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Abstract. Biometric data embeds information about the user which en-
ables transparent and frictionless authentication. Despite being a more
reliable alternative to traditional knowledge-based mechanisms, sharing
the biometric template with third-parties raises privacy concerns for the
user. Recent research has shown how biometric traces can be used to
infer sensitive attributes like medical conditions or soft biometrics, e.g.
age and gender. In this work, we investigate a novel methodology for
private feature extraction in online biometric authentication. We aim to
suppress soft biometrics, i.e. age and gender, while boosting the identifi-
cation potential of the input trace. To this extent, we devise a min-max
loss function which combines a siamese network for authentication and
a predictor for private attribute inference. The multi-objective loss func-
tion harnesses the output of the predictor through adversarial optimiza-
tion and gradient flipping to maximize the final gain. We empirically
evaluate our model on gait data extracted from accelerometer and gyro-
scope sensors: our experiments show a drop from 73% to 52% accuracy
for gender classification while loosing around 6% in the identity verifica-
tion task. Our work demonstrates that a better trade-off between privacy
and utility in biometric authentication is not only desirable but feasible.

1 Introduction

Biometrics have become a prevalent form of authentication. A broad spectrum
of services, with their own unique security requirements, uses some form of bio-
metric authentication, e.g. messaging applications or banking services. Biomet-
rics are preferred over traditional knowledge-based systems, such as PINs and
passwords, due to their ease of use, robustness and uniqueness. Moreover, the
wide availability of mobile sensors allows for the deployment of near frictionless
multi-modal systems.

Sensor based gait recognition is regarded as a promising approach towards
unobtrusive user authentication [9, 17, 29, 30]. Despite being less robust than
well-established biometrics, motion data takes advantage of body worn sensors
that are widely implemented in modern devices and require little to no effort
by the user. By enabling continuous user authentication, gait authentication is a
natural candidate for multi-modal settings, e.g. by combining face recognition to
walking data [17]. In this way, we not only improve accuracy, but also strengthen
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Fig. 1: Biometric authentication pipeline for online identity management. The user
interacts with the identity provider and the service provider through his/her device.

our system against forging and spoofing attacks [9]. Moreover, gender recognition
is a relevant topic to be addressed in gait recognition for future applications in
healthcare [17, 30]. The ever-improving resilience of continuous authentication
systems based on accelerometer and gyroscope measurements clashes with the
lack of a comprehensive assessment in terms of sensitive data leakage, demanding
for techniques to protect a user’s privacy against sensitive inferences. In this
work, we explore gait authentication and soft biometric recognition, i.e. gender
and age, as a use case for our adversarial framework for privacy.

As shown in Figure 1, biometric authentication systems typically involve
three entities [26]: a device equipped with sensors, a service provider that autho-
rizes access, and an identity provider that verifies the identity. The authentica-
tion pipeline is composed of three steps. During step one, the user device collects
the biometric signal. The latter is then cleaned and prepared for feature extrac-
tion, which is the second step in the pipeline. Consequently, the pre-processed
signal is transformed into a set of relevant features that can be matched with a
stored user template. For example, a face image may be turned into a vector of
numeric features, while a gait trace could become a 2D image. Herein, the fea-
ture extraction and matching scheme are implemented by the identity provider.
The final step consists of sending the output of template matching to the ser-
vice provider, which grants access to its services based on proper access control
policies. These three blocks can be incorporated as parts of the user’s device or
exist in isolation. In alternative, hybrid implementation are possible, e.g feature
are extracted in the user’s device while the templates are matched remotely.
The latter scenario, i.e. online authentication, requires the user to send sensitive
data over an unreliable network, exposing him/her to potential privacy leaks.
Handling biometric data, including storing and processing templates, calls for
additional security and privacy guarantees.

Misuse of biometric templates leads to severe privacy leakages for the end-
user. Recent work has shown the presence of sensitive data in biometric traces,
including medical conditions and soft biometrics [2,18,22]. If the user consented
for his/her biometric template to be stored on a third-party server, he/she has to
be aware of the potential disclosure of such sensitive data. For example, a curious
service provider might want to learn more about its customers to advertise them
with tailored products and increase its sales. Even in the unrealistic hypothesis
that the user can blindly trust his/her recipient, adversaries might steal the user’s
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Fig. 2: Pipeline for private feature extraction in a biometric sharing scenario. The
central element is the extractor, which is shared with the user.

template by impersonating the trusted party or attacking remote servers [32].
However, in many cases the third-party will need access to relevant information
to keep its services alive. This calls for techniques which enable the sharing of the
least amount of sensitive identifying information, e.g. private biometric features.

Recent history testifies that algorithms are prone to discriminate based on
racial or sex attributes [4, 5], leading to discussions on how to mitigate bias in
AI [13]. Typical sources of bias are the training dataset, directly reflecting unfair
patterns in the external world, and a flawed machine learning (ML) process, not
accounting for discrimination or, even worse, deliberately fueling inequalities.
By suppressing highly-sensitive information like gender or age, we propose a
novel representation of the biometric trace which discourages differences based
on group membership.

Our work is also motivated by the General Data Protection Regulation
(GDPR) [8], which tackles private data collection and processing problems. Arti-
cle 25 puts the emphasis on the scope limitation by defining the data minimiza-
tion principle which explicitly requires third-parties to limit their data collection
to what is useful for their purposes, upon consent. However, storing data such as
biometrics clashes with this principle because of its intrinsic re-purposable na-
ture, which has been theorized and validated thoroughly in recent years. Hence,
there is a need to design data reduction processes for sharing sensitive infor-
mation in order to protect the users against unprompted attribute inferences.
By sharing only what is needed for a predefined task, we can also address the
discrimination problem, bringing fairness and transparency in the ML pipeline.

Figure 2 shows our pipeline for private biometric sharing. The user’s device
is in charge of collecting motion data and extracting features to be shared with
an external authentication provider. However, the user typically lacks the neces-
sary resources, both hardware and data, to train a feature extractor him/her-self.
Thus, we embrace a data-driven approach to derive a private feature extractor
on the server side. This approach exploits a publicly available dataset to train
the model, allowing to derive only one feature extractor for all the users willing
to authenticate. In particular, our adversarial framework is composed of three
entities closely working together: a (private) feature extractor, an (adversarial)
siamese identity verifier and a predictor for the private task. During training,
the feature extractor will iteratively adapt to changes in the classifier, which in
turn will challenge the extractor. This procedure models the mutual information
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between the identity and the private attributes, guaranteeing protection against
sensitive inferences. Eventually, the feature extractor is published by the iden-
tity/service provider and becomes available for local usage on the user’s device,
as depicted in Figure 2. By harnessing our feature extractor, neither third parties
nor channel eavesdroppers can accurately infer the target classification attribute
from the shared embedding.

We apply our proposed framework in a gait verification scenario using fixed
inertial sensors. In our evaluation, we compare different privatized traces to
assess the identifiability of the users while the new extracted features cannot
be used to infer the user’s gender or age, which are our private attributes. We
emulate our adversary’s ability to infer the sensitive attributes by means of
transfer learning, i.e. training an unseen classifier for the private task on the
private features. Our main contributions include:

1. Devising an adversarial framework exploiting a novel loss function to train
a private feature extractor starting from variable-length gait traces.

2. Evaluating the privacy-utility trade-off w.r.t soft biometrics privacy in the
gait authentication domain.

3. Using the biggest known inertial sensors dataset, which includes almost 500
users and 5 different activities.

The rest of the paper is organized as follows. We identify the gap and dif-
ferences with related work in Section 2. We present our framework for privacy-
preserving feature extraction in Section 3. The experimental protocol and results
are presented in Section 4. Section 5 concludes our work.

2 Related Work

Mordini and Ashton [22] have performed an extensive study of medical pat-
tern retainment in biometric templates: psychiatric conditions can be inferred
from gait traces, chromosomal diseases can be accurately guessed from face im-
ages or fingerprints, while neurological pathologies have been associated to a
broad range of behavioural biometrics. The same leakage potential holds true
for electrocardiogram (ECG) signals [18], iris recognition [2] and other bio or
behavio-metrics [6]. Similarly, soft biometrics like age, gender or race are linked
to physiological or behavioural traits of the user. In a recent work, we proved
the feasibility of age and gender estimation from gait traces in the frame of the
OU-ISIR Wearable Sensor-based Gait Challenge: Age and Gender (GAG 2019)
competition at the 12th IAPR International Conference on Biometrics1 [28].
The goal of this competition was to improve the state-of-the-art in soft biomet-
ric prediction from accelerometer and gyroscope traces. Even without crucial
information on sensors position, we were able to achieve ∼76% accuracy for
gender classification and a mean absolute error of ∼6 years for age estimation,
eventually obtaining the best result among all contestants. Our model is inspired

1 http://www.am.sanken.osaka-u.ac.jp/GAG2019/
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by [28] as follows: we harness temporal convolutional networks (TCNs) for fea-
ture extraction and few dense layers for soft biometric prediction. On top of the
extracted features, we have built a siamese network for user verification and we
have plugged a gradient reversal layer for attribute privatization.

Several works tackled the problem of discrimination in the ML pipeline [1,7].
Typically, they focus on the output of the decision function and how to make it
independent from a particular group membership. In contrast to previous work,
we address this problem indirectly, aiming to achieve soft biometric privacy.
By suppressing information deemed to be private, we discourage discriminative
attributes to influence the learning process, thereby representing a source of
bias. For example, by minimizing the information about the gender in motion
data, we encourage the building of a gender-agnostic gait verification system. In
the soft biometric privacy landscape, our work is the first one focusing on time
sequences and, specifically, gait authentication.

The approaches to protect user’s privacy divide into context-free and context-
aware techniques. Context-free techniques, like differential privacy (DP), model
worst-case adversaries regardless of his/her real capabilities and discarding rel-
evant contextual information, i.e. about the problem to be solved. DP provides
strong privacy guarantees, delivering a shrinking in data usefulness. Context-
aware strategies, on the other hand, incorporate the retainment of task-specific
utility by selectively adding noise where it matters. This advantage comes at
the expenses of a formal characterization of the relationship between public
variables, i.e. what we aim to share, and private variables, i.e. what we aim to
protect, which is rarely available in practice.

Data-driven optimization has been recently proposed as a mean to achieve
context-aware privacy. By exploiting recent advances in adversarial optimiza-
tion, it is possible to model the joint distribution between shared and private
variables. Generative adversarial networks (GANs) have been recently proposed
as an effective tool to achieve this goal [12]. They model a min-max game be-
tween a generator and a discriminator, where the former tries to fool the latter in
an iterative learning process. This concept has been first adapted to the privacy
domain by Huang et al. who define the generative adversarial privacy (GAP)
framework [14]. Inspired by their work, we harness adversarial training to obtain
a private feature extractor, representing our feature generator. This generator is
used to obtain a compressed template representation for a specific, measurable
and limited purpose, while also minimizing sensitive disclosure.

Morales et al. [21] recently proposed a method to reduce gender and race
information in latent representations of face images. Their method is based on
a modification of the triplet loss function, which is commonly employed in face
verification scenarios [27]. Our work differs from theirs for two reasons: first, we
exploit adversarial optimization to maximize the privacy-utility trade-off; sec-
ond, our feature extractor is designed to model temporal dependencies in the
input data, making it more suitable for gait samples than face images. Sim-
ilarly, Mirjalili et al. proposed a framework to impart gender privacy to face
images [19, 20]. Drawing from their work, we empirically evaluate the privacy
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and generalizability of our approach by training several models, which simulate
the ability of a malicious entity. As before, they focus on face recognition systems
rather than temporal data.

Malekzadeh et al. [16] have considered motion data and gait authentication in
a different min-max optimization scenario: perturbing identity while preserving
task-specific utility. Their classification task is activity recognition, which has
been extensively studied in the gait literature in addition to being arguably a
private variable. Moreover, we shift the focus towards building a private extractor
to be used by end-users instead of generating a privatized trace in the input
domain. By compacting the trace in a latent space representation, we reduce
the interpretability of the shared sample while minimizing the risks of sensitive
inference. Similarly, Osia et al. [24] investigates the use of siamese networks
for privatizing the user’s identity while preserving gender classification accuracy.
Besides the different learning goal, they focus on fine-tuning existing, pre-trained
networks. In our framework, the minimization of sensitive attribute is embedded
in the learning process itself. By simply applying fine-tuning to the last layers
of the feature extractor, we would discourage the achievement of a better sub-
optimal solution for the min-max optimization problem.

3 Private Feature Extraction Framework

We propose a novel framework for protecting sensitive variables when sharing
biometric data in an online authentication scenario. In this section, we tackle 4
key aspects which characterize our framework: (i) the main steps, stakeholders,
and threat model, (ii) the nominal privacy-preserving loss function, (iii) the
designed architecture, i.e. the neural networks to approximate the nominal loss,
(iv) and the architecture min-max optimization strategy.

3.1 High-level framework and threat model

Our framework faces the problem of sharing biometric data without exposing
user’s private information. This process requires the interaction between two
entities: the user and the service provider. The user is willing to share what is
needed to accomplish the main task but he is worried that certain information
might leak along the way. Let us assume user A wants to be authenticated
towards service B, then sharing the raw data will reveal attributes which A
might consider private, e.g. A’s gender. As discussed in Section 2, traditional
techniques can be employed to solve this problem, however they come with
several limitations such as expensive computations at the edge or having to trust
external entities. Instead, we propose the use of a contained set of private features
extracted from biometric data on the user side. These features are carefully
optimized during the training phase, with a twofold purpose: (1) to preserve
the information which identifies the user and (2) to suppress a specific private
variable, e.g. the gender of the user.
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Our proposed framework requires three actions by the involved actors: (i)
the identity/service provider trains a private feature extractor for authentica-
tion purposes; (ii) the feature extractor is published, which allows the user to
extract authentication features and assess its privacy guarantees; (iii) by follow-
ing the authentication protocol, the authentication features are shared with the
service provider which grants access to the system based on given access control
policies. This three-step procedure protects the user against unprompted sensi-
tive inferences: the service provider will not be able to improve its knowledge
about the user w.r.t. to the selected private variables, thus we protect against
function creep [31]. This is inherent to the local feature extraction step (ii),
which suppresses private variables within the user’s device. Moreover, sharing
the private extractor enables any external entities, like the user, to assess and
analyze the privacy of the model, which is only trained on public data. It is worth
noticing that the authentication-party might want to train a ML model to au-
thenticate the user based on the received features, i.e. step (iii), and this part of
the model has to be kept private in order to guarantee users’ privacy. In addition,
the feature extractor could be trained by different parties than the third-party,
but we rely on the realistic hypothesis that the features are especially crafted
for the main task. Therefore, the service provider is better suited to design the
feature extraction step. If we assume that the features are intended for different
uses, then we can assign step (i) to another external, mediating entity without
affecting the presented framework.

While our solution overcomes traditional techniques limitations, several chal-
lenges regarding privacy estimation arise. By delegating the training phase to a
cloud-based service, we cut down the computational power which is requested
to the user. Thus, only feature extraction of a pre-trained model is performed
on the user side. In addition to energy consumption, by extracting the biometric
representation locally, we avoid the need for an external mediator. Therefore, we
free the user from trusting an external entity. However, unlike traditional tech-
niques like DP, we can only provide empirical privacy guarantees of the shared
representation. This is due to a different sharing scenario, which involves single
temporal traces as opposed to large databases of many users.

We evaluate the privacy of the extracted representation by looking at the
performance of a newly trained ML classifier. Having fixed the discernment of a
discrete sensitive variable as the learning goal, and provided the extracted fea-
tures as the model input, we derive an empirical definition of privacy: the better
the classifier performs, the higher the sensitive leakage. In practice, the classifier
mimics the capabilities of a curious service provider willing to obtain valuable
information about its users. The provider has access to the public dataset used
to train the feature extractor (step (i)), and it also knows the training details
as well as the trained model weights. Thus, the third-party is able to use pub-
lic data to train a classifier discerning the private variable from the extracted
features. We test the classifier against a group of test users, which simulates
the sharing of features during regular usage. The service provider acts as the
most powerful adversary for knowledge and resources, so we indirectly test the
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Fig. 3: Our framework with its three challenging entities: the siamese feature extractor
(FE), the soft biometric predictor, and the siamese identity verifier (Id).

privacy of the extractor against any, less or equally powerful, external adver-
saries trying to infer sensitive information from the shared representation. In
conclusion, if the service provider is not able to train a classifier which discerns
the private variable from the shared representation, we consider the features to
be safe against inferences. However, it has to be stressed that a more powerful
estimator which is able to extract private information from the shared template
might exist, which is a realistic assumption drawn from recent work [25].

3.2 Privacy-preserving training objective

We present here our nominal loss function for soft biometric privacy, i.e. the ideal
training objective to be approximated via neural networks optimization. Given
an input X, we search for the optimal feature extractor FE(·), which outputs the
private embedding Z = FE(X). We defineD(·, ·) as a measure of the dependency
between two variables, such that D(Z, T ) measures the dependency between the
private embedding and the classification task T we aim to suppress, whileD(Z, I)
describes the usefulness of the latent representation for authentication purposes,
being I the identity of the user. The nominal loss to be minimized becomes

NL = α ∗D(Z, I) − β ∗D(Z, T ) (1)

where α and β regulate the importance of each term, which purpose is to
fine-tune the privacy-utility trade-off. As mentioned before, we make use of deep
neural networks to approximate D(·, ·). Therefore, an estimation of this measure
is embedded in the weights of the models after training. We estimate it by
extracting features and analyzing what newly created ML models are capable of
learning from these features.

3.3 Neural networks architecture

Our framework is composed of three competing blocks: a private extractor (Fig-
ure 4), an identity verifier (Figure 5b) and a task-dependent predictor (Fig-
ure 5a). As mentioned earlier, the classification pipeline is inspired by [28] with
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Fig. 4: Implementation of Siamese FE. The sub-model siamese branch is shared among
the two input layers and contains a quintessential element, namely Conv1D.

the addition of a siamese block for gait verification. An overview of the interact-
ing components is presented in Figure 3.

The input of the model is 3-dimensional raw accelerometer and 3-dimensional
raw gyroscope measurements recorded from inertial sensors. In our implementa-
tion, we account for variable-length input by simply stacking sensors measure-
ments (6-dimensional measurements) without pruning the obtained sequences.

Input data is fed to a siamese feature extractor FE, which details are pre-
sented in Figure 4. Every layer is presented along with its input and output
shapes, where None represents either a variable length trace or a variable number
of samples, i.e. a batch. As first proposed by Bai et al. [3], we perform dynamic
feature extraction by harnessing temporal convolutional networks (TCNs). This
family of networks have been demonstrated to achieve state-of-the-art perfor-
mance when dealing with temporal data, behaving equal to or better than re-
current neural networks. TCNs potential is mainly due to dilated convolutions,
which address both complexity of the network and low-level spatial accuracy.
Convolutional layers are intertwined with dropout layers to prevent over-fitting
the training set, thus acting as regularizers by zeroing-out random filters which
are re-activated when testing the model. Following best practices, L2 regular-
ization is also introduced to penalize complex models through the loss function.
Finally, a global average layer flattens the output of the extractor to obtain 128
features, which are the objective of the privatization of our optimization frame-
work. They are then conveyed into two branches: a soft biometric predictor and
a siamese identity verifier.
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Fig. 5: Implementations of Predictor (a) and Siamese Id (b). In (b), the sub-
model siamese branch is shared among the two input layers.

The first branch is the soft biometric predictor Pr, which details are depicted
in Figure 5a. This model is composed of several fully connected layers with ReLU
activations. As before, dropout and regularization techniques are employed to
improve generalizability. The model is designed once but tuned and optimized
separately for gender and age. During optimization, we minimize binary cross-
entropy to maximize our sensitive variable prediction accuracy.

The second branch is a siamese neural network for identity verification Id,
which details are shown in Figure 5b. This model is composed of two stacked
fully connected layers which are duplicated into two parallel branches sharing
their weights (in Figure 5b, only one branch is shown). These branches converge
into a distance-based function, the contrastive loss, which is typically used in a
verification scenario to increase the similarity, i.e. decrease the distance in the
latent space, of samples belonging to the same class while driving away dissimilar
pairs. In order to obtain two feature vectors, the feature extractor is turned into
a siamese model as follows: we duplicate the FE, obtaining two branches which
share their weights and allowing to feed a pair of gait traces into the input layer.

By combining our three blocks, we end up with the following multi-objective
loss function

G(θ, φ) = minθ,φ(α ∗ Id(φ) + β ∗ Pr(θ)) (2)
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where θ and φ are the weights of PR and Id, respectively, and α and β weight
each term. By minimizing G, however, the predictor accuracy is maximized,
thus we need to reverse this trend to protect the latent representation against
inferences of the sensitive variable. First introduced in domain adaptation by
Ganin et al. [10], we plug a gradient reversal layer between FE and Pr which
minimizes the Pr accuracy when training FE. This leads to a min-max loss
function which is the approximated realization of Equation 1.

3.4 Optimization of the networks

As common in adversarial training, the three blocks are optimized separately, via
strict alternation. Figure 3 shows the interaction among the elements, which sin-
gle iteration works as follows. Id and Pr are fed with features extracted from FE
and trained for one epoch to minimize the contrastive loss and the cross-entropy,
respectively. FE is later trained for a single epoch to optimize Equation 2 by
freezing the weights of the other networks. By reversing the gradient of Pr, FE
will adapt to its changes becoming more and more resilient to sensitive infer-
ences. This challenge approximates the dependency measure D (cfr. Equation 1)
which is key to achieve a satisfactory sub-optimal trade-off between privacy and
utility.

By alternating the gradient updates among the three networks, we enforce
dynamic adaptation to future updates. Suppose Pr is trained w.r.t. the true
labels until a acceptable sub-optimal solution is found. FE can be trained to
beat Pr, hiding the sensitive variable from the learnt representation. However,
this holds true only for one sub-optimal solution of Pr and does not prevent
inferences from future re-training. Instead, by letting Pr adapt to changes in
FE, and vice-versa, both models converge to a more satisfactory solution in
terms of privacy vs. utility. Hyper-parameters play an important role in network
convergence, impeding Pr to win over FE ; yet, we can only empirically estimate
the best hyper-parameters for our task.

Our feature extraction strategy differs from traditional dimensionality re-
duction techniques because we actively trigger the reaction of a discriminator,
exploiting its input to refine our final output. However, approaches like Principal
Component Analysis (PCA) or noise addition at the bottleneck of the network
could still be applied as a complementary, simple aid to achieve a better sub-
optimal solution.

4 Evaluation

In this section, we evaluate the ability of our framework to hinder classification
of gender from motion features while preserving the identity of the user. We
present the experimental setup, followed by the evidence we found.
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4.1 Experimental setup

We define our networks using Keras 2.2.4 with a Tensorflow backend, which runs
on a machine with a 3.4GHz i5-7500 CPU, 16GB RAM, and an NVIDIA Titan
V GPU. As in [28], we choose the OU-ISIR labelled gait action dataset [23]
to train our model. Angular velocity and acceleration in the 3 dimensions are
collected from sensors fixed on a belt, at a sampling rate of 100 Hz. Every trace
is associated to age, gender and current activity of the user.

In order to generate training pairs, we undertake several steps. We first divide
users into training and test sets following a 80%-20% proportion, after which we
use the same ratio to split the training set into training and validation sets. Then
we generate fixed length sequences through windowing with overlapping: a user
is selected and his/her trace is divided into several traces of length 2.56s with
20% overlap, i.e. 0.5s at the end and 0.5s at the beginning of the trace. Finally,
we create pairs to feed our model with through an iterative procedure in two
steps: (1) for each user, the current trace is coupled with the subsequent one and
a similar pair label is assigned to the pair; (2) the second trace of the previous
pair is coupled with a random trace from a different user and a dissimilar pair
label is assigned to this couple. Since the first branch of the siamese FE (i.e.,
branch A in Figure 3) is responsible for feeding Pr, a label with the gender of
the first user is associated to the pair.

We empirically select the best hyper-parameter configuration for our net-
works. We select the Nadam optimizer to train the models, following the proce-
dure explained in Section 3.4. Every model is trained on mini-batches within the
set [5,25,50], while the number of epochs varies between 15 and 50. We fix α and
β to 1. Intuitively, one can expect α and β to have a predictable impact on the
privacy-utility trade-off when training the features extractor. Due to the adver-
sarial nature of the training procedure, however, tuning these variables proved
to be highly sensitive w.r.t. the given setting and selected hyper-parameters.
We argue that this effect can be associated to the training of the predictors,
which are independent from α and β in our implementation. Nevertheless, as
underlined before, trivial noise addition and dimensionality reduction could be
employed as a better, more stable alternative for privacy-utility trade-off tuning.

After training, the sensitive variable predictor and the identity verifier are
re-trained on the privatized features. As suggested by previous work [24], the
privacy of a sensitive variable can be evaluated via transfer learning, i.e. freezing
our pre-trained feature extractor and training a soft biometric predictor from
scratch. In order for a thorough evaluation of the generalizability of our ap-
proach, unseen classifiers have to be taken into consideration. Hence, we define
two models: (1) a DNN-based predictor resembling the one we used in our ad-
versarial framework, which ensures protection against our target model; (2) a
Support Vector Machine (SVM) which is typically used downstream of DNN
for feature extraction. The SVM is optimized by applying grid search, which
exhaustively searches for the hyper-parameter combination with the best score.
L2-normalization is also performed to maximize our accuracy metric, i.e. f1-
score.
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Table 1: Scores for baseline siamese verifier trained without predictor feedback.

Epochs Verification accuracy f1-score (SVM)

200 (early stopping) 90.93%±0.15 72.58%

Table 2: Re-train f1-score for the predictors and accuracy for the siamese identity
verifier after adversarial privatization.

Epochs Batch size Verification accuracy f1-score f1-score (SVM)

15 25 82.14%±0.89% 51.15%±0.70% 60.97%

15 50 87.15%±0.38% 50.68%±0.57% 65.26%

25 25 84.47%±0.53% 50.20%±0.15% 63.28%

25 50 85.28%±0.48% 50.10%±0.00% 52.99%

We repeat each experiment 10 times, reporting the f1-score for the gender
and the average verification accuracy for the verifier. All the results, besides
the f1-score which results from a deterministic search, are presented with their
standard deviation.

4.2 Experimental results

Table 1 shows the results for our baseline model: a siamese feature extractor for
identity verification. After training, the extracted features are used to infer the
gender of the user, resulting in a f1-score of 72.58% for the SVM in the best
configuration. This underlines the retainment of soft biometric information in
the authentication features, especially if we compare this figure to the state-of-
the-art gender prediction accuracy presented in [28], i.e. 75.77%.

We compare our baseline with our proposed approach for feature privatiza-
tion, which is summarized in Table 2. A high variability in the results can be
observed, which is mainly due to the instability of the adversarial learning proce-
dure. The f1-score shows how our privatization mechanism protects the features
against possible re-training of our target predictor in each setting. However, we
have to take into account generalization and we must be able to protect against
unseen classifiers. SVM f1-score proves that we are able to achieve a nearly opti-
mal result (50%) by carefully tuning our hyper-parameters, i.e. number of epochs
and batch size. This comes at the expense of a nearly 6% loss in verification ac-
curacy. For a batch size of 50, and increase in the number of epochs corresponds
with a slight decline in verification accuracy. This drop indicates how letting
the network train for a larger number of epochs improves the empirical privacy
(see smaller f1-scores in Table 2) while decreasing the utility, even by just a tiny
fraction.

We identify two main limitations for this work which are linked to our privacy
evaluation and chosen dataset. First, we empirically evaluate the privacy of our



14 G. Garofalo et al.

framework by re-training different models on the extracted features. Future work
could derive a formal evaluation of the privacy guarantees from an information-
theory point of view. Second, the OU-ISIR dataset provides us with sufficient
data for our scopes but its data is collected in a constrained environment by
sensors fixed on a belt. In a real world scenario, we deal with different orientations
of mobile devices, and its sensors, carried by the users. A more realistic dataset
is needed to properly evaluate and compare solutions in the gait domain.

As a future direction, we aim to tackle the linkability of templates across
services while hiding different private variables for one user. Since we are not
delivering a full-fledged biometric template protection (BTP) scheme, we do not
directly address linkability of traces, assessing instead the retainment of private
information for a specific use-case, i.e. gender classification. Hence, our frame-
work alone does not fulfill the two requirements of the standard on biometric
data protection ISO/IEC 24745 (2011) [15], i.e. irreversibility and unlinkability.
However, by tackling the data minimization problem we aim to address prob-
lems which are complementary to BTP schemes: (1) we exclude unnecessary data
from transmission and processing, possibly improving privacy and performance
of crypto schemes, and (2) we help preventing or fighting back algorithmic bias
by feeding algorithms with more neutral and task-specific data. We envision a
hybrid system where BTP schemes and adversarial training maximize the utility
for a specific task without compromising users privacy. Future directions include
exploring age or race prediction to evaluate cross-task linkability, and analyzing
the advantage of applying a biometric crypto scheme on top of our minimiza-
tion framework for compliance with existing requirements for private and secure
biometric data processing and management. To this extent, Barrero et al. [11]
have proposed a metric to evaluate the local and global linkability of biometric
templates.

5 Conclusion

In this work, we demonstrated the effectiveness of an adversarial learning tech-
nique towards privatization of biometric features from sequential data. We eval-
uated our approach on the gender estimation use-case, inspired by a recent work.
Our evaluation supported our approach, showing a dip in the f1-score from 73%
to 52.99% in the best case, which is very close to random guess (50%).

Further evaluation is needed to assess the effectiveness of our approach
against different use-cases, but our results show that a solution to the long
standing problem of data-minimization for biometrics is possible. Data-driven
techniques have the potential to achieve the optimal trade-off between privacy
and utility, something traditional techniques usually struggle with. We advocate
for new tools for the user to manage his own identity and the amount of sensitive
information which is shared with third-parties.
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