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Abstract Causality analysis of rule-based models allows the reconstruction of the causal
paths leading to chosen events of interest. This potentially reveals emerging paths that were
completely unknown at the time of creation of a model. However, current implementations
provide results in the form of a collection of stories. For large models, this can amount to
hundreds of story graphs to read and interpret for a single event of interest. In this work,
we hence develop a method to fold a collection of stories into a single quotient graph.
The main challenge is to find a trade-off in the partitioning of story events which will
maximize compactness without loosing important details about information propagation in
the model. The partitioning criterion proposed is relevant context, the context from an
event’s past which remains useful in its future. Each step of the method is illustrated on a
toy rule-based model. This work is part of a longer term objective to automatically extract
biological pathways from rule-based models.
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1 Introduction

Rule-based modelling [1,2] is well suited to the construction of large models characteristic of systems
biology. Rules distinguish themselves from reactions by focussing only on the part of molecules that
changes during a transition, rather than fully defining the species involved. This lets rule-based models
avoid combinatorial explosion issues and obviates the need to reduce models toward a predefined goal.
Subsequent analysis can then reveal emerging properties that were initially completely unknown by
the modellers.

Causality analysis is one of the most interesting analyses to perform on rule-based models. It allows
the reconstruction of the causal paths, also called stories, leading to a chosen event of interest [3].
Considering a protein involved in some pathology for instance, it would provide a quantitative account
of each upstream molecule’s contribution to its activation. However, current implementations [3,4]
present the results of causality analysis as a collection of individual stories. In a large systems biology
model, this can amount to hundreds of story graphs to read and interpret for a single event of interest.

The goal of this work is to develop a compact representation that allows the visualisation of all
the paths leading to an event of interest on a single graph. To do so, we fold a collection of stories by
merging events that are deemed equivalent. The broader the definition of equivalence between events,
the more compact the folded representation is. Yet, folding too much may merge events which are
similar but play different roles in the propagation of information. Thus, a trade-off has to be found.
Here, we refine each event in stories with some contextual information about its past, modulated by
the usefulness of that context in its future. We use this additional information to define the quotient
of events in families of stories. As a result, we obtain a quotient that remains compact but provides
a better insight on the way information is processed in the models.



2 Initial Setting

2.1 Kappa Rule-Based Model

The toy model below is written in Kappa language [5] and will be used to illustrate the method
developed in this work. Such toy model does not represent the kind of large systems that can typically
benefit from rule-based modelling. However, it features events whose context is not trivially determined
and is hence well suited to highlight the details of the methodology.

%agent: A(x)

%agent: B(y)

%agent: C(x y z{u,p})
%agent: D(z s{u,p})
’A binds C’ A(x[./1]), C(x[./1]) @ 0.01

’B binds C’ B(y[./1]), C(y[./1]) @ 0.01

’A phos C’ A(x[1]), C(x[1] z{u/p}) @ 1

’B phos C’ B(y[1]), C(y[1] z{u/p}) @ 1

’C binds D’ C(z[./1]{p}), D(z[./1]) @ 0.01

’A phos D’ A(x[1]), C(x[1] z[2]), D(z[2] s{u/p}) @ 1

’B phos D’ B(y[1]), C(y[1] z[2]), D(z[2] s{u/p}) @ 1

%init: 100 A()

%init: 100 B()

%init: 100 C()

%init: 100 D()

%obs: ’Dphos’ |D(s{p})|
%mod: [true] do $TRACK ’Dphos’ [true];

For a description of the Kappa syntax, see [5]. Briefly, bonds are noted as a shared number between
brackets. For example, A(x[1]), C(x[1]) means that A and C are bound through their respective
site x. A dot between brackets, like A(x[.]), means that a site is free of any bond. States are given
between braces. For example, C(z{p}) means here that site z of C is phosphorylated. In the definition
of rules, a forward slash indicates an edit. What appears before the slash is a precondition, the binding
or state value that a site must take to allow the firing of a rule. After the slash is the new binding or
state value taken by a site after the firing of the rule. Brackets and braces without a forward slash
inside them represent required preconditions that are unchanged by the firing of the rule.

Fig. 1 shows a sketch of the toy model, which can be described as follows. Kinases A and B can bind
to protein C, each through a different binding site. Both A or B can phosphorylate site z of protein C

once they are bound. Protein C can bind to D, but only after C was phosphorylated. A or B can then
phosphorylate D as well, but only if they are in a same molecular complex as D. The phosphorylation
of protein D is set as the event of interest. This simplified model is representative of scaffolding as it
can occur in cell signalling. Protein C for instance could contain SH2 domains [6] to recruit kinases
which would in turn phosphorylate multiple residues within a complex.
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Fig. 1. Sketch of the toy model used to illustrate the method developed in this work.



2.2 Stories

Traces of computation from rule-based models can be sampled by the means of stochastic simu-
lators [7,8]. Yet, such traces are not convenient to understand the mechanisms of signal processing
because they contain satellite events that are unnecessary. They also describe precisely the order
in which events occurred even when these events are causally independent. However, traces may be
post-processed in order to extract relevant information. Event structures [9] abstract away the in-
terleaving order between causally independent events. Then, irrelevant events may be discarded by
using operational research techniques [3] or heuristic approaches [4]. The remaining events are the
necessary steps required to reach the event of interest. Their representation in the form of a graph is
called a story.

Fig. 2 shows the four stories corresponding to the four possible ways of obtaining phosphorylated D

from the initial conditions of the toy model. Story 1 represents the case where kinase A phosphorylates
both C and D. Story 2 is similar, but uses kinase B instead. Stories 3 and 4 represent cases where kinase
A phosphorylates C and then kinase B phosphorylates D, or the other way around.
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Fig. 2. The four possible stories to the phosphorylation of protein D in the toy model. Events are shown as
rectangular nodes. Introduction nodes are shown as circles and represent the involvement of a new individual
protein in the story. The event of interest appears as a red octagonal node. Edges represent precedence
relationships. All graphs in this work were built with Graphviz [10].

Note that stories represent concurrency, or parallelism. When a given node has more that one
incoming edge, those edges share an and relationship. In story 3 for instance, events "C binds D"

and "B binds C" are both required to enable "B phos D". Alternative paths cannot be represented
within a story. They are rather shown as distinct stories.

3 Method

The story folding method presented in this work is implemented in the Python package Kappa-
Pathways [11]. The package is currently under development and still requires the implementation
of additional functionalities before fully fledged pathway extraction from rule-based models can be
performed.

3.1 Quotient of stories with concurrency

The main goal of this work is to build a compact representation of the results obtained from
causality analysis of rule-based models. To do so, we seek to fold any arbitrarily large collection of
stories into a single quotient graph. The first intuitive way to partition story events is according to
the Kappa rules that they represent. That is, looking at the four stories from Fig. 2, all nodes with
the same label are merged together.



Fig. 3, left shows the quotient obtained by simply partitioning story events according to their
corresponding Kappa rule. While this graph does summarize some of the information from all the
stories, it also clearly introduces ambiguities. For instance, readers could be mislead into thinking
that completing event "A binds C" is sufficient to reach "A phos D", while in reality "C binds D"

is also necessary. This ambiguity arise because when a node in the quotient graph has more than one
incoming edge, it is impossible to know whether each edge comes from distinct stories or concurrent
branches of a same story.

A binds C B binds C

A phos C

Dphos

B phos DA phos D

C binds D

B phos C

A binds C B binds C

A phos C

Dphos

B phos DA phos D

C binds D

B phos C

Fig. 3. Quotients of the four stories from Fig. 2. Left) Quotient obtained by partitioning event nodes according
to their corresponding Kappa rule. Right) Quotient with hyperedges representing concurrency. Introduction
nodes were removed for clarity.

Fig. 3, right illustrates a simple solution to the representation of concurrency in the quotient
graph. Before the folding operation, any story edges that have the same target are regrouped in a
single hyperedge with many sources and one target. The ensuing quotient allows a clear distinction
between concurrent and alternative paths.

Still, the graph from Fig. 3, right remains misleading. It suggests paths that are not coherent with
the model. For instance, the path "A phos C" →"C binds D" →"B phos C" seems allowed by itself.
According to the model, it is instead only possible if "B binds C" also occurs concurrently. This
inconsistent interpretation of the quotient graph tells us that a partitioning of events simply based
on Kappa rules folds the stories too much. The next section presents additional event partitioning
criteria that solve those ambiguities.

3.2 Relevant context

Looking back at stories 1 and 2 from Fig. 2 provides a hint into why folding too much produces
a quotient with paths that are inconsistent with the model. Those two stories both pass through a
same type of event, namely "C binds D". However, their preceding events are different. Although the
latest modification that both stories went through is the same, the accumulated state of the molecules
involved up to that point is different. They may hence have different futures open to them. That
is, not only the events themselves matter, but also the context that was built up in their past. Still,
not all past context may be relevant. A good trade-off must be found in the information that is kept
about the context of each event. Too much information leads to a blow-up in the quotient graph
that may become unreadable or even too costly to compute, whereas too few information may not be
discriminant enough. In this work, we propose that the appropriate amount of information to keep
corresponds to the relevant context.

The relevant context of a given event consists in the context from its past which remains useful
in its future. More precisely, this corresponds to the locally relevant context, which appears relevant
within a same story. We also define the globally relevant context as the context from an event’s past
which is found useful in the future of other stories which pass through an event corresponding to the
same Kappa rule. The information about context can be extracted from the trace that was used to
produce the stories. The following steps describe how we obtain context for each event and determine
its relevance.



3.2.1 Edit nodes First, for each story, the modifications that are performed by every event are
extracted from the trace as illustrated on Fig. 4. Each individual modification is called an edit and
is represented by a separate node connected to the event which it originates from. Edit nodes are
labelled according to the modification that they correspond to using the Kappa syntax. Edges are
then added from edit nodes to the downstream events which require them later in the story. Edges
that do not correspond to any edge from the original story are referred to as transitive edges.

A C

A(x[.]) C(z{u}) C(z[.]) C(y[.])C(x[.])

A binds C

A(x[1])
C(x[1])

BDA phos C

B(y[.])D(s[.]) D(s{u})D(z[.])C(z{p})

B binds CC binds D

D(z[1]),
C(z[1])

B phos D

D(s{p})

Dphos

C(y[1]),
B(y[1])

Fig. 4. Addition of edit nodes to story 3 from Fig. 2. Edit nodes are shown in blue and their labels represent
modified sites in Kappa syntax. Transitive edges are shown in gray.

3.2.2 Locally relevant context Second, the locally relevant context is determined as illustrated
on Fig. 5. The following substeps are performed iteratively from top to bottom on the graph with
added edit nodes. a) The current node is selected as the first edit node from the top of the graph whose
locally relevant context was not already computed, excluding edits coming from introduction nodes.
b) The past context of the current node is gathered. It first consists in the immediate upstream edit
nodes from the current node, ignoring transitive edges. Neighboring nodes are also added as the edit
nodes coming from the same event or introduction node as any upstream node. Lastly, the context
that was found for those upstream and neighbor nodes during previous iterations is added to the past
context of the current node. c) The locally relevant context is found as any past context node that
remains useful in the future of the current node. On the graph, this corresponds to any past context
node that have at least one path to a node which is reachable from the current node. The path should
however not pass through the current node or an edit node that is incompatible with the edit from
the past context node.

Fig. 5, left shows the first iteration of the steps described above on story 3 from Fig. 2. It provides
the locally relevant context associated with event "A binds C". Two elements of context are found
relevant, as displayed by the two green edges and the inscription z[.]{u} on the label of the highlighted
current node. This indicates that the locally relevant context is that protein C must have its site z

free of any bond, and also unphosphorylated. Those two edits from the past are useful for future
events "C binds D" and "A phos C", respectively. Also note the red dashed edges which indicate
past context nodes whose path to the future of the current node was blocked by incompatible edits.

Fig. 5, right shows the second iteration of locally relevant context determination. It now focusses
on the context of event "A phos C". Only the edit node coming from event "A binds C" counts
here as an immediate upstream node since the edge to C(z{u}) is transitive. C(z[.]) and C(z{u})
are nevertheless subsequently added as past context because the were found as relevant during the
previous iteration.
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B(y[1])

A C
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A(x[1]),
C(x[1] z[.]{u})

B(y[.])D(s[.]) D(u{s})D(z[.])C(z{p} z[.])
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Fig. 5. Highlight of the nodes and edges involved in the determination of the locally relevant context. The
first (left) and second (right) iterations are shown on story 3 from Fig. 2. The current node of each iteration
is shown in yellow with bold border. Past context nodes have a bold dashed border. Paths from past context
nodes to any node reachable by the current node are shown with thick green edges. Paths that are blocked by
an edit node that is incompatible with the edit from the past context node are shown with dashed red edges.
The locally relevant context obtained at the end of each iteration is written in thin font on the label of the
current node.

3.2.3 Globally relevant context Third, the globally relevant context is evaluated. The goal is to
harmonize what is considered relevant across all stories. Suppose an element of context which exists
in the past of two different stories, but is found irrelevant in the first story and locally relevant in the
second. Then, the first story must be revised, knowing that this given element of context is actually
relevant when considering the whole system.

To do so, the total possible context of each edit is first computed. It corresponds to any context
that was found locally relevant across all the edit nodes that represent a same edit among all stories.
Then, the globally relevant context of a given edit node is found as the elements from the total context
which exist in the past of that edit node within the story where it is found. Finally, elements of context
are removed if they are found globally relevant across all edit nodes that represent a same edit.

Fig. 6 shows the four stories now with edit nodes containing the globally relevant context associated
with each event. It turns out that the only relevant context is whether protein C was bound to kinase A
or B when it got phosphorylated. Looking back at the toy model, this is precisely what was expected.
Note that this context, the binding to A or B, was not locally relevant in story 3 as seen on Fig. 5. It
was instead added as globally relevant from stories 1 and 2. Also, the locally relevant context C(z[.])
from Fig. 5 was removed since it is equally present in all four stories and is hence not discriminating.

3.3 Quotient of contextualized stories

It is now possible to fold the contextualized stories from Fig. 6. Using edit nodes and their context
defined in the previous, we can now partition the nodes in a way that will preserve the information
propagation dictated by the model. Edit nodes across all stories are merged if they have the same
edit and the same relevant context. Event nodes are merged if they correspond to the same Kappa
rule and their target edit nodes also have the same relevant context.
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Fig. 6. The four stories from Fig. 2 annotated with relevant context on edit nodes. Introduction nodes were
removed for clarity.

Fig. 7, left presents the resulting quotient. There are two nodes representing rule "C binds D".
One corresponds to the case where C was priorly bound to A, and to other to the case where it was
bound to B. There is no way to read this graph by following a path that is not allowed by the model.

Fig. 7, right shows a more compact graph obtained by removing the contextual information about
events that we have used to get a more precise quotient. We consider this last graph as the correct
representation of the paths to the event of interest, as opposed to the two graphs from Fig. 3 which
both lead to a wrong interpretation.

Dphos

A binds C B binds C

A phos C B phos C

C binds D C binds D

A phos D B phos D

A binds C B binds C
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C(z{p} y[1]),
B(y[1])

C binds D

Fig. 7. Quotient graph obtained after considering relevant context. Left) Full version of the graph.
Right) Compact version with edit nodes removed.



4 Conclusion

This work describes a method to build a compact representation for the visualisation of causality
analysis results in rule-based modelling. A collection of stories provided by a current implementation of
causality analysis [3,4] is folded into a single quotient graph. The main challenge is to find a partitioning
of story events which maximizes compactness of the quotient graph without loosing important details
about how information propagates in the model. The appropriate partitioning criterion suggested here
is the relevant context, the context from an event’s past which remains useful in its future. By folding
stories based on their events type and relevant context, a quotient graph is obtained that faithfully
represents all the paths to an event of interest.

Scalability of the method is important since its true usefulness lies in its application to large
models. While rigorous optimization and benchmarking was not performed yet, we tested the current
implementation on a model of human cell signalling comprising about three thousand Kappa rules.
This model is considered large because representing it in a reaction-based setting, like in a Petri net,
would lead to a combinatorial explosion with millions of nodes. Calculation time of quotient graphs
for events of interest from this model is usually of the order of several minutes on an average personal
computer. Those graphs are typically easy to visualize with less than fifty ordered nodes. For cases
where the graph becomes larger and confusing to read, quantitative data from the model’s execution
can be used to prune away least impactful paths.

The story folding method reported in this paper is a milestone in a longer term objective to auto-
matically extract biological pathways from rule-based models. Other functionalities are planned to be
implemented within the KappaPathways [11] package to reach that goal. Those include counterfac-
tual analysis [12], the representation of inhibitions from negative influences and the ordering of events
participating in feedback loops.
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