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Abstract: This work aims to characterize material properties at a microscopic level using the
PuMA Software. Speci cally, the rst objective is to compute statistics of the material properties
taking into account several sources of uncertainties. An intrinsic source of uncertainty is given by
the stochastic feature of PUMA which yields a stochastic output. An additional source of uncer-
tainties is the choice of some physical parameters, such as for example the thermal conductivity of
the ber. A second objective of this work is to provide some practical guidelines for performing
measurements, in particular to perform tomography on some material.
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Characterisation d’incertitude de materiaux ablateurs
dans le contexte de vehicules spatiaux en rentree
atmospherique grace a PUMA

Resume : Ce travail vise a caracteriser les proprietes des materiaux a un niveau microscopique
en utilisant le logiciel PUMA. Plus precisement, le premier objectif est de calculer les statistiques
des proprietes des materiaux en tenant compte de plusieurs sources d’incertitudes. Une source
intrinseque d’incertitude est donnee par la simulation de PUMA qui produit une sortie stochas-
tique. Une source supplementaire d’incertitudes est le choix de certains parametres physiques,
comme par exemple la conductivite thermique de la bre. Un deuxieme objectif de ce travail est
de fournir quelques directives pratiques pour e ectuer des mesures, en particulier pour realiser
la tomographie de certains materiaux.

Mots-cles : quanti cation d’incertiture, kriging, ablateurs phenoliques/carbones, systeme de
protection thermique, materiaux poreux, microstructure, conductivite thermique
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1 Introduction

The atmospheric entry is the passage of an object from outer space into the gases of an atmosphere
of a planet. While traveling in the atmosphere, these bodies usually exceed sound speed at
7000 8000m:s ! which is equivalent to Mach 25. At these speeds, detached shock waves form
around the object due to the strong compression of the particles over a very short distance.
During this compression, a large fraction of the kinetic energy of the vehicle is transferred to
the particles in the ow. This energy transfer results in a temperature rise of several thousand
Kelvin and in high chemical activity, which causes loss of mass (ablation) and even complete
disintegration of the object (see recent impressive videbmade by European Space Agency and
Deutsches Zentrum fur Luft- und Raumfahrt).

When dealing with man-made spacecraft, it is therefore essential to protect its integrity by
means of a Thermal Protection System (TPS). The new generation of TPS ablative materials are
usually made up of an organic precursor such as carbon ber (CF) felts and a polymeric isotropic
matrix. These materials are able to dissipate the impinging hyperthermal uxes through a
disintegration process, by transforming the received energy into chemical processes and crumbling
gradually, while the remaining virgin material is able to insulate the spacecratft.

The design of the TPS still requires several improvements in terms of physical models, ex-
perimental validation and numerical predictions. Figure 1 illustrates the inaccurate ablation
prediction observed for the Galileo mission probe due to the complexity of the atmosphere of
Titan.

Figure 1: Galileo Probe Heatshield Ablation. Credits to [1].

Of course, the safety of astronauts is at the centre of these concerns, especially after the
destruction of the Columbia shuttle due to the loss of a TPS tile during launch. The emergence
of new public and private players in space transportation also contributes to the interest in
TPS, as it participates to ight independence from other stakeholders. Atmospheric entries of
human objects are not limited to Earth, as many probes and rovers are seeking to get closer to
atmospheric bodies, either by doing as much analyses as possible before eventually disintegrating
(Cassini-Huygens probe on Saturn), or by direct landing on the ground (6 Martian rovers not to

Lhttps://www.youtube.com/watch?v=1YXdv4Ry2XY&ab_channel=EuropeanSpaceAgency%2CESA  Credits to
ESA/DLR, license.
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