Skip to Main content Skip to Navigation
New interface
Conference papers

Enabling microservices management for Deep Learning applications across the Edge-Cloud Continuum

Abstract : Deep Learning has shifted the focus of traditional batch workflows to data-driven feature engineering on streaming data. In particular, the execution of Deep Learning workflows presents expectations of near-real-time results with user-defined acceptable accuracy. Meeting the objectives of such applications across heterogeneous resources located at the edge of the network, the core, and in-between requires managing trade-offs between the accuracy and the urgency of the results. However, current data analysis rarely manages the entire Deep Learning pipeline along the data path, making it complex for developers to implement strategies in real-world deployments. Driven by an object detection use case, this paper presents an architecture for time-critical Deep Learning workflows by providing a data-driven scheduling approach to distribute the pipeline across Edge to Cloud resources. Furthermore, it adopts a data management strategy that reduces the resolution of incoming data when potential trade-off optimizations are available. We illustrate the system's viability through a performance evaluation of the object detection use case on the Grid'5000 testbed. We demonstrate that in a multiuser scenario, with a standard frame rate of 25 frames per second, the system speed-up data analysis up to 54.4% compared to a Cloud-only-based scenario with an analysis accuracy higher than a fixed threshold.
Document type :
Conference papers
Complete list of metadata

https://hal.inria.fr/hal-03409405
Contributor : Zeina Houmani Connect in order to contact the contributor
Submitted on : Friday, October 29, 2021 - 4:24:54 PM
Last modification on : Friday, November 18, 2022 - 9:24:58 AM
Long-term archiving on: : Monday, January 31, 2022 - 9:37:53 AM

File

SBAC_PAD2021_Zeina.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Zeina Houmani, Daniel Balouek-Thomert, Eddy Caron, Manish Parashar. Enabling microservices management for Deep Learning applications across the Edge-Cloud Continuum. SBAC-PAD 2021 - IEEE 33rd International Symposium on Computer Architecture and High Performance Computing, Oct 2021, Belo Horizonte, Brazil. pp.1-10, ⟨10.1109/SBAC-PAD53543.2021.00025⟩. ⟨hal-03409405⟩

Share

Metrics

Record views

125

Files downloads

201