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ABSTRACT

Compressed sensing (CS) in Magnetic resonance Imaging (MRI) es-
sentially involves the optimization of 1) the sampling pattern in k-
space under MR hardware constraints and 2) image reconstruction
from the undersampled k-space data. Recently, deep learning meth-
ods have allowed the community to address both problems simul-
taneously, especially in the non-Cartesian acquisition setting. This
paper aims to contribute to this field by tackling some major con-
cerns in existing approaches. Regarding the learning of the sam-
pling pattern, we perform ablation studies using parameter-free re-
constructions like the density compensated (DCp) adjoint operator
of the nonuniform fast Fourier transform (NUFFT) to ensure that the
learned k-space trajectories actually sample the center of k-space
densely. Additionally we optimize these trajectories by embedding
a projected gradient descent algorithm over the hardware MR con-
straints. Later, we introduce a novel hybrid learning approach that
operates across multiple resolutions to jointly optimize the recon-
struction network and the k-space trajectory and present improved
image reconstruction quality at 20-fold acceleration factor on 7% and
T5-weighted images on the fastMRI dataset with SSIM scores of
nearly 0.92-0.95 in our retrospective studies.

1. INTRODUCTION

Speeding up magnetic resonance imaging (MRI) acquisitions in-
volves jointly optimizing how the k-space is undersampled and
how image quality is preserved (or aliasing artifacts are discarded)
during image reconstruction. Based on the CS theory, the k-space
has to be undersampled according to a variable density sampling
(VDS) [[1H5], whose shape depends on the underlying anatomy. In
2D imaging, 2D VDS patterns can only be efficiently achieved by
using non-Cartesian sampling. Recently, SPARKLING [6-8|] was
introduced as an iterative procedure to optimize a non-Cartesian
k-space sampling pattern according to a prescribed target sampling
density (TSD) with each k-space trajectory being compliant with
MR hardware constraints (particularly maximum gradient Gmax and
slew rate Smax). Further, the algorithm results in locally uniform
sampling patterns and thus avoids holes and clusters in k-space.
However, a major limitation of SPARKLING is the need for a
TSD as an input in the optimization process. To address this is-
sue, the TSD was learned in a deep learning setting in [9]] using
LOUPE [10]] as an acquisition model. While this method provided
adequate reconstruction performances, there was still a mismatch in
the learning process. Indeed, the gridded TSD was learned in the
Cartesian domain, while the actual trajectory being optimized was
non-Cartesian. As this could lead to suboptimal results, there is a

need to jointly learn both the TSD and the reconstruction network in
a non-Cartesian setting.

More recent methods [[11H13]] bypass the need for estimating a
TSD, by jointly learning the trajectories and the reconstruction net-
work in a data-driven manner. In [[11}/13]], the authors use a gridding
step followed by a U-net to reconstruct the MR images and jointly
learn the network parameters and k-space sampling trajectory. This
method, however, relies on auto-differentiation of the NUFFT op-
erator, which may not be very accurate (see [14]), thus resulting
in suboptimal local minima. This was actually observed as the fi-
nal learned trajectories only slightly deviated from their initializa-
tion. In [12]], the authors use [14]] to obtain a more accurate Jacobian
approximation of the NUFFT operator. Both above referenced ap-
proaches [111|{12] enforce the hardware constraints with the help of
a penalty on the cost function. Although a viable option, this does
not guarantee that the optimized trajectories will meet these con-
straints. Additionally this requires tuning the hyperparameter asso-
ciated with this additional penalty in the cost function. Further, this
penalty could affect the overall gradients, thereby resulting in sub-
optimality. To overcome these issues, the authors in [[12]] parameter-
ized the trajectory with B-spline curves, which reduce the number of
inequality constraints and hence the influence of this penalty. How-
ever, such parameterization could severely limit the trajectories and
prevent them from better exploring the k-space. Finally, both meth-
ods do not make use of density compensation (DCp) which plays a
crucial role in obtaining cleaner images in the non-Cartesian deep
learning setting [[15]].

Given these results, in this work, we first present a generic model
for jointly optimizing the non-Cartesian trajectories and the corre-
sponding reconstruction network. More precisely, we introduce a
method to learn the trajectories in a data-driven manner while em-
bedding a projected gradient descent algorithm [16] to fulfill the
hardware constraints. Second, we show experimentally that a novel
generalized hybrid learning scheme performs better compared to a
joint or alternated learning of the trajectory and the reconstruction
network. Further we compare the trajectories obtained under differ-
ent reconstruction settings (DCp Adjoint, DCp Adjoint + U-Net and
NC-PDNet) and evaluate their performances in terms of image qual-
ity metrics (SSIM [[17], PSNR) in a retrospective evaluation frame-
work.

2. GENERIC MODEL

In this section we provide details (see Fig. [I) about the different
components of the general model that is used for optimizing the non-
Cartesian sampling trajectories as well as the image reconstruction
network.
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Fig. 1: A generic learning-based framework for joint optimization of the MRI acquisition and reconstruction models.

2.1. Acquisition

Data: In this work, we relied on the brain k-space data from
the fastMRI dataset [[18|] for learning the k-space trajectories. We
applied the virtual coil method [19] to combine per-channel images
to obtain a complex-valued single channel image, which was used
in our training stage. This was done to account for the phase ac-
crual during k-space data acquisition and make the learned trajec-
tories more realistic. Following the formulation developed in [8],
we denote an MR image x € CV XN, over a field of view F x F.
Then the 2D k-space of the image is defined in [—Kmax, Kmax}Q,
with Kmax = % In all our trajectories, we kept N = 320 and
F = 0.23 m. For the sake of simplicity, we normalize the k-space
to Q= [-1,1]%

Trajectory Specification: In our work, we directly learn the k-
space trajectory locations unlike BJORK [12] where the coefficients
of B-spline curves were learned. We believe that such parameteriza-
tions could potentially limit the exploration in the k-space. Instead
we optimize the 2D k-space sampling pattern K which is composed
of N, shots, K = (k;)~¢,. Each shot can be played by the scanner
hardware at the pace of gradient raster time A¢, throughout the read-
Tobs

At
QNCXNS

out time Tpps, resulting in Ny = | | samples per shot. Thus the

overall sampling pattern is K € . Throughout this work,
we used Ny = 512 (Tps ~ 5ms, for 71-w and T-w imaging) and
N. = 16, leading to an acceleration factor AF' = Nlc = 20.
Forward Model: For the sake of simplicity, here we model the
MR acquisition process using the NUFFT modeled by Fk for the
corresponding k-space sampling pattern K. In practice, the k-space
data is sampled at a dt-pace, with ¢ the dwell time used by the

analog to digital converter (ADC). Hence a more realistic modeling
of k-space data y € CNeXNaX 3t is as follows:

y =Fsxx (D

where S(K) € QNexNsx 3t is the sampling pattern obtained after
linearly interpolating each shot in K by a factor of %. In this work
we used 6t = 2 ps. This interpolation is done to model the ADC
hardware in place at the scanner. Note that at a cost of increased
complexity more realistic forward models can be considered to take
off-resonance effects as well as 75 -decay into account. However,
they were not included in this work.

2.2. Reconstruction

Throughout this work, we denote the reconstruction network as
RE (y), which is a parameterized by 6 and depends on the k-space
trajectory K being optimized (through the interpolated trajectory
S(K)) and its corresponding k-space measurements y.

DCp Adjoint: As a first step, we rely on a simple DCp ad-
joint NUFFT to perform image reconstruction. This ensures that the
given network actually results in trajectories which are data-aware
and samples the center of k-space more densely as expected by tra-
ditional CS theory [1H5]. Note that in this case the reconstruction
network is parameter-free and satisfies the following reconstruction
formula:

Rae = R¥(y) = FSuo Dsx)y @)

where FH is the adjoint of NUFFT operator F and D5k is the
density compensators for the interpolated sampling pattern S(K)
obtained iteratively using the method described in [20].

U-Net: We then used a U-net architecture [21] directly on the
density-compensated adjoint image X 4. This network can be trained
to reduce aliasing and other artifacts in the final reconstructed image.

NC-PDNet: Finally, we made use of the state-of-the-art DCp
unrolled network called NC-PDNet [15]]. This network is known
to provide improved image quality compared to U-Net and remain
robust to changes in trajectories, which is crucial in our approach as
the sampling pattern is learned and updated in every gradient descent
step. A key difference of this network as compared to that used in
BJORK [12]] is that we use DCp to better condition the reconstruc-
tion problem. Moreover, in the underlying CNN-based denoiser, we
use different parameters across iterations, giving improved recon-
struction performance at the cost of larger memory footprint.

3. OPTIMIZATION SCHEME

We trained our networks for nearly 1.5k steps with batch size of 64
on the fastMRI training data, which was split into training and val-
idation in a 90%-10% ratio. This enabled early stopping to prevent
overfitting. The original fastMRI validation dataset was used only
for later evaluation.

3.1. Costs, gradients and optimizers

We optimize for the k-space trajectory K and reconstruction network
RE as follows:

(f{,@) = argmin L (x, RE (FS(K)X)) 3)
(KeQNe,0)

where the hardware constraints on the trajectories are specified by
the feasible trajectory space QN as described in Sec. The
loss function £ used in this study was inspired by [22] which is



a weighted sum of /1, /> and multi-scale structural similarity in-
dex (S) [23]]:

)
~ ~ _ ~ a ~
L(x,%) = a1 = S(x, %)) +allx =Xl + - |lx = X]|2

with @ = 1 — « and the value of o was tuned to 0.998 to give nearly
equally balanced terms.

Optimizing the trajectory in (3) requires computing the gradient
of £ with respect to K:

LK) _ o o OR ORE (v)
oK~ VA Xgr K

In order to simplify this gradient calculation and reducing its com-
putational complexity, we neglect the contribution of gradients from
density compensators D k). For the case of DCp Adjoint recon-
struction, Eq. (@) reads:

= VL(x,X) )

o _
0K

2 D 8 (FS(K)X) 4 8F§I(K)
MDsxy K oK

In order to obtain the gradient of NUFFT operators Fsk) and
F§I<K> with respect to the k-space trajectory K, we implemented
[14] in ttkbNUFFT. As these underlying gradients vary extremely in
norm depending on the k-space region (as noted in [24]]), we used
the ADAM optimizer for learning the trajectories, while we relied on
rectified-ADAM for optimizing the image reconstruction network
RE. We used a learning rate of 1072,

3.2. Multi-resolution

Following [25]], we used a multi-resolution approach to optimize the
k-space trajectory and allow for the algorithm to reach faster con-
vergence. Consequently, the sampling pattern was first optimized
on down-sampled trajectories. After optimizing over Ny, ~ 250
steps, the solution K™ at the resolution level ny was then interpo-
lated and further used as a warm restart for the up-sampled problem
n2 = 2n1. We used dyadic scaling and trained our trajectory over 6
decimation levels (i.e. n1 = N, X NS/25 up to ng = 25n1). At any
decimation level ny, the solution Rﬁk used in the forward model (E])
was still linearly interpolated as S(K"*) to match the final trajecto-
ries shape and ensure that the reconstructor sees the same amount of
data at every ny.

3.3. Learning schemes

Here there are two sub-models that are being optimized: The k-space
trajectory K and the image reconstruction network R . These sub-
models can be trained in the following ways:

Joint Learning (JL): In an ideal scenario, we would like to
jointly optimize both sub-models. This idea was pushed forward
pretty successfully in both PILOT and BJORK [11}12]] at the cost of
producing trajectories close to their initialization. Here, as we rely
on an unconstrained parameterization of K this scheme may lead
to poor local minimizers. The reason is that the reconstruction net-
work RE is initially naive, and thus not trained on various types of
trajectories, hence it may give poor reconstructed images associated
with high losses £ for certain configurations of S(K). This initial
bad conditioning of RY cannot be addressed by updating K. Con-
sequently, the gradient of £ with respect to K (see (d)) is corrupted
leading to trajectory updates in wrong directions.

Alternative Descent (AD): In this scenario, we first optimize
the trajectory using the DCp Adjoint reconstruction method. As the

latter is parameter-free, the optimized sampling pattern K is purely
data-driven and it densely samples the center of k-space, hence pro-

viding reasonable image reconstruction. Later on, we learn RE .
Although this method can provide improved results, it still does not
truly learn the sub-models in a joint fashion.

Hybrid Learning (HL): In this third scenario, we try to retain
the best of both previous schemes, by slowly moving from AD to JL.
As a first step, we start off by only learning the trajectory K using
DCp adjoint as reconstruction. Following this, we carry alternative
descent between K and RE while slowly increasing the number of
steps to move from noisy to more accurate gradients over time. In
practice, this was done at different resolution levels as prescribed in
Tab.[1]

Table 1: Hybrid learning strategy

Decimation levels Learning Method

32 —+4 Alternative descent for 20 steps each
41 Alternative descent for Ny, /2 steps each
1 True joint optimization throughout

3.4. Constraints and Projection

In order to obtain realistic learned trajectories which can be run by
a scanner gradient hardware, we need to impose Gmax and Smax con-
straints. Under the normalized sampling domain Q = [—1,1]%, we
obtain the feasible constraint set Q~¢ from [8| Eq. (2)]. To enforce
these constraints, we project all shots in K using the projector IT5 .
developed in [8, Sec. S1] after each gradient descent step (for more
details, see [16]). With this in mind, given a step size n,, each update
of the trajectory along the learning process reads:

2l s

Kt+1 < HQNc (Kt — M K

Given this projection step our trajectories strictly meet the con-
straints on Gmax and Symax in contrast to earlier works [[11413]]
which handle these constraints on the trajectories through a penalty
term in the loss £. Importantly, this projection step is parameter-
free. Additionally, the projector has no influence over the gradient
of £ with respect to K, allowing it to improve image quality at the
reconstruction stage.

4. NUMERICAL STUDIES

We compare our results for AF = 20, and 2 imaging contrasts (T1-w,
T2-w) using AD and HL as learning strategies. We did not compare
with JL startegy as our experiments led to low SSIM scores (be-
tween 0.7 and 0.8 after training). Further, for comparison with an
earlier baseline, we use SPARKLING trajectories generated with the
learned TSD using LOUPE as obtained in [9][1 We denote this ap-
proach by SP. The learned models were tested on 512 slices from the
fastMRI validation dataset. We used the SSIM and PSNR scores on
each slice as image quality metrics for evaluation.

4.1. Quantitative

We first present the trajectory and quantitative comparisons for each
of the learning strategies in the form of box plots in Fig.[2] One key

1Comparisons with PILOT [11] and BJORK [12] could not be done due
to lack of time, although we thank the authors for sharing their trajectories
with us. We will compare them in future work.
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Fig. 2: (a) The optimized k-space trajectories with SPARKLING on
learned density (top, blue) and by joint optimization (bottom). For
joint optimization, results with AD (orange) and HL (green) meth-
ods are presented for (AX)T1/(AX)T2 contrasts. Finally, trajecto-
ries optimized with U-Net and NC-PDNet as reconstructors shown
for HL method. (b) Box plots summarizing the corresponding color-
matched image reconstruction results on a retrospective study using
512 slices (fastMRI validation dataset). SSIMs/PSNRs appear on
top/at the bottom.

aspect of all our learned trajectories is that they are extremely curvy
(in contrast to [11,{12]) and maximally explore the k-space, which
ideally will lead to better performance. We notice that for the AD
strategy, where the trajectory was learned with parameter free DCp
adjoint as reconstructor, we do sample the center of k-space densely
as expected by CS theory.

We observe that NC-PDNet consistently outperforms U-Net as
it is an unrolled network. Further, we see that HL learning strategy
clearly outperforms all the other methods with SSIM scores in the
range of 0.9-0.95. The only exception to this is PSNR values for
T1-w contrasts, where SP presents equivalent results to NC-PDNet.
However, note that the SP trajectories were obtained by learning the
density, followed by obtaining trajectories with SPARKLING and
finally learning the NC-PDNet network for it. HL strategy on the
other hand learns jointly in a single training.

4.2. Qualitative

In order to assess image quality and the residuals across the different
learning schemes (SP, AD, HL), we present a single reconstructed
slice for T1-w images in Fig. [3] and T>-w images in Fig. f] We
clearly observe lesser residual structures in the HL/NC-PDNet ap-
proach, which can also be verified quantitatively with highest SSIM
and PSNR scores for 0.926 and 34.241, respectively for 7% -w im-
ages. However, it is notable to observe that SP approach gives at
par results as observed previously. For T5-w, we see HL/NC-PDNet
approach clearly outperforms with SSIM and PSNR scores of 0.95
and 34.865 respectively.

Reference SP AD HL

SSIM / PSNR 0.922/33.914 0.903/32.143 0.926/ 34.241

Fig. 3: Top: Reference and reconstruction results for a single slice
from file brain AXT1.202.2020283.h5 with SP, AD and
HL strategies and NC-PDNet reconstructor. Bottom: The residu-
als, scaled to match and compare across methods.

Reference SP AD HL

SSIM /PSNR 0.925/29.758 0.929/28.893 0.95/34.865

Fig. 4: Top: Reference and reconstruction results for a single slice
from file brain AXT2.209.6001069.h5 with SP, AD and
HL strategies and NC-PDNet reconstructor. Bottom: The residu-
als, scaled to match and compare across methods.

5. CONCLUSIONS

In this work, we present a hybrid framework for jointly learning the
trajectory and image reconstructor through projected gradient de-
scent, which provides trajectories comparable to those generated by
SPARKLING with learned density. Through restrospective studies
on the fastMRI validation dataset, we showed that this novel learn-
ing scheme works across multiple resolutions and leads to superior
performance of the trajectories and improved image quality overall.

Future prospects of this work include prospective implementa-
tions through modifications of 77 and T>-w imaging sequences. This
could lead to additional constraints on the trajectory arising from the
MR sequencing or contrasts.
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