Skip to Main content Skip to Navigation
New interface
Journal articles

On the number of essential arguments of homomorphisms between products of median algebras

Miguel Couceiro 1 Gerasimos C Meletiou 2 
1 ORPAILLEUR - Knowledge representation, reasonning
Inria Nancy - Grand Est, LORIA - NLPKD - Department of Natural Language Processing & Knowledge Discovery
Abstract : In this paper we characterize classes of median-homomorphisms between products of median algebras, that depend on a given number of arguments, by means of necessary and sufficent conditions that rely on the underlying algebraic and on the underlying order structure of median algebras. In particular, we show that a median-homomorphism that take values in a median algebra that does not contain a subalgebra isomorphic to the m-dimensional Boolean algebra as a subalgebra cannot depend on more than m − 1 arguments. In view of this result, we also characterize the latter class of median algebras. We also discuss extensions of our framework on homomorphisms over median algebras to wider classes of algebras.
Document type :
Journal articles
Complete list of metadata

https://hal.inria.fr/hal-03409916
Contributor : Miguel Couceiro Connect in order to contact the contributor
Submitted on : Saturday, October 30, 2021 - 1:32:05 PM
Last modification on : Thursday, August 4, 2022 - 5:18:49 PM
Long-term archiving on: : Monday, January 31, 2022 - 6:46:25 PM

File

K-impossible-CouMel.pdf
Files produced by the author(s)

Identifiers

Citation

Miguel Couceiro, Gerasimos C Meletiou. On the number of essential arguments of homomorphisms between products of median algebras. Algebra Universalis, 2018, 79 (4), pp.13. ⟨10.1007/s00012-018-0566-0⟩. ⟨hal-03409916⟩

Share

Metrics

Record views

11

Files downloads

57