mod-
els also for/from other design process purposes. Our
semantics encapsulates the computation of the timing
effects induced by the particular resource properties
and enables to simulatively verify them against real-
time requirements as part of the timed MSDs.

The related approaches can be distinguished into
approaches for analyzing timed scenario-based mod-
els (Section 9.1) and for for analyzing timed automata-
based models (Section 9.2).

9.1 Analysis of timed scenario-based models

Beyond the explanations regarding the analysis of
timed models in general above, most approaches de-
scribed in this section annotate scenario-based require-
ments formalisms with real-time requirements as well
as timing effects induced by the platform resources
(cf. [57] for an overview on timed scenario notations).
Furthermore, these approaches provide different non-
simulative techniques for their respective timing anal-
yses. However, the outputs of these timing analysis
techniques are plain yes/no results and partly logged
information about the processing times. In contrast,
our timing analysis of the generated CCSL time mod-
els in TIMESQUARE enables to comprehensively de-
tect real-time requirement violations straightaway by
means of interactive simulation.

Live Sequence Charts (LSCs) [22] extend Message
Sequence Charts [67] with modeling constructs and
semantics for specifying and analyzing safety and
liveness properties. Harel and Maoz [47] transferred

36 Jörg Holtmann et al.

these modeling constructs to a UML profile to en-
able the specification and analysis of LSC models in
the widespread UML tools. Extended with time con-
ditions and their semantics [48,46], they form our
timed MSD variant with its operational semantics
given by Real-time Play-out [17] (cf. Section 2.2). Thus
and as explained above, approaches based on timed
LSCs/MSDs typically specify and analyze the (re-
quirements on the) general application behavior con-
strained by real-time requirements but do not consider
response time analysis based on platform models.

In contrast, Larsen et al. [76,77,81] present an ap-
proach to formally verify real-time design behavior
specified through Timed Automata (TA) [2] against
scenario-based functional and real-time requirements
specified by means of time-enriched LSCs. For this
purpose, the LSC requirements are translated to ob-
server TA that are composed with the design behav-
ior TA that encompass pre-calculated timing effects in-
duced by the platform. The resulting TA network is
verified against reachability properties on the observer
TA in a model checking tool. However, the need for
detailed intra-component design models encompass-
ing platform timing effects impedes the application of
the approach in the early RE phase.

Similarly, Lettrari and Klose [80] simulatively ver-
ify real-time design models against scenario-based
functional and real-time requirements that are speci-
fied by means of time-constrained UML 1.3 Sequence
Diagrams augmented with concepts from LSCs. For
this purpose, they generate instrumented code from
the design models so that timestamps are recorded
in the simulative code execution. These timestamps
are used to check whether the implementation fulfills
the real-time requirements specified in the scenarios.
However, the need for executable software code gen-
erated from detailed design models again impedes the
application of the approach in early RE.

Hassine [55,54] annotates the scenario notation of
Timed Use Case Maps (TUCM) [56] and its underly-
ing architecture with timing-relevant effects. The an-
notated TUCM model is transformed into an Abstract
State Machine model [14] that is simulated in an ex-
ternal tool, similarly to our approach. However, the
simulation tool is not capable of interpreting the an-
notations. Instead, it is instrumented so that execu-
tion traces are generated and persisted in a text file.
These execution traces potentially contain log mes-
sages about real-time requirement violations and have
to be inspected manually to reveal the violated re-
quirement and the violating timing effect. In con-
trast, we generate CCSL specifications that we di-
rectly simulate in TIMESQUARE, enabling to detect

and comprehend potential real-time requirement vio-
lations straightaway. Furthermore, the approach only
allows to specify delays (i.e., timing effects) induced
by the platform, but not the causes of these effects (i.e.,
the resource properties).

Wang and Tsai [118] apply Message Sequence
Charts [67] to specify functional requirements and the
Specification and Description Language [68] to specify
the underlying architecture. They annotate these mod-
els with a task model including real-time requirements
and with timing-relevant effects, respectively. They
use algorithms to first compute an allocation of tasks
to processing resources and subsequently perform a
schedulability analysis to verify the effects against
real-time requirements, yielding a plain yes/no re-
sult. In contrast, we explicitly specify the allocation
of software components to processing resources in our
platform-specific MSD specifications and simulate the
resulting CCSL specifications, where the simulation
facilitates to comprehend potential real-time require-
ment violations. Again, the approach does not distin-
guish between resource properties and the timing ef-
fects that they induce.

Han and Youn [44] apply Interval Timed Colored
Petri Nets [15] to specify delays for the execution
of event sequences and annotate these models with
real-time requirements. They present algorithms for
the computation of event sequence processing de-
lays and for the verification of the delays w.r.t. the
real-time requirements. Similarly to the approaches
mentioned above, the outputs of these algorithms are
plain yes/no results as well as the logged processing
times. Thus, our simulative approach again enables a
better comprehension of real-time requirement viola-
tions. Furthermore, the approach only allows to spec-
ify static delays in terms of timing effects.

9.2 Analysis of timed automata-based models

Automata-based notations are in terms of expressive-
ness similar to scenario-based notations. However,
scenario-based models are quicker to understand than
automata-based ones [82,98]. Due to the focus on the
inter- instead of the intra-component behavior, we fur-
ther argue that a scenario-based notation is the natu-
ral choice for the requirements on the message-based
interactions of distributed software-intensive systems,
which we address in this article. Apart from that, our
approach is different from most of the approaches
mentioned in this section as explained in the beginning
of Section 9. That is, it does not require to specify the
low-level timed platform behavior with timing effects
pre-calculated from the resource properties but rather

Early timing analysis based on scenario requirements and platform models 37

enables using the resource properties as part of dedi-
cated platform models in a straightforward manner.

Gerber and Lee [39] present the automata-like
process algebra Calculus for Communicating Shared
Resources and an accompanying proof system for
schedulability analyses. Beyond timing effects and
constraints for the behavioral part, it allows the allo-
cation to shared and prioritizable resources like CPUs
or communication links. The underlying computa-
tional model captures the fact that a resource can only
process one action at an instant. Thus, from the ap-
proaches described in this section, it comes closest
to our approach of allocating behavioral to platform
models and encapsulating timing effects in the oper-
ational semantics. However, the resources are part of
the behavioral model, so that behavioral and platform
aspects cannot be conceived independently. From an
analysis point of view, the approach is not capable of
interactively simulating and visualizing the timed be-
havior for revealing the causes of real-time require-
ment violations.

Jahanian et al. [69,70] introduce the graphical spec-
ification language Modechart, which is inspired by
Harel’s Statecharts [45] and allows to annotate real-
time requirements (i.e., deadlines) and timing effects
(i.e., delays) to automata-based behavioral models.
Modechart comes with a toolset [20] for the specifi-
cation, formal verification, and simulation of the cor-
responding models. Unlike in our approach, neither
dedicated platform models specifying the resource
properties nor their translation into the induced tim-
ing effects are in the scope of Modechart. Thus, the de-
tailed scheduling behavior of the whole system has to
be specified and annotated with all possible timing ef-
fects to verify it against the real-time requirements.

Ostroff [97] introduces time-augmented automata
called Timed Transition Models and an automatic ver-
ification approach for this language. The timing be-
havior is specified by means of lower and upper time
bounds for the transitions, and the real-time require-
ments are specified through properties in real-time
temporal logic [96]. Two different algorithms compute
reachability graphs from the timed transitions mod-
els and analyze them for different temporal proper-
ties. Again, every possible timing effect induced by the
execution platform has to be calculated and explicitly
specified by means of time bounds for the transitions
to consider it in the analysis.

Timed Automata (TA) [2] (cf. Section 9.1 for an ap-
proach applying TA in combination with LSCs) pro-
vide modeling means for adding delays and timed
conditions to the states and transitions of automata.
Particularly, their efficient implementation by means

of a simplified TA variant in the model checking tool
UPPAAL [78,11] led to a wide range of approaches us-
ing TA as basis for the formal verification of timed be-
havior (see, e.g., [117] for a list of UPPAAL case stud-
ies). As the approaches mentioned before, specifying
and analyzing TA either only considers the timed ap-
plication behavior or requires to know and specify ad-
ditionally the behavior of the platform and its tim-
ing effects. Thus, for applying TA for the purpose of
schedulability analysis, the UPPAAL variant TIMES
[4,5] enables to specify and analyze task models based
on TA. However, this approach requires as much de-
tailed knowledge of the final implementation or mod-
els of it that it can be applied only in later engi-
neering phases, like conventional commercial-off-the-
shelf-tools for response time analysis.

10 Conclusion and future work

In this paper, we presented an approach that enables
end-to-end response time analyses based on MSD
specifications encompassing real-time requirements in
the early RE phase of the development process. For
this purpose, we introduced the MARTE-based TAM
profile that provides modeling means for platforms,
their timing-relevant resource properties, and the al-
location of MSD specifications to the platform models.
Furthermore, we conceptually extend the event han-
dling semantics of MSDs by introducing event kinds
for the consideration of static and dynamic delays that
occur during the software execution on a target plat-
form. Finally, as the main contribution, we specified
the operational semantics of platform-specific MSD
specifications with extended event handling for the
purpose of timing analyses. To this end, we applied the
GEMOC approach enabling the automatic derivation
of CCSL models from platform-specific MSD speci-
fications based on our semantics specification. These
CCSL models are executable in the simulative tim-
ing analysis tool TIMESQUARE, which also provides
model checking features. Using an example applica-
tion, we evaluated the approach with the automotive
EBEAS example and outline the timing problems that
we are able to identify on this abstraction level.

Our timing analysis approach enables to identify
platform-induced real-time requirement violations in
MSD requirements specifications that could otherwise
be revealed only in late engineering phases through
conventional timing analysis techniques. The TAM
profile provides comprehensive modeling means to
add timing-relevant platform-specific aspects to MSD
specifications at an abstraction level suitable for RE.

38 Jörg Holtmann et al.

The extended event handling semantics for MSDs en-
ables a more realistic consideration of the particu-
lar event occurrences and the delays in between. The
specification of the MSD semantics for timing analy-
ses encodes, in terms of CCSL and MoCCML, a sub-
set of the conventional MSD semantics, the extended
MSD event handling, and the resource property effects
on the timing behavior. Furthermore, the declarative
semantics specification with GEMOC allows the flex-
ible encoding of additional resource properties’ tim-
ing effects or the adaption to other scenario-based no-
tations. The model transformation generation feature
of GEMOC Studio takes this specification as input and
thereby reduces the effort of moving from MSDs to the
CCSL formalism. The evaluation of the example appli-
cation indicates the efficacy of the approach.

A promising starting point for future work is the
size of the solution space, which arises out of the de-
tection of a real-time requirement (cf. the discussion
on the variety of potential fixes to a violation in the
end of Section 7.1). Such challenges, where a large so-
lution space exists and several constraints have to be
considered, are subject to optimization questions and
can be boiled down to a search problem in the solution
space. Search-based software engineering [52,51,53] is
a well-established software engineering field that ap-
plies meta-heuristic algorithms [38] to automatically
solve such search problems. Similar to our previous
work on automatically completing underspecified sce-
nario models [109], the problem of finding real-time-
feasible platform-specific MSD specifications could be
encoded as input to a meta-heuristic algorithm that
has to incorporate the timing analysis results.

Acknowledgments We particularly thank Ruslan Bernijazov
(aka student-1) for conceiving and implementing a very early
version [12] of our approach. Furthermore, we thank Kai Bier-
meier (aka student-2) for supporting us in early stages of the
evaluation as well as Grischa Liebel for pointing us to ModRec.

References

1. Aldebaran file format. URL https://www.mcrl2.org/
web/user_manual/language_reference/lts.html#
aldebaran-format. Last accessed October 2021

2. Alur, R., Dill, D.L.: A theory of timed automata. The-
oretical Computer Science 126(2), 183–235 (1994). DOI
10.1016/0304-3975(94)90010-8

3. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Al-
ternating refinement relations. In: Intl. Conf. on Concur-
rency Theory, no. 1466 in LNCS, pp. 163–178. Springer
(1998). DOI 10.1007/BFb0055622

4. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi,
W.: TIMES – a tool for modelling and implementation of
embedded systems. In: Tools and Algorithms for the Con-
struction and Analysis of Systems, no. 2280 in LNCS, pp.
460–464. Springer (2002). DOI 10.1007/3-540-46002-0_32

5. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi,
W.: TIMES: A tool for schedulability analysis and code gen-
eration of real-time systems. In: Revised Papers of the 1st

Intl. Workshop on Formal Modeling and Analysis of Timed
Systems (FORMATS 2003), no. 2791 in LNCS, pp. 60–72.
Springer (2004). DOI 10.1007/978-3-540-40903-8_6

6. André, C.: Syntax and semantics of the clock constraint
specification language (CCSL). Research Report RR-6925,
INRIA (2009)

7. André, C., Mallet, F., de Simone, R.: Modeling time(s). In:
ACM/IEEE Intl. Conf. on Model Driven Engineering Lan-
guages and Systems (MoDELS/UML), no. 4735 in LNCS,
pp. 559–573. Springer (2007)

8. Audsley, N.C., Burns, A., Davis, R.I., Tindell, K.W.,
Wellings, A.J.: Fixed priority pre-emptive scheduling: An
historical perspective. Real-Time Systems 8(2), 173–198
(1995). DOI 10.1007/BF01094342

9. AUTOSAR GbR: AUTomotive Open System ARchitecture
(AUTOSAR) Standard. URL https://www.autosar.org.
Last accessed October 2021

10. Bate, I.J.: Scheduling and timing analysis for safety critical
real-time systems (1998)

11. Bengtsson, J., Yi, W.: Timed Automata: Semantics, Algo-
rithms and Tools, pp. 87–124. No. 3098 in LNCS. Springer
(2004). DOI 10.1007/978-3-540-27755-2_3

12. Bernijazov, R.: Early timing analysis of scenario-based soft-
ware requirements. Master’s thesis, Paderborn University
(2017)

13. Boehm, B.W.: Software Engineering Economics. Prentice-
Hall (1981)

14. Börger, E., Stark, R.: Abstract State Machines: A Method for
High-Level System Design and Analysis. Springer (2003)

15. Boucheneb, H.: Interval timed coloured petri net: efficient
construction of its state class space preserving linear prop-
erties. Formal Aspects of Computing 20(2), 225–238 (2008).
DOI 10.1007/s00165-007-0050-7

16. Bousse, E., Degueule, T., Vojtisek, D., Mayerhofer, T.,
DeAntoni, J., Combemale, B.: Execution framework of the
GEMOC studio (tool demo). In: 9th Intl. Conf. on Software
Language Engineering. ACM (2016)

17. Brenner, C., Greenyer, J., Holtmann, J., Liebel, G.,
Stieglbauer, G., Tichy, M.: ScenarioTools real-time play-out
for test sequence validation in an automotive case study.
In: 13th Intl. Workshop on Graph Transformation and Vi-
sual Modeling Techniques, no. 67 in Electronic Commu-
nications of the EASST. EASST (2014). DOI 10.14279/tuj.
eceasst.67.948

18. Buttazzo, G.C.: Hard Real-Time Computing Systems—
Predictable Scheduling Algorithms and Applications, 3
edn. Springer (2011). DOI 10.1007/978-1-4614-0676-1

19. Byhlin, S., Ermedahl, A., Gustafsson, J., Lisper, B.: Ap-
plying static WCET analysis to automotive communica-
tion software. In: 17th Euromicro Conf. on Real-Time Sys-
tems (ECRTS’05), pp. 249–258. IEEE (2005). DOI 10.1109/
ECRTS.2005.7

20. Clements, P.C., Heitmeyer, C.L., Labaw, B.G., Rose, A.T.:
MT: A toolset for specifying and analyzing real-time sys-
tems. In: 1993 Real-Time Systems Symposium, pp. 12–22
(1993). DOI 10.1109/REAL.1993.393519

21. Combemale, B., DeAntoni, J., Larsen, M.V., Mallet, F.,
Barais, O., Baudry, B., France, R.: Reifying concurrency for
executable metamodeling. In: 6th Intl. Conf. on Software
Language Engineering, no. 8225 in LNCS, pp. 365–384.
Springer (2013). DOI 10.1007/978-3-319-02654-1_20

22. Damm, W., Harel, D.: LSCs: Breathing life into message se-
quence charts. Formal Methods in System Design 19(1),
45–80 (2001). DOI 10.1023/A:1011227529550

https://www.mcrl2.org/web/user_manual/language_reference/lts.html#aldebaran-format
https://www.mcrl2.org/web/user_manual/language_reference/lts.html#aldebaran-format
https://www.mcrl2.org/web/user_manual/language_reference/lts.html#aldebaran-format
https://www.autosar.org

Early timing analysis based on scenario requirements and platform models 39

23. DeAntoni, J., André, C., Gascon, R.: CCSL denotational se-
mantics. Research Report RR-8628, INRIA (2014)

24. DeAntoni, J., Diallo, I.P., Champeau, J., Combemale, B.,
Teodorov, C.: Operational semantics of the model of con-
currency and communication language. Research Report
RR-8584, INRIA (2014)

25. DeAntoni, J., Diallo, I.P., Teodorov, C., Champeau, J.,
Combemale, B.: Towards a meta-language for the concur-
rency concern in DSLs. In: Design, Automation & Test in
Europe, pp. 313–316 (2015). DOI 10.7873/DATE.2015.1052

26. DeAntoni, J., Mallet, F.: ECL: the event constraint language,
an extension of OCL with events. Research Report RR-
8031, INRIA (2012)

27. DeAntoni, J., Mallet, F.: TIMESQUARE: Treat your models
with logical time. In: 50th Intl. Conf. on Objects, Mod-
els, Components, Patterns, no. 7304 in LNCS, pp. 34–41.
Springer (2012). DOI 10.1007/978-3-642-30561-0_4

28. Dietrich, C., Wägemann, P., Ulbrich, P., Lohmann, D.:
SysWCET: Whole-system response-time analysis for fixed-
priority real-time systems. In: 2017 IEEE 23rd Real-Time
and Embedded Technology and Applications Symposium
(RTAS), pp. 37–48. IEEE (2017). DOI 10.1109/RTAS.2017.37

29. The DOT language. URL https://graphviz.org/doc/
info/lang.html. Last accessed October 2021

30. Durisic, D., Staron, M., Tichy, M., Hansson, J.: Assessing the
impact of meta-model evolution: A measure and its auto-
motive application. Software & Systems Modeling (2017).
DOI 10.1007/s10270-017-0601-1

31. Eclipse GEMOC Studio. URL https://projects.
eclipse.org/projects/modeling.gemoc. Last accessed
October 2021

32. Eclipse Modeling Framework (EMF). URL https://www.
eclipse.org/modeling/emf. Last accessed October 2021

33. Eclipse Papyrus™ modeling environment. URL https://
www.eclipse.org/papyrus/. Last accessed October 2021

34. Eclipse QVT Operational. URL https://projects.
eclipse.org/projects/modeling.mmt.qvt-oml. Last ac-
cessed October 2021

35. Feiertag, N., Richter, K., Nordlander, J., Jonsson, J.: A com-
positional framework for end-to-end path delay calcula-
tion of automotive systems under different path semantics.
In: 1st Intl. Workshop on Compositional Theory and Tech-
nology for Real-Time Embedded Systems (CRTS) (2008)

36. Fidge, C.: Logical time in distributed computing systems.
Computer 24(8), 28–33 (1991)

37. Fockel, M., Holtmann, J., Koch, T., Schmelter, D.: Formal,
model- and scenario-based requirement patterns. In: 6th

Intl. Conf. on Model-Driven Engineering and Software De-
velopment (MODELSWARD). SCITEPRESS (2018). DOI
10.5220/0006554103110318

38. Gendreau, M., Potvin, J.Y. (eds.): Handbook of Metaheuris-
tics, International Series in Operations Research & Manage-
ment Science, vol. 272, 3 edn. Springer (2019). DOI
10.1007/978-3-319-91086-4

39. Gerber, R., Lee, I.: CCSR: A calculus for communicating
shared resources. In: Theories of Concurrency: Unification
and Extension (CONCUR ’90), no. 458 in LNCS, pp. 263–
277. Springer (1990). DOI 10.1007/BFb0039065

40. Glitia, C., DeAntoni, J., Mallet, F., Millo, J.V., Boulet,
P., Gamatié, A.: Progressive and explicit refinement of
scheduling for multidimensional data-flow applications
using UML MARTE. Design Automation for Em-
bedded Systems 19(1-2), 1–33 (2015). DOI 10.1007/
s10617-014-9140-y

41. Goknil, A., DeAntoni, J., Peraldi-Frati, M.A., Mallet, F.: Tool
support for the analysis of TADL2 timing constraints us-
ing TIMESQUARE. In: 2013 18th Intl. Conf. on Engineering

of Complex Computer Systems, pp. 145–154. IEEE (2013).
DOI 10.1109/ICECCS.2013.28

42. Goldberg, E.: On bridging simulation and formal ver-
ification. In: Verification, Model Checking, and Ab-
stract Interpretation, pp. 127–141 (2008). DOI 10.1007/
978-3-540-78163-9_14

43. Greenyer, J., Brenner, C., Cordy, M., Heymans, P., Gressi,
E.: Incrementally synthesizing controllers from scenario-
based product line specifications. In: 2013 9th Joint Meet-
ing on Foundations of Software Engineering (ESEC/FSE
2013), pp. 433–443. ACM (2013). DOI 10.1145/2491411.
2491445

44. Han, S., Youn, H.Y.: Modeling and analysis of time-critical
context-aware service using extended interval timed col-
ored petri nets. IEEE Transactions on Systems, Man, and
Cybernetics—Part A: Systems and Humans 42(3), 630–640
(2012). DOI 10.1109/TSMCA.2011.2170064

45. Harel, D.: Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming 8(3), 231–274
(1987). DOI 10.1016/0167-6423(87)90035-9

46. Harel, D., Kugler, H., Pnueli, A.: Smart play-out extended:
Time and forbidden elements. In: 4th Intl. Conf. on Quality
Software (QSIC), pp. 2–10. IEEE (2004). DOI 10.1109/QSIC.
2004.1357938

47. Harel, D., Maoz, S.: Assert and negate revisited: Modal
semantics for UML sequence diagrams. Software &
Systems Modeling 7(2), 237–252 (2008). DOI 10.1007/
s10270-007-0054-z

48. Harel, D., Marelly, R.: Playing with time: On the spec-
ification and execution of time-enriched LSCs. In: 10th

IEEE Intl. Symposium on Modeling, Analysis and Simu-
lation of Computer and Telecommunications Systems 2002
(MASCOTS 2002), pp. 193–202. IEEE (2002). DOI 10.1109/
MASCOT.2002.1167077

49. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based
Programming Using LSCs and the Play-Engine. Springer
(2003). DOI 10.1007/978-3-642-19029-2

50. Harel, D., Rumpe, B.: Meaningful modeling: What’s the
semantics of “semantics”? IEEE Computer 37(10), 64–72
(2004)

51. Harman, M.: The current state and future of search based
software engineering. In: Future of Software Engineering
(FOSE ’07), pp. 342–357 (2007). DOI 10.1109/FOSE.2007.29

52. Harman, M., Jones, B.F.: Search-based software engineer-
ing. Information and Software Technology 43(14), 833–839
(2001). DOI 10.1016/S0950-5849(01)00189-6

53. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based soft-
ware engineering: Trends, techniques and applications.
ACM Computing Surveys 45(1) (2012). DOI 10.1145/
2379776.2379787

54. Hassine, J.: Early schedulability analysis with timed use
case maps. In: 14th Intl. SDL Forum, no. 5719 in LNCS, pp.
98–114. Springer (2009). DOI 10.1007/978-3-642-04554-7_7

55. Hassine, J.: Early modeling and validation of timed sys-
tem requirements using timed use case maps. Require-
ments Engineering 20(2), 181–211 (2015). DOI 10.1007/
s00766-013-0200-9

56. Hassine, J., Rilling, J., Dssouli, R.: Timed use case maps.
In: Revised Selected Papers of the 5th Intl. Workshop on
System Analysis and Modeling, no. 4320 in LNCS, pp. 99–
114. Springer (2006)

57. Hassine, J., Rilling, J., Dssouli, R.: An evaluation of timed
scenario notations. Journal of Systems and Software 83(2),
326–350 (2010). DOI 10.1016/j.jss.2009.09.014

58. Haugen, Ø., Husa, K.E., Runde, R.K., Stølen, K.: Why
timed sequence diagrams require three-event semantics.

https://graphviz.org/doc/info/lang.html
https://graphviz.org/doc/info/lang.html
https://projects.eclipse.org/projects/modeling.gemoc
https://projects.eclipse.org/projects/modeling.gemoc
https://www.eclipse.org/modeling/emf
https://www.eclipse.org/modeling/emf
https://www.eclipse.org/papyrus/
https://www.eclipse.org/papyrus/
https://projects.eclipse.org/projects/modeling.mmt.qvt-oml
https://projects.eclipse.org/projects/modeling.mmt.qvt-oml

40 Jörg Holtmann et al.

In: Scenarios: Models, Transformations and Tools, no.
3466 in LNCS, pp. 1–25. Springer (2005). DOI 10.1007/
11495628_1

59. Heumesser, N., Houdek, F.: Experiences in managing an
automotive requirements engineering process. In: 12th
IEEE Int. Requirements Engineering Conf., pp. 322–327.
IEEE (2004). DOI 10.1109/ICRE.2004.1335690

60. Holtmann, J.: Improvement of software requirements qual-
ity based on systems engineering. Ph.D. thesis, Paderborn
University (2019). DOI 10.17619/UNIPB/1-730

61. Holtmann, J., Deantoni, J., Fockel, M.: Early timing analy-
sis based on scenario-based requirements specifications—
description of SoSyM validation artifacts (2020). URL
https://project.inria.fr/platformawaremsd/

62. Holtmann, J., DeAntoni, J., Fockel, M.: Supplementary ma-
terial on “Early timing analysis based on scenario require-
ments and platform models” (2021). DOI 10.5281/zenodo.
4769781

63. Holtmann, J., Fockel, M., Koch, T., Schmelter, D., Bren-
ner, C., Bernijazov, R., Sander, M.: The MechatronicUML
requirements engineering method: Process and language.
Tech. Rep. tr-ri-16-351, Fraunhofer IEM / Heinz Nixdorf
Institute (2016). DOI 10.13140/RG.2.2.33223.29606

64. Holtmann, J., Meyer, M.: Play-out for hierarchical compo-
nent architectures. In: 11th Workshop on Automotive Soft-
ware Engineering, GI-Edition – Lecture Notes in Informatics,
vol. P-220, pp. 2458–2472. Koellen (2013)

65. International Organization for Standardization (ISO):
Road vehicles—open interface for embedded automotive
applications—part 3: OSEK/VDX operating system (OS).
ISO 17356-3:2005 (2005)

66. International Organization for Standardization (ISO): ISO
26262-6:2018(E): Road vehicles – Functional safety. Part 6:
Product development at the software level (2018)

67. ITU Telecommunication Standardization Sector: ITU-T
Recommendation Z.120 (02/2011): Message Sequence
Chart (MSC) (2011)

68. ITU Telecommunication Standardization Sector: ITU-T
Recommendation Z.101 (04/2016): Specification and De-
scription Language – Basic SDL–2010 (2016)

69. Jahanian, F., Lee, R., Mok, A.K.: Semantics of Modechart
in real time logic. In: 21st Annual Hawaii International
Conference on System Sciences (HICSS), pp. 479–489. IEEE
(1988). DOI 10.1109/HICSS.1988.11840

70. Jahanian, F., Mok, A.K.: Modechart: A specification lan-
guage for real-time systems. IEEE Transactions on Soft-
ware Engineering 20(12), 933–947 (1994). DOI 10.1109/32.
368134

71. Joseph, M., Pandya, P.: Finding response times in a real-
time system. The Computer Journal 29(5), 390–395 (1986).
DOI 10.1093/comjnl/29.5.390

72. Khecharem, A., Gomez, C., DeAntoni, J., Mallet, F., De Si-
mone, R.: Execution of Heterogeneous Models for Thermal
Analysis with a Multi-view Approach. In: Forum on spec-
ification and Design Languages (FDL 2014). IEEE (2014)

73. Kitchenham, B., Pickard, L., Pfleeger, S.L.: Case studies for
method and tool evaluation. IEEE Software 12(4), 52–62
(1995). DOI 10.1109/52.391832

74. Kopetz, H.: Real-Time Systems—Design Principles for Dis-
tributed Embedded Applications, 2 edn. Springer (2011).
DOI 10.1007/978-1-4419-8237-7

75. Lamport, L.: Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM 21(7),
558–565 (1978)

76. Larsen, K.G., Li, S., Nielsen, B., Pusinskas, S.: Verify-
ing real-time systems against scenario-based requirements.
In: 2nd World Congress on Formal Methods, no. 5850

in LNCS, pp. 676–691. Springer (2009). DOI 10.1007/
978-3-642-05089-3{_}43

77. Larsen, K.G., Li, S., Nielsen, B., Pusinskas, S.: Scenario-
based analysis and synthesis of real-time systems using
UPPAAL. In: Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE 2010), pp. 447–452. EDAA/IEEE
(2010). DOI 10.1109/DATE.2010.5457164

78. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell.
International Journal on Software Tools for Technology
Transfer 1, 134–152 (1997). DOI 10.1007/s100090050010

79. Latombe, F., Crégut, X., Combemale, B., DeAntoni, J.,
Pantel, M.: Weaving concurrency in executable domain-
specific modeling languages. In: 8th Intl. Conf. on Software
Language Engineering. ACM (2015)

80. Lettrari, M., Klose, J.: Scenario-based monitoring and test-
ing of real-time UML models. In: 4th Intl. Conf. on the
Unified Modeling Language (�UML� 2001—The Uni-
fied Modeling Language: Modeling Languages, Concepts,
and Tools), no. 2185 in LNCS, pp. 317–328. Springer (2001).
DOI 10.1007/3-540-45441-1_24

81. Li, S., Balaguer, S., David, A., Larsen, K.G., Nielsen, B.,
Pusinskas, S.: Scenario-based verification of real-time sys-
tems using UPPAAL. Formal Methods in System Design
37(2), 200–264 (2010). DOI 10.1007/s10703-010-0103-z

82. Liebel, G., Tichy, M.: Comparing comprehensibility of
modelling languages for specifying behavioural require-
ments. In: 1st Intl. Workshop on Human Factors in Model-
ing (HuFaMo), pp. 17–24 (2015)

83. Mallet, F., André, C.: On the semantics of
uml/MARTE clock constraints. In: Int. Symp. on
Object/component/service-oriented Real-time dis-
tributed Computing (ISORC’09), pp. 301–312. IEEE (2009).
DOI 10.1109/ISORC.2009.27

84. Mallet, F., André, C., DeAntoni, J.: Executing AADL mod-
els with UML/MARTE. In: Intl. Conf. on Engineering of
Complex Computer Systems, pp. 371–376 (2009)

85. Mateescu, R., Thivolle, D.: A model checking language for
concurrent value-passing systems. In: International Sym-
posium on Formal Methods, pp. 148–164. Springer (2008)

86. ModRec. URL https://gitlab.com/grischal/is.ru.
cs.papyrusactivitylogger. Last accessed October 2021

87. Mubeen, S., Mäki-Turja, J., Sjödin, M.: Support for end-to-
end response-time and delay analysis in the industrial tool
suite—issues, experiences and a case study. Computer Sci-
ence and Information Systems 10(1), 453–482 (2013). DOI
10.2298/CSIS120614011M

88. Mubeen, S., Mäki-Turja, J., Sjödin, M.: Communications-
oriented development of component-based vehicular dis-
tributed real-time embedded systems. Journal of Systems
Architecture 60(2), 207–220 (2014). DOI 10.1016/j.sysarc.
2013.10.008

89. Mubeen, S., Nolte, T., Sjödin, M., Lundbäck, J., Lundbäck,
K.L.: Supporting timing analysis of vehicular embedded
systems through the refinement of timing constraints. Soft-
ware & Systems Modeling 40(1) (2017). DOI 10.1007/
s10270-017-0579-8

90. Mubeen, S., Sjödin, M., Nolte, T., Lundbäck, J., Gålnander,
M., Lundbäck, K.L.: End-to-end timing analysis of black-
box models in legacy vehicular distributed embedded sys-
tems. In: 21st Intl. Conf. on Embedded and Real-Time
Computing Systems and Applications, pp. 149–158. IEEE
(2015). DOI 10.1109/RTCSA.2015.24

91. Nolin, M., Mäki-Turja, J., Hänninen, K.: Achieving indus-
trial strength timing predictions of embedded system be-
havior. In: 2008 Intl. Conf. on Embedded Systems & Appli-
cations (ESA), pp. 173–178. CSREA Press (2008)

https://project.inria.fr/platformawaremsd/
https://gitlab.com/grischal/is.ru.cs.papyrusactivitylogger
https://gitlab.com/grischal/is.ru.cs.papyrusactivitylogger

Early timing analysis based on scenario requirements and platform models 41

92. Object Management Group (OMG): UML Profile for
MARTE: Modeling and Analysis of Real-Time Embedded
Systems—Version 1.1. OMG Specification formal/2011-06-
02 (2011)

93. Object Management Group (OMG): OMG Object Con-
straint Language (OCL) – Version 2.4. OMG Specification
formal/2014-02-03 (2014)

94. Object Management Group (OMG): Meta object facility
(MOF) 2.0 query/view/transformation specification – ver-
sion 1.3. OMG Specification formal/2016-06-03 (2016)

95. Object Management Group (OMG): OMG Unified Model-
ing Language (OMG UML)—Version 2.5.1. OMG Specifi-
cation formal/2017-12-05 (2017)

96. Ostroff, J.S.: Temporal Logic for Real Time Systems. Wiley
(1989)

97. Ostroff, J.S.: Automated verification of timed transition
models. In: Intl. Workshop on Automatic Verification
Methods for Finite State Systems, no. 407 in LNCS, pp. 247–
256. Springer (1990). DOI 10.1007/3-540-52148-8_20

98. Otero, M.C., Dolado, J.J.: Evaluation of the comprehen-
sion of the dynamic modeling in UML. Information and
Software Technology 46(1), 35–53 (2004). DOI 10.1016/
S0950-5849(03)00108-3

99. Palencia Gutierrez, J.C., Gutierrez Garcia, J.J., Gonzalez
Harbour, M.: Best-case analysis for improving the worst-
case schedulability test for distributed hard real-time sys-
tems. In: 10th EUROMICRO Workshop on Real-Time
Systems, pp. 35–44 (1998). DOI 10.1109/EMWRTS.1998.
684945

100. Peraldi-Frati, M.A., DeAntoni, J.: Scheduling Multi Clock
Real Time Systems: From Requirements to Implemen-
tation. In: Intl. Symp. on Object/Component/Service-
oriented Real-time Distributed Computing, 14th, pp. 50–
57. IEEE (2011). DOI 10.1109/ISORC.2011.16

101. Platform Architect. URL https://www.synopsys.
com/verification/virtual-prototyping/
platform-architect.html. Last accessed Oct. 2021

102. Pohl, K., Rupp, C.: Requirements Engineering Fundamen-
tals, 2 edn. Rocky Nook (2016)

103. Prasad, K.V., Broy, M., Krüger, I.: Scanning advances in
aerospace & automobile software technology. Proceedings
of the IEEE 98(4), 510–514 (2010)

104. Puschner, P., Burns, A.: Guest editorial: A review of worst-
case execution-time analysis. Real-Time Systems 18(2),
115–128 (2000). DOI 10.1023/A:1008119029962

105. Ragnarsson, A., Chakraborty, S., Liebel, G.: ModRec: A tool
to support empirical study design for Papyrus and the
Eclipse Modeling Framework. In: 5th Intl. Workshop on
Human Factors in Modeling / Modeling of Human Fac-
tors (HuFaMo) (2021)

106. Reinhard Wilhelm et al.: The worst-case execution-time
problem—overview of methods and survey of tools. ACM
Transactions on Embedded Computing Systems 7(3), 36:1–
36:53 (2008). DOI 10.1145/1347375.1347389

107. Runeson, P., Höst, M., Austen, R., Regnell, B.: Case Study
Research in Software Engineering—Guidelines and Exam-
ples, 1 edn. Wiley (2012)

108. ScenarioTools MSD tool suite. URL https://bitbucket.
org/jgreenyer/scenariotools. Last accessed Oct. 2021

109. Schmelter, D., Greenyer, J., Holtmann, J.: Toward learn-
ing realizable scenario-based, formal requirements speci-
fications. In: 4th Intl. Workshop on Artificial Intelligence
for Requirements Engineering (AIRE). IEEE (2017). DOI
10.1109/REW.2017.14

110. Selic, B., Gérard, S.: Modeling and Analysis of Real-Time
and Embedded systems with UML and MARTE: Develop-
ing Cyber-Physical Systems. Elsevier (2014)

111. Sha, L., Abdelzaher, T., Årzén, K.E., Cervin, A., Baker, T.,
Burns, A., Buttazzo, G., Caccamo, M., Lehoczky, J., Mok,
A.K.: Real time scheduling theory: A historical perspective.
Real-Time Systems 28(2-3), 101–155 (2004). DOI 10.1023/B:
TIME.0000045315.61234.1e

112. TA tool suite. URL https://www.vector.com/int/en/
products/products-a-z/software/ta-tool-suite/.
Last accessed October 2021

113. TIMESQUARE. URL http://timesquare.inria.fr/. Last
accessed October 2021

114. Tindell, K., Burns, A., Wellings, A.J.: Analysis of hard real-
time communications. Real-Time Systems 9(2), 147–171
(1995). DOI 10.1007/BF01088855

115. Tindell, K., Clark, J.: Holistic schedulability analysis for
distributed hard real-time systems. Microprocessing and
Microprogramming 40(2), 117–134 (1994). DOI 10.1016/
0165-6074(94)90080-9

116. Tindell, K.W., Hansson, H., Wellings, A.J.: Analysing real-
time communications: controller area network (CAN). In:
1994 Real-Time Systems Symposium (RTTS), pp. 259–263.
IEEE (1994). DOI 10.1109/REAL.1994.342710

117. UPPAAL case studies. URL https://uppaal.org/
casestudies/. Last accessed October 2021

118. Wang, S., Tsai, G.: Specification and timing analysis of real-
time systems. Real-Time Systems 28(1), 69–90 (2004). DOI
10.1023/B:TIME.0000033379.78994.1a

119. Xiaohong Chen, Jing Liu, Mallet, F., Zhi Jin: Modeling tim-
ing requirements in problem frames using CCSL. In: D.T.
Tran (ed.) 18th Asia-Pacific Software Engineering Confer-
ence (APSEC), pp. 381–388. IEEE (2011). DOI 10.1109/
APSEC.2011.30

120. Xtext language development framework. URL https://
www.eclipse.org/Xtext/. Last accessed October 2021

121. Zannier, C., Melnik, G., Maurer, F.: On the success of em-
pirical studies in the international conference on software
engineering. In: 28th Intl. Conf. on Software Engineering,
p. 341–350. ACM (2006). DOI 10.1145/1134285.1134333

https://www.synopsys.com/verification/virtual-prototyping/platform-architect.html
https://www.synopsys.com/verification/virtual-prototyping/platform-architect.html
https://www.synopsys.com/verification/virtual-prototyping/platform-architect.html
https://bitbucket.org/jgreenyer/scenariotools
https://bitbucket.org/jgreenyer/scenariotools
https://www.vector.com/int/en/products/products-a-z/software/ta-tool-suite/
https://www.vector.com/int/en/products/products-a-z/software/ta-tool-suite/
http://timesquare.inria.fr/
https://uppaal.org/casestudies/
https://uppaal.org/casestudies/
https://www.eclipse.org/Xtext/
https://www.eclipse.org/Xtext/

	Introduction
	Foundations
	Approach overview
	The TAM profile for platform-specific interactions
	Definition of interaction events and delays required for timing analyses
	Specifying operational semantics for the timing analysis of platform-specific interaction models
	Timing analysis example
	Evaluation: Example application EBEAS
	Related work
	Conclusion and future work

