
HAL Id: hal-03410025
https://hal.inria.fr/hal-03410025

Submitted on 30 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SAMBA: a Novel Method for Fast Automatic Model
Building in Nonlinear Mixed-Effects Models

Mélanie Prague, Marc Lavielle

To cite this version:
Mélanie Prague, Marc Lavielle. SAMBA: a Novel Method for Fast Automatic Model Building in
Nonlinear Mixed-Effects Models. CPT: Pharmacometrics and Systems Pharmacology, American So-
ciety for Clinical Pharmacology and Therapeutics ; International Society of Pharmacometrics, inPress,
�10.1002/psp4.12742�. �hal-03410025�

https://hal.inria.fr/hal-03410025
https://hal.archives-ouvertes.fr


SAMBA: a Novel Method for Fast Automatic Model Building in

Nonlinear Mixed-Effects Models
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Abstract

The success of correctly identifying all the components of a nonlinear mixed-effects

model is far from straightforward: it is a question of finding the best structural model,

determining the type of relationship between covariates and individual parameters, detect-

ing possible correlations between random effects, or also modeling residual errors. We

present the SAMBA (Stochastic Approximation for Model Building Algorithm) proce-

dure and show how this algorithm can be used to speed up this process of model building

by identifying at each step how best to improve some of the model components. The prin-

ciple of this algorithm basically consists in ’learning something’ about the ’best model’,

even when a ’poor model’ is used to fit the data. A comparison study of the SAMBA pro-

cedure with SCM and COSSAC show similar performances on several real data examples

but with a much-reduced computing time. This algorithm is now implemented in Monolix

and in the R package Rsmlx.

Introduction

Construction of a complex (nonlinear) mixed-effects model [14] is a challenging process

which requires confirmed expertise, advanced statistical methods, the use of sophisticated

software tools, but above all time and patience. Indeed, the success of correctly identifying

all the components of the model is far from straightforward: it is a question of finding

the best structural model, determining the type of relationship between covariates and

individual parameters, detecting possible correlations between random effects, or also
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modeling residual errors. Our goal is to accelerate and optimize this process of model

building by identifying at each step how best to improve some of the model components.

The procedure for constructing a model is usually iterative: one adjusts a first model to

the data, and diagnosis plots and statistical tests allow to detect possible miss-specifications

in the proposed model. A new model must then be proposed to correct these defects

and improve the predictive abilities of the model. Most of common approaches consist

in stepwise procedures consisting in testing the addition of variable forward and their

elimination backward alternatively and progressing through the choice of model using a

criterion derived from the log-likelihood (LL). A widely used approach is SCM (Step-

wise Covariate Modeling) [12], which consists in an exhaustive search in the covariates

space. Each covariate addition or deletion is tested in turn selecting models at each step

leading to the best adjustment according to the objective criterion. Approaches such as

WAM (Wald Approximation Method) [13] and COSSAC (COnditional Sampling use for

Stepwise Approach based on Correlation tests) [2] are less computationally intensive as

they use respectively a likelihood ratio test and a correlation test to move in the covariates

space, which allow to test less models. All these methods are nevertheless computation-

ally intensive as they require to re-estimate the model parameters and the likelihood many

times. In particular, these methods are very sensitive to ’the curse of dimensionality’ when

the number of covariates to test on parameters is large.

The GAM (Generalized additive model) method [9, 17] is computationally appealing

as it does not require as many models fitting. Indeed, it is based on a regression on the

empirical Bayes estimates (EBEs). The EBEs are the modes of the conditional distri-

butions of the individual parameters. In other words, they are the most likely value of
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the individual parameters, given the estimated population parameters and the data. These

estimates are known to be misleading and prone to shrinkage when data are sparse [19].

An efficient method which can correct the bias caused by the shrinkage of the EBEs have

been recently proposed for covariate analysis [21, 22]. In this article, we propose to de-

velop similar method which relies on the use of random samples from the conditional

distribution of each individual parameters instead of EBEs. Indeed, the random sample

of the posterior distribution has been shown to correctly control the type-I error when

performing tests to detect miss-specifications in the model [16].

As for most of the model building procedures, the objective of SAMBA (Stochastic

Approximation for Model Building Algorithm) is to find a model that minimizes some

information criterion, such as AIC, BIC or BICc, the corrected BIC [6]. The main princi-

ple of SAMBA is to use the results obtained with a wrong model to learn the right model.

Then, SAMBA is an iterative procedure where a new model is used at each iteration of the

algorithm. The values of the population parameters of the model are found by maximum

likelihood estimation and then, the individual parameters are sampled from the conditional

distribution defined under this estimated model. These simulated individual parameters

combined with the observed data can now be used to select a new statistical model. It is

important to underline that, as most of the iterative procedures for non-convex optimiza-

tion, SAMBA does not pretend to be capable of always finding the global minimum of

the used criterion, but it always allows to find very quickly a very good solution.

Two contributions mainly constitute the content of this article. First, we describe the

novel algorithm called SAMBA for fast automatic model building in nonlinear mixed-

effects models (Section 1). And, second we benchmark its performances compared to
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reference methods SCM and COSSAC in real world examples (Section 2). Section 3

concludes.

Methods

Model description

Let yi = (yij, 1 ≤ j ≤ ni) be the vector of observations for subject i, where 1 ≤ i ≤ N .

The model that describes the observations yi is assumed to be a parametric probabilistic

model that depends on a vector of L (individual) parameters ψi = (ψi1, . . . , ψLi). In a

population framework, the vector of parameters ψi is assumed to be drawn from a pop-

ulation distribution p(ψi). Then, defining a modelM consists in defining a joint proba-

bility distribution for the observations y = (y1, . . . , yN) and for the individual parameters

ψ = (ψ1, . . . , ψN). For sake of notation simplicity, we focus on models for continuous

longitudinal data. However, extension to models for discrete data and time to event data

is straightforward.

Let yij , the observation obtained from subject i at time tij be described as:

u(yij) = u(f(tij, ψi)) + g(tij, ψi, ξ)εij , 1 ≤ i ≤ N , 1 ≤ j ≤ ni. (1)

The structural model f is a fundamental component of the model since it defines the

individual predictions of the observed kinetics for a given set of parameters. The residual

errors (εij) are assumed to be standardized Gaussian random variables (mean zero and

variance 1). The residual error model is represented by function g in model (1) and may

depends on some additional parameter ξ. Finally, one can use the function u to transform
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the observations, assuming for instance that they are log-normally distributed. In the

following, we will assume u to be the identity.

We assume a linear model for the individual parameters (up to some transformation

h):

h(ψi) = h(ψpop) + β ci + ηi , 1 ≤ i ≤ N, (2)

where ηi ∼ N (0,Ω) is a vector of random effects and where ci is a vector of individual

covariates used to explain part of the variability of the ψi’s. ψpop and β are fixed effects.

The joint model of y and ψ then depends on a set of parameters θ = (ψpop, β,Ω, ξ).

Selecting a model described by equations (1) and (2) consists for the modeler in se-

lecting: (i) the structural model f , (ii) the transformation of the individual parameters h,

(iii) the residual error model g, (iv) the list of covariates that have an impact on individual

parameters, and (v) the structure of the variance-covariance matrix of the random effects

in the linear model Ω. The selection of the two first items is problem-specific, and their

selection is out of the scope of this article. We will therefore assume in this article that

f and h are given. The SAMBA procedure proposes solutions to address the selection of

the three other components of the model.

The SAMBA procedure

Automatic model building is a difficult task since it is generally not possible to fit and

compare all possible models. Moreover, it is necessary to define what is the ’best model’

among all the possible models. A classical approach consists in searching for the model
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M∗ that minimizes a criterion such as the penalized likelihood [8, 11]:

M∗ = argminM {minθ (−2 log (LM(θ; y))) + pen(M)} . (3)

The objective of this approach is to find a model that best fits the data (by minimizing

−2LL) while being as simple as possible (it is the role of pen(M) to favor models with

few parameters). When the space of possible models is large, an exhaustive search is

clearly impossible, and an efficient minimization strategy must be implemented. It is

precisely for this purpose that SAMBA was developed: to obtain very quickly the “best”

modelM∗, or a model with an objective criterion value very close to that ofM∗.

SAMBA is an iterative procedure alternating three steps. Assume that modelMk was

obtained at iteration k of the algorithm. We first compute θ(k), the maximum likelihood

estimate of θ for modelMk. We then generate a set of individual parameters ψ(k) from

the conditional distribution of individual parameters pMk
(ψ | y; θ(k)). The selection step

finally consists in building a new model Mk+1 using the complete data (y;ψ(k)) and

minimizing the complete penalized criterion:

Mk+1 = argminM
{

minθ
(
−2 log

(
LM(θ; y, ψ(k))

))
+ pen(M)

}
. (4)

As already mentioned, the statistical model to be built consists of a covariate model, a

correlation model, and a residual error model. Then, the selection of modelMk+1 is com-

posed of three model selection procedures: the selection of the covariate modelMCOV
k+1 ,

the selection of the correlation modelMCORR
k+1 and the selection of the error modelMERR

k+1 .

Note that not all these components are necessarily selected: some may have been set ar-

bitrarily because of existing knowledge. By noticing that LM(θ; y, ψ(k))=LM(θ|y, ψ(k))
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LM(y, ψ(k)), it appears that the problem of selecting the error model is independent

from the problem of selecting the covariate and correlation models. Figure 1 provides

a flowchart of the complete procedure. Let’s now take a closer look at what each step of

the model selection process consists of.

The covariate model selection MCOV
k+1 . The sample ψ(k) has been generated condi-

tionally to the data y and the modelMk. For the `-th parameter, we build a linear model

between ψ(k)
` and covariates c such as in Equation 2:

h`(ψ
(k)
i` ) = h`(ψpop,`) + β` ci + η

(k)
i` , 1 ≤ i ≤ N, 1 ≤ ` ≤ L, (5)

with h` the transformation associated to the `-th parameter and where η(k)
i` is supposed nor-

mally distributed with mean zero and variance ω2
` . We define θ` = (ψpop,`, β`, ω

2
` ). Best

covariate model for parameter `, denotedMCOV`
k+1 , is selected as being the one minimizing

a penalized criterion:

MCOV`
k+1 = argminM

{
minθ`

(
−2 log

(
LM(θ`;ψ

(k)
` )
)

) + penCOV (M
)}

.

We denote nβ the number of non-null elements in β` for model M. The penalization

depends on the criterion selected for optimization: if AIC then penCOV (M) = 2nβ , if

BIC or BICc then penCOV (M) = log(N)nβ . Equation (5) tells us that the covariate

selection problem has become here a classical problem of variable selection in a linear

model [7]. This problem is much more easily tractable than the original one. The overall

best covariate model combines the best model for each parameters such that MCOV
k+1 =

{MCOV1
k+1 , . . .MCOVL

k+1 }.

In the implemented version of package Rsmlx (R speaks Monolix), two different strategies
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are implemented depending on the dimension of the selection problem. If the number d

of available covariates is less than 11, an exhaustive search is performed over all the 2d

possible covariate models for each parameter. Otherwise, the stepwise variable selection

procedure implemented in the function stepAIC from package MASS is used. It consists

of iteratively adding and removing covariates in stepwise manner to lower the objective

criterion.

The correlation model selection MCORR
k+1 . Using the selected covariate modelMCOV

k+1

and the sample of individual parameters ψ(k)
i , it is possible to extract the vector of in-

dividual random effects η(k)
i = (η

(k)
i` , ` = 1, . . . , L) from Equation 5. Assuming that

η
(k)
i ∼ N (0,Ω) where Ω is a block diagonal matrix, the problem of correlation model se-

lection consists in selecting the block structure of Ω. We then select the correlation model

denotedMCORR
k+1 by minimizing a penalized criterion:

MCORR
k+1 = argminM

{
minΩ

(
−2 log

(
LM(Ω; η

(k)
i )
))

+ penCORR(M)
}
.

We denote nΩ the number of non-zero elements in the upper triangular part of the matrix

Ω. The penalization depends on the criterion selected for global optimization: if AIC then

penCORR(M) = 2nΩ, if BIC or BICc then penCORR(M) = log(N)nΩ.

In the implemented version of package Rsmlx, we limit the size of the block-structure that

can be considered at each iteration. ForM1, no correlation can be added and a diagonal

matrix is used for Ω ; forM2 only blocks of size two are considered. At iteration k for

selection of modelMCORR
k+1 , block size cannot be larger than k + 1, leading to no more

than (k − 1)k/2 non-zero covariance terms in Ω.
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The error model selection MERR
k+1 . For a given set of simulated individual parameters

(ψ
(k)
i , 1 ≤ i ≤ N), the residual errors can easily be computed:

e
(k)
ij = yij − f(tij, ψ

(k)
i ), 1 ≤ i ≤ N , 1 ≤ j ≤ ni.

We then fit several error models with standard deviation of the form g(tij, ψ
(k)
i , ξ) for e(k)

ij

and select the one minimizing a penalized criterion:

MERR
k+1 = argminM

{
minξ

(
−2 log

(
LM(ξ; e

(k)
ij )
)

) + penERR(M
)}

.

We denote nξ the length of ξ, i.e. the number of parameters in modelM. The penalization

depends on the criterion selected for global optimization: if AIC then penERR(M) = 2nξ,

if BIC then penERR(M) = log(N)nξ, and if BICc then pen(M) = log(ntot)nξ where

ntot is the total number of observations, including below the limit of quantification (BLQ)

data.

In the implemented version of package Rsmlx, five error models (provided by function

g in Equation (1)) are tested by default: constant (gx(tij, ψ
(k)
i , ξ) = ξ), proportional

(gx(tij, ψ
(k)
i , ξ) = ξf(tij, ψi)), combined1 (gx(tij, ψ

(k)
i , ξ) = ξ1 + ξ2f(tij, ψi)), combined2

(gx(tij, ψ
(k)
i , ξ) =

√
ξ2

1 + ξ2
2f(tij, ψi)) or exponential in which a constant error model is

fitted to the log(y) using the transformation u = log in Equation 1. Note that it is currently

not possible to perform the selection on a restricted number of error models, but such a

feature could be easily implemented.

Stopping rule procedure At each iteration k of the algorithm, we combine MCOV
k+1 ,

MCORR
k+1 andMERR

k+1 to get the new selected modelMk+1 which is passed forward on to

the next estimation-simulation run. It is important to select the covariate model before the
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correlation model. On the other hand, the error model can be updated before or after the

other two components of the model. The algorithm stops whenMk is strictly identical

toMk+1 for all components and the last model is the selected one.

Remark In the above, ψ(k)
i represents a single realization of the conditional distribution

pMk
(ψi|y, θ(k)) for each i = 1, . . . N . Instead of considering only one realization of this

distribution, we could use a sample of sizeR (ψ
(k)
i`,r, 1 ≤ r ≤ R). If so, the linear covariate

model described in Equation (5) rewrites:

h`(ψ
(k)
`,i ) = h`(ψ`,pop) + β` ci + η

(k)
`,i , 1 ≤ i ≤ N, 1 ≤ ` ≤ L,

where:

h`(ψ
(k)
`,i ) =

1

R

R∑
r=1

h`

(
ψ

(k)
i`,r

)
.

Procedures for covariate model selection and correlation model selection remains the

same, but using now (ψ
(k)
i` ) and (η

(k)
i` ) at iteration k. On the other hand, the R series

of residual errors (e
(k)
ij,r) are used for selecting the residual error model.

Results

Step-by-step example of the SAMBA procedure

To illustrate how SAMBA works in practice, we will describe step-by-step the complete

procedure on the example of remifentanil [18]. We use here the SAMBA implementation

in function buildmlx of the R package Rsmlx, using the default settings.
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The remifentanil data. The dataset is composed of 65 healthy adults who have received

remifentanil IV infusion at a constant infusion rate between 1 and 8 µg.kg−1.min−1 for

4 to 20 minutes. Time and rate of infusion are known for each individual. The phar-

macokinetics data consists in the plasma concentration of remifentanil, which is mea-

sured during and after infusion for a total of 19 to 53 observations by patients, totalling

2057 observations. A total of 6 covariates are available: one qualitative covariate, the

sex (SEX) and five continuous covariates: the age (AGE), the height (HT), the weight

(WT), the lean body mass (LBM) and the body surface area (BSA). All the latter are

normalized and log-transformed for the analysis. In the following, we adopt the notation

logAGE = log(AGE/AGEpop), where AGEpop is a typical value to normalize on, e.g.

the mean value of age in population.

The model. The PK model for IV infusion has a central compartment (volume V 1),

two peripheral compartments (volume V 2 and V 3, inter-compartmental clearances Q2

and Q3), and a linear elimination (Cl). Log-normal distributions are used for the six

individual parameters. The 26 = 64 possible covariate models will be considered for each

of the six individual parameters. Note that if we had to test all possible models, we would

have had to test 646 combinations, which would have made the problem intractable.

SAMBA iterations. We start the SAMBA procedure with a model M0 without any

covariate on all parameters, with no correlation between random effects and the so-called

combined1 error model. Figure 2 illustrates the selection steps on this specific example.

One can notice that the BICc, which has been chosen as target criterion, decreases from

7186 forM0, to 6985 forM1, 6957 forM2, and 6903 forM3, which is finally selected
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as the best model for this example.

- Run 0 (BICc=7185.8) + Iteration 1: Model M0 is fitted to data and individual

parameters are sampled conditionally on the data and this model. Each of the

64 possible linear covariate models is fitted to each individual parameters and the

one with lowest BICc is selected. Let’s take the example of Cl: the three best

models include 1) an effect of logAGE and logWT (BICc=-55.0), 2) an effect

of logAGE and logLBM (BICc=-56.1), and 3) an effect of logAGE and logBSA

(BICc=-57.5). The latter is chosen as the best model for parameter Cl as it pro-

vides the lowest BICc (MCOV,Cl
1 ). Altogether, for all parameters, the best covariate

model (MCOV
1 ) includes logAGE on all parameters, logBSA on Cl, and logLBM

on V 1 and V 2. No correlation is added to the model since no correlation is allowed

at first iteration. Then, MCORR
1 is a diagonal variance-covariance matrix for the

random effects. Among the tested error models, the three best ones are propor-

tional (BICc=5815.2), combined1 (BICc=5811.2) and combined2 (BICc=5807.0)

which is selected forMERR
1 . These covariate, correlation and error models are then

passed on to run 1:M1 = {{MCOV,Cl
1 ,MCOV,Q2

1 ,MCOV,Q3
1 ,MCOV,V 1

1 ,MCOV,V 2
1 ,

MCOV,V 3
1 },MCORR

1 ,MERR
1 }).

- Run 1 (BICc=6984.9) + Iteration 2: ModelM1 is fitted to the data and individual

parameters are sampled. Again, the three best model for each covariate are pro-

vided. Best covariate model for includes logAGE on all parameters except V 1, log-

BSA onCl, logLBM on V 1, and SEX on V 2 (MCOV
2 ). Block-structured correlation

with blocks up to size 2 are compared (i.e. up to one correlation term). The best

three models are with a correlation between parameters Cl and V 2 (BICc=1082.9),
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between parameters Cl and Q2 (BICc=1093.8), and between parameters V 2 and

Q2 (BICc=1072.0). The latter correlation model is selected forMCORR
2 . Residual

error model combined2 remains the best one (MERR
2 ). These covariate, correlation

and error models are then passed on to run 2.

- Run 2 (BICc=6956.9) + Iteration 3: Model M2 is fitted to data and individual

parameters are sampled. Best covariate model includes logAGE on all parameters

except V 1, logBSA on Cl, logLBM on V 1 and V 2 (MCOV
3 ). Block-structured

correlation with blocks up to size 3 are compared (i.e. up to three correlation terms),

a correlation block is selected between Cl, Q2 and V 2 (MCORR
3 ). Residual error

model combined2 remains the best one (MERR
3 ). These covariate, correlation and

error models are then passed on to run 3.

- Run 3 (BICc=6903.4) + Iteration 4: Model M3 is fitted to data and individual

parameters are sampled. Of note, regarding the correlation model selection, block-

structured correlation with blocks up to size 4 are compared (i.e. up to six cor-

relation terms). During this iteration, the same model as the one in the previous

iteration is selected (M4 =M3) resulting in the stopping of the procedure. Model

M3 is therefore the final model selected with the SAMBA procedure.

Converging toward a global optimal model. Even if the selected criterion decreases at

each iteration, there is no guarantee that SAMBA converges toward a global minimum of

this criterion. The quality and the robustness of the convergence of SAMBA can then be

assessed by running SAMBA several times from different starting models. In particular,

a good practice is to: 1/ launch SAMBA from several initial models 2/ compare the best
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models found (if there is not only one) in term of objective criterion (e.g. BICc) and 3/

make a thorough analysis and interpretation of the nearby models in order to choose the

most relevant one for a given application. Regarding the choice of the starting model,

similarly to the EM and SAEM algorithms, there is no optimal choice [3, 4]. We rec-

ommend to test in priority the following three starting models: 1/ an empty model, 2/

(when possible) a complete model, and 3/ a model (or models) that make sense for the

biological application. Note that this robustness assessment is standard for all non-convex

optimization algorithms and should also be performed for SCM and COSSAC in routine.

Performances on real examples, comparison with the SCM and COS-

SAC procedures

To assess the performances of the SAMBA procedure compared to SCM and COSSAC

procedures, we replicate the illustration provided in [2]. We applied the three routines to a

collection of 10 representative datasets, including pharmacokinetics, pharmacodynamics,

and disease models. Of note, the SCM method for variable selection used here is exactly

the same as the one implemented in PsN (Pearl Speaks NONMEM), differences lie in the

algorithms used to estimate the parameters of a model and to calculate the likelihood. We

restricted the SAMBA procedure to the covariate model selection as correlation and error

model selection are not implemented in COSSAC and SCM. The results can be found in

Table 1.

Because the datasets are real data illustrations, there is no ”true” model. It is only possible
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to compare them in term of BIC. Out of 10 examples, the same best model was proposed

by the three procedures in four examples. In two examples, the best model selected by

SAMBA was better in term of BICc than with SCM and COSSAC (Theophylline Ext.

Rel. and Warfarin PK/PD). In three other examples the model with lowest BICc was

not selected by SAMBA. However, the difference in BICc was respectively smaller than

6 in comparison with SCM procedure and 4.2 in comparison with COSSAC procedure.

We insist on the fact that a difference in BICc does not necessarily have any biological

meaning. This is an arbitrary criterion that allows to quantify the goodness of fit with

respect to the sparsity of the model chosen. We thus argue that the three procedures lead

to rather similar models which all constitute very good starting points for the modeler

to build a model based on biological hypothesis. Finally, in only one example discussed

below, the difference in BICc was larger than 10 points of BICc both compared to SCM

and COSSAC procedures.

Regarding the Cholesterol dataset, we run again the SAMBA procedure starting from a

full model in which all covariates are supposed to have an effect on all parameters. The

new model selected by SAMBA is the full model with an effect of logAGE on (Chol0,

slope) and SEX on (Chol0, slope) is much closer in term of BICc than the one selected

starting from an empty model (∆BICc =−2). We can finally notice with this example

that it is sometimes possible to improve the convergence of SAMBA by improving the

convergence of SAEM. Indeed, using 10 Markov chains instead of only 1, SAMBA also

finds the model selected by SCM and COSSAC. Finding the optimal settings that min-

imize computation time while maximizing the probability of finding the best model is

an extremely difficult problem that remains open. We can claim that the default settings
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used in Rsmlx and Monolix give very good results in most cases, but not in all cases with

absolute certainty.

In terms of computational effort, it is important to note that the SAMBA procedure com-

pletes the model building process in much less runs, hence much less CPU time than SCM

and COSSAC. In the considered problems, the number of runs and the CPU computation

time are equivalent since the other computation times are negligible in the order of a few

seconds. Actually, the computation times are 6 to 149 smaller than for SCM and 2 to 11

times smaller than for COSSAC. Note that the number of evaluations required by SAMBA

is always lower or equal to the number of evaluations performed by COSSAC and SCM.

Simulation study

Data generation and analysis. We simulated data from a 1-compartment pharmacoki-

netic model. The model has three population parameters kapop = 1, Vpop = 10 and

Clpop = 2. All individual parameters are log-normally distributed around the population

parameters (ωka = 0.2, ωV = 0.3 and ωCl = 0.3. We simulated five individual covariates

(C1, C2, C3, C4, C5) from standard normal distributions. The covariate model is such that

there only exist linear relationships between log(V ) and C1 (βV,1 = 0.2), log(Cl) and C1

(βCl,1 = −0.2), log(Cl) and C2 (βCl,2 = 0.3). The correlation model is such that there

exists a linear correlation between ηV and ηCl (ρV,Cl = 0.6). Finally, the error model is

a combined2 model with a = 2 and b = 0.1. A clinical trial could then be simulated by

generating PK data from this model for 100 individuals and 11 time-points (0.25, 0.5, 1,

2, 5, 8, 12, 16, 20, 24, 30). In order to evaluate the properties of SAMBA by Monte Carlo,
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we simulated 100 replicates of the same trial and built the model for each replicate using

SAMBA as implemented in Rsmlx and Monolix for minimizing BICc. The initial model

didn’t include any covariate-parameter relationship and any correlation between random

effect. The initial residual error model was a combined1 model. The R code used for this

Monte-Carlo study is available as Supplementary material.

Performances. Table 2 summarizes the results obtained for the covariate model selection.

On the one hand, we can see that, for this particular example, SAMBA finds the 3 existing

covariate-parameter relationships in 100% of the cases. On the other hand, very few

spurious relationships are detected (less than 2%). Importantly, in all cases for which

the final covariate model included more covariates than the true model M∗, the BICc of

the selected model was lower than that of M∗ (the differences ranging from 3 to 14.7

with Rsmlx and from 2.4 to 14.6 for Monolix). In other words, SAMBA always finds

a covariate model as good or better than M∗ in terms of BICc. Regarding the selection

of the correlation model, the correct model was selected for all the replicates. Finally the

correct error model was selected in 86% of the times with Rsmlx and 85% of the times with

Monolix. Note that all the wrong selected error models were all combined1 model (instead

of combined2) with a slightly larger BICc most of the time. Actually, these two models

are quite similar and difficult to distinguish on the basis of a criterion like BICc. SAMBA

then may get stuck in a local minimum in such a situation. Finally and importantly,

the final selected models obtained with Rsmlx and Monolix are different in only 6% of

cases. These small differences are due to small differences in the implementation of the

algorithm (see the Discussion section for more details).
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Discussion

This paper presents a novel model building procedure which offers covariate, correlation,

and error model selection. It is fast as it requires only a limited number of runs of pop-

ulation parameter estimation and simulation compared to SCM and COSSAC. It allows

to explore the space of models rapidly and provides to the modeler a very good model

in term of the selection criterion. However, we insist on the fact that this procedure does

not aim at replacing model building based on biological knowledge, which is in essence

the strength of mechanistic modeling. Thus, it should not be blindly used and the best -

potentially few best - models should be interpreted and compared.

SAMBA is an efficient algorithm for minimizing an objective function. In this article, we

do not aim at evaluating the quality of the criterion used for model selection [5]. What is of

interest here is the convergence of SAMBA. As it is also the case for SCM and COSSAC,

SAMBA may not converge to the global minimum. This is particularly the case when

the amount of data is too small compared to the complexity of the model to build. This

phenomenon will be particularly critical when the number of covariates is high and/or

when these are highly correlated. We then strongly encourage the user to build strategies

to assess the robustness of the results. Extensions of the proposed algorithm are possible

but are outside the scope of this paper and constitute a possible new research direction.

When there is a large number of available covariates, COSSAC and mainly SCM often

fail in finding the best model in a reasonable time. In this case, SAMBA represents a

particularly appealing approach since the covariate model selection is based on a stepwise

variable selection procedure for linear models, which is known to handle high-dimension
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problems. While stepwise AIC/BIC are designed to obtain a sparse estimator that works

well on the training set, other methods such as the lasso [20], where the penalty is chosen

with cross validation, is designed to obtain the sparse linear model that minimize the

prediction error. A lasso type approach [10] can sometimes present better performances

than an approach based on an information criterion such as AIC or BIC, in particular

when the number of covariates is very high. However, it should be noted that the choice

of the penalty parameter by cross-validation can be complicated to implement and require

a large number of runs. This type of method could be alternatively implemented in the

covariate selection procedure and compared in further works. Note finally that it would

be interesting to study the behavior of SAMBA using the EBEs (corrected as proposed in

[21, 22]), rather than the individual simulated parameters, to build the covariate model.

The SAMBA procedure is implemented the R Package Rsmlx in the function buildmlx

[15]. Minimal required input is a Monolix project used as initial model. Additional ar-

guments can be used to enable specific features (all not listed): select the components

of the model to optimize between the covariate, correlation, and error model, restrict the

number of parameters or covariates to use, select a specific objective criterion, etc. Rsmlx

is on CRAN and the R code can be modified to investigate any of the alternative imple-

mentations mentioned above for a specific problem. Note that the execution of Rsmlx

requires the Monolix software, since it is only an algorithm combining tasks implemented

in Monolix. The R codes allowing to replicate the analyses of this article are available

in supplementary material. All the illustration datasets can be downloaded from the Sup-

porting Information Appendix S2 of [2].

Finally, the SAMBA procedure is also implemented in the Monolix-GUI software starting
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from version 2019. Implementation is similar to the one in Rsmlx with two noteworthy

differences. First, for the selection of covariates, a stepwise procedure is used even if the

number of covariates d is small. Second, compiling differences exist between C++ and

R. The full SAMBA procedure is available in the model building perspective, under a

task called automatic statistical model building method. A single iteration of the SAMBA

procedure is also proposed in the section Proposal in the tab Results after running a single

estimation and simulation step for a model in Monolix [1].

Study Highlights

What is the current knowledge on the topic?

Existing model building methods for nonlinear mixed-effects models have high computa-

tional time, especially for selecting the covariate model.

What question did this study address?

The study describes the principle of the SAMBA (Stochastic Approximation for Model

Building Algorithm) procedure which allow to build a covariate, a correlation, and an

error model automatically and compares it with SCM (Stepwise Covariate Modeling) and

COSSAC (COnditional Sampling use for Stepwise Approach) procedures.

What does this study add to our knowledge? SAMBA allows to select the best covariate

model without having to fit the complete nonlinear mixed-effects model to the data for

each possible covariate model. This study confirms that it is possible to obtain relevant

information on the model we are looking for, even when another model is fitted to the

data. This allows to drastically reduce the computation time with respect to other existing
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procedures while keeping the same performances. We also show that it is possible to

perform correlation and error model selection in nonlinear mixed-effects models.

How might this change clinical pharmacology or translational science? This method

will allow the practitioner to very quickly find a set of very good models in term of data

fitting and parsimony, even when the number of parameters or the number of covariates

available is large.
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Figures and Legends

Figure 1: Scheme of the SAMBA model building procedure.

Figure 2: Step-by-step SAMBA procedure on the remifentanil example with 6 covari-

ates (SEX, logAGE, logBSA, logHT,logLBM, logWT) and 6 model parameters (Cl, Q2,

Q3, V 1, V 2, V 3). For each selection (covariate, correlation, error model), the three best

models in term of BICc are displayed. Non selected models are in white, newly accepted

models are in darker grey, and models which have been already accepted at previous run

are in lighter grey.

Table 1: Comparison of the SAMBA procedure with the SCM and COSSAC procedure

on 10 representative datasets.

Table 2: Performance of the SAMBA algorithm for the selection of the covariate model

in a simulation study using a one-compartment PK model. 100 individuals with 11 obser-

vations each have been generated. True modelM∗ includes an effect of C1 on V and Cl

and an effect of C2 on Cl. The percentages of times (over 100 replicates) each covariate-

parameter relationship is selected in the final model are displayed. Implementation of

SAMBA in Rsmlx and Monolix are compared.
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