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Abstract

In many areas of applied statistics and machine learning, generating an arbitrary number
of independent and identically distributed (i.i.d.) samples from a given distribution is a key
task. When the distribution is known only through evaluations of the density, current methods
either scale badly with the dimension or require involved implementations. Instead, we take a
two-step approach by first modeling the probability distribution and then sampling from that
model. We use the recently introduced class of positive semi-definite (PSD) models, which
have been shown to be efficient for approximating probability densities. We show that these
models can approximate a large class of densities concisely using few evaluations, and present
a simple algorithm to effectively sample from these models. We also present preliminary
empirical results to illustrate our assertions.

1 Introduction

In many fields such as biochemistry, statistical mechanics and machine learning, effectively sampling
arbitrary numbers of independent and identically distributed (i.i.d.) samples from probability
distributions is a key task [4, 6, 5].

Basic sampling methods include rejection sampling and gridding, and rely on simple properties
of the density. However, they are suitable only in small dimensions, except for very structured
cases. Moreover, they are hard to adapt to probabilities which are known up to their renormalization
constant, which is often the case when dealing with exponential models that are common in
applications [12].

More involved methods have been developed to address these dimensionality and renormalization
issues, in the class of so-called Markov chain Monte Carlo (MCMC) methods. However, they
are complex to set up: in particular, independence between samples is not directly guaranteed,
convergence can be slow and hard to measure non-asymptotically [5, 12].

In this work, we address the problem in a different way, by incorporating a modeling step. Instead of
sampling directly from the target density, we first model this density using a positive semi-definite
(PSD) model [9, 15], and then sample from this PSD model.

PSD models have been introduced by Marteau-Ferey et al. [9] and their relevance for modeling
probability distributions has been further established by Rudi and Ciliberto [15], showing that i) they
are stable under key operations for probabilistic inference, such as marginalization, integration (also
called “sum-rule”), and product, which can be done efficiently in practice, and ii) they concisely
approximate a large class of probability distributions. We present these models in Sec. 2. Building
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on this work, we show that these models are also relevant in the context of sampling, making the
following main contributions.

(1) In Sec. 3, we derive an algorithm that is easy to implement and which can generate an arbitrary
number of i.i.d. samples from a given PSD model, with any given precision. This answers one of
the open questions outlined by Rudi and Ciliberto [15] and shows that one can indeed efficiently
sample from a PSD model.

(2) In Sec. 4 we show that we can sample an arbitrary number of i.i.d. samples from a target
probability distribution that is regular enough, with any given precision. The algorithm consists
in (a) approximating the un-normalized density p via a PSD model, using evaluations of p, and
(b) extracting i.i.d. samples from the PSD model. We show that for sufficiently regular densities
the resulting PSD model is concise and avoids the curse of dimensionality: to achieve error ε, the
PSD model requires a number of parameters and a number of evaluations of p that are in the order
ε−2−d/β , where d is the dimension of the space and β is the order of differentiability of the density.
For regular probabilities, i.e., when β > d, the rate does not depend exponentially on d and is
bounded by O(ε−3) (the constant term instead may depend exponentially on d).

In Sec. 5, we also present numerical simulations which demonstrate the quality of both our sampling
technique and approximation results.

2 Backround on Positive Semi-Definite (PSD) models

Denote by Rd++ the vectors of Rd with positive components and Sm+ the set of positive semi-definite
m by m matrices. Following Marteau-Ferey et al. [9], Rudi and Ciliberto [15], a Gaussian PSD
model is parametrized by a triplet (A,X, η) ∈ Sm+ × Rm×d × Rd++, and is defined for any x ∈ Rd
as

f(x; A,X, η) =
m∑

i,j=1

Aijkη(x, xi)kη(x, xj), (1)

where, with diag(η) being the diagonal matrix with diagonal η, kη(x, x′) = e−(x−x′)> diag(η)(x−x′)

is the Gaussian kernel of parameter η , X ∈ Rn×d is the matrix whose rows corresponds to the
centers x1, . . . , xn of the Gaussian PSD model, and A is a matrix of coefficients which is positive
semi-definite, to guarantee the non-negativity of f .

Note that when A = aa>, a ∈ Rm, is a rank-1 operator, a Gaussian PSD model is simply the
square of a linear model f(x; A,X, η) = g(x; a,X, η)2 of the form,

g(x; a,X, η) =
m∑
i=1

aikη(x, xi), (2)

for any x ∈ Rd. This particular case of PSD model will appear when approximating an arbitrary
probability density p in Sec. 4.2.

2.1 Main properties of PSD models

As explained in the introduction, PSD models show properties that make them particularly well
suited to model non-negative functions and probability distributions. Such properties are analyzed
by Marteau-Ferey et al. [9] and Rudi and Ciliberto [15], here we recall the ones that are important
for our purpose.
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Non-negativity. Since A is positive semidefinite, then the PSD model f(x; A,X, η) satisfies
f(x; A,X, η) > 0 for all x ∈ Rd.

Preservation of convex functionals. Using the PSD model to represent non-negative functions in
a problem of the form minf>0 L(f), where L is a convex functional, leads to a convex problem
minA∈S+(Rm) L(f(·; A,X, η)). Indeed, the constraint A ∈ S+(Rm) is convex, the PSD model
f(·; A,X, η) is linear in the parameter matrix A and a composition of a convex function L with a
linear function is convex. This allows, e.g., to perform empirical risk minimization for the square
and logarithmic losses.

Conciseness of the representation. under mild conditions, recalled in Assumption 1, a PSD
model can approximate a probability density that is β-times differentiable with error ε, using a
number of centersm = O(ε−d/β) (which is minimax optimal). Rudi and Ciliberto [15] provide
also an algorithm to learn the PSD model given i.i.d. samples from the probability. However, we
cannot use this result in our context since we do not assume to have samples from our density.

Integration over hyper-rectangles in closed form. As integration of PSD models will play a
key role in the algorithm developed for sampling in Sec. 3, both for theoretical an computational
reasons, we develop this integration aspect in greater detail.

A hyper-rectangle Q ⊂ Rd can be parametrized with its corners a, b ∈ Rd, a 6 b, by writing
Q =

∏d
k=1 [ak, bk[; a corresponds to the “bottom left” corner and b to the “top right” one.

ForX ∈ Rm×d and η ∈ Rd++, we denotewithKX,η ∈ Rm×m the kernel matrix such that [KX,η]ij =
kη(xi, xj). The integral of a PSD model in Eq. (1) over a hyper-rectangle can be expressed with
simple matrices, leveraging the fact that for any pair (xi, xj), it holds kη(x, xi)kη(x, xj) =
kη/2(xi, xj)k2η(x, (xi + xj)/2). Then we have

I(Q;A,X, η) :=

∫
Q
f(x;A,X, η) dx

=

m∑
i,j=1

Aijk η
2
(xi, xj)

∫
Q
k2η(x,

xi+xj
2 ) dx

=
m∑

i,j=1

Aij [KX,η/2]ij [GX,2η,Q]ij , (3)

where [GX,η,Q]ij =
∫
Qij

kη(x, 0) dx, andQij = Q−(xi+xj)/2. These integrals can be computed
by 2d calls to the erf function, as, for any i, j ∈ {1, ...,m}:

[GX,η,Q]ij = cη

d∏
k=1

[erf(
√
ηkBijk)− erf(

√
ηkAijk)], (4)

where cη = (π/4)d/2 det diag(η)−1/2,A,B ∈ Rd×m×m,A is the tensor of bottom left corners and
B is the tensor of top right corners, defined formally from the means tensor Xijk = 1

2(Xik +Xjk)
as

Aijk = ak −Xijk, Bijk = bk −Xijk. (5)

This shows that, for any hyper-rectangle Q, we can compute GX,η,Q with exactly 2dm2 calls to the
erf function and dm2 arithmetic operations (so there is no dependence on the dimension of the
hyper-rectangle).
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3 A sampling algorithm for PSD models

In this section, we fix a Gaussian PSDmodel onRd parametrized by (A,X, η) ∈ Sm+×Rm×d×Rd++

for a given m ∈ N. To simplify notations, we will omit the parameters of the PSD model using
f(x) as a shorthand for f(x;A,X, η) and I(Q) as a shorthand of I(Q) = I(Q;A,X, η).

Given a bounded hyper-rectangle Q (see Sec. 3.1), denote by pQ the function

pQ(x) = f(x)1Q(x)/I(Q), (6)

where 1Q(x) = 1 when x ∈ Q and 0 otherwise. In Sec. 3.2, we explain that even in the case of an
infinite hyper-rectangle (e.g., Q = Rd), we can easily find a finite hyper-rectangle Q̃ on which the
whole mass of f is essentially concentrated, and thus approximately sample in this case as well. We
end this section with a discussion on the main elements needed to sample, and which could allow to
generalize this approach to PSD models with different kernels.

3.1 A sampling algorithm on a finite hyper-rectangle

Given the function f , the algorithm will take three inputs (Q,N, ρ): the hyper-rectangle Q (with
sides parallel to the axes) from which we would like to sample, the number of i.i.d. samples N
which we would like to obtain, and a parameter ρ which defines the quality of the approximation of
pQ from which the algorithm generates samples. The effect of ρ on the precision of the algorithm is
formally established in Theorem 2.

We start with the case N = 1. Starting from Q, we cut Q in half in its longest direction forming
two sub-rectangles Q1, Q2. If XQ were a random variable following the law of pQ, then XQ ∈ Qi
with probability pi = I(Qi)/I(Q), and XQ|{XQ ∈ Qi} follows the law of pQi . Therefore, when
looking for a sample from pQ, we randomly choose with probability pi one of the two smaller
sub-rectangles Qi in which to look for the sample and then call the algorithm recursively to get a
sample from pQi . Of course, we need a stopping criterion: when the maximal side of Q has length
smaller than ρ then we stop and we return a point sampled uniformly at random inQ. The complete
algorithm is presented in algorithm 1 and is explained below.

Details for algorithm 1. In algorithm 1, we define the recursive function SampleRec which
will generate samples recursively. The main algorithm Sample in algorithm 1 simply calls the
function SampleRec and randomly reshuffles the samples in order to guarantee independence
(see RandomPerm algorithm 1). In algorithm 1, the function MaxLen applied to Q returns the
maximum of the lengths of the sides ofQ; the condition can therefore be translated as “if all sides of
Q are smaller than ρ”. If it is the case, in algorithm 1, we return N i.i.d. samples from the uniform
distribution on Q using SampleUniform. If it is not, in line algorithm 1 we cut the hyper-rectangle
Q in half along its largest side with minimal index (i.e., along side k = min argmax (bi − ai)),
yielding two sub hyper-rectangles Q1, Q2. This is the purpose of the function SplitLargestSide.
In algorithm 1, we compute the probability q that a given sample from pQ belongs to Q1 using the
fact that we can integrate the PSD model exactly. Since we have to generate N samples, we will
select k of them from Q1 andN − k from Q2 where k is a sample from a binomial law of paramter
q: this is the purpose of the function SampleBinomial and algorithm 1. We then call the algorithm
recursively to generate the k samples fromQ1 using pQ1 and theN − k samples fromQ2 from pQ2

(algorithm 1).

Guarantees of the algorithm. Given (Q,N, ρ), algorithm 1 does not sample N i.i.d. samples
from the exact distribution pQ but rather from an approximation pQ,ρ of pQ, controlled by the
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Algorithm 1 Approximately sampling from pQ
1: function SampleRec(Q,N, ρ)
2: if N = 0 then
3: return EmptyList
4: else if MaxLen(Q) 6 ρ then
5: return SampleUniform(Q,N )
6: else
7: Q1, Q2 = SplitLargestSide(Q)
8: q = I(Q1)/I(Q)
9: k = SampleBinomial(N, q)
10: L1 = SampleRec(Q1, k, ρ)
11: L2 = SampleRec(Q2, N − k, ρ)
12: return Concatenate(L1, L2)
13: end if
14: end function

15: function Sample(Q,N, ρ)
16: L = SampleRec(Q,n, ρ)
17: return RandomPerm(L)
18: end function

parameter ρ. More formally, let DQ,ρ be the set of dyadic sub-rectangles of Q with largest possible
size smaller than ρ (see Appendix D for a formal definition). Our algorithm will effectively sample
from a piece-wise constant approximation of p on the elements of DQ,ρ :

pQ,ρ = 1
I(Q)

∑
Qρ∈DQ,ρ

I(Qρ)
|Qρ| 1Qρ , (7)

where 1Qρ is the indicator function of Qρ. The guarantees of the algorithm are established in the
following theorem, proved formally in Appendix D.2.

Theorem 1. Given (Q,N, ρ) where Q is a bounded hyper-rectangle of Rd, ρ > 0 and N ∈ N,
the function Sample in algorithm 1 returns N i.i.d. samples from the distribution pQ,ρ defined in
Eq. (7). Moreover, the number of integral computations of the form I(Q̃) performed during the
algorithm is bounded by N log2(|Q|) + Nd log2

2
ρ + 1, and the number of erf computations is

O(N m2 d (log2(2|Q|) + d log2(2/ρ))), wherem is the dimension of the PSD model.

Note that the theorem gives us that the complexity is essentially O(Nm2d2 log(1/ρ)). This
quadratic dependence in the dimension d is verified in practice and the slicing procedure does not
yield any time or computational difficulties. Note however that in our two step procedure detailed
in the next section, the number m will a priori depend on the dimension, but this is confined
to the learning phase; once the m centers are set, the complexity is quadratic. Moreover, note
that we verify the claim that computing integrals is the computational bottleneck in practice in
Appendix D.4.

Approximation error of the algorithm. Since by Theorem 1, the algorithm does not generate
samples exactly from pQ but rather from the piecewise constant approximation pQ,ρ defined in
Eq. (7), it is necessary to quantify the distance between pQ and its approximation pQ,ρ. We do so in
Theorem 2 for three different distances.

The weakest distance will be the Wasserstein-1 distance (also called earth mover’s distance) [17].
It quantifies the discrepancies in the allocation of mass between two distributions, and is defined
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as
W1(p1, p2)= sup

Lip(f)61

∣∣∣∣∫
X
f(x)(p1(x)− p2(x))dx

∣∣∣∣, (8)

where Lip(f) is the Lipschitz constant of f for the Euclidean norm. It is structurally the most
adapted to the approximation pQ,ρ since on each hyper-rectangle of DQ,ρ, pQ,ρ has the same mass
as pQ but distributes it uniformly. Hence, the discrepancy in mass allocation will be confined to
small hyper-rectangles whose sides are of size at most ρ.

We will also use two stronger distances: the total variation (TV) distance dTV (p1, p2) = ‖p1 −
p2‖L1(X ), and the Hellinger distanceH(p1, p2) = ‖√p1−

√
p2‖L2(X ), which is particularly relevant

for exponential models [7], and, in our paper, when using rank-1 PSD models (see Sec. 4.2). These
distances will naturally appear in Sec. 4 to quantify the discrepancy between a given probability
density and its approximation as a Gaussian PSD model. For more details on these distances,
see Appendix A.2. Theorem 2 provides bounds on these distances between the target density
pQ = f1Q/I(Q) and pQ,ρ as a function of ρ, and some Lipschitz constant (where Lip∞(g) denotes
the Lipschitz constant of g for the norm ‖x‖∞ = sup |xi|). A more general theorem is proved in
Appendix D.3 as Theorem 7.

Theorem 2 (Variation bounds). Let Q be a hyper-rectangle, ρ > 0, pQ = f1Q/I(Q) and pQ,ρ
defined in Eq. (7). It holds:

H(pQ, pQ,ρ) 6
√
|Q|
I(Q) Lip∞(

√
f) ρ (9)

dTV (pQ, pQ,ρ) 6
|Q|
I(Q) Lip∞(f)ρ (10)

W1(pQ, pQ,ρ) 6
√
dρ. (11)

Combining the result of Theorems 1 and 2, we have that, given a PSD model on m centers,
an hyper-rectangle of interest Q and an error ρ, algorithm 1 provides N i.i.d.samples whose
distribution is distant

√
dρ in terms of W1 from the density represented by the PSD model over

the hyper-rectangle. In particular, algorithm 1 computes the N i.i.d. samples with a cost of
O(N m2 d (log2(2|Q|) + d log2(2/ρ))).

Selection of ρ. In Fig. 1, we observe the effect of ρ on the quality of sampling, when sampling
from a PSD model whose distribution is illustrated by the heat map defined on the top left figure.
We highlight the fact that decreasing ρ corresponds to refining the dyadic decomposition of the
hyper-rectangle and hence sampling more precisely. In practice, one can therefore choose ρmanually
(for instance ρ = 10−4, 10−6) and have an upper bound on the distance between pQ,ρ and pQ from
Theorem 2. If one wishes to select ρ in a more principled way to bound the total variation or
Hellinger distance, this can also be done using only accessible quantities. If f is a PSD model with
parameters (A,X, η) for η = τ1d, andK is a shorthand forKX,η, the Lipschitz constants can be
bounded using only τ ,K and A (or a s.t. A = aa> in the case of a rank one PSD model). More
precisely, it holds

Lip∞(f) 6
√

8τd‖K1/2AK1/2‖ =: L̃ip(A) (12)

Lip∞(
√
f) 6

√
2τd‖K1/2a‖ =: L̃ip(a), (13)

where for Eq. (13), A = aa> is assumed to be a rank-1 operator1. These quantities only depend on
a,A,K and can be computed explicitly. Combining these bounds with Eqs. (9) and (10), ρ can be
selected in an adaptive way in algorithm 1.

1See Lemma 5 in Appendix C.1 for a proof of a the bound on Lip∞(f) when f is a PSD model and Lemma 2 in
Appendix B.1 for a proof of of a bound on Lip∞(

√
f) in the case where f is a rank one PSD model.
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ρ = 7

ρ = 4 ρ = 0.1

Figure 1: Samples obtained from algorithm 1 using different values for ρ

Remark 1 (Adaptive selection of ρ). Let ε > 0. Let f be a PSD model with matrix of coefficients
A. Define

ρTVε = I(Q)ε

|Q|L̃ip(A)
, ρHε =

√
I(Q)ε√
|Q|L̃ip(a)

, (14)

where ρHε is defined if A = aa> is a rank one matrix. If ρ = ρTVε (resp. ρ = ρHε ), then
algorithm 1 applied to (Q,N, ρ) returns N i.i.d. samples from a distribution pQ,ε which satisfies
dTV (pQ, pQ,ε) 6 ε (resp. H(pQ, pQ,ε) 6 ε).

3.2 Discussion

Sampling from the distribution on Rd. It is possible to approximately sample from an infinite
hyper-rectangle. To do so, one has to find a large enough hyper-rectangle Q such that almost all the
mass is contained on Q and then apply the previous algorithm to this hyper-rectangle. One can, for
instance, use algorithm 2.

Algorithm 2 Finding an approximate support Q
function FindApproximateSupport(f(·;A,X, η), δ)

Q =
∏

16k6d [min16i6nXik,max16i6nXik]

I = I(Rd)
while I(Q)/I 6 1− ε do

Q = DoubleSize(Q)
end while

end function

Note that one can also concentrate f a priori using only its parameters (X,A, η), using Eq. (56)
of Lemma 4 in Appendix C.1. One can use this bound to bound the number of steps in
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algorithm 2.

Generality of the algorithm. algorithm 1 only relies on the fact that one can compute integrals
on hyper-cubes of the model f . If we were to replace the Gaussian kernel kη by a kernel k, and
therefore have a PSD model of the form

∑
ij Aijk(x, xi)k(x, xj) with another positive definite

kernel and A ∈ Sm+ , then one would be able to run the algorithm as soon as computations of the
form

∫
Q k(x, xi)k(x, xj)dx were tractable. This would extend this framework to more general PSD

models, described by Marteau-Ferey et al. [9].

4 Sampling from arbitrary distributions using PSD models

The previous section provides an algorithm to approximately sample from a distribution in the
form of a PSD model. In this section, we show how to leverage that fact to be able to generate N
approximate i.i.d. samples from a very general class of probability distributions on a hyper-rectangle
X ⊂ Rd. The strategy is simple : a) approximate the target distribution p with a PSD model p̂, and
b) approximately sample from the PSD model p̂ using the algorithm presented in Sec. 3. The main
challenge is to quantify the distance between the target distribution p and its approximation p̂ as a
PSD model.

Approaching a distribution by a PSD model by accessing the distribution through samples has been
done in Sec. 3. of Rudi and Ciliberto [15]. Instead, in this work, we access the distribution through
function evaluations, as our goal is to be able to generate samples. However, a similar algorithm
can be implemented to learn a PSD model from function evaluations. Moreover, it can be analysed
under the same conditions (see Assumption 1 and Sec. 4.1). This algorithm is based on the solving
of a semi-definite program to find the matrix A to form a good approximation f(x; A, X̃m, η) of
the density p. In Sec. 4.2, we instead learn a rank-one PSD model, solving a least-squares problem
(and not a semi-definite program) using tools from Rudi et al. [13, 14], Meanti et al. [10]. This
algorithm, faster than the one based on the solving of a semi-definite program, requires a stronger
assumption to be analysed, and is naturally adapted to densities of the form p(x) ∝ e−V (x).

Main hyper-parameters. The two methods presented in this section (see Sec. 4.1 and Sec. 4.2)
will have hyper-parameters n,m, τ, λ, ρ.

The parameters n andm are integer; moreover, we will take two sequences of i.i.d. samples uniformly
from X : x1, ..., xn represented by X ∈ Rn×d and x̃1, ..., x̃m represented by X̃m ∈ Rm×d. We
will use an isotropic η = τ1d in the Gaussian linear and PSD models for a strictly positive τ . To
simplify notation, takeKmm := K

X̃m,η
andKnm := K

X,X̃m,η
. The parameter λ will always be a

strictly positive real number.

The parameters m and τ will define the PSD model: m will control the number of points, also
called Nyström centers, which we use to represent our PSD model (as n andm increase, the quality
of the approximation increases); and τ will control the width of the Gaussian kernel. The parameter
n and λ control the learning phase of the algorithm, i.e., the approximation of p by a PSD model. n
is the number of points at which we evaluate our probability density to estimate it; λ will control the
strength of the regularization. Finally, ρ will control the scale at which we apply algorithm 1.

4.1 A general method

In this section, we present a method to approximately sample from the density by a) approximating
it by a PSD model solving a semi-definite program (SDP) and b) use algorithm 1 to sample from
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that PSD model. More precisely, we assume that p is known up to a constant, i.e., that we have a
function fp which is proportional to p which we can evaluate.

Step a): approximation of p. To fit a PSD model to p, we use an method similar to the
one presented in Section 3 of Rudi and Ciliberto [15], and construct a Gaussian PSD model
f̂ = f(•; Â, X̃m, η), where Â ∈ Sm+ is the solution to the empirical semi-definite problem

Â = argmin
A∈Sm+

∫
X
f(x; A)2dx

−2
n∑
i=1

fp(xi)f(xi; A) + λ‖K1/2
mmAK

1/2
mm‖2F , (15)

where f(x; A) := f(x; A, X̃m, η). This problem is a quadratic problem in A and can be solved in
polynomial time inm using semi-definite programming. We then define Ẑ =

∫
X f̂(x) dx which

can be computed in closed form as the integral over a hyper-cube of a PSD model, and p̂ = f̂/Ẑ,
which is our approximation of p.

Problem Eq. (15) can be seen as a variation of empirical risk minimization for the square loss,
with an additional regularization term λ‖K1/2

mmAK
1/2
mm‖F which is the equivalent of the classical

kernel regularization term in the setting of PSD models. Indeed, the function of A being
minimized is a proxy of ‖f(·; A) − fp(·)‖2L2(X ) = ‖f(·; A)‖2L2(X ) +

∫
X fp(x)f(x; a) dx + C.

In Eq. (15),
∫
X fp(x)f(x; a) dx is approximated by its empirical version, using uniform samples

X = (x1, ..., xn) (plus the regularization term). The first term ‖f(·; A)‖2L2(X ) is kept as such as
it is a quadratic function of A which can be explicitly computed, using the same techniques as
those to compute integrals of PSD models, and described by Rudi and Ciliberto [15]. Note that
here, X, X̃m, τ, λ are hyper-parameters; n and m will be taken as large as possible with a given
computational budget, and λ and τ can be selected by validation on a newly generated test data set
(since we assume we can generate samples from X ).

Step b): sampling from the approximation p̂. We apply algorithm 1 to p̂ with a parameter ρ and
on the hyper-rectangle X . We denote with psample the density p̂X ,ρ given by Eq. (7), from which
algorithm 1 effectively samples N i.i.d. samples by Theorem 1. This two step strategy is detailed in
algorithm 3. SolveSDP simply solves Eq. (15).

Algorithm 3 Approximately sampling from p using a SDP
Input p,X , N
Hyper-parameters (approximation) n,m, τ, λ
Hyper-parameters (sampling) ρ
Output N approximate samples from p|X

1: function ApproximateSamples(p,X , N, n,m, τ, λ, ρ)
2: Xn = UniformSamples(n,X )
3: Xm =UniformSamples(m,X )
4: A = SolveSDP(p,Xn, Xm, τ, λ)
5: p̂(·) = f(· |A,Xm, τ)
6: XN = Sample(X , N, ρ) from p̂
7: return XN

8: end function
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Theoretical analysis. Recall that p is the target density, proportional to fp and that p̂ is the
approximation of p obtained by solving Eq. (15) and psample is the distribution from which we
effectively sample when applying algorithm 1 to p̂. In proposition 1 and Theorem 3, we show that
under certain regularity assumptions on p, given ε > 0, we can find hyper-parameters n,m, τ, λ
and ρ such that dTV (p, psample) 6 Cε, i.e. that algorithm 3 generates N i.i.d. samples from a
distribution Cε close to p.

For simplicity, we will assume X = (−1, 1)d, as is done by Rudi and Ciliberto [15]. In principle,
we could approximate p on any bounded domain X from which we can sample uniformly, and still
obtain analogous results. In that case, we would apply algorithm 1 on a hyper-rectangle containing
the domain, and reject a sample outside of it. Our main assumption on p will be that p can be written
as a sum of squares of functions belonging to the space W̃ β(X ) = W β

2 (X ) ∩ L∞(X ) which is the
space of bounded functions whose derivatives of order less or equal to β are square integrable, and
which can be equipped with the norm ‖ · ‖

W̃β(X )
= ‖ · ‖

Wβ
2 (X )

+ ‖ · ‖L∞(X ) (see Appendix A.1 for
more precise definitions). The key quantities here are the dimension d and the regularity of the
density β. This summarized in the following assumption.

Assumption 1 (Sum of squares distribution). There exists J ∈ N and functions q1, ..., qJ belonging
to W̃ β(X ) such that p =

∑J
j=1 q

2
j . Moreover, we have access to p only through function evaluations

of the form fp(x) where fp > 0 is given, is proportional to p, and where the proportionality constant
is unknown. We define ‖p‖sos,X ,β = inf

∑J
j=1 ‖qj‖2W̃β(X )

where the infimum is taken over all such
decompositions of p.

The approximation properties of p̂ w.r.t. p are bounded in total variation distance in the following
proposition, proved as proposition 10 in Appendix E.

Proposition 1 (Performance of p̂). There exist constants ε0 > 0 depending only on d, β, and
‖p‖sos,X ,β and C1, C

′
1, C

′
2, C

′
3 depending only on d, β such that the following holds. Let δ ∈ (0, 1]

and ε 6 ε0, and assume n andm satisfy

m > C ′1ε
−d/β logd

(
C′2
ε

)
log
(
C′3
εδ

)
, (16)

n > ε−2−d/β logd
(

1
ε

)
log
(

2
δ

)
. (17)

Let λ = ε2+2d/β and τ = ε−2/β . With probability at least 1− 2δ, it holds

dTV (p̂, p) 6 C1 ‖p‖sos,X ,β ε. (18)

The key takeaway from this proposition is that the number of samples n,m needed to perform the
first step of the algorithm (approximation) is polynomial in the quantities O(ε−1), O(ε−d/β), thus
leveraging the regularity β of p. When this is the case, we can find λ, τ such that the distance
d(p, p̂) is of order ε. We provide a choice for ρ for the second step of the algorithm (sampling),
in order to guarantee a bound for the total variation distance between the sampling distribution
and the original distribution in the following theorem. It is proved as Theorem 8 in Appendix E.
In particular, it bounds the total complexity of the algorithm in terms of erf computations, as a
function of N and the desired error ε.

Theorem 3 (Performance of psample). Under the assumptions and notations of proposition 1, there
exists a constant C2 depending only on d, β, such that the following holds. If ρ is set either as
ε1+(d+1)/β or adaptively as ρTVε , then with probability at least 1− 2δ,

dTV (p, psample) 6 C2 ‖p‖sos,X ,β ε. (19)
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Moreover, the adaptive ρTVε is lower bounded by ε1+(d+1)/β/(C3 ‖p‖sos,X ,β). In both cases,
this guarantees that the complexity in terms of erf computations is of order O(Nm2 log(1/ρ)),
which in terms of ε yieldsO

(
N ε−2d/β log2d+1

(
1
ε

)
log2

(
1
δε

))
, where theO notations is taken with

constants depending on d, β, ‖p‖sos,X ,β .

4.2 Efficient method with a rank one model

In this section, we present a method to approximately sample from the density p by approximating
it by a PSD model solving a linear system (as opposed to a SDP). This simpler and faster method
comes at the expense of the stronger Assumption 2 needed to provide guarantees. As for algorithm 3,
we first approximate the density with a PSD model and then sample from it using algorithm 1. The
difference lies in the approximation step. We assume that we can evaluate a function gp such that
g2
p ∝ p (usually, this function will be proportional to the square root of p). We then approximate
gp with a Gaussian linear model Eq. (2) by solving a regularized empirical least squares problem,
which is much faster than the solving of a SDP. Taking the square of that linear model, we obtain a
PSD approximation of p from which we can sample using algorithm 1.

Step a): approximation of p. To fit a PSD model to p, we start by approximating gp by a
linear model ĝ = g(•; â, X̃m, η) (see Eq. (2)), where â ∈ Rm is the solution to the empirical
problem

min
a∈Rm

1
n

n∑
i=1

|g(xi; a)− gp(xi)|2 + λa>Kmma, (20)

where g(x; a) := g(x; a, X̃m, η) and gn = (gp(xi))16i6n. â is the solution to the system :(
K>nmKnm + (λn)Kmm

)
a = K>nmgn, (21)

which can be solved either directly in timeO(nm2 +m3) [13] or using a pre-conditioned conjugate
gradient method in time O(m3 + nm) [14, 10, 8]. We then define f̂ = ĝ2 which is a rank-1 PSD
model with coefficients Â = ââ>, Ẑ =

∫
X f̂(x)dx = ‖ĝ‖2L2(X ) which is computable in closed

form as the integral of a PSD model (see Eq. (3)), and our approximation p̂ = f̂/Ẑ of p.

Solving Eq. (20) can be seen as solving a regularized empirical risk minimization problem for
the Hellinger distance (see Eq. (32) in Sec. 3.1); the regularization term λa>Kmma being a
regularization in the norm of the RKHS associated to the Gaussian kernel (see Appendix B). The
Hellinger distance is particularly adapted to exponential models of the form exp(−V (x)) for a
real-valued potential V , as the square root is simply exp(−V (x)/2).

Step b): sampling from the approximation p̂. We apply algorithm 1 to p̂ with a parameter ρ and
on the hyper-rectangle X . We denote with psample the density p̂X ,ρ given by Eq. (7), from which
algorithm 1 effectively samples N i.i.d. samples by Theorem 1. This two step strategy is detailed in
algorithm 4. SolveHellinger simply solves Eq. (20).

Theoretical Analysis We use the same notation as introduced in Sec. 4.1. Once again, we assume
that X = (−1, 1)d for simplicity. In order to obtain good learning rates for algorithm 4, we make
the following assumption, which is stronger than Assumption 1: it assumes that p can be written as
a single square q2, where q belongs to W̃ β(X ).
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Algorithm 4 Sampling from p using a rank-1 model
Input p,X , N
Hyper-parameters (approximation) n,m, τ, λ
Hyper-parameters (sampling) ρ
Output N approximate samples from p|X

1: function ApproximateSamples(p,X , N, n,m, τ, λ, ρ)
2: Xn = UniformSamples(n,X )
3: Xm =UniformSamples(m,X )
4: A = SolveHellinger(p,Xn, Xm, τ, λ)
5: p̂(·) = f(· |A,Xm, τ)
6: XN = Sample(X , N, ρ) from p̂
7: return XN

8: end function

Assumption 2 (Square distribution). There exists a function q belonging to W̃ β(X ) such that
p = q2. Moreover, we have access to p only through function evaluations of the form gp(x), where
gp ∝ q and where the proportionality constant is unknown.

Note that this assumption is satisfied if p ∝ e−V (x) for a potential V which is β times continuously
differentiable which we can evaluate.

In proposition 2 and Theorem 4, we show that under certain regularity assumptions on p, given
ε > 0, we can find hyper-parameters n,m, τ, λ and ρ such that H(p, psample) 6 Cε, i.e., that
algorithm 4 generates N i.i.d. samples from a distribution Cε close to p.

Proposition 2 (Performance of p̂). Let ν̃ > min(1, d/(2β)). There exists a constant ε0 depending
only on ‖q‖

W̃β(X )
, β, d, constants C1, C2, C3, C4 depending only on β, d and a constant C ′1

depending only on β, d, ν̃ such that the following holds.

Let δ ∈ (0, 1] and ε 6 ε0, and assumem and n satisfy

m > C1ε
−d/β logd

(
C2
ε

)
log C3

δε (22)

n > C ′1ε
−2ν̃ log 8

δ . (23)

Let τ = ε−2/β and λ = ε2+d/β . With probability at least 1− 3δ, it holds

H(p̂, p) 6 C4‖q‖W̃β(X )
ε. (24)

Once again, the key takeaway from this proposition is that the number of samples n,m needed to per-
form the first step of the algorithm (approximation) is polynomial in the quantitiesO(ε−1), O(ε−d/β),
thus leveraging the regularity β of q s.t. q2 = p. When this is the case, we can find λ, τ such
that the distance H(p, p̂) is of order ε. We provide a choice for ρ for the second step of the
algorithm (sampling), in order to guarantee a bound for the Hellinger distance between the sampling
distribution and the original distribution in the following theorem. It is proved as Theorem 10
in Appendix F. In particular, it bounds the total complexity of the algorithm in terms of erf
computations, as a function of N and the desired error ε.

Theorem 4 (Performance of psample). Under the assumptions and notations of proposition 2, there
exists a constant C5 depending only on d, β, such that the following holds. If on the one hand ρ is
set either as ε1+(d+2)/(2β) or adaptively as ρHε (see Remark 1), then with probability at least 1− 3δ,

H(p, psample) 6 C5‖q‖W̃β(X )
ε. (25)
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Moreover, the adaptive ρHε is lower bounded by ε1+(d+2)/β/(C5 ‖q‖W̃β(X )
). In both cases, this

guarantees that the complexity in terms of erf computations is bounded byO(Nm2 log 1
ρ), which, in

terms of ε, yieldsO
(
N ε−2d/β log2d+1

(
1
ε

)
log2

(
1
δε

))
where theO notation incorporates constants

depending on d, β, ‖q‖
W̃β(X )

.

4.3 Discussion

The two methods presented in Sec. 4.1 and Sec. 4.2 share many interesting properties, both from a
practical and theoretical viewpoint.

On the theoretical side, even though we only have access to the distribution up to a re-normalizing
constant, this does not influence the theoretical results, i.e., the bounds we get only depend on the
density p through its norm ‖p‖. Moreover, the number of samples n,m needed (and hence the
complexity of the sampling and of the approximation algorithm) is polynomial in the quantities
O(ε−1), O(ε−d/β), showing that as soon as β > d, the dimension plays no role in the exponents of
these error terms and thus breaking the curse of dimensionality in the rates. However, the constants
in the O(·) term can be exponential in d, and without more hypotheses, they are unimprovable
[11]. We therefore keep a form of “curse of dimensionality” in the constants, but not in the rate.
Concretely this means that we need a number of points in the order of the constants before having a
reasonable error (i.e., ε = 1). However, as soon as this number is reached, one can rapidly gain in
precision, if the function is regular. Moreover, in practice, we do not always pay this exponential
constant, owing to some additional regularity of the function. Interestingly, this phenomenon is
shared with approximation, learning and optimization problems over a wide family of functions
(see [11] for more details).

On the practical side, note that both algorithm 3 and algorithm 4 can be run for any hyper-parameter
(even though this might not have statistical sense), making it easy to use. More importantly, we can
evaluate the learnt model a posteriori using empirical metrics (like the empirical total variation
distance or the empirical Hellinger distance for instance) on a new data set generated uniformly
from X . We could also evaluate it using certain empirical divergences since we are able to sample
from psample. This can help in both selecting τ and λ by validation, as well as in simply evaluating
the performance of the learnt model, with error bars if needed. In Fig. 2 for example, we evaluate
the performance of learnt PSD models for the empirical Hellinger distance. We perform 5 different
tests and plot the associated error bars: this methods seems very robust for evaluation.

104 105

n

10−4

10−3

Hellinger distance, d = 10
m =50

m =100

m =200

m =500

m =1000

104 105

n

10−5

10−4

10−3
Hellinger distance, d = 2

m =50

m =100

m =200

m =500

m =1000

Figure 2: Evolution of the empirical Hellinger distance on a test set, between learnt distribution p̂
and target distribution p when increasing the number of evaluation points, for fixed values ofm.
We learn p̂ as a rank one PSD model through Eq. (20). (left) Learning p2 with d = 10 defined in
Sec. 5. (right) Learning p1 defined in Sec. 5.
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5 EXPERIMENTS

The experiments in this work were executed on a MacBook Pro equipped with a 2.8 GHz Quad-Core
Intel Core i7 processor and 16Gb of RAM2.

Influence of m and n. In Fig. 2, we show how m and n interact in order to set the precision
of our approximation in the learning phase (step a)). For m = 50, 100, 200, m is so small that
increasing n beyond 1000 does not yield better performance (the variations are due to the fact that
points are always resampled accross experiments). However, when m = 500, 1000, we see that
increasing n yields better performance, before arriving at a plateau. This plateau corresponds to the
transition from the phase where n is the limiting statistical factor to the phase wherem is.

Qualitative performance of our algorithm. In Fig. 3, we show an example of the way our
algorithm approximates a certain target density p1 known up to a renormalization constant:
p1(x) ∝ 0.08k0.7(x,−(1, 1))− 0.4k0.6(x, (1, 1)) + 0.4k0.7(x, (1, 1)). In the top left figure, a heat
map of p1 is plotted. Note that p1 is not a Gaussian PSD model, as the widths of the Gaussian
kernels are not the same. We then use algorithm 4 to approximate p1 by a rank one PSD model
p̂1 (whose heat-map is plotted on the top right figure) and then sample N = 1000 samples from
this approximation (plotted in the bottom left figure). Note that in order to approximate p1 by p̂1,
n = 105,m = 300 were fixed and τ = 2, λ = 10−9 were selected on a test set. In Appendix G, we
perform and comment another experiment when trying to learn a density which is not smooth (and
therefore out of the scope of Theorems 3 and 4).

Quantitative performance of our algorithm. To further demonstrate the promising nature of our
sampling algorithm, we tried learning the densityp2(x) ∝ (k1/5(x, (1, ..., 1))−k1/5(x,−(1, ..., 1)))2

on Q = [−1, 1]d, for d = 5. Contrary to p1, this is a PSD model, we can sample from it with very
high precision (here, we chose ρ = 10−6). Our goal here is to be able to compare methods through
the generated samples.

We compared the performance of our model to the naive gridding algorithm which, if allowed n
function evaluations, computes a grid G of side n1/d, which we identify to the set of centers of the
tiles of the grid, and evaluates p at each point in the grid. To sample a point, one chooses a point
g ∈ G with probability p(g)/

∑
h∈G p(h), and then draws a sample uniformly in that tile. It is the

algorithm called ’grid’ in the bottom right figure of Fig. 3.

We compare our algorithm with the gridding algorithm by fixing the number n of function
evaluations of p each method is allowed, and computing the distance between each method
and the ground truth. The distance we use between distributions is the empirical version of
the Maxmium Mean Discrepancy distance (MMD) [20, 19], which is defined, for the Gaussian
kernel kη of parameter η, as dη(p, p̃) = ‖EX∼p[φη(X)]− EX∼p̃[φη(X)]‖Hη where φη is the
embedding associated to the Gaussian kernel kη (for more details, see Appendix A). This distance
can be approximated using N samples (xi)16i6N from p and N samples (x̃j)16j6N from p̃ as
d̂η(p, p̃) =

∥∥∥ 1
N

∑N
i=1 φη(xi)−

1
N

∑N
j=1 φη(x̃j)

∥∥∥
Hη

. This quantity can be computed explicitly

using kernel matrices [20]. However, Tolstikhin et al. [22] show that the minimax rate cannot
exceed 1/

√
N , i.e., that d̂η approximates dη only with precision of order 1/

√
N .

In our experiments, we take N = 104. We compute the empirical distances d̂η five times using
newly generated samples from each distribution, and compute an empirical mean and standard

2The code is available at https://github.com/umarteau/sampling_psd_models
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n
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100
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uniform
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Figure 3: (top left) Plot of the distribution p1, (top right) heat map of an approximation p̂1 of
p1. (bottom left) samples generated from p̂1, (bottom right) performance of our method in MMD
distance.

deviation, reported as error bars on the plot. When approximating p2 by a PSD model using
algorithm 4, we takem = 50, as there is no need to increasem to reach better precision than the
target distribution for d̂η. We take ρ = 10−3 and select τ, λ by using half of the evaluation points as
a test set.

The results reported on the bottom-right plot of Fig. 3 show that in dimension 5, the ’grid’ method
is not competitive anymore, and is close to the uniform distribution in performance for η = 2. Note
that the choice of η in a wide range from 0.1 to 10 does not change these results. They also show
that when taking only N = 104 to approximate the MMD distance, our method is below the noise
level.

6 Extensions, future work

In this paper, we have introduced a method for sampling any distribution from function values by
first approximating it with a so-called PSD model and then sampling from this PSD model using
the algorithm introduced in Sec. 3.

Natural extensions of this work include the fact that while we cast a least squares problem in Sec. 4.1,
we can actually minimize more general convex losses adapted to distributions, such as maximum
log-likelihood estimation. Moreover, as mentioned in Sec. 3, the proposed algorithm only relies on
integral computations, and could therefore be extended to other kernels, provided they can easily be
integrated on hyper-rectangles.

Future work will start with trying to scale the sampling method up in terms of generation of samples,
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by both theoretical means (to make computation saving approximations) and computational means
(use of GPUs, parallelization).
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Organization of the Supplementary
Material

A. Definitions and notations
We set the main notations and tools of the appendix (Fourier transform, vector and matrix
notations, notations concerning hyper-rectangles, RKHS and specifically the Gaussian kernel).

A.1. Sobolev spaces
In this section, we focus more on notations and basic results concerning Sobolev spaces,
as they will be our main tool to measure the regularity of a function.

A.2. Measuring distances between probability densities
In this section, we define and compare the basic distances we will be using to compare
probability distributions in the paper, since we are always "approximating" a certain
distribution with another. In particular, we define the total variation, Hellinger and
Wasserstein distances.

A.3. General PSD models
We define PSD models in general [9, 15]. They will be our main tool for approximation
and sampling, and relates to the more restrictive definition in Sec. 2.

B. Properties of the Gaussian RKHS
Throughout the paper the Gaussian kernel kη and the associated Gaussian RKHS will be
central objects. We introduce different properties and results.

B.1. Properties of the Gaussian kernel kη
We introduce certain properties of the Gaussian kernel involving products, as well as a
bound on the derivative of the associated embedding in Lemma 2.

B.2. Useful Matrices and Linear Operators on the Gaussian RKHS
We introduce the most important theoretical objects of the paper. We introduce kernel
matrices, matrices which will appear in the integration of Gaussian PSD models,
operators which relate L2 to the RKHSHη, operators which allow to discretize using
samples and "compression" operators which allow concise representations.

B.3. Approximation properties of the Gaussian kernel
We prove two important results concerning the approximation properties of the Gaussian
RKHS in proposition 7 and the concise representation of models in Lemma 3.

C. Properties of Gaussian PSD models
We present the results specific to Gaussian PSDmodels. These results are often reformulations
of theorems presented by Rudi and Ciliberto [15].

C.1. Bounds on the support and the derivatives
We present result to understand how the mass of a Gaussian PSD model is concentrated
(Lemma 4) and how the derivative of a Gaussian PSD model can be bounded using
only its parameters (Lemma 5).

C.2. Compression as a Gaussian PSD model
We restate Theorem C.4 of Rudi and Ciliberto [15] as Theorem 5 on the effect of a
compression operator on a PSD model.
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C.3. Approximation properties of Gaussian PSD model
We refine Theorem D.4 of Rudi and Ciliberto [15] in Theorem 6 in order to approximate
a sum of squares using a PSD model on the Gaussian RKHSHη.

D. The sampling algorithm
We prove that the sampling algorithm indeed returns N i.i.d. samples from the right
distribution, and characterize the distance between the sampling distribution and the original
PSD distribution.

D.1. Dyadic decompositions and convergence of algorithm 1
We formally prove that algorithm 1 finishes and returns N samples from a distribution
characterized by a structural induction formula (see Lemma 6).

D.2. Proof of Theorem 1
We prove Theorem 1 by structural induction, showing that when the samples are
randomly shuffled, we end up with N i.i.d. samples from the distribution defined in
Eq. (7). This is done by matching the distribution with the one from the previous section
using a structural induction.

D.3. Evaluating the error of the sampling algorithm : proof of Theorem 2
We prove Theorem 2 in Theorem 7, bounding the distance between the distribution
of the PSD model and the actual distribution from which algorithm 1 samples (see
Eq. (7)). This is done in different distances, all related to the problem in different way
(Wasserstein is the most adapted in spirit, but we also need stronger distances such as
total variation and Hellinger, which can be bounded using Lipschitz constants of the
PSD models).

D.4. Time complexity
We illustrate that the time complexity of the algorithm is indeed taken up by the integral
computations.

E. A general method of approximation and sampling
We prove that we can approximate any probability distribution satisfying Assumption 1 using
non necessarily normalized function values, by solving Eq. (15) with the right parameters
in proposition 10 which is labeled in the main text as proposition 1. We then show that
applying algorithm 1 with the right value of ρ yields a good sampling algorithm from a good
approximation of the distribution. This proves Theorem 3 and is proved here as Theorem 8.

F. Approximation and sampling using a rank one PSD model
We prove that we can approximate any probability distribution satisfying Assumption 2 using
non necessarily normalized function values, by solving Eq. (20) with the right parameters
in proposition 11 which is labeled in the main text as proposition 2. This has an advantage
compared to the previous method which is that the approximation phase is much faster (it
solves a linear system instead of an SDP). We then show that applying algorithm 1 with
the right value of ρ yields a good sampling algorithm from a good approximation of the
distribution. This proves Theorem 4 and is proved here as Theorem 10.

G. Additional experimental details
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A Definitions and notations

In this section we recall results from Rudi and Ciliberto [15] which will be useful in the different
statements and proofs.

Basic vector and matrix notations. Let n, d ∈ N. We denote by Rd++ the space vectors in
Rd with positive entries, Rn×d the space of n× d matrices, Sn+ = S+(Rn) the space of positive
semidefinite n × n matrices. Given a vector η ∈ Rd, we denote diag(η) ∈ Rd×d the diagonal
matrix associated to η. We denote by A ◦B the entry-wise product between two matrices A and B.
We denote by ‖A‖F , ‖A‖, det(A), vec(A) and A> respectively the Frobenius norm, the operator
norm (i.e. maximum singular value), the determinant, the (column-wise) vectorization of a matrix
and the (conjugate) transpose ofA. With some abuse of notation, where clear from context we write
element-wise products and division of vectors u, v ∈ Rd as uv, u/v. The term 1n ∈ Rn denotes
the vector with all entries equal to 1.

Hyper-rectangles Define a hyper-rectangle Q as a product of the form
∏d
k=1 [ak, bk[, where

a 6 b. Given a hyper-rectangle Q we denote its extremities with a(Q) 6 b(Q) ∈ Rd (i.e.
Q =

∏d
k=1 [ak(Q), bk(Q)[), and its side-lengths ρ(Q) = b(Q) − a(Q). We sometimes omit Q

when it is implied by the context.

We will also use the so-called error function, which is defined as follows :

erf(x) = 2√
π

∫ x

0
e−t

2 dt.

This function is implemented as an elementary function in most libraries.

Multi-index notation Let α ∈ Nd, x ∈ Rd and f be an infinitely differentiable function on Rd,
we introduce the following notation

|α| =
d∑
j=1

αi, α! =
d∏
j=1

αj !, xα =
d∏
j=1

x
αj
j , ∂αf =

∂|α|f

∂xα1
1 · · · ∂x

αd
d

.

We introduce also the notation Dα that corresponds to the multivariate distributional derivative of
order α and such that

Dαf = ∂αf

for functions that are differentiable at least |α| times [1].

Fourier Transform Given two functions f, g : Rd → R on some set Rd, we denote by f · g the
function corresponding to pointwise product of f, g, i.e.,

(f · g)(x) = f(x)g(x), ∀x ∈ Rd.

Let f, g ∈ L1(Rd) we denote the convolution by f ? g

(f ? g)(x) =

∫
Rd
f(y)g(x− y)dy.

We now recall some basic properties, that will be used in the rest of the appendix.

Proposition 3 (Basic properties of the Fourier transform [24], Chapter 5.2.).
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(a) There exists a linear isometry F : L2(Rd)→ L2(Rd) satisfying

F [f ] =

∫
Rd
e−2πi ω>x f(x) dx ∀f ∈ L1(Rd) ∩ L2(Rd),

where i =
√
−1. The isometry is uniquely determined by the property in the equation above.

(b) Let f ∈ L2(Rd), then ‖F [f ]‖L2(Rd) = ‖f‖L2(Rd).

(c) Let f ∈ L2(Rd), r > 0 and define fr(x) = f(xr ),∀x ∈ Rd, then F [fr](ω) = rdF [f ](rω).

(d) Let f, g ∈ L1(Rd), then F [f · g] = F [f ] ? F [g].

(e) Let α ∈ Nd, f,Dαf ∈ L2(Rd), then F [Dαf ](ω) = (2πi)|α|ωαF [f ](ω), ∀ω ∈ Rd.

(f) Let f ∈ L1(Rd) ∩ L2(Rd), then ‖F [f ]‖L∞(Rd) 6 ‖f‖L1(Rd).

(g) Let f ∈ L∞(Rd) ∩ L2(Rd), then ‖f‖L∞(Rd) 6 ‖F [f ]‖L1(Rd).

Reproducing kernel Hilbert spaces for translation invariant kernels. We now list some
important facts about reproducing kernel Hilbert spaces in the case of translation invariant kernels
on Rd. For this paragraph, we refer to Steinwart and Christmann [21], Wendland [24]. For
the general treatment of positive kernels and Reproducing kernel Hilbert spaces, see Aronszajn
[2], Steinwart and Christmann [21]. Let v : Rd → R such that its Fourier transform F [v] ∈ L1(Rd)
and satisfies F [v](ω) > 0 for all ω ∈ Rd. Then, the following hold.

(a) The function k : Rd × Rd → R defined as k(x, x′) = v(x − x′) for any x, x′ ∈ Rd is a
positive kernel and is called translation invariant kernel.

(b) The reproducing kernel Hilbert space (RKHS)H and its norm ‖ · ‖H are characterized by

H = {f ∈ L2(Rd) | ‖f‖H <∞}, ‖f‖2H =

∫
Rd

|F [f ](ω)|2

F [v](ω)
dω, (26)

(c) H is a separable Hilbert space, whose inner product 〈·, ·〉H is characterized by

〈f, g〉H =

∫
Rd

F [f ](ω)F [g](ω)

F [v](ω)
dω.

In the rest of the paper, when clear from the context we will simplify the notation of the inner
product, by using f>g for f, g ∈ H, instead of the more cumbersome 〈f, g〉H.

(d) The feature map φ : Rd → H is defined as φ(x) = k(x− ·) ∈ H for any x ∈ Rd.

(e) The functions inH have the reproducing property, i.e.,

f(x) = 〈f, φ(x)〉H , ∀f ∈ H, x ∈ Rd,

in particular k(x′, x) = 〈φ(x′), φ(x)〉H for any x′, x ∈ Rd.

We now introduce the main tool of our analysis, the Gaussian RKHS, which will be further explored
in Appendix C.

Example 1 (Gaussian Reproducing Kernel Hilbert Space). Let η ∈ Rd++ and kη(x, x
′) =

e−(x−x′)> diag(η)(x−x′), for x, x′ ∈ Rd be the Gaussian kernel with precision η. The function kη is
a translation invariant kernel, since kη(x, x′) = v(x− x′) with v(z) = e−‖D

1/2z‖2 , D = diag(η)
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and F [v](ω) = cηe
−π2‖D−1/2ω‖2 , cη = πd/2 det(D)−1/2, for ω ∈ Rd is in L1(Rd) and satisfies

F [v](ω) > 0 for all ω ∈ Rd. The associated reproducing kernel Hilbert space Hη is defined
according to Eq. (26), with norm

‖f‖2Hη =
1

cη

∫
Rd
|F [f ](ω)|2 eπ2‖D−1/2ω‖2 dω, ∀f ∈ L2(Rd). (27)

The inner product and the feature map φη are defined as in the discussion above.

A.1 Sobolev spaces

Let β ∈ N, p ∈ [1,∞] and let Ω ⊆ Rd be an open set. The set Lp(Ω) denotes the set of p-integrable
functions on Ω for p ∈ [1,∞) and that of the essentially bounded on Ω when p = ∞. The set
W β
p (Ω) denotes the Sobolev space, i.e., the set of measurable functions with their distributional

derivatives up to β-th order belonging to Lp(Ω),

W β
p (Ω) = {f ∈ Lp(Ω) | ‖f‖

Wβ
p (Ω)

<∞}, ‖f‖p
Wβ
p (Ω)

=
∑
|α|6β

‖Dαf‖pLp(Ω), (28)

where Dα denotes the distributional derivative. In the case of p =∞,

‖f‖
Wβ
∞(Ω)

= max
|α|6β

‖Dαf‖L∞(Ω)

We now recall some basic results about Sobolev spaces that are useful for the proofs in this paper.
First we start by recalling the restriction properties of Sobolev spaces. Let Ω ⊆ Ω′ ⊆ Rd be two
open sets. Let β ∈ N and p ∈ [1,∞]. By definition of the Sobolev norm above we have

‖g|Ω‖W s
p (Ω) 6 ‖g‖W s

p (Ω′),

and so g|Ω ∈ W s
p (Ω) for any g ∈ W s

p (Ω′). Now we recall the extension properties of Sobolev
spaces, which will allow us to consider the case

The formal definition of a set with Lipschitz boundary is provided by Adams and Fournier [1].
Note that if X = (−1, 1)d, as will be the case later on for simplicity, then X is bounded and has
Lipschitz boundary.

The following result shows that being in an intersection space allows to extend the function to the
whole of Rd. This will be useful in order to use the properties of translation invariant kernels in
order to approximate functions which are a priori defined only on X but which we extend using this
result.

Proposition 4 (Corollary A.3 of Rudi and Ciliberto [15]). Let X ⊂ Rd be a non-empty open set
with Lipschitz boundary. Let β ∈ N, p ∈ [1,∞]. Then for any function f ∈ W β

p (X ) ∩ L∞(X )

there exists an extension f̃ on Rd, i.e. a function f̃ ∈W β
p (Rd) ∩ L∞(Rd) such that

f = f̃ |X a.e. on X , ‖f̃‖L∞(Rd) 6 C‖f‖L∞(X ), ‖f̃‖
Wβ
p (Rd)

6 C ′‖f‖
Wβ
p (X )

.

The constant C depends only on X , d, and the constant C ′ only on X , β, d, p

The following proposition gives an idea of what these intersection spaces contain.

Proposition 5 (Proposition A.4 of Rudi and Ciliberto [15].). Let X be an open bounded set with
Lipschitz boundary. Let f be a function that ism times differentiable on the closure of X . Then
there exists a function f̃ ∈Wm

p (X ) ∩ L∞(X ) for any p ∈ [1,∞], such that f̃ = f on X .
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The following proposition provides a useful characterization of the space W β
2 (Rd) in terms of

Fourier transform; this will be particularly useful when approximating functions inW β
2 (Rd) by

functions in a Gaussian RKHS Hη using the characterization of the norm in terms of Fourier
transform for those kernels in Eq. (26).

Proposition 6 (Characterization of the Sobolev spaceW k
2 (Rd), Wendland [24], Proposition A.5 of

Rudi and Ciliberto [15]). Let k ∈ N. The norm of the Sobolev space ‖ · ‖Wk
2 (Rd) is equivalent to

the following norm

‖f‖′ 2
Wk

2 (Rd)
=

∫
Rd
|F [f ](ω)|2 (1 + ‖ω‖2)k dω, ∀f ∈ L2(Rd)

and satisfies

1
(2π)2k

‖f‖2
Wk

2 (Rd)
6 ‖f‖′

Wk
2 (Rd)

6 22k‖f‖2
Wk

2 (Rd)
, ∀f ∈ L2(Rd) (29)

Moreover, when k > d/2, thenW k
2 (Rd) is a reproducing kernel Hilbert space.

A.2 Measuring distances between probability densities

In this work, since our aim is to approximate a probability distribution, we will often compare
probability distributions, with different distances.

To simplify definitions, we will only consider distances between probability densities p1, p2 defined
on a Borel subset X of Rd with respect to the Lebesgue measure. Note that while the total variation
distance, the Hellinger distance and the Wasserstein distance do not actually depend on the choice
of such a base measure and can be defined intrinsically, the L2 distance cannot; that is why it is less
appropriate from a statistical point of view. We consider it here because it is the natural distance in
which we are able to solve Eq. (15).

The total variation (TV) or L1 distance :

dTV (p1, p2) := ‖p1 − p2‖L1(X ) =

∫
X
|p1(x)− p2(x)|dx. (30)

This distance can also be expressed using a dual formulation (see Chapter 3.2 of Lucien Le Cam
[7]).

dTV (p1, p2) = sup
|f |61

∣∣∣∣∫
X
f(x)(p1(x)− p2(x)) dx

∣∣∣∣ (31)

The Hellinger distance : (this distance is particularly suitable in the case of exponential models;
see Lucien Le Cam [7] and in particular Chapter 3).

H(p1, p2) := ‖√p1 −
√
p2‖L2(X ) =

(∫
X
|√p1(x)−√p2(x)|2 dx

)1/2

(32)

The Wasserstein distance In the case where X is bounded (for simplicity), the pWasserstein
distance for p > 1 (see chapter 5 of Santambrogio [17]):

Wp
p(p1, p2) = inf

γ∈Π(p1,p2)

∫
X×X

|x− y|p dγ(x, y), (33)
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where Π(p1, p2) is the set of all probability measures on X × X with marginals p1 and p2. Note
that one has the following easier dual formulation when p = 1 (see the chapter on Kantorovich
duality by Santambrogio [17]):

W1(p1, p2) = sup
f∈Lip1(X )

∫
X
f(x)(p1(x)− p2(x))dx, (34)

where Lip1(X ) is the set of 1-Lipschitz functions on X . Wasserstein distances capture the moving
of mass; they are quite weak but are well-adapted to capture the behavior of our sampling algorithm
which approximates probability densities on each hyper-rectangle.

The L2 distance :

‖p1 − p2‖L2(X ) =

(∫
X

(p1(x)− p2(x))2 dx

)1/2

(35)

Relating these difference distances . The following well known bounds exist between dis-
tances.

H2(p1, p2) 6 dTV (p1, p2) 6
√

2H(p1, p2). (36)

Moreover, if X is bounded, we have for any p > 1, using the Holder inequality:

Wp(p1, p2) 6 diam(X )(p−1)/pW1(p1, p2)1/p, (37)
W1(p1, p2) 6 diam(X )dTV (p1, p2), (38)

dTV (p1, p2) 6 |X |1/2‖p1 − p2‖L2(X ), (39)

where diam(X ) denotes the diameter of the set X .

A.3 General PSD models

In this section, we recall the definition of a PSD model more generally as introduced by Rudi and
Ciliberto [15].

Following Marteau-Ferey et al. [9], Rudi and Ciliberto [15], we consider the family of positive semi-
definite (PSD) models, namely non-negative functions parametrized by a feature map φ : X → H
from an input space X to a suitable feature spaceH (a separable Hilbert space e.g. Rq) and a linear
operatorM ∈ S+(H), of the form

f(x; M,φ) = φ(x)>M φ(x). (40)

PSD models offer a general way to parametrize non-negative functions (since M is positive
semidefinite, f(x; M,φ) > 0 for any x ∈ X ) and enjoy several additional appealing properties
discussed in the following. In this work. we focus on a special family of models i.e. Gaussian PSD
models defined in Sec. 2 and Eq. (1). These models parametrize probability densities over X ⊂ Rd.
It is a special case of Eq. (40) where i) φ = φη : Rd → Hη is a feature map associated to the
Gaussian kernel defined in Example 1, or by Schölkopf and Smola [18] and, ii) the operatorM lives
in the span of φ(x1), . . . , φ(xn) for a given set of points (xi)

n
i=1, namely there exists A ∈ S+(Rn)

such thatM =
∑

ij Aijφη(xi)φη(xj)
>.
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Thus, given the triplet (A,X, η) characterizing the Gaussian PSD model in Eq. (1), we have∑
16i,j6n

Aijkη(x, xi)kη(x, xj) = f(x;A,X, η) = f(x;M,φη)

M =
∑

16i,j6n

Aijφη(xi)⊗ φη(xj),

where (u⊗ v)w = uv>w = 〈v, w〉u.

B Properties of the Gaussian RKHS

In this section, we introduce notations and results associated to the Gaussian RKHS (see Example 1)
Hη for a given η ∈ Rd++ (η will sometimes be taken in the form τ1d). Recall that the Gaussian
embedding is written φη : Rd → Hη and that the Gaussian kernel is denoted with kη.

B.1 Properties of the Gaussian kernel kη
The following lemma has an immediate proof.

Lemma 1 (product of Gaussian kernels). LetK ∈ N, let η1, ..., ηK ∈ Rd++ and let y1, ..., yK ∈ Rd.
The following equality holds:

∀x ∈ Rd,
K∏
k=1

kηk(x, yk) = kη(x, y)
K∏
k=1

kηk(yk, y)

where η =
∑K

k=1 ηk and y =
∑

k ηkyk/η

Let us now state an useful corollary.

Corollary 1. Let η ∈ Rd++, y1, y2 ∈ Rd. Then

∀x ∈ Rd, kη(x, y1)kη(x, y2) = k2η(x, (y1 + y2)/2)kη/2(y1, y2). (41)

Lemma 2 (Gaussian embedding derivative). Let η ∈ Rd++, x ∈ Rd and α ∈ Nd. The derivative
∂αφη(x) is well defined in Hη, and ‖∂αφη(x)‖Hη = 2|α|/2ηα/2. Moreover, if g ∈ Hη, then
supx∈Rd |(∂αg)(x)| 6 2|α|/2ηα/2‖g‖Hη .

Proof. Let α ∈ Nd and let vη(z) = kη(z, 0) = exp(−z> diag(η)z). If the function ∂α

∂xαkη(x, y)
belongs toHη, then ∂αφη(x) is inHη and is equal to that function by the reproducing property.

First, note that
∀x, y ∈ Rd, ∂α

∂xαkη(x, y) = (−1)|α|∂ατx[vη](y),

where τx : f 7→ f(· − x), commutes with the differential operator ∂α, and satisfies the following
relation wrt to the Fourier transform : F [τxg](ξ) = e−2iπxξF [f ](ξ). Hence, using (e) of
proposition 3, we get the following fourier transform wrt y:

Fy[ ∂
α

∂xαkη(x, y)](ξ) = (−2πi)|α|ξαe−2iπξxF [vη](ξ).

Hence, we have using Eq. (26):
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‖ ∂α∂xαkη(x, ·)‖
2
Hη =

∫
Rd

(2π)2|α|ξ2αF [vη](ξ) dξ

= (−1)|α|
∫
Rd

(2iπ)2|α|ξ2αF [vη](ξ) dξ

= (−1)|α|
∫
Rd
F [∂2αvη](ξ) dξ = (−1)|α|∂2αvη(0),

where the last equality comes from the inverse Fourier transform. A simple recursion then shows that
(−1)|α|∂2αvη(0) = 2|α|ηα, hence the result. The last point of the lemma is simply a consequence
of the fact that ∂αg(x) = 〈g, ∂αφη(x)〉Hη .

B.2 Useful Matrices and Linear Operators on the Gaussian RKHS

Recall that we denote with φη the embedding associated to the RKHSHη of the Gaussian kernel kη
defined in Example 1. In this section, we define operators which will be useful throughout the rest
of this section and which we will use in Appendixes E and F. In order to make the dependence
in η appear (indeed, η will be a parameter to choose in the the next sections), we will keep it
as an index for all of these operators. Recall that for any two vectors u, v in a Hilbert space H,
we can define their tensor product u ⊗ v which is a linear rank one operator on H defined by
(u ⊗ v)w = 〈v, w〉H u. For the sake of simplicity, we will often write u ⊗ v as uv>, so that the
formula (u⊗ v)w = uv>w is formally true.

Kernel matrices. We start off by setting the notations for kernel matrices as done by Rudi
and Ciliberto [15]. Let X ∈ Rn×d and X ′ ∈ Rn′×d be two matrices corresponding to points
x1, ..., xn ∈ Rd and x′1, ..., x′n′ ∈ Rd. We denote withKX,X′,η the matrix inRn×n′ such that

∀1 6 i 6 n, ∀1 6 j 6 n′, [KX,X′,η]ij = kη(xi, x
′
j). (42)

If X = X ′, then we just writeKX,η and it is positive semi-definite, i.e. KX,η ∈ S+(Rn).

Integration matrices. In this work, we also define, for a given hyper-rectangleQ =
∏d
k=1[ak, bk],

the following integration matrix GX,X′,η,Q ∈ Rn×n′ :

∀1 6 i 6 n, ∀1 6 j 6 n′, [GX,X′,η,Q]ij =

∫
Q
kη(x− (xi + xj)/2)dx

=
d∏

k=1

√
π

4ηk

(
erf(
√
ηk(bk + (xik + x′jk)/2))− erf(

√
ηk(ak + (xik + x′jk)/2))

)
, (43)

where the erf function is defined in the notations section. Similarly, if X = X ′, we simply write
GX,η,Q.

This matrix is defined in order to satisfy the following property, which is a direct application of
Eq. (41): for any X ∈ Rn×d, any A ∈ Sn+ and η ∈ Rd++, the following holds.
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∫
Q
f(x; A,X, η) dx =

∑
16i,j6n

[A ◦KX,η/2 ◦GX,2η,Q]ij = vec(A ◦KX,η/2 ◦GX,2η,Q)>1n2

(44)

Co-variance operator. Let X ⊂ Rd be a measurable set of Rd with finite Lebesgue measure |X |.
Define the associated co-variance operator:

Cη ∈ S+(Hη), Cη = 1
|X |

∫
X
φη(x)⊗ φη(x) dx, Cη,λ = Cη + λI. (45)

Note that Cη is a trace class operator with and that Tr (Cη) = 1 by linearity of the trace and since
Tr (φη(x)⊗ φη(x)) = ‖φη(x)‖2 = kη(x, x) = 1. Moreover, since Cη,λ � λI , Cη,λ is inverible
for any λ > 0.

Note that we do not make the set X appear in the notation of the co-variance operator (which can
actually be defined with respect to any probability distribution on Rd and not just 1X dx

|X | ). This
is because the set X will usually explicit in the next sections, and in particular equal to the unit
hyper-cube X = (−1, 1)d.

Sampling operators. Let n ∈ N (x1, .., xn) ∈ (Rd)n be points of Rd which should be seen as
samples from a certain distribution. We define the following sampling operators.

Ĉη ∈ S+(Hη), Ĉη = 1
n

n∑
i=1

φη(xi)⊗ φη(xi), Ĉη,λ = Ĉη + λI (46)

Ŝη : Hη → Rn, Ŝη(g) = 1√
n

(g(xi))16i6n (47)

Ŝ∗η : Rn → Hη, Ŝ∗η(a) = 1√
n

n∑
i=1

aiφη(xi) (48)

where Ŝ∗η and Ŝη are adjoint operators. We will usually use the •̂ notation to denote sampling
operators, and imply the underlying (x1, ..., xn). These operators will be used in later sections in
order to quantify the difference between objects resulting from the sampling of distributions and the
"ideal" objects (typically the difference between an empirical risk minimizer and the true expected
risk minimizer). For instance, it is clear the Ĉη is an empirical version of Cη, if the xi are i.i.d.
samples from the uniform distribution on X .

Compression operators. Following the notations of Rudi and Rosasco [16], Rudi et al. [13], Rudi
and Ciliberto [15], a compression operator of size m is an operator Z̃η,m : Hη → Rm. We call
it a compression operator since we use it to project every element of Hη onto the range of the
adjoint operator Z̃∗η,m : Rm → Hη. This range, which we denote with H̃η,m ⊂ Hη, is a subset of
dimension at mostm. We also denote with P̃η,m : Hη → Hη the orthogonal projection onto H̃η,m,
which can also be written P̃η,m = Z̃∗η,m(Z̃η,mZ̃

∗
η,m)†Z̃η,m, where † denotes the Moore-Penrose

pseudo-inverse.

In this work, we will always use the notation •̃m to denote a compression operator, and the indexm
to make the size of the compression explicit.
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In this work, we take a specific form of compression operator as in appendix C of Rudi and Ciliberto
[15]. Indeed, let X̃m ∈ Rm×d be a data point matrix representing vectors x̃1, ..., x̃m ∈ Rd. The
compression operator associated to X̃m is the following :

Z̃η,m : Hη → Rm, Z̃η,m(g) = (g(x̃j))16j6m = (g>φη(x̃j))16j6m. (49)

Note that Z̃η,mZ̃∗η,m = K
X̃m,η

and hence the projection operator can be written P̃η,m =

Z̃∗η,mK
†
X̃m,η

Z̃η,m and that it is simply the projection onto span{φη(x̃i)}16i6m. This compression
is also chosen to satisfy the two following properties :

• if h ∈ Hη, then P̃η,mh represents a function of the form g(•; a, X̃m, η) where a =

K†
X̃m,η

Z̃η,mh (see Eq. (2) for the definition of the Gaussian linear model g(x; a, X̃m, η));

• ifM ∈ S+(Hη), then for any x ∈ Rd, it holds

f(x; P̃η,mMP̃η,m, φη) = f(x; A, X̃m, η), A = K†
X̃m,η

Z̃η,mMZ̃∗η,mK
†
X̃m,η

, (50)

meaning that compressed linear (resp. PSD) models can be compressed as a sum of m (resp.
m2) Gaussian kernel functions. We quantify the effect of this compression in Lemma 3 and
Theorem 5.

B.3 Approximation properties of the Gaussian kernel

This section aims in quantifying the approximation power of the Gaussian RKHS. We start in
proposition 7 by quantifying the approximation power of the Gaussian RKHS by finding an ε
approximation of a regular function with controlled norm. We then quantify the "size" of a
compression for the Gaussian RKHS in Lemma 3, which essentially bounds the possible variations
of a function inHη if it is equal to zero on the compression points X̃m.

Approximation of a Sobolev function. This paragraph remolds results in the proof of Theorem
D.4 of Rudi and Ciliberto [15] whose goal is to approximate any function g ∈W β

2 (Rd) ∩ L∞(Rd)
by a function inHη.

Proposition 7 (Approximation ofW β
2 (Rd) ∩ L∞(Rd) inHη). Let g be a function inW β

2 (Rd) ∩
L∞(Rd) and η ∈ Rd++. Denote with |η| the product |η| :=

∏d
i=1 ηi and η0 = min16i6d ηi. For

any ε ∈ (0, 1], there exists θ ∈ Hη such that{
‖θ − g‖L2(Rd) 6 ε‖g‖

Wβ
2 (Rd)

‖θ − g‖L∞(Rd) 6 C1 ε
1−ν‖g‖•

, ‖θ‖Hη 6 C2 ‖g‖Wβ
2 (Rd)

|η|1/4
(

1 + ε exp
(

50
η0ε2/β

))
, (51)

where ‖g‖• = ‖g‖L∞(Rd) if β 6 d/2 and ‖g‖• = ‖g‖
Wβ

2 (Rd)
if β > d/2, ν = min(1, d/(2β))

and C1, C2 are constants which depend only on d, β.

Proof. Recalling the notations from the proof of Theorem D.4. of Rudi and Ciliberto [15], let
gt := t−dg1(x/t) where g1 is defined as g in equation (D.2) of Rudi and Ciliberto [15]. The
following result hold.

• By step 1 of the proof of Theorem D.4, ‖g − g ? gt‖L2(Rd) 6 (2t)β ‖g‖
Wβ

2 (Rd)
.
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• By step 2 and the beginning of step 3 of the proof of Theorem D.4,

‖g ? gt‖Hη 6 2βπ−d/4|η|1/4(1 + (t/3)β exp( 50
η0t2

))‖g‖
Wβ

2 (Rd)
.

• As in step 5 of the proof of Theorem D.4 and in particular the Young convolution inequality
combined with the fact that ‖g1‖L1(Rd) is finite, ‖g ? gt‖L∞(Rd) 6 ‖g1‖L1(Rd) ‖g‖L∞(Rd)

which in turn implies ‖g − g ? gt‖ 6 (1 + ‖g1‖L1(Rd)) ‖g‖L∞(Rd).

Replacing t by ε1/β/2, we get all the bounds except the bound for the L∞ norm in the case where
β > d/2. In that case, we proceed in the following way. Recycling results and notations from the
proof of Theorem D.4 of Rudi and Ciliberto [15], denoting with F the Fourier transform defined in
proposition 3, it holds

‖f − f ? gt‖L∞(Rd) 6 ‖F(f − f ? gt)‖L1(Rd) proposition 3

= ‖F(f)(1−F(gt))‖L1(Rd)

6 ‖(1 + ‖ω‖2)β/2F(f)‖L2(Rd) ‖(1 + ‖ω‖2)−β/2 F(1− gt)‖L2(Rd)

6 2β

(∫
‖ω‖>1/t

(1 + ‖ω‖2)−β dω

)1/2

‖f‖
Wβ

2 (Rd)
Eq. (29)

= 2β

(
Sd

∫
r>1/t

rd−1 (1 + r2)−β dr

)1/2

‖f‖
Wβ

2 (Rd)
(spherical coord.)

6 5β/2S
1/2
d

(∫
r>1/t

rd−1−2β dr

)1/2

‖f‖
Wβ

2 (Rd)
(t < 1/2)

= 5β/2 1√
2β−dS

1/2
d tβ−d/2‖f‖

Wβ
2 (Rd)

= 5β/22d/2−βS
1/2
d

1√
2β−dε

1−d/(2β)‖f‖
Wβ

2 (Rd)
,

where Sd is the surface area of the d− 1 dimensional hyper-sphere.

A bound on the performance of compression when using uniform samples from X = (−1, 1)d.
In this paragraph, we study the effect of performing compression with a compression operator of
the form Z̃η,m (see Eq. (49)) where the associated X̃m are i.i.d. samples from the uniform measure
on the unit hyper-cube X = (−1, 1)d.

Lemma 3. Letm ∈ N, δ ∈ (0, 1], τ > 1 and ρ ∈ (0, 1]. Let η = τ1d ∈ Rd++. Let X̃m ∈ Rm×d be
a data matrix corresponding to vectors x̃1, ..., x̃m which are sampled independently and uniformly
from X = (−1, 1)d and let P̃η,m be the associated projection operator inHη. With probability at
least 1− δ, ifm > C1τ

d/2(log C2
ρ )d

(
log C3

δ + log τ + log log C2
ρ

)
, then it holds :

sup
x∈X
‖(I − P̃η,m)φη(x)‖ 6 ρ, (52)

where C1, C2, C3 are constants which depend only on the dimension d and not on τ,m, δ, ρ.

Proof. Let h denote the fill distance with respect to X̃m, i.e.

h = max
x∈[−1,1]d

min
16j6m

‖x− x̃j‖ (53)
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Using Lemma 12 p.19 of Vacher et al. [23], we there exists two constants C1, C2 depending only on
d such that h 6

(
C1m

−1(log(C2m/δ)
)1/d.

Applying Theorem C.3 from Rudi and Ciliberto [15] in the case where X = (−1, 1)d, η = τ1d,
there exists constantsC3, C4, C5 depending only on the dimension d such that when h 6 τ−1/2C−1

3 ,
the following holds :

sup
x∈X
‖(I − P̃η,m)φη(x)‖ 6 C4e

− C5

τ1/2h
log

C5

τ1/2h (54)

Nownote that takingC6 = max(C−1
3 , eC5) andC7 = max(e, C4), as soon ash 6 C6τ

−1/2/ log C7
ρ ,

it holds a) h 6 τ−1/2C−1
3 , b) C5

τ1/2h
> e and thus log C5

τ1/2h
> 1, and hence c) supx∈X ‖(I −

P̃η,m)φη(x)‖ 6 ρ using Eq. (54). Using the bound on h, this is satisfied as soon as

m > C8τ
d/2
(

log C7
ρ

)d
log(C2m/δ),

where C8 = max(C1/C
d
6 , e). Using the fact that C2, C8 > e, and using the reasoning in the proof

of Theorem C.5 of Rudi and Ciliberto [15], in equation (C.44), a sufficient condition is the following
:

m > 2C8τ
d/2
(

log C7
ρ

)d (
log(2C2C8/δ) + d

2 log τ + d log log C7
ρ

)
. (55)

The result in the theorem is obtained by taking C1 ← 2C8d, C2 ← C7, C3 ← 2C2C8.

C Properties of Gaussian PSD models

In this section, we detail some of the properties specific to Gaussian PSD models.

C.1 Bounds on the support and the derivatives

In this section, we present results which can be used to bound the tail and derivatives of a Gaussian
PSD model. These bounds can be used both for theoretical purposes (see Appendixes E and F) and
to perform adaptive bounds in an algorithm (see Sec. 3)

Lemma 4 (tail bound). Let δ = (δk) ∈ Rd, η ∈ Rd++, X ∈ Rn×d and A ∈ S+(Rn). Let
f(x;A,X, η) be the associated PSD model. Define x, x :

∀1 6 k 6 d, xk = max
16i6n

Xik, xk = min
16i6n

Xik.

Let Qδ = Q(x− δ, x+ δ). Then the following bound holds:∫
Rd\Qδ

|f(x;A,X, η)|dx 6

(
2πd/2 det(diag(2η))−1/2

d∑
k=1

e−2ηkδ
2
k

)∑
i,j

[A ◦KX,η/2]ij (56)

Proof. Start by recalling the following simple Chernoff bound:

∀x > 0,

∫ +∞

x
e−t

2
dt 6

√
πe−x

2
(57)
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Indeed, take λ > 0. Since e−2λx e2λt 6 1t>x, it holds∫ +∞

x
e−t

2
dt 6 e−2λxeλ

2

∫ +∞

−∞
e−(t−λ)2 dt 6

√
πe−x

2
e(λ−x)2 .

Hence, taking λ = x, we get the bound. Then we perform the following bound.∫
Rd\Q(−δ,δ)

kη(x, 0)dx =
1∏d

k=1 η
1/2
k

∫
Rd\Q(−δ√η,δ√η)

k1(x, 0)dx

6
1∏d

k=1 η
1/2
k

d∑
k=1

(
π(d−1)/22

∫ ∞
δk
√
ηk

e−t
2
dt

)

6 2πd/2 det(diag(η))−1/2
d∑

k=1

e−δ
2
kηk ,

where we go from the first to the second line by noting that

Rd \Q(−δ, δ) ⊂ ∪dk=1R× ....× R \ [−δk, δk]× ...× R,

and the last inequality comes from a Eq. (57).

The result immediately follows from Eq. (41) as well as the fact that Qδ contains (xi + xj)/2 +
Q(−δ, δ) for all 1 6 i, j 6 n.

Lemma 5 (derivative bound for general PSD model). Let η ∈ Rd++,M ∈ S+(Hη) X ∈ Rn×d and
A ∈ Sn+. The following bounds hold :

sup
x∈Rd

|∂αf(x; M,φη)| 6 23|α|/2 ηα/2 ‖M‖ (58)

sup
x∈Rd

|∂αf(x; A,X, η)| 6 23|α|/2 ηα/2 ‖K1/2
X,ηAK

1/2
X,η‖ (59)

Proof. By derivation of a bi-linear form, we get

∂αf(x; M,φη) =
∑
β6α

(
α

β

)
〈∂βφη(x),M∂α−βφη(x)〉Hη

Hence, using Lemma 2, we get, for any x ∈ Rd,

|∂αf(x; M,φη)| 6 ‖M‖
∑
β6α

(
α

β

)
2|β|/2ηβ/22|α−β|/2η(α−β)/2 = 23|α|/2ηα/2‖M‖. (60)

In particular, since f(x; A,X, η) = f(x; MA, φη) with MA = Z∗AZ for Z : h ∈ Hη 7→
h(xi)16i6n, and since ZZ∗ = KX,η, it holds

‖MA‖ = ‖Z∗AZ‖ = ‖A1/2ZZ∗A2‖ = ‖A1/2KX,ηA
1/2‖ = ‖K1/2

X,ηAK
1/2
X,η‖,

and hence the second equation of the lemma.
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C.2 Compression as a Gaussian PSD model

In this section, we restate Theorem C.4 of Rudi and Ciliberto [15] on the compression of a PSD
model of the form f(x; M,φη) into a Gaussian PSD model.

Let η ∈ Rd++,M ∈ S+(Hη). Given a matrix X̃m ∈ Rm×d representing vectors x̃1, ..., x̃m ∈ Rd,
and the associated projection operator P̃η,m (for more details, see Appendix B.2), one can compress
the PSD model f(•; M,φη) into f(•; P̃η,mMP̃η,m) which is also a Gaussian PSD model of the
form f(•; A, X̃m, η) (A is defined in Eq. (50)). The quality of the compression is given by the
following theorem.

Theorem 5 (Theorem C.4 of Rudi and Ciliberto [15]). Using the previous notations, the compressed
model associated to P̃η,mMP̃η,m ofM onto X̃m has a distance to the original PSDmodel associated
toM bounded, for any x ∈ X , by

|f(x; M,φη)− f(x; P̃η,mMP̃η,m, φη)| 6
√
f(x; M,φη) ‖M‖1/2 sup

x∈X
‖(I − P̃η,m)φη(x)‖

+ ‖M‖ sup
x∈X
‖(I − P̃η,m)φη(x)‖

2
. (61)

We therefore see that the quality of the compression depends mainly on the quantity

sup
x∈X
‖(I − P̃ )φη(x)‖,

which can be bounded using Eq. (52) in Lemma 3.

C.3 Approximation properties of Gaussian PSD model

Define, for any measurable Ω ⊂ Rd, and any f : Ω→ R, the following function (set to +∞ if the
set is empty).

‖f‖sos,Ω,β = inf


Q∑
i=1

max(‖fj‖L∞(Ω), ‖fj‖Wβ
2 (Ω)

)2 | f =

Q∑
j=1

f2
j , Q ∈ [0,+∞]

 (62)

Here, we recall Theorem D.4 of Rudi and Ciliberto [15], refined in a small way to have more control
over the dependence in the fj .

Theorem 6 (Theorem D.4 of Rudi and Ciliberto [15]). Let τ > 1 and ε ∈ (0, 1] and f such that
‖f‖sos,Rd,β <∞. Let η = τ1d. There existsMτ,ε ∈ S+(Hη) such that fτ,ε := f(•; Mτ,ε, φη) is
ε close to p in L2 norm and has controlled trace norm:

‖fτ,ε − f‖L2(Rd) 6 C1 ‖f‖sos,Rd,β ε,

Tr (Mτ,ε) 6 C2 ‖f‖sos,Rd,β τ
d/2(1 + ε2 exp(C3 ε

−2/β/τ)), (63)

where the constants C1, C2, C3 depend only on β, d.

Proof. Let δ > 0 and take Qδ ∈ [0,+∞] as well as fδ,j such that f =
∑Qδ

j=1 f
2
δ,j point-wise and

Q∑
i=1

‖fδ,j‖Wβ
2 (Rd)

max(‖fδ,j‖L∞(Rd), ‖fδ,j‖Wβ
2 (Rd)

) 6 ‖f‖sos,β .
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Now using exactly the same reasoning than in the proof of Theorem D.4 of Rudi and Ciliberto [15]
but setting simply t = ε1/β , it holds the existence ofMδ,τ,ε and C1, C2, C3 depending only on β, d
such that

‖fδ,τ,ε − f‖L2(Rd) 6 C1 (‖f‖sos,Rd,β + δ) ε,

Tr (Mδ,τ,ε) 6 C2 (‖f‖sos,Rd,β + δ) τd/2(1 + ε2 exp(C3 ε
−2/β/τ)).

Note that in the proof,Mδ,τ,ε is well defined since its trace norm is bounded (normal convergence).
Now if ‖f‖sos,Rd,β = 0, then f = 0 and there is nothing to prove. If not, then taking δ = ‖f‖sos,Rd,β ,
the theorem holds.

D The sampling algorithm

In this section, we formally prove that algorithm 1 converges, as in Theorem 1, as well as the
different results of Sec. 3. We start by introducing some notations around dyadic decomposition
of hyper-rectangles. We then introduce a well founded order relation, which we will then use to
both construct the random variables we study, justify the convergence of the algorithm and prove its
correctness.

Recall we are given a density (up to a scaling factor) f(x) and that we denote with I(Q) the quantity∫
Q f(x)dx on any hyper-rectangle Q.

D.1 Dyadic decompositions and convergence of algorithm 1

Dyadic sub-rectangles LetQ =
∏d
k=1 [ak, bk[ be a hyper-rectangle where a 6 b and let δ = b−a.

Let q ∈ Nd. We define DQ,q to be the set of dyadic sub-rectangles of Q whose k-th size is cut in
half qk times, i.e.

DQ,q =

{
d∏

k=1

[ak + δk
s

2qk , ak + δk
s+1
2qk [ : s ∈

d∏
k=1

J0, 2qk − 1K

}
.

We denote with DQ the set of dyadic sub-rectangles of Q, i.e. the union
⋃
q∈Nd DQ,q.

Moreover, if qρk = max(0, dlog2
δk
ρ e), we also define DQ,ε := DQ,qρ to be the set of dyadic

sub-rectangles whose size is just below ρ.

Well founded order relation on hyper-rectangles For all ρ > 0, we define the following strict
order relation. We say that Q ≺ρ Q′ if the following conditions hold :

1. Q ∈ DQ′ ;

2. There exists k ∈ J1, dK such that δ′k > ρ and δk < δ′k.

This relation is obviously transitive. Moreover, if s(Q) :=
∑d

k=1 δk(Q), it is easy to show that
Q ≺ρ Q′ implies s(Q) 6 s(Q′)− ρ/2. Since s > 0, this in turn shows that any strictly decreasing
sequence for ≺ρ is finite, and that Q ≺ρ Q′ and Q′ ≺ρ Q are incompatible.

We are now ready to define the random variable Y ρ,Q,n by structural induction on Q for any n ∈ N.
Recall that for Ω ⊂ Rd, we denote with UΩ the uniform law on Ω.
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Definition of the random variable Y ρ,Q,n and relation to the algorithm We now define a
random variable from whose distribution we sample when SamplerRec in 1 is applied.

• If δ(Q) 6 ρ, then for any n ∈ N, Y ρ,Q,n ∼ U⊗nQ
• Else, let n ∈ N and kQ = min argmax16k6d δk(Q) be the smallest index amongst the largest
sides of Q. Define Q1 and Q2 to be the two hyper-rectangles obtained by cutting Q in half
along the direction kQ. Since δkQ > ρ and Q1, Q2 are dyadic sub-rectangles of Q, we have
Q1, Q2 ≺ρ Q.

By structural induction, we give ourselves a probability space on which we take we take the
following random variables to be independent : Y 1,m ∼ Y ρ,Q1,m, Y 2,m ∼ Y ρ,Q2,m for
0 6 m 6 n andM ∼ B(n, I(Q1)/I(Q)) and define

Y ρ,Q,n = (Y ρ,Q1,M ,Y ρ,Q2,n−M ) :=
n∑

m=0

1M=m(Y 1,m,Y 2,n−m). (64)

Lemma 6 (Termination of the algorithm and first result). For any inputs ρ > 0, hyper-rectangle Q
and n ∈ N, SamplerRec in algorithm 1 terminates and returns a sample (y1, ..., yn) from Y ρ,Q,n.

Proof. This is a simple application of structural induction on the well-founded order ≺ρ for the
termination and then again for the fact that a sample (y1, ..., yn) from Y ρ,Q,n, using the definition
of Y above.

D.2 Proof of Theorem 1

In this section, we prove Theorem 1. To do so, we define a random variable Xρ,Q, compute its
density with respect to the Lebesgue measure on the hyper-rectangle Q (and show it is our target
density), and show that Y = X up to some random shuffling.

Definition of the variable Xρ,Q Recall the definition of DQ,ρ from Appendix D.1. We define
a random variable Rρ,Q on DQ,ρ whose law is defined P (Rρ,Q = r) = I(r)/I(Q). Recall that
for any r ⊂ Rd, we denote with Ur the uniform law on r. We give ourselves a measure space on
which there exists a family of random variables Ur ∼ Ur for r ∈ DQ,ρ and R ∼ Rρ,Q which are all
independent and define

Xρ,Q = UR :=
∑

r∈DQ,ρ

1R=rUr (65)

Lemma 7 (density of Xρ,Q). The density of Xρ,Q with respect to the Lebesgue measure is given by
Eq. (7), i.e.

∀x ∈ Q, pXρ,Q(x) =
∑

r∈DQ,ρ

I(r)
I(Q)

1r(x)
|r| . (66)
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Proof. For any measurable function f , it holds

E[f(Xρ,Q)] =
∑

r∈DQ,ρ

E[1R=rf(Ur)]

=
∑

r∈DQ,ρ

P (R = r)E[f(Ur)]

=
∑

r∈DQ,ρ

I(r)
I(Q)

∫
Rd
f(x)1r(x)

|r| dx

=

∫
Rd
f(x)

 ∑
r∈DQ,ρ

I(r)
I(Q)

1r(x)
|r|

 dx

Action of a permutation and decomposition Let n ∈ N. For any permutation τ ∈ Sn and
vector v ∈ Rn, denote with τ ? v the permuted vector (vτ−1(i))16i6n.

We now define a decomposition of a permutation of n variables as i) a permutation of the firstm
variables and a permutation of the last n−m variables ii) followed by a rearrangement of these
variables.

Given I ⊂ J1, nK of sizem, define τI as the unique permutation satisfying I = {τI(1), ..., τI(m)},
Ic = {τI(m + 1), ..., τI(n)} and τI(1) < ... < τI(m) and τI(m + 1) < ... < τI(n). For
any m ∈ J0, nK, if Pm(n) denotes the set of subsets of {1, ..., n} of size m, the map from
Pm(n)×Sm ×Sn−m to Sn defined as

(I, σm, σn−m 7→

(
i 7→

{
τI(σm(i)) if i 6 m

τI(m+ σn−m(i−m)) otherwise

)
(67)

is a bijection.

Lemma 8. Let ρ > 0. Let n ∈ N, Q be a hyper-rectangle of Rd. Let σ be a random permutation
independent of Y ρ,Q,n. Then (Y

σ(i)
ρ,Q,n)16i6n ∼ X⊗nρ,Q.

Proof. Once again, we prove this by structural induction. Fix ρ > 0. We will prove the following
property by structural induction on the set of hyper-rectangles Q equipped with the strict order
relation ≺ρ :

For any n ∈ N, if σ is a random permutation (i.e. distributed uniformly amongst all permutations in
Sn), Y Q,n ∼ Y ρ,Q,n and both random variables are independent, then (Y

σ(i)
Q,n)16i6n ∼ X⊗nQ,ρ.

1) If δ(Q) 6 ρ.

On the one hand, by definition of Y ρ,Q,n, it holds that for any n ∈ N, Y ρ,Q,n ∼ U⊗nQ and
hence Y Q,n ∼ U⊗nQ . By invariance of the product measure by permutation, it also holds that
(Y

σ(i)
Q,n)16i6n ∼ U⊗nQ .

On the other hand, since δ(Q) 6 ρ, it is easy to see that qρ = 0 and hence DQ,ρ = {Q}. Hence, by
definition of Xρ,Q in Eq. (65), R is deterministic and hence Xρ,Q = UQ ∼ UQ.

Putting things together, this yields (Y
σ(i)
Q,n)16i6n ∼ X⊗nρ,Q.
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2) Assume δ(Q) > ρ and take n ∈ N. By definition of Y ρ,Q,n in Eq. (64), and since our property
only concerns a convergence in law, we can assume that Y Q,n is of the form

Y Q,n =
n∑

m=0

1M=m(Y Q1,m,Y Q2,n−m),

where Y Q1,m,Y Q2,m and M are independent and independent of σ, Y Q1,m ∼ Y ρ,Q1,m,
Y Q2,m ∼ Y ρ,Q2,m for 0 6 m 6 n and M ∼ B(n, I(Q1)/I(Q)), and Q1, Q2 are defined
just before Eq. (64). It is easy to see that since Q1 t Q2 = Q and Q1, Q2 ≺ρ Q, it holds
DQ,ρ = DQ1,ρ t DQ2,ρ where t symbolises a disjoint union.

Fix a measurable function f . Using the independence ofM from the other variables and the fact
that it is discrete, it holds

E[f(σ ? Y Q,n)] =
n∑

m=0

P (M = m)E[f(σ ? (Y Q1,m,Y Q2,n−m))].

Now note that using our bijection Eq. (67), it holds

Eσ,YQ1,m
,YQ2,m

[f(σ ? (Y Q1,m,Y Q2,n−m))]

=
1

n!

∑
τ∈Sn

EYQ1,m
,YQ2,m

[f(τ ? (Y Q1,m,Y Q2,n−m))]

=
1

n!

∑
I⊂J1,nK
|I|=m

∑
σ1∈Sm

∑
σ2∈Sn−m

EYQ1,m
,YQ2,m

[f(τI ? (σ1 ? Y Q1,m, σ2 ? Y Q2,n−m)))]

=
1(
n
m

) ∑
I⊂J1,nK
|I|=m

Eσ1,σ2,YQ1,m
,YQ2,m

[f(τI ? (σ1 ? Y Q1,m, σ2 ? Y Q2,n−m)))]

Now note that by induction, σ1 ? Y Q1,m ∼ X⊗mρ,Q1
and σ2 ? Y Q2,n−m ∼ X

⊗(n−m)
ρ,Q2

.

Let X1
1 , ..., X

n
1 ∼ Xρ,Q1 and X1

1 , ..., X
n
1 ∼ Xρ,Q2 be 2n i.i.d. random variables; the previous

statement shows that , τI ? (σ1 ?Y Q1,m, σ2 ?Y Q2,n−m) ∼ (Xi
11i∈I + (1− 1i∈I)X

i
2)16i6n (here,

I is fixed). Moreover, note that P (M = m) =
(
n
m

)
qm(1− q)n−m where q = I(Q1)/I(Q). Hence

E[f(σ ? Y Q,n)] =
∑

I⊂J1,nK

q|I|(1− q)n−|I|EXi
1,X

i
2
(Xi

11i∈I + (1− 1i∈I)X
i
2)16i6n

Now let B1, ..., Bn be n i.i.d. Bernoulli variables of parameter q independent of the X1, X2. Note
that from the previous equation,

E[f(σ ? Y Q,n)] = E[f((Xi
1Bi +Xi

2(1−Bi))16i6n)]

It is easy to see that (Xi
1Bi +Xi

2(1−Bi))16i6n are i.i.d. and distributed asXρ,Q, which concludes
the proof.
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Proof of Theorem 1. Theorem 1 is now a simple consequence of Lemmas 6 to 8.The bound on
the number of integral computations can be easily obtained by noting that for any sample, at most
sumd

k=1q
ρ
k hyper-rectangles are visited (we do not count the first since this computation is done

once and for all in any case). Since qρk = dlog2(δk/ρ)e 6 log2(2δk/ρ), this yields a bound of
log2(2d|Q|/ρd) = log2(|Q|) + d log2(2/ρ) per sample, hence the result.

D.3 Evaluating the error of the sampling algorithm : proof of Theorem 2

Theorem 2 is a specific case of the following theorem. For a given function g defined on a
hyper-rectangle Q, define its Lipschitz constant with respect to the infinity norm :

∀x ∈ Q, ‖x‖∞ = sup
16k6d

|xi|, Lip∞(g) = sup
x,y∈Q
x 6=y

|g(x)− g(y)|
‖x− y‖∞

. (68)

Theorem 7 (Variation bounds). LetQ be a hyper-rectangle, ρ > 0, pQ = f/I(Q) and pQ,ρ defined
in Eq. (7). Recall the definition of Lip∞(f),Lip∞(

√
f) from Eq. (68). The following bounds hold.

dTV (pQ, pQ,ρ) 6
|Q|
I(Q) Lip∞(f) ρ (69)

H(pQ, pQ,ρ) 6
√
|Q|
I(Q) Lip∞(

√
f) ρ (70)

Wp(pQ, pQ,ρ) 6
√
dρ, p > 1. (71)

Proof. Recall that pQ = f1Q/I(Q) and hence

∀x ∈ Q, pQ(x) = 1
I(Q)

∑
Qρ∈DQ,ρ

f(x)1Qρ(x)

Combining the previous equation with Eq. (7), it holds :

∀x ∈ Q, pQ(x)− pQ,ρ(x) = 1
I(Q)

∑
Qρ∈DQ,ρ

(f(x)− I(Qρ)
|Qρ| )1Qρ(x) (72)

1. Distance between f and its mean on a small cube. Let Qρ ∈ DQ,ρ and x ∈ Qρ, it holds

|f(x)− I(Qρ)
|Qρ| | 6 Lip∞(f) ρ. (73)

Indeed, expanding the mean, we get f(x) − I(Qρ)
|Qρ| = 1

|Qρ|
∫
Qρ

(f(x)− f(y)) dy. Moreover,
|f(x)− f(y)| 6 Lip∞(f) ‖x− y‖∞. Plugging that back in the previous equation and using the
fact that ‖x− y‖∞ 6 ρ on Qρ, we get Eq. (73)

2. Bounds on the total variation and L2 distances. Using Eqs. (72) and (73), we immediately
get

∫
Q
|pQ(x)− pQ,ρ(x)|dx = 1

I(Q)

∑
Qρ∈DQ,ρ

∫
Qρ

|f(x)− I(Qρ)
|Qρ| |dx

6 |Q|Lip∞(f) ρ
I(Q) .
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3. Bound on the Wasserstein normWp. Consider the following density on Q×Q:

γ(x, y) = 1
I(Q)

∑
Qρ∈DQ,ρ

f(x)1Qρ(x) 1
|Qρ|1Qρ(y). (74)

A simple computation shows that γ ∈ Π(pQ, pQ,ρ) (see Santambrogio [17] and Eq. (33)), i.e. that
its marginals are pQ and pQ,ρ. Hence, by definition Eq. (33), we have

Wp
p(pQ, pQ,ρ) 6

1
I(Q)

∑
Qρ∈DQ,ρ

∫
Qρ×Qρ

|x− y|p f(x)
|Qρ| dxdy.

Now using the fact that if x, y ∈ Qρ, we have ‖x− y‖ 6
√
dρ as Qρ is a hyper-rectangle with all

sides of length less than or equal to ρ, we finally get : Wp(pQ, pQ,ρ) 6
√
dρ

4. Hellinger distance bound. Note that we could get a looser bound using Eq. (36) which only
relies on the Lipschitz constant of f and not on that of

√
f . Here, we concentrate on that case.

Let Qρ ∈ DQ,ρ. By the intermediate value theorem, there exists z ∈ Qρ such that f(z) =
I(Qρ)
|Qρ|

and hence for any x ∈ Qρ, it holds∣∣∣∣√f(x)−
√

I(Qρ)
|Qρ|

∣∣∣∣ =
∣∣∣√f(x)−

√
f(z)

∣∣∣ 6 Lip∞(
√
f) ‖x− z‖∞ 6 Lip∞(

√
f) ρ.

Bounding the distance between pQ,ρ and pQ by decomposing on dyadic hyper-rectangles using the
previous expression, it holds

H(pQ, pQ,ρ)
2 =

∑
Qρ∈DQ,ρ

∫
Qρ

∣∣∣∣√ f(x)
I(Q) −

√
I(Qρ)
|Qρ|I(Q)

∣∣∣∣2 dx
= 1

I(Q)

∑
Qρ∈DQ,ρ

∫
Qρ

∣∣∣∣√f(x)−
√

I(Qρ)
|Qρ|

∣∣∣∣2 dx
6 (Lip∞(

√
f) ρ)2

I(Q)

∑
Qρ∈DQ,ρ

∫
Qρ

1 dx =

(√
|Q|
I(Q) Lip∞(

√
f) ρ

)2

.

D.4 Time complexity

In the Theorem 1, we measure the cost of the algorithm in terms of evaluation of integrals of the
PSD model and in particular in the number of calls to the erf function (or subtractions) in the
computation of such integrals. The fact that this is the true bottleneck of the algorithm can be seen
in Appendix D.4, as integrals take 95% of the CPU time.

E A general method of approximation and sampling

In this section, we prove proposition 1 and Theorem 3 using mainly results from Rudi and Ciliberto
[15]. We introduce those results sequentially, showing the how each one is a building block towards
the final result.
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Table 1: Main computing times (% of the CPU time)
PART MAIN OPERATION TIME
Integration Eqs. (3) to (5)
ComputingKX,η/2 71%

Computing X 6%
Computing GX,2η,Q Computing A,B 8%

Calls to erf 6%
Other 8%

Other 1%

Sampling algorithm 1
Computing I(Q) Calls to erf 34%

Computing A,B 26%
Mulitplications √η 11%
Other 24%

Other 5%

For this section, fix a probability distribution p on the set X = (−1, 1)d (this is for the sake
of simplicity; any hyper-rectangle could do), and assume that Assumption 1 holds for a certain
β ∈ N, β > 0, i.e. there exists J ∈ N and q1, ..., qJ ∈ W β

2 (X ) ∩ L∞(X ) such that p =
∑

j q
2
j .

In this section, this probability distribution p is only known through a function fp proportional
to its density. Denote with Zp > 0 this proportionality constant, i.e. fp/Zp = p, and with fj the
renormalized qj : qj/

√
Zp = fj s.t. fp =

∑
j f

2
j . Our goal is to be able to generate i.i.d. samples

from a distribution as close as possible to p.

To do so, we first approximate fp by a Gaussian PSD model f̂τ,m,λ = f(·; Âτ,m,λ, X̃m, η) where
η = τ1d and τ > 0, X̃m ∈ Rm×d is obtained as (x̃1, ..., x̃m)> fromm i.i.d. uniform samples from
X , and Âτ,m,λ is obtained by solving the problem Eq. (15) which we rewrite here for a given λ > 0
:

min
A∈S+(Rm)

∫
X
f(x;A,X, η)2dx− 2

n∑
i=1

fp(xi)f(xi;A,X, η) + λ‖K1/2AK1/2‖F , (15)

where K = K
X̃m,η

and the (xi)16i6n represented by X ∈ Rn×d are n i.i.d. samples from the
uniform distribution on X .

The parameters τ,m, n, λ are selected in order to have an ε approximation of the probability
p.

Using the fact that we can easily compute integrals of Gaussian PSD models, we can easily have
access to p̂τ,m,λ = f̂τ,m,λ/Ẑτ,m,λ where Ẑτ,m,λ = ‖f̂τ,m,λ‖L1(X ) =

∫
X f̂τ,m,λ(x) dx.

We then apply algorithm 1 to p̂τ,m,λ, the hyper-rectangle X , the desired number of samples N
and a certain ρ controlling the size of the dyadic decomposition of X in order to sample from a
distribution whose total variation distance to p is less than a constant times ε.

Existence of a compressed ε-close Gaussian PSD model. We start by invoking Theorem 6
in order to obtain an ε-approximation of fp in the form of a general PSD fτ,ε with associated
operatorMτ,ε ∈ S+(Hη). This PSD model can then be compressed using a compression operator
as described in Appendix C.2. This is the object of the following proposition.
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Proposition 8 (Compression ofMτ,ε). Let ε ∈ (0, 1], τ > ε−2/β and define η = τ1d ∈ Rd. Let
Mτ,ε be given by Theorem 6 applied to fp and satisfying Eq. (63) and fτ,ε the corresponding PSD
model.

Letm ∈ N, X̃m ∈ Rm×d be a data matrix corresponding to vectors x̃1, ..., x̃m which are sampled
independently and uniformly from X , and P̃η,m be the associated orthogonal projection inHη. Let
M̃τ,m,ε := P̃η,mMτ,εP̃η,m be the operator associated to the compressed PSD model f̃τ,m,ε of fτ,ε
onto X̃m (see Eq. (49) and Eq. (50) for the definitions).

Let δ ∈ (0, 1]. If one of the two following are true

m > C ′1τ
d/2
(

log
C′2
ε + d

2 log τ
)d (

log
C′3
δ + d

2 log τ + log log
C′2
ε

)
; (75)

m > C ′′1 ε
−d/β

(
log

C′2
ε

)d (
log

C′2
ε + log

C′3
δ

)
, τ = ε−2/β (76)

then with probability at least 1− δ, it holds

‖fτ,ε − f̃τ,m,ε‖L2(X ) 6 2d ‖fτ,ε − f̃τ,m,ε‖L∞(X ) 6 2C ‖fp‖sos,Rd,β ε

Tr (M̃τ,m,ε) 6 Tr (Mτ,ε) 6 C ‖fp‖sos,Rd,β τ
d/2 (77)

The constants C,C ′1, C ′2, C ′3, C ′′1 depends only on d, β, and not on τ, ε,m, δ.

Proof. Using Eq. (63) in Theorem 6 applied to fp, we see that if ε 6 1 and τ > ε−2/β , there exists
constants C4, C5 depending only on d ,β, and not on τ, ε such that ‖f(·;Mτ,ε, φη)− fp‖L2(X ) 6

C4 ‖fp‖sos,Rd,β ε and Tr (Mτ,ε) 6 C5 ‖fp‖sos,Rd,β τ
d/2 (we setC5 = C2(1+eC3) whereC2, C3

are introduced in Theorem 6). Now setting ρ = ε
2d τd/2

which is less than 1 since ε 6 1 and
τ > ε−2/β > 1, we can apply Lemma 3 and hence, with probability at least 1− δ, if

m > C1τ
d/2(log C2 τd/2

ε )d
(

log C3
δ + log τ + log log C2 τd/2

ε

)
, (78)

with C1 ← C1 from Lemma 3, C2 ← max(e, C22d) where C2 is given by Lemma 3 and C3 ← C3

from Lemma 3, it holds supx∈X ‖(I − P̃η,m)φη(x)‖ 6 ρ (hence C1, C2, C3 depend only on d).

1. Let us now show that Eq. (78) is implied by Eq. (75). Let us bound :

log log C2 τd/2

ε = log

(
log C2

ε

(
1 + d/2 log τ

log
C2
ε

))
= log log C2

ε + log

(
1 + d/2 log τ

log
C2
ε

)
6 log log C2

ε + d
2 log τ,

where the last inequality is obtained since log(1 + t) 6 t and C2/ε > C2 > e by definition of
C2 and since ε 6 1. Setting C ′1 = 3C1, C ′2 = C2 and C ′3 = C3, it is therefore clear that Eq. (75)
implies Eq. (78).

2. Moreover, Eq. (75) is in turn implied by Eq. (76). Indeed, in the case where τ = ε−2/β , we
have the bound

log log
C′2
ε + d

2 log τ 6 log
C′2
ε + d

2 log τ = log
C′2
ε + d

β log 1
ε 6 (1 + d/β) log

C′2
ε

since C ′2 > e > 1. Thus, taking C ′′1 = C ′1(1 + d/β)d+1, Eq. (76) implies Eq. (75).

40



3. If Eq. (78) holds, then Eq. (77) holds with probability at least 1− δ. Indeed, for the first part,
since Eq. (78) holds, with probability at least 1− δ, supx∈X ‖(I − P̃η,m)φη(x)‖ 6 ρ = ε

2dτd/2

Moreover, using Eq. (61) combined with the fact that for any x ∈ X , |f(x;Mτ,ε, φη)| =
| 〈φη(x),Mτ,εφη(x)〉 | 6 ‖φη(x)‖2Hη‖Mτ,ε‖ = ‖Mτ,ε‖ since ‖φη(x)‖2 = kη(x, x) = 1, it holds

‖f(·;Mτ,ε, φη)− f(·; M̃τ,m,ε, φη)‖L∞(X ) 6 ‖Mτ,ε‖(ρ2 + ρ) 6 2‖Mτ,ε‖ρ.

Weconclude using the fact that for any operatorM , and any orthogonal projectionP , ‖M‖ 6 Tr (M)
and Tr (PMP ) 6 Tr (M). We then conclude the proof by using the definition of ρ and the fact
that

∫
X 1 dx = 2d, and setting C ← C5.

Combining Eq. (63) and Eq. (77), we see that ifm is large enough, one can find a Gaussian PSD
model of the form f̃τ,m,ε = f( · ; Ãτ,m,ε, X̃m, τ1d) (where Ãτ,m,ε is defined through Eq. (50) from
M̃τ,m,ε) which is C ‖fp‖sos,Rd,β ε close to fp and whose trace is controlled. It now remains to
compare the performance of f̃τ,m,ε with the Gaussian PSD model learned from evaluations of fp,
f̂τ,m,λ, which is the solution of Eq. (15) which we can compute.

Controlling the L2 distance between f̂τ,m,λ and fp. This theorem is a rewriting of Theorem 7
of Rudi and Ciliberto [15], but with the point of view of ε instead of n.

Proposition 9 (Performance of f̂τ,m,λ). Let n ∈ N and let (x1, ..., xn) be n i.i.d. samples from p.
Let δ ∈ (0, 1] and ε 6 1

e . Assume n satisfies

n > ε−(d+2β)/β logd
(

1
ε

)
log
(

2
δ

)
, (79)

Letm ∈ N and assumem satisfies Eq. (76) and let X̃m ∈ Rm×d be a data matrix corresponding
to vectors x̃1, ..., x̃m which are sampled independently and uniformly from X . Let λ = ε2(β+d)/β ,
τ = ε−2/β and f̂τ,m,λ be the Gaussian PSD model associated to the solution Âτ,m,λ of Eq. (15)
with X̃m, λ, τ . With probability at least 1− 2δ, the following holds(

‖f̂τ,m,λ − fp‖2L2(X ) + λ‖M̂τ,m,λ‖2F
)1/2

6 C ‖fp‖sos,X ,β ε, (80)

where C is a constant depending only on d, β, and not on ε, δ, λ,m, τ, fp.

Proof. We start by applying the same reasoning as in the proof of Theorem 7 by Rudi and Ciliberto
[15].

Note that since τ = ε−2/β and Eq. (76) is satisfied, with probability at least 1 − δ, it holds
‖f̃τ,m,ε − f̂τ,m,λ‖L2(X ) 6 2C1 ‖fp‖sos,Rd,β ε (where C1 ← C from Eq. (77)) and hence
‖fp − f̂τ,m,λ‖L2(X ) 6 (C0 + 2C1) ‖fp‖sos,Rd,β ε, (where C0 ← C1 from Theorem 6). C0, C1

are both constants depending only on d, β. Moreover, since the Frobenius norm is bounded by the
trace norm, by definition of τ , we also have ‖M̂τ,m,λ‖F 6 Tr (M̂τ,m,λ) 6 C1 ‖fp‖sos,Rd,β τ

d/2 6

C1 ‖fp‖sos,Rd,β ε
−d/β .

We can modify Theorem E.2 from Rudi and Ciliberto [15] by taking v̂ = 1
n

∑n
i=1 fp(xi)ψη(xi)

and v =
∫
X fp(x)ψη(x) dx; all the formulas then remain true and adapt to our problem Eq. (15).

Applying Theorem E.2 from Rudi and Ciliberto [15] to Ãτ,m,ε and using Lemma E.3 of Rudi
and Ciliberto [15] to simplify notation, as well as the bound on the term ‖Q−1/2

λ (v̂ − v)‖
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combining Lemma E.4 (with ζ = Q
−1/2
λ fp(x)ψη(x)) using s = d and Lemma E.5 (again, for more

details, see part 2 of the proof of Theorem 7 by Rudi and Ciliberto [15]) and using the fact that√
a+ b 6

√
a+
√
b, a, b > 0, with probability at least 1− δ, it holds :(

‖f̂τ,m,λ − fp‖2L2(X ) + λ‖M̂τ,m,λ‖2F
)1/2

6 ‖f̃τ,m,ε − fp‖L2(X )

+
√
λ‖M̃τ,m,ε‖F + C2 ‖fp‖sos,Rd,β

log 2
δ

nλ1/4

+ C3 ‖fp‖sos,Rd,β
τd/4

(
log 1

λ

)d/2 (
log 2

δ

)1/2
n1/2

, (81)

where C2 and C3 are constants which depend only on d.

Note that in the proof of Lemma E.4 of Rudi and Ciliberto [15], ‖ζ‖ is bounded in essential
supremum and standard deviation by ‖fp‖L∞(X )× a quantity independent of fp which is then
bounded, hence the previous concentration bound since ‖fp‖L∞(X ) 6 ‖fp‖sos,Rd,β .

Now combining both events in a union bound, and plugging in the fact that λ = ε
2β+2d
β and

τ = ε−2/β , we see that with probability at least 1 − 2δ, the left hand term is bounded by the
following quantity:

ε ‖fp‖sos,Rd,β (C0 + 3C1 + T ), (82)

T = C2
ε
−3β+d

2β log 2
δ

n
+ C3

ε−(d+2β)/2β
(

2β+2d
β log 1

ε

)d/2 (
log 2

δ

)1/2
n1/2

.

Now the goal is to bound the term T . Note that as soon as ε 6 e−1 and δ 6 2, if Y =
ε−(d+2β)/β logd

(
1
ε

)
log
(

2
δ

)
n , then it holds T 6 C2

log2 2
Y + C3

√
Y . Now note that Y 6 1 iif n >

ε−(d+2β)/β logd
(

1
ε

)
log
(

2
δ

)
. The theorem therefore holds with C ← 1 + 3C1 + C2/ log2 2 + C3.

Finally, the fact that all bounds involving ‖fp‖sos,Rd,β can be replaced, up to constants depending
only on β, d, by the norm ‖fp‖sos,X ,β , is simply a consequence of proposition 4.

We now come to the final part of our section detailing the proof of proposition 10 and Theorem 8,
which consists in approximately sampling from the learnt model f̂τ,m,λ using algorithm 1 with well
chosen parameters.

Performance of the re-normalized probability measure p̂τ,m,λ. We start off with a technical
lemma.

Lemma 9 (Technical lemma). Let ‖ · ‖ be a norm on a vector space E, and let x, y ∈ E \ {0}.
Then it holds: ∥∥∥ a

‖a‖ −
b
‖b‖

∥∥∥ 6
2‖a− b‖
‖a‖

. (83)

Moreover, if ‖a− b‖ 6 ‖a‖/2, it holds
‖a‖
‖b‖ 6 2. (84)

Proof. Introduce the quantity b
‖a‖ in order to get∥∥∥ a

‖a‖ −
b
‖b‖

∥∥∥ 6
∥∥∥ a
‖a‖ −

b
‖a‖

∥∥∥+
∥∥∥ b
‖a‖ −

b
‖b‖

∥∥∥ =
‖a− b‖
‖a‖

+ ‖b‖
∣∣∣ 1
‖a‖ −

1
‖b‖

∣∣∣ .
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One concludes by writing ∣∣∣ 1
‖a‖ −

1
‖b‖

∣∣∣ =
|‖b‖ − ‖a‖|
‖a‖ ‖b‖

6
‖b− a‖
‖a‖ ‖b‖

,

where the last inequality is simply the triangle inequality. This concludes the proof of Eq. (83). The
proof of Eq. (84) is simply the result of applying the bound 1

‖b‖ 6
1

‖a‖−‖b−a‖ 6
2
‖a‖ .

Proposition 10 (Performance of p̂τ,m,λ). Let p be a probability density w.r.t. the Lebesgue measure
on X = (−1, 1)d satisfying Assumption 1 for a certain β. There exists ε0 > 0 depending only on
d, β, and ‖p‖sos,X ,β and C1, C2, C

′
1, C

′
2, C

′
3 depending only on d, β such that the following holds.

Let n ∈ N and let (x1, ..., xn) be n i.i.d. samples selected uniformly at random from X . Let
δ ∈ (0, 1] and ε 6 ε0, λ = ε2(β+d)/β and τ = ε−2/β . Assume n satisfies Eq. (79), i.e.

n > ε−(d+2β)/β logd
(

1
ε

)
log
(

2
δ

)
. (79)

Letm ∈ N and assumem satisfies Eq. (76), i.e.

m > C ′1ε
−d/β

(
log

C′2
ε

)d (
log

C′2
ε + log

C′3
δ

)
, (76)

and let X̃m ∈ Rm×d be a data matrix corresponding to vectors x̃1, ..., x̃m which are sampled
independently and uniformly from X .

Let f̂τ,m,λ be the Gaussian PSD model associated to the solution Âτ,m,λ of Eq. (15) with X̃m, λ, τ

and let p̂τ,m,λ be the associated probability density on X (i.e. the re-normalization of f̂τ,m,λ). Let
R̂τ,m,λ be PSD operator onHη associated to p̂τ,m,λ. With probability at least 1− 2δ, it holds

dTV (p̂τ,m,λ, p) 6 C1 ‖p‖sos,X ,β ε, ‖R̂τ,m,λ‖F 6 C2 ‖p‖sos,X ,β ε
−d/β. (85)

Proof. Since the assumptions of proposition 9 are satisfied, we have by Eq. (80) the existence of a
constant C depending only on d, β, and not on ε, δ, λ,m, τ, fp, such that

‖f̂τ,m,λ − fp‖L2(X ) 6 C ‖fp‖sos,X ,β ε, ‖M̂τ,m,λ‖F 6 C ‖fp‖sos,X ,β ε
−d/β, (86)

where we have used the fact that λ = ε2+2d/β .

Now using the fact that ‖ • ‖L1(X ) 6 2d/2‖ • ‖L2(X ) (by Cauchy-Schwarz inequality), Eq. (86)
shows in particular that ‖f̂τ,m,λ − fp‖L1(X ) 6 2d/2C ‖fp‖sos,X ,β ε. Now applying Eq. (83) of
Lemma 9, using the fact that p̂τ,m,λ = f̂τ,m,λ/‖f̂τ,m,λ‖L1(X ) and p = fp/‖fp‖L1(X ), it holds

dTV (p̂τ,m,λ, p) = ‖p̂τ,m,λ − p‖L1(X ) 6 2‖f̂τ,m,λ − fp‖L1(X )/‖fp‖L1(X ) (87)

6 2d/2+1C ‖fp‖sos,X ,β /‖fp‖L1(X ) ε.

Since p = fp/‖fp‖L1(X ), we have ‖fp‖sos,X ,β /‖fp‖L1(X ) = ‖p‖sos,X ,β . This shows

dTV (p̂τ,m,λ, p) 6 2d/2+1C ‖p‖sos,X ,β ε.

Now set ε0 = min(e−1, 2−d/2−1C−1 ‖p‖−1
sos,X ,β). If ε 6 ε0, we have 2d/2C ‖fp‖sos,X ,β ε 6

‖fp‖L1(X )/2 and hence ‖f̂τ,m,λ−fp‖L1(X ) 6 ‖fp‖L1(X )/2. By Eq. (84) of Lemma 9, we therefore
have ‖fp‖L1(X )/‖f̂τ,m,λ‖L1(X ) = Zp/Ẑτ,m,λ 6 2. Now since R̂τ,m,λ = M̂τ,m,λ/Ẑτ,m,λ, using
Eq. (86), it holds ‖R̂τ,m,λ‖ 6 C2 ‖p‖sos,X ,β ε−d/β where C2 = 2C, which depends only on β, d.
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Theorem 8 (Performance of psample). Under the assumptions and notations of the previous theorem
(proposition 1), there exists a constant C3 depending only on d, β, such that the following holds.

Let p̂τ,m,λ be given by the previous proposition. Let psample be the dyadic approximation of p̂τ,m,λ
onQ = X = (−1, 1)d and of width ρ (see Eq. (7)). Recall from Theorem 1 that algorithm 1 applied
to Q = (−1, 1)d, N, ρ returns N i.i.d. samples from psample.

If on the one hand ρ is set to ε1+(d+1)/β , then with probability at least 1− 2δ,

dTV (p̂τ,m,λ, psample) 6 C3 ‖p‖sos,X ,β ε, dTV (p, psample) 6 (C1 +C3) ‖p‖sos,X ,β ε. (88)

If on the other ρ is set adaptively to guarantee dTV (psample, p̂τ,m,λ) 6 ε as in Remark 1 then with
probability at least 1− 2δ, ρ > ε1+(d+1)/β/(C3 ‖p‖sos,X ,β), and hence

dTV (p̂τ,m,λ, psample) 6 ε, dTV (p, psample) 6 C1 ‖p‖sos,X ,β ε+ ε. (89)

In any case, this guarantees that the complexity in terms of erf computations is bounded by

O(Nm2 log 1
ρ) = O

(
N ε−2d/β log2d+1

(
1
ε

) (
log
(

1
ε

)
+ log

(
1
δ

)))
, (90)

where the O notations is taken with constants depending on d, β, ‖p‖sos,X ,β .

Proof. Let us bound Lip∞(p̂τ,m,λ). Note that

Lip∞(p̂τ,m,λ) 6 sup
x∈X

d∑
k=1

∂kp̂τ,m,λ(x).

Using Lemma 5, we getLip∞(p̂τ,m,λ) 6 d23/2√τ‖R̂τ,m,λ‖. Using the fact that τ = ε−2/β and that
by Eq. (85), ‖R̂τ,m,λ‖ 6 ‖R̂τ,m,λ‖F 6 C2 ‖p‖sos,X ,β ε−d/β , we therefore have Lip∞(p̂τ,m,λ) 6

23/2dC2 ‖p‖sos,X ,β ε−(d+1)/β . Hence, applying Theorem 7 to p̂τ,m,λ, we get

dTV (psample, p̂τ,m,λ) 6 23/2 2ddC2 ‖p‖sos,X ,β ε
−(d+1)/β ρ. (91)

On the one hand, if we use algorithm 1 with ρ = ε
1+

(d+1)
β , by the previous equation, we get

dTV (psample, p̂τ,m,λ) 6 23/2d 2dC2 ‖p‖sos,X ,β ε.

If on the other hand we find ρ adaptively by computing a bound

L̃ip(A) = 23/2τ1/2d‖K1/2AK1/2‖ = 23/2τ1/2d‖R̂τ,m,λ‖F

from p̂τ,m,λ as in Remark 1, and finding ρ such that 2dL̃ip(A) ρ = |Q|
I(Q) L̃ip(A) ρ = ε, since the

adaptive bound will have computed

L̃ip(A) 6 23/2dC2 ‖p‖sos,X ,β ε
−(d+1)/β,

we will get ρ > ε1+(d+1)/β

2d+3/2 d C2 ‖p‖sos,X ,β
and hence dTV (psample, p̂τ,m,λ) 6 ε. The last point is just a

consequence of Theorem 1 and the bound onm in Eq. (76).
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F Approximation and sampling using a rank one PSD model

In this section, we prove the results in Sec. 4.2, i.e. proposition 2 and Theorem 4.

For this section, fix a probability which has density p with respect to the Lebesgue measure dx on
X = (−1, 1)d, (this is for the sake of simplicity; any hyper-rectangle could do), and assume that
Assumption 2 holds for a certain β ∈ N, β > 0, i.e. there exists q ∈W β

2 (X ) ∩ L∞(X ) such that
p = q2. This is the case, for instance, when p ∝ e−V (x) where V is β times differentiable.

One of the main advantages of our method will be to deal with probability measures which are
known up to a constant; therefore, in this section, we take fp such that p = fp/Z(fp) where
Z(fp) =

∫
X fp(x)dx. Assuming Assumption 2 holds, we take gp ∈W β

2 (X ) ∩ L∞(X ) such that
g2
p = fp as and assume that p is only known through function evaluations of gp, i.e. we can evaluate
the function gp(x) for any x ∈ X .

Once again, our goal is to be able to generate N i.i.d. samples from a distribution which is ε-close
to p, in a sense which we will define. To do so, we first approximate gp by a Gaussian linear
model ĝτ,m,λ = g(•; âτ,m,λ, X̃m, η) (see Eq. (2) for a definition) where η = τ1d for some τ > 0,
X̃m ∈ Rm×d is obtained as (x̃1, ..., x̃m)> from m i.i.d. uniform samples from X , and âτ,m,λ is
obtained by solving the problem Eq. (20) which we rewrite here for a given λ > 0 and for n i.i.d.
samples (x1, .., xn) sampled uniformly from X :

âτ,m,λ = argmin
a∈Rm

1
n

n∑
i=1

(g(xi; a, x̃m, τ1d)− gp(xi))2 + λa>K
X̃m,η

a. (20)

This yields a Gaussian linear model ĝτ,m,λ ∈ Hη of gp. Since ĝ2
τ,m,λ = f̂τ,m,λ is a PSD model

(indeed f̂τ,m,λ = f(•; Âτ,m,λ, X̃m, τ1d) with Âτ,m,λ = âτ,m,λâ
>
τ,m,λ), we can see f̂τ,m,λ as a

Gaussian PSD model of fp, and hence its renormalized version p̂τ,m,λ as a PSD model of p.

The parameters τ,m, λ, n are selected in order to have an ε approximation of the probability
p.

Furthermore, note that the first term in the optimized quantity in Eq. (20) is an empirical version of
the quantity

1
|X |

∫
X

∣∣∣∣√f̂τ,m,λ(x)−
√
fp(x)

∣∣∣∣2 dx 6 1
|X |

∫
X
|ĝτ,m,λ(x)− gp(x)|2 dx.

This quantity is related to Hellinger distance H(p, p̂τ,m,λ) defined in Eq. (32).

This will therefore be the natural measure in which to express the quality of the approximation
p̂τ,m,λ of p in this section.

The bound obtained on the performance of p̂τ,m,λ can be decomposed into two steps.

• We start by bounding the distance between any g ∈ Hη and ĝτ,m,λ in Theorem 9.

• We then select a gτ,ε which is ε-close to gp, and use it as a reference point in order to bound
the distance between gp and ĝτ,m,λ. To do so, we need to apply different concentration
inequalities to obtain a final bound in terms of performance for both f̂τ,m,λ with respect to fp
and p̂τ,m,λ with respect to p in Hellinger distance in proposition 2.
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Bound on the performance of ĝτ,m,λ compared to an arbitrary function g. Here, we adapt
Theorem 2. from Rudi et al. [13].

Theorem 9 (Bounding the error [13]). Let η ∈ Rd++ and g ∈ Hη.

‖C1/2
η,λ (g − ĝτ,m,λ)‖ 6 θ2

1θ2 ‖ĝp − Ŝηg‖Rn (92)

+ ‖g‖Hη(1 + θ1θ2 + θ2
1)

(
sup
x∈X
‖(I − P̃η,m)φη(x)‖+ λ1/2

)
,

where θ1 = ‖Ĉ−1/2
η,λ C

1/2
η,λ ‖, θ2 = ‖Ĉ1/2

η,λC
−1/2
η,λ ‖ and ĝp = (gp(xi)/

√
n)16i6n ∈ Rn.

Proof. Let g ∈ Hη. We can apply a modification of Theorem 2 by Rudi et al. [13]. Indeed, consider
in the notations of Rudi et al. [13] the loss E(f) = ‖C1/2

η (f − g)‖Hη , and note that the assumptions
are satisfied with ν = 0 andR = ‖g‖Hη , since g minimizes E and ‖C−0g‖Hη = ‖g‖Hη . Moreover,
note that in the proof of that theorem, one can replace Cη by Cη,λ without changing the result
(indeed, in the proof, one always bounds ‖C1/2

η ? ‖ 6 ‖C1/2
η C

−1/2
η,λ ‖ ‖C

1/2
η,λ ? ‖ 6 ‖C

1/2
η,λ ? ‖). Thus,

in that setting, without combining the "constant" terms in the bounds and looking into the proof of
Theorem 2 of Rudi et al. [13], it holds

‖C1/2
η,λ (ĝτ,m,λ−g)‖ 6 θ2

1 ‖C
−1/2
η,λ Ŝ∗η(ĝp−Ŝηg)‖+R(1+θ1θ2)‖(I−P̃η,m)C

1/2
η,λ ‖+Rθ

2
1λ

1/2, (93)

where θ1 = ‖Ĉ−1/2
η,λ C

1/2
η,λ ‖ and θ2 = ‖Ĉ1/2

η,λC
−1/2
η,λ ‖.

Note that ‖C−1/2
η,λ Ŝ∗η(ĝp − Ŝηg)‖ 6 ‖C−1/2

η,λ Ŝ∗η‖ ‖ĝp − Ŝηg‖Rn 6 θ2 ‖ĝp − Ŝηg‖Rn since

‖C−1/2
η,λ Ŝ∗η‖2 = ‖C−1/2

η,λ ĈηC
−1/2
η,λ ‖ 6 ‖C

−1/2
η,λ Ĉη,λC

−1/2
η,λ ‖ = θ2

2.

Moreover, using the definition of Cη, it holds

‖(I − P̃η,m)C
1/2
η,λ ‖

2 = ‖(I − P̃η,m)Cη(I − P̃η,m) + λ(I − P̃η,m)‖

6 1
|X|

∥∥∥∥∫
X

(I − P̃η,m)φη(x)⊗ φη(x)(I − P̃η,m) dx

∥∥∥∥+ λ‖(I − P̃η,m)‖

6 sup
x∈X
‖(I − P̃η,m)φη(x)‖2 + λ.

Combining these results and using the fact that
√
a+ b 6

√
a+
√
b for any a, b > 0, we get the

bound.

Performance of p̂τ,m,λ. We can now state the main results of this section, i.e. the bound on the
performance of p̂τ,m,λ.

Proposition 11 (Performance of p̂τ,m,λ). Let p be a probability density on X = (−1, 1)d, and
assume p = q2 and q ∈ L∞(X ) ∩W β

2 (X ) for some β > 0. Let ν̃ > min(1, d/(2β)). There
exists a constant ε0 depending only on ‖q‖L∞(X ), ‖q‖Wβ

2 (X )
, β, d, constants C1, C2, C3, C4, C5

depending only on β, d and a constant C ′1 depending only on β, d, ν̃ such that the following holds.

Let δ ∈ (0, 1] and ε 6 ε0, and assume (x1, ..., xn) and (x̃1, ..., x̃m) are respectively n and m
uniform i.i.d. samples on X , satisfying

m > C1ε
−d/β logd C2

ε log C3
δε (94)

n > C ′1ε
−2ν̃ log 8

δ (95)
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Let τ = ε−2/β , η = τ1d and λ = ε2+d/β . Let âτ,m,λ ∈ Rn be the vector obtained by solving
Eq. (20) and ĝτ,m,λ ∈ Hη the associated Gaussian linear model (see Eq. (2)). Let f̂τ,m,λ = ĝ2

τ,m,λ

be the associated Gaussian PSD model, Ẑτ,m,λ =
∫
X f̂τ,m,λ(x) dx be the normalizing constant,

and p̂τ,m,λ = f̂τ,m,λ/Ẑτ,m,λ be the renormalized PSD model, which is a probability density. Let
R̂τ,m,λ be PSD operator in S+(Hη) associated to p̂τ,m,λ.

With probability at least 1− 3δ, it holds

H(p̂τ,m,λ, p) 6 C4‖q‖L∞(X )∩Wβ
2 (X )

ε

Tr (R̂τ,m,λ) =

∥∥∥∥∥ ĝτ,m,λ√
Ẑτ,m,λ

∥∥∥∥∥
2

Hη

6 C5‖q‖2L∞(X )∩Wβ
2 (X )

ε−d/β, (96)

where ‖ • ‖
L∞(X )∩Wβ

2 (X )
= max(‖ • ‖

Wβ
2 (X )

, ‖ • ‖L∞(X )).

Proof. Let τ > 0, and define η = τ1d. By proposition 4, we can extend gp to the whole of Rd and
there exists an constant C such that ‖gp‖Wβ

2 (Rd)
6 ‖gp‖Wβ

2 (X )
and ‖gp‖L∞(Rd) 6 C‖gp‖L∞(X ).

We still denote with gp such an extension. Let gτ,ε be given by proposition 7 when approximating
gp.

Setting τ = ε−2/β and λ = ε
2β+d
β , since we assume ε 6 1, Eq. (51) gives us two constants C1, C2

depending only on β, d such that

{
‖gτ,ε − gp‖L2(Rd) 6 ε‖gp‖Wβ

2 (Rd)

‖gτ,ε − gp‖L∞(Rd) 6 C1 ε
1−ν ‖gp‖•

‖gτ,ε‖Hη 6 C2 ‖gp‖Wβ
2 (Rd)

τd/4 = C2 ‖gp‖Wβ
2 (Rd)

ε
− d

2β .

1. Bounding ‖ĝp − Ŝηgτ,ε‖Rn Apply Theorem 3 of Boucheron et al. [3], reformulated in
Proposition 10 from Rudi et al. [13]. Consider the random variable ζ = (gτ,ε − gp)(X)2 −

1
|X |‖gτ,ε − gp‖

2
L2(X ) whereX follows the uniform law on X . Then |ζ| 6 ‖gτ,ε − gp‖2L∞(X ) almost

surely, and E[ζ2] 6 ‖gτ,ε − gp‖2L∞(X )
1
|X |‖gτ,ε − gp‖

2
L2(X ). Applying the concentration bound

yields that with probability at least 1− δ, it holds

‖ĝp − Ŝηgτ,ε‖2Rn − 1
|X |‖gτ,ε − gp‖

2
L2(X ) 6

2‖gτ,ε−gp‖2L∞(X )
log

1
δ

3n

+

√
2‖gτ,ε−gp‖2L∞(X )

1
|X | ‖gτ,ε−gp‖

2
L2(X )

log
1
δ

n ,

and thus

‖ĝp − Ŝηgτ,ε‖2Rn 6

 1√
|X |
‖gτ,ε − gp‖L2(X ) + ‖gτ,ε − gp‖L∞(X )

√
2 log

1
δ

n

2

.

Hence, by Eq. (51), and because |X | = 2d, there exists two constants C3 and C4 depending only on
d and β such that with probability at least 1− δ, it holds

‖ĝp − Ŝηgτ,ε‖Rn 6 C3ε ‖gp‖Wβ
2 (Rd)

+ C4ε
‖gp‖• log 1

δ

εν
√
n

. (97)
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2. Guaranteeing supx∈X ‖(I − P̃η,m)φη(x)‖ 6 λ1/2 = ε1+d/(2β) Using Lemma 3 and proceed-
ing in the same way as in point 2 of the proof of proposition 8, we see that there exists constants
C5, C6, C7 depending only on d and β such that as soon as

m > C5ε
−d/β (log C6

ε

)d
log C7

δε , (98)

it holds supx∈X ‖(I − P̃η,m)φη(x)‖ 6 λ1/2 with probability at least 1− δ.

3. Finding a lower bound for ‖Cη‖ This will be necessary in the next bound. Let v(z) =

kη(0, z) = e−τ‖z‖
2 . Then ‖v‖Hη = 1 and

‖C1/2
η v‖2H = 1

|X |

∫
X
|v(x)|2 dx

= 1
|X |

(∫ 1

−1
e−2τt2 dt

)d
> 1

2d

(∫ 1

−1
e−2t2 dt

)d
τ−d/2 = C8 τ

−d/2,

where the last inequality comes from the fact that τ > 1 since ε 6 1. Hence, ‖Cη‖ > C8τ
−d/2

where C8 is a constant depending only on d. Hence, as soon as λ 6 C8τ
−d/2 which rewrites

ε 6
√
C8, it holds λ 6 ‖Cη‖.

4. Bounding θ1, θ2. Using the same reasoning as that of Proposition 2. of Rudi et al. [13], if
b = ‖C−1/2

η,λ (Ĉη − Cη)C−1/2
η,λ ‖, then θ1 6 1/(1 − b) and θ2

2 6 1 + b. Bounding b can be done
using Proposition 8 of Rudi et al. [13]: if λ 6 ‖Cη‖, and δ ∈ (0, 1] it holds, with probability at
least 1− δ :

‖C−1/2
η,λ (Ĉη − Cη)C−1/2

η,λ ‖ 6
2(1 +N∞(λ)) log 8

λδ

3n
+

√
2N∞(λ) log 8

λδ

n
, (99)

where we have used the fact that Tr (Cη) 6 1.

Note thatN∞(λ) = supx∈X ‖C
−1/2
η,λ φη(x)‖2 6 C9τ

(s−d)d/(2s)λ−d/(2s) for any s > d/2 where C9

depends only on s, d by a proof completely analogous as that of Step 2 of Lemma E.4 by Rudi and

Ciliberto [15]. Replacing the values of τ, λ yields : N∞(λ) 6 C9ε
−2d(β+s)−d2

2sβ .

Note that the function γ : s ∈]d/2,+∞[7→ 2dβ+2ds−d2
2sβ is a homography and therefore reaches all

the values ν̃ strictly between 2 and d/β.

Therefore, for any ν̃ > ν, there exists a constant C10 depending only on d and ν̃ such that
(1 +N∞(λ)) log 1

λ 6 C10ε
−2ν̃ .

Hence, there exists a constant depending only on d, β, ν̃ such that if n > C11ε
−2ν̃ log 8

δ , and if
ε 6 min(1/2,

√
C8) then b 6 1/3 (here we have bounded log 8

δλ by a constant times log 1
λ log 8

δ
provided ε 6 1/2 and hence λ 6 1/4. Moreover, note that C11 can be taken large enough, by
Eq. (97), to guarantee the following, also with probability 1− δ :

‖ĝp − Ŝηgτ,ε‖Rn 6 C3ε ‖gp‖Wβ
2 (Rd)

+ C4ε‖gp‖•. (100)
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5. Applying Theorem 9 to gτ,ε. Combining all the previous equations, we get that if n >

C11ε
−2ν̃ log 8

δ , ε 6 min(1/2,
√
C8) and m > C5ε

−d/β (log C6
ε

)d
log C7

δε , it holds Eq. (100) and
b 6 1/3 as well as supx∈X ‖(I − P̃η,m)φη(x)‖ 6 λ1/2 and hence, using the bound on gτ,ε, there
exists a constant C12 depending only on d, β such that

‖C1/2
η,λ (gτ,ε − ĝτ,m,λ)‖ 6 C12 max(‖gp‖Wβ

2 (Rd)
, ‖gp‖•)ε.

Thus, using the bound on ‖gτ,ε − gp‖L2(Rd), and the fact that gCηg = 1
|X |‖g‖

2
L2(X ) we get

‖gp − ĝτ,m,λ‖L2(X ) 6 C13 max(‖gp‖Wβ
2 (Rd)

, ‖gp‖•)ε,

‖ĝτ,m,λ‖Hη 6 C14 max(‖gp‖Wβ
2 (Rd)

, ‖gp‖•) ε−d/2β. (101)

6. Bounding the performance of p̂τ,m,λ. Note that q =
gp

‖gp‖L2(X )
and

√
p̂τ,m,λ =

|ĝτ,m,λ|
‖ĝτ,m,λ‖L2(X )

.
Thus, using Eq. (83), it holds

H(p̂τ,m,λ, p) =

∥∥∥∥ gp
‖gp‖L2(X )

− |ĝτ,m,λ|
‖ĝτ,m,λ‖L2(X )

∥∥∥∥
L2(X )

6 2
‖ĝτ,m,λ − gp‖L2(X )

‖gp‖L2(X )
.

Hence, since q = gp/‖gp‖L2(X ), we have by Eq. (101) :

H(p, p̂τ,m,λ) 6 2C13 max(‖q‖
Wβ

2 (Rd)
, ‖q‖•)ε.

Moreover, by Eq. (84), if 2C13 max(‖q‖
Wβ

2 (Rd)
, ‖q‖•)ε 6 1, then

‖gτ,ε‖L2(X )

‖ĝτ,m,λ‖L2(X )
6 2 and

hence again by Eq. (101), ‖p̂τ,m,λ‖Hη 6 2C14 max(‖q‖
Wβ

2 (Rd)
, ‖q‖•) ε−d/2β . Setting ε0 =

min(1/2,
√
C8, (2C13 max(‖q‖

Wβ
2 (Rd)

, ‖q‖•))−1), we therefore have all the desired properties.

7. Replacing norms on Rd with norm on X . To do so, we just use proposition 4, which does not
change anything up to multiplicative constants depending only on d, β.

Theorem 10 (Performance of psample). Under the assumptions and notations of the previous
theorem (proposition 11), there exists a constant C6 depending only on d, β, such that the following
holds. Let p̂τ,m,λ be given by the previous proposition. Let psample be the dyadic approximation of
p̂τ,m,λ on Q = X = (−1, 1)d and of width ρ (see Eq. (7)). Recall from Theorem 1 that algorithm 1
applied to Q = (−1, 1)d, N, ρ returns N i.i.d. samples from psample.

If on the one hand ρ is set to ε1+(d+2)/(2β), then with probability at least 1− 3δ,

H(p̂τ,m,λ, psample) 6 C6‖q‖L∞(X )∩Wβ
2 (X )

ε,

H(p, psample) 6 (C4 + C6)‖q‖
L∞(X )∩Wβ

2 (X )
ε. (102)
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If on the other ρ is set adaptively to guarantee H(psample, p̂τ,m,λ) 6 ε as in Remark 1, then with
probability at least 1− 3δ,

ρ > ε1+(d+2)/β/(C6 ‖q‖L∞(X )∩Wβ
2 (X )

),

H(p̂τ,m,λ, psample) 6 ε,H(p, psample) 6 (C1 + 1)ε. (103)

In any case, this guarantees that the complexity in terms of erf computations is bounded by

O(Nm2 log 1
ρ) = O

(
N ε−2d/β log2d+1

(
1
ε

) (
log
(

1
ε

)
+ log

(
1
δ

)))
, (104)

where the O notations is taken with constants depending on d, β, ‖q‖
L∞(X )∩Wβ

2 (X )
.

Proof. Let us bound Lip∞(
√
p̂τ,m,λ). Note that since for any x, y ∈ X , it holds∣∣∣√p̂τ,m,λ(x)−
√
p̂τ,m,λ(y)

∣∣∣ = ||ĝτ,m,λ(x)| − |ĝτ,m,λ(y)||/
√
Ẑτ,m,λ

6 |ĝτ,m,λ(x)− ĝτ,m,λ(y)|/
√
Ẑτ,m,λ,

we have Lip∞(
√
p̂τ,m,λ) 6 Lip∞(ĝτ,m,λ)/Ẑτ,m,λ. Now

Lip∞(ĝτ,m,λ) 6 sup
x∈X

d∑
k=1

∂kĝτ,m,λ(x).

Using Lemma 2, we get Lip∞(ĝτ,m,λ) 6 d
√

2τ‖ĝτ,m,λ‖Hη . Using the fact that τ = ε−2/β

and that by Eq. (96), ‖ĝτ,m,λ‖Hη/
√
Ẑτ,m,λ 6

√
C5‖q‖L∞(X )∩Wβ

2 (X )
ε−d/(2β), we therefore have

Lip∞(
√
p̂τ,m,λ) 6 d

√
2C5‖q‖L∞(X )∩Wβ

2 (X )
ε−(d+2)/(2β). Hence, applying Theorem 7 to p̂τ,m,λ,

we get
H(psample, p̂τ,m,λ) 6 2d/2d

√
2C5‖q‖L∞(X )∩Wβ

2 (X )
ε−(d+2)/(2β) ρ. (105)

On the one hand, if we use algorithm 1 with ρ = ε
1+

(d+2)
2β , by the previous equation, we get

H(psample, p̂τ,m,λ) 6 2d/2d
√

2C5 ε.

If on the other hand we find ρ adaptively by computing an upper bound L̃ip(a) defined in

s.t. L̃ip(a) =
√

2τd‖K1/2a‖ =
√

2τd‖ĝτ,m,λ‖/
√
Ẑτ,m,λ > Lip∞(

√
p̂τ,m,λ) from p̂τ,m,λ and

finding ρ such that 2d/2L̃ip(a) ρ = ε, we will get ρ > ε1+(d+2)/(2β)

2d/2 d
√

2C5‖q‖
L∞(X )∩Wβ

2 (X )

and hence

H(psample, p̂τ,m,λ) 6 ε. The last point is just a consequence of Theorem 1 and the bound onm in
Eq. (94).

G Additional experimental details

As mentioned in Sec. 5, we report in Fig. 4 an experiment in which we learn the density of the
indicator function of [−1, 1] using algorithm 4.

Note that this is out of the setting of Theorem 4, as these bounds rely on the regularity of the target
density which is not at all the case here.

However, in order to sample approximately from p as a rough approximation, algorithm 4 could be
relevant : it shows that we must develop tools which analyse these algorithms beyond notions of
regularity, with rougher objectives.
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Figure 4: Trying to learn a non-continuous function using a rank one PSD model. (left) Plot of the
target and learnt distributions using algorithm 4. (right) 1000 samples generated from the learnt
distribution psample.
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