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Abstract
In this paper, we provide a general framework for studying multi-agent online learning problems

in the presence of delays and asynchronicities. Specifically, we propose and analyze a class of
adaptive dual averaging schemes inwhich agents only need to accumulate gradient feedback received
from the whole system, without requiring any between-agent coordination. In the single-agent case,
the adaptivity of the proposedmethod allows us to extend a range of existing results to problemswith
potentially unbounded delays between playing an action and receiving the corresponding feedback.
In the multi-agent case, the situation is significantly more complicated because agents may not have
access to a global clock to use as a reference point; to overcome this, we focus on the information
that is available for producing each prediction rather than the actual delay associated with each
feedback. This allows us to derive adaptive learning strategies with optimal regret bounds, even in a
fully decentralized, asynchronous environment. Finally, we also analyze an “optimistic” variant of
the proposed algorithm which is capable of exploiting the predictability of problems with a slower
variation and leads to improved regret bounds.
Keywords: Online learning; multi-agent systems; delayed feedback; asynchronous methods;
adaptive algorithms

1. Introduction

Online learning is a powerful paradigm for sequential decision-making, with a range of diverse
applications in portfolio selection, online auctions, recommender systems, and many other fields;
for a comprehensive introduction to the topic, see the textbooks by Shalev-Shwartz (2011), Bubeck
and Cesa-Bianchi (2012), Hazan (2016), and references therein. In the most basic online learning
scenario, the agent (or “learner”) chooses an action, the cost of this action is subsequently revealed
to the agent (possibly along with some gradient-based feedback), and the process repeats.
In this bare-bones model, the time-varying nature of the problem is reflected in the variability of

the cost functions encountered by the agent, and the feedback received by the agent is assumed to be
immediately available at the end of each time step. However, in many cases of practical interest, there
could be a significant delay between playing an action and receiving the corresponding feedback;
for instance, this is typically the case in online ad auctions (Croissant et al., 2020), network traffic
routing (Altman et al., 2006), etc.
Our work concerns online learning setups where delays and asynchronicities play a major role;

these may be due to the computational overhead involved, the communication latency between
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different learners in distributed multi-agent systems, the prediction of long-term effects, or any other
reason. In the literature, the specifics of the delay model are often tailored to the targeted application:
for instance, in online ad placement problems, delays are caused by the lag between the impression
of an ad and its conversion, which data suggests are often exponentially distributed (Chapelle,
2014). Instead of zooming in on a particular application, our paper aims at studying the impact
of delays and stimulus-response asynchronicities from a generalist, application-agnostic standpoint.
To that end, we propose a flexible framework for distributed online optimization problems in which
several agents collaborate asynchronously to enhance their individual/collective performance in an
evolving environment with non-zero response times. This allows us to provide a wide range of regret
bounds extending existing results in the literature, and to design novel adaptive methods that can be
implemented in a fully distributed and decentralized manner.

Our contributions in the context of related work. There are threemajor underlying themes in our
analysis. As we discussed above, the first has to do with delays: either due to a computing overhead
or an inherent lag between “action” and “reaction”, agents may have to update their actions based on
feedback that is potentially stale and obsolete. The second has to do withmulti-agent systems: in a
network setting, learners may have to take decisions with very different information at their disposal,
and with no realistic means of coordinating their decision-making mechanisms. Expanding further
on this point, the third has to do with adaptivity: we are interested in learning algorithms that can
be run with minimal information prerequisites at the agent end, while still achieving optimal regret
bounds.
To take all this into account, we introduce in Section 2 a novel, flexible framework that unifies

several models of online learning in the presence of delays – including both single- and multi-agent
setups. To achieve no regret in this context, we employ the dual averaging template of Nesterov
(2009a) which we combine with adaptive learning rates inspired by the “inverse root sum” blueprint
of Auer et al. (2002b), McMahan and Streeter (2010) and Duchi et al. (2011). We show that the
resulting policies achieve optimal data- and delay-dependent guarantees even in a fully decentralized
environment (Section 4). In the literature, the closest antecedents to our result are the works of
McMahan and Streeter (2014) and Joulani et al. (2016, 2019), in which the authors also devised
adaptive methods for delayed online learning problems. However, all these papers dealt with the
single-agent (shared-memory) setup – and while Joulani et al. (2019) makes the weakest assumptions
among these three papers, the derived bounds are only data-dependent, not delay-dependent.
On the technical side, themulti-agent nature of the problem gives rise to two additional challenges

that are not present in the single-agent setup: i) the non-monotonicity of the total amount of
information available to the decision-making agent; and ii) the lack of a global counter that indicates
the number of updates performed in the entire network so far.1 In face of these challenges, we
introduce in Section 3 the notion of dependency graph, a directed acyclic graph (DAG) that encodes
how the feedback is actually received and used in the network. Each topological sorting of this DAG
represents a faithful permutation of time that is compatible with the underlying decision-making
process. With help of the dependecy graph we also provide a novel characterization of the key
quantities that are involved in the incurred regret. Taken together, these elements allow us to design
and analyze an adaptive algorithm that achieves optimal data- and delay-dependent regret bounds

1. To the best of our knowledge, the only work providing a partial answer to these challenges is that of Joulani et al.
(2019): this work takes into account the first challenge and can partly address the second challenge, through an
approach that is different from ours. Nonetheless, as mentioned in the previous paragraph, they focused on a setup
that is fundamentally different from ours, and the obtained results hence also differ considerably.
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Agent 1

Agent 𝑀

...

...

Agent 𝑖(𝑡) EnvironmentCoordinator
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sends some 𝑔𝑠to neighbors

receives some 𝑔𝑠from neighbors

Figure 1: Illustration of the considered setup: a network of agents collaborate to minimize the total
regret. We do not put any restriction on how the feedback is actually communicated.
This can for example be done either through a coordinator-worker structure (left) or a
decentralized open network (right).

in this completely decentralized setting. As a bonus of the new characterizations, we derive for
the single-agent setup the first data- and delay-adaptive algorithm that does not require a “bounded
delay” assumption.
Finally, in Section 5, we focus on improving these worst-case bounds by introducing a more

“optimistic” step-size policy in the spirit of Rakhlin and Sridharan (2013).2 This approach exploits
the slow variation of “predictable” sequences, thereby improving the regret guarantees of online
algorithms. However, when gradients arrive out of order, the predictability of a loss sequence may
be compromised – and, indeed, in the presence of delays, we show that a crude implementation of
optimistic methods cannot yield any obvious benefit. To account for this, we introduce a “separation
of timescales” between the “sensing” and “updating” steps of the optimistic dual averaging method,
and we show that this variable step-size scaling leads to optimal data-dependent guarantees.

2. A general framework for asynchronous online optimization

2.1 Problem setup

Consider a set of agentsM = {1, . . . , 𝑀} playing against a sequence of time-varying loss functions,
with the goal of minimizing their regret. Formally, at each time slot 𝑡 = 1, 2, . . . , one of the agents
becomes active, they select an action 𝑥𝑡 from the constraint set X , and they incur a loss 𝑓𝑡 (𝑥𝑡 ).3 The
performance of the agents is then measured by the cumulative regret

Reg𝑇 (𝑢) =
𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥𝑡 ) −
𝑇∑︁
𝑡=1

𝑓𝑡 (𝑢) (1)

where 𝑢 ∈ X is an arbitrary comparator action. In the above, X is assumed to be a closed convex
subset ofℝ𝑑 , and each 𝑓𝑡 : ℝ𝑑 → ℝ∪{+∞} is convex and subdifferentiable onX . Unless otherwise
stated, we assume that the agents receive first-order feedback 𝑔𝑡 ∈ 𝜕 𝑓𝑡 (𝑥𝑡 ) at some moment after 𝑥𝑡

2. The concurrent work Flaspohler et al. (2021) that appears after the initial submission of our manuscript also exploits
the same idea and provides empirical evidence of the benefit of optimism in delayed online learning.

3. For simplicity, we assume throughout that only one agent is active at each time step.
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Figure 2: Illustration of the type of feedback sequences that may occur in a multi-agent setting.
In the standard single-agent case, the feedback sequence S𝑡 , 𝑡 = 1, 2, . . . , is necessarily
non-decreasing: even though the feedback may not arrive with the same order as the
corresponding actions, the number of available gradients can only grow. This no longer
holds when multiple agents are involved in the optimization process.

is played (namely, 𝑔𝑡 is a subgradient of 𝑓𝑡 at 𝑥𝑡 ).4 Irrespective of the nature of the problem, we
will refer to 𝑥𝑡 interchangeably as the prediction made by the active agent or the action played by
the active agent at time 𝑡, and we will write 𝑖(𝑡) for the agent that is active at time 𝑡.
For visualization purposes, the above setup is illustrated in Fig. 1, where we also highlight the

fact that we do not put any restriction are how information is exchanged between agents.

The delay model. In environments with delayed feedback, 𝑔𝑡 is only received by all the agents
𝑖 ∈ M a certain amount of time after the generating action 𝑥𝑡 was played. In this regard, we will
focus on the following sources of delay: i) inherent delays that arise when the effect of a decision
requires some time to be observed; ii) computation delays that arise when processing the action
takes time (e.g., due to gradient computations); and iii) communication delays that arise in network
setups where multiple workers share first-order information among themselves.
To express this formally, we write [𝑡] B {1, . . . , 𝑡} and we write S𝑖,𝑡 ⊆ [𝑡 − 1] for the set of

gradient timestamps that are available to agent 𝑖 at time 𝑡; in other words, at time 𝑡, the 𝑖-th agent

4. In a slight abuse of terminology, the terms gradient and subgradient will be used interchangeably in the sequel.
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only has {𝑔𝑠 : 𝑠 ∈ S𝑖,𝑡 } at their disposal. Clearly, at each stage 𝑡 = 1, 2, . . . , the active agent 𝑖(𝑡)
can only compute 𝑥𝑡 based on {𝑔𝑠 : 𝑠 ∈ S𝑖 (𝑡) ,𝑡 }, i.e., the set of subgradients available for it at time 𝑡.
This quantity is of utmost importance in our framework, so we also define

S𝑡 = S𝑖 (𝑡) ,𝑡 and U𝑡 = [𝑡 − 1] \ S𝑡 (2)

for the set of timestamps that are available (resp. unavailable) to the active agent at time 𝑡.
In a slight abuse of terminology, we will refer to both (S𝑖,𝑡 )𝑡 ∈[𝑇 ] and (S𝑡 )𝑡 ∈[𝑇 ] as feedback se-

quences although, strictly speaking, they only contain the timestamps of the corresponding feedback.
Clearly, the non-delayed setting corresponds to the case S𝑡 = S𝑖,𝑡 = [𝑡 − 1] and U𝑡 = ∅.

2.2 Main challenges: Non-monotonicity of the feedback sequence and lack of synchronization

We now highlight two prominent features of our asynchronous online optimization framework that
distinguish it from the large corpus of literature on single-agent online learning with delays. First,
from the point of view of any single agent 𝑖, the feedback sequence (S𝑖,𝑡 )𝑡 ∈[𝑇 ] is non-decreasing by
definition, i.e., S𝑖,𝑡 ⊆ S𝑖,𝑡+1 for all 𝑡 = 1, 2, . . . . However, this may not be the case for the active
feedback sequence (S𝑡 )𝑡 ∈[𝑇 ] which is in general non-monotone. In fact, due to communication
delays, the same element of feedback may not arrive at each node at the same time. Thus, as the
active agent differs from one time slot to another, a timestamp contained in S𝑡 may not belong to
S𝑡+1 (see Fig. 2 for an illustration). This leads to the first challenge we seek to overcome:
Challenge I. Design learning algorithms capable of handling non-monotone feedback sequences.

Remark. We stress here that this issue is inextricably tied to the multi-agent character of our model.
In the single-agent case, S𝑡 is de facto monotone, so this problem does not arise.

Second, in our model the agents only communicate when they exchange the received feedback.
Without additional coordination, the network does not maintain any global information about the
evolution of the learning process. In particular, for reasons of privacy and information security, we
do not assume that agents have access to a global counter that indicates how many actions have been
played at any given stage (as this could carry sensitive, identification-prone information). Similarly,
other quantities of interest, such as the current cumulative unavailability 𝐷𝑡 defined below, are also
unavailable to each agent. This leads to our second challenge:
Challenge II. Dispense of the need to know 𝑡 or other non-local information.
As shown above, the lack of network synchronization, along with the non-monotonicity of the

active feedback sequence, poses crucial challenges to both the design of the algorithms and the
accompanying analysis. In face of these, we introduce in Section 3.2 an appropriate reordering of
time that enables us to go beyond the algorithms developed for the single-agent setting.

Quantifying the impact of delays. As illustrated in Fig. 2, having multiple agents also means that
we can no longer associate a single delay to each individual feedback element. This explains our
choice of focusing on the available subgradients instead of the actual delays, which largely simplifies
the description of the framework. The delays, in turn, are still implicitly encoded in the sets (S𝑖,𝑡 ).
To quantify their effect, it will be convenient to consider the following measures:

• The maximum delay 𝜏 is the longest wait to receive an element of feedback: 𝜏 = min{𝜏 :
[𝑡 − 𝜏 − 1] ⊆ S𝑡 for all 𝑡 ∈ [𝑇]}.
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• The maximum unavailability 𝜈 of the feedback is defined as 𝜈 = max𝑡 ∈[𝑇 ] card(U𝑡 ). This
is the maximum number of subgradients that could have – but otherwise haven’t – been
communicated to an active agent at activation time. It is straightforward to see that 𝜈 ≤ 𝜏.5

• The cumulative unavailability 𝐷𝑡 is given by 𝐷𝑡 =
∑𝑡
𝑠=1 card(U𝑠). This generalizes the sum

of delays to the multi-agent case; clearly, 𝐷𝑡 ≤ 𝜈𝑡.

3. Delayed dual averaging and faithful permutations

In this section we present the main algorithmic template that we will use to address the limitations
identified in the previous section, and which we call delayed dual averaging. We also introduce the
notion of “faithful permuation”, which plays a major role in the analysis to come, as illustrated by
the basic regret bound of Theorem 2 below.

3.1 Delayed dual averaging

To begin, recall that at each time 𝑡, an agent computes the point 𝑥𝑡 using a collection of previously
received subgradients {𝑔𝑠 : 𝑠 ∈ S𝑡 }whereS𝑡 ⊆ [𝑡−1] represents the set of timestamps corresponding
to the subgradients used by the active agent to produce 𝑥𝑡 . Put differently, if 𝑠 ∈ S𝑡 , then 𝑔𝑠 ∈ 𝜕 𝑓𝑠 (𝑥𝑠)
has been used in the computations leading to playing 𝑥𝑡 at time 𝑡. On the other hand, U𝑡 = [𝑡−1] \S𝑡
collects the timestamps of the feedbacks that are missing for the computation of 𝑥𝑡 due to delays.
Our candidate algorithm for this asynchronous setup builds on the dual averaging (DA) master

template

𝑥𝑡 = arg min
𝑥∈X

{∑︁
𝑠<𝑡

⟨𝑔𝑠, 𝑥⟩ +
1
𝜂𝑡
ℎ(𝑥)

}
(DA)

where 𝜂𝑡 ≥ 0 is a learning rate parameter and ℎ : X → ℝ is the method’s regularizer, assumed itself
to be continuous and 1-strongly convex relative to some ambient norm ∥·∥ on ℝ𝑑 . This algorithm
is a version of “follow the regularized leader” (FTRL) with linearized losses (Shalev-Shwartz and
Singer, 2006; Shalev-Shwartz, 2011); our terminology instead follows Nesterov (2009a) and ? and
is meant to clarify that we will be working with first-order feedback.

Examples. The two most popular candidates for ℎ are the squared ℓ2-norm ℎ(𝑥) = ∥𝑥∥22/2 for
arbitrary closed convexX and the negative entropy ℎ(𝑥) = ∑

𝑘 𝑥 [𝑘] log(𝑥 [𝑘]) for simplex constraints
X = {𝑥 : ∑𝑑

𝑘=1 𝑥 [𝑘] = 1} (here 𝑥 [𝑘] denotes the 𝑘 𝑡ℎ coordinate of 𝑥). The first example is 1-strongly
convex relative to the Euclidean norm ∥·∥ = ∥·∥2, while the second one is 1-strongly convex relative
to the ℓ1 norm ∥·∥1 on the simplex. ♦

Of course, as stated, (DA) is not a practical algorithm because the active agent 𝑖(𝑡) only has at
their disposal the subgradients {𝑔𝑠 : 𝑠 ∈ S𝑡 } at time 𝑡. In view of this, we will consider the delayed
dual averaging (DDA) policy

𝑥𝑡 = arg min
𝑥∈X

{∑︁
𝑠∈S𝑡

⟨𝑔𝑠, 𝑥⟩ +
ℎ(𝑥)
𝜂𝑡

}
= 𝑄

(
−𝜂𝑡

∑︁
𝑠∈S𝑡

𝑔𝑠

)
. (DDA)

5. For any 𝑡 ∈ [𝑇], we have [𝑡 − 𝜏 − 1] ⊆ S𝑡 and thus U𝑡 = [𝑡 − 1] \ S𝑡 ⊆ {𝑡 − 𝜏 − 1, . . . , 𝑡 − 1} which consists of 𝜏
elements. On the other hand, if, for some reason, one feedback is lost, say the first one, then, the maximum delay is
𝜏 = 𝑇 − 1 while the maximum unavailability is 𝜈 = 1, in which case 𝜈 ≪ 𝜏.
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Algorithm 1: (DDA) – from the point of view of agent 𝑖
1: Initialize: G𝑖 ← ∅, 𝑡 ← 1.
2: while not stopped do
3: asynchronously receive feedback 𝑔𝑠 from time 𝑠: G𝑖 ← G𝑖 ∪{𝑠}
4: if the agent becomes active, i.e., 𝑖(𝑡) = 𝑖 then
5: S𝑡 ← G𝑖
6: Update 𝜂𝑡 and play 𝑥𝑡 = arg min𝑥∈X

∑
𝑠∈S𝑡
⟨𝑔𝑠, 𝑥⟩ + ℎ (𝑥)𝜂𝑡

7: Relay 𝑔𝑠 if necessary
8: end if
9: end while

where, for concision, we have now set

𝑄(𝑦) = arg max
𝑥∈X

{⟨𝑦, 𝑥⟩ − ℎ(𝑥)}, 𝑦 ∈ ℝ𝑑 ,

for the mirror map induced by ℎ. An intuitive motivation for our algorithmic choice is that every
feedback/gradient is put on a equal footing no matter which agent generated the corresponding action
or the delay it suffers.6 Moreover, as long as 𝜂𝑡 can be computed locally, (DDA) can indeed be
implemented independently by each agent of the network, without requiring a global clock; for a
pseudocode implementation, see Algorithm 1.

3.2 Dependencies and faithful permutations

A crucial challenge in (DDA) is the choice of 𝜂𝑡 . Indeed, the standard analysis of DA requires the
learning rate sequence to be non-increasing, a property that can hardly be ensured in our situation due
to the non-monotonicity of the active feedback sequence and the lack of network synchronization.
To sidestep this issue, we need to rethink what “time”, or the ordering of the timestamps means to
(DDA), and how this can be leveraged to construct a valid algorithm.
Our starting point will be to redefine the algorithm’s internal clock (and corresponding learning

rate) based exclusively on the active timesteamp sets S𝑡 , 𝑡 = 1, 2, . . . , 𝑇 . To that end, we will start
by viewing each timestamp as a node in a “causal graph”, and we will include a directed edge from
𝑠 to 𝑡 if and only if 𝑠 ∈ S𝑡 : this represents a “causal dependency” of 𝑡 on 𝑠 in the sense that the
gradient 𝑔𝑠 has been used to define 𝑥𝑡 (cf. Fig. 3). We will refer to this graph as the dependency
graph associated to the active feedback sequence S𝑡 , 𝑡 = 1, 2, . . . , 𝑇 , and we will denote it by G; for
clarity, we also stress here that we do not assume that this structure is known to the agents.
A first important observation is that the default time ordering 𝑡 = 1, 2, . . . represents a topological

sort of G, i.e., a linear ordering of its vertices such that 𝑠 < 𝑡 if there exists a directed edge 𝑠 { 𝑡 in
G.7 Second, since the update structure of (DDA) is determined entirely by G and the value of 𝜂𝑡 at
each vertex of G, it follows that any reshuffling of time that respects the causal structure of G should
be an equally viable alternative for the algorithm. We formalize this idea below via the notion of a
faithful permutation.

6. See Section 6.2 for more discussion.
7. In particular, this property implies that G is a directed acyclic graph (DAG).
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Figure 3: The dependency graphs for the two examples of Fig. 2; the left and right graphs correspond
respectively to the single- andmulti-agent examples presented therein. The active feedback
at time 𝑡 is exactly the set of in-neighbors of the corresponding vertex.

Definition 1 (Faithful permutations). A permutation 𝜎 of {1, 2, . . . , 𝑇} is faithful if and only if, for
all 𝑠, 𝑡 = 1, . . . , 𝑇 , we have

𝑠 ∈ S𝑡 =⇒ 𝜎−1(𝑠) < 𝜎−1(𝑡). (3)

Equivalently, 𝜎 is faithful if and only if 𝜎(1), . . . , 𝜎(𝑇) is a topological ordering of G.

Definition 1 means that the feedback used at time 𝜎(𝑡) (whose time indices are in S𝜎 (𝑡) ) form a
subset of {𝑔𝜎 (1) , . . . , 𝑔𝜎 (𝑡−1) }. Indeed, if 𝜎(𝑠) ∈ S𝜎 (𝑡) , then 𝑠 = 𝜎−1(𝜎(𝑠)) < 𝜎−1(𝜎(𝑡)) = 𝑡, i.e.,
𝑠 ∈ {1, . . . , 𝑡 − 1}. Thus, a faithful permutation can be seen as a reordering of the time that would
still be compatible with the feedback used by each agent at every time. We illustrate this notion with
two examples below:

Examples. Clearly, the identity permutation 𝑡 ↦→ 𝑡 is always faithful. More interestingly, in the
single-agent setting, we can also define the ordering-by-arrival as follows: if the 𝑘-th received
subgradient originates from round 𝑡 – i.e., 𝑔𝑡 ∈ 𝜕 𝑓𝑡 (𝑥𝑡 ) – we set 𝜎(𝑘) = 𝑡, so 𝑔𝑡 is the 𝜎−1(𝑡)-th
received gradient.8 In this notation, the timestamps of all feedback received before 𝑔𝑡 can be written
as F𝑡 B {𝜎(1), . . . , 𝜎(𝜎−1(𝑡) − 1)} for that 𝑔𝑡 is the 𝜎−1(𝑡)-th feedback. This shows that 𝜎 is
indeed a faithful permutation because S𝑡 ⊆ F𝑡 . ♦

Remark 1. A similar notion was considered by Zimmert and Seldin (2020), but for a completely
different purpose. There, the authors aimed to provide optimal algorithms for single-agent adversarial
bandits with delays. They defined a “dependency-preserving permutation” exactly as the inverse of
what we call a faithful permutation, and they used this notion to analyze an algorithm that can “skip”
certain rounds of feedback when tuning the algorithm’s learning rate. Our definition is motivated
by – and tailored to – the multi-agent setting, where the non-monotonicity of the active feedback
sequence S𝑡 plays a major role (we recall that this phenomenon cannot arise in the single-agent
case). These elements are altogether absent in the single-agent considerations of Zimmert and
Seldin (2020).

3.3 Bounding the regret of delayed dual averaging

We are now in a position to state and prove our main, data-dependent regret guarantee for (DDA)
when run with a learning rate that is non-increasing along a faithful permutation. For simplicity,
we assume throughout the sequel that ℎ is non-negative. This is possible because ℎ is strongly

8. If multiple gradients arrive at a given round, we resolve ties arbitrarily; this ambiguity in the definition of 𝜎 plays no
role in the analysis.
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convex and we can thus always replace ℎ by the non-negative function ℎ − min ℎ without affecting
our algorithms.
Similar to [𝑡] and U𝑡 , for a faithful permutation 𝜎, we also define the set of the first 𝑡 elements

under the new ordering and the set of unavailable elements induced by this ordering as

[𝑡]𝜎 = {𝜎(1), . . . , 𝜎(𝑡)} and U𝜎𝑡 = [𝑡 − 1]𝜎 \ S𝜎 (𝑡) .

We have the following theorem concerning the regret of (DDA).

Theorem 2. Let 𝜎 be a faithful permutation of {1, . . . , 𝑇}, and assume that (DDA) is run with a
learning rate 𝜂𝑡 , 𝑡 = 1, 2, . . . , such that 𝜂𝜎 (𝑡+1) ≤ 𝜂𝜎 (𝑡) for all 𝑡. Then the algorithm enjoys the
regret bound

Reg𝑇 (𝑢) ≤
ℎ(𝑢)
𝜂𝜎 (𝑇)

+ 1
2

𝑇∑︁
𝑡=1

𝜂𝜎 (𝑡)

(
∥𝑔𝜎 (𝑡) ∥2∗ + 2∥𝑔𝜎 (𝑡) ∥∗

∑︁
𝑠∈U𝜎

𝑡

∥𝑔𝑠 ∥∗

)
. (4)

Theorem 2 provides a template regret bound that forms the basis of all the upcoming analysis. To
begin, we note that the bound (4) consists of the usual online dual averaging bound (cf. Appendix A)
plus a term ∑

𝑠∈U𝜎
𝑡
∥𝑔𝑠 ∥∗ that reflects the impact of delay. Similar decompositions can be found in

McMahan and Streeter (2014), Joulani et al. (2016) and Joulani et al. (2019) respectively for online
gradient descent, online mirror descent, and dual averaging.9 These papers focused on the single-
agent (shared-memory) setting and conducted the analysis by either choosing 𝜎 as the identity or
the ordering by arrival. Theorem 2 thus extends these results by providing a larger class of possible
learning rate policies, which enables us to devise efficient and truly implementable learning rate
update schemes for the fully decentralized setting in Section 4.

Proof of Theorem 2. As usual, the first step is to bound the algorithm’s regret by its linearized
counterpart, viz.

Reg𝑇 (𝑢) =
𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥𝑡 ) − 𝑓𝑡 (𝑢) ≤
𝑇∑︁
𝑡=1
⟨𝑔𝑡 , 𝑥𝑡 − 𝑢⟩.

To proceed, we leverage the so-called “perturbed iterate” framework for analyzing asynchronous
algorithms in the spirit of Mania et al. (2017) and Joulani et al. (2019). Formally, we define the
following virtual iterate sequence

𝑥̃𝑡 = arg min
𝑥∈X

𝑡−1∑︁
𝑠=1
⟨𝑔𝜎 (𝑠) , 𝑥⟩ +

ℎ(𝑥)
𝜂𝜎 (𝑡)

.

and decompose the sum as:

𝑇∑︁
𝑡=1
⟨𝑔𝑡 , 𝑥𝑡 − 𝑢⟩ =

𝑇∑︁
𝑡=1
⟨𝑔𝑡 , 𝑥̃𝜎−1 (𝑡) − 𝑢⟩︸                   ︷︷                   ︸

(𝑎)

+
𝑇∑︁
𝑡=1
⟨𝑔𝑡 , 𝑥𝑡 − 𝑥̃𝜎−1 (𝑡)⟩︸                    ︷︷                    ︸

(𝑏)

. (5)

We now proceed to bound each term separately.

9. In McMahan and Streeter (2014), the authors work with the specific setting of coordinate-wise unconstrained gradient
methods. Therefore, instead of products of norms they have products of scalars in their analysis.
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Term (a). The first term is exactly the linearized regret of the iterates 𝑥̃1, . . . , 𝑥̃𝑇 that is constructed
with the feedback 𝑔𝜎 (1) , . . . , 𝑔𝜎 (𝑇) . Thus, by analyzing the regret incurred by the dual averaging
algorithm (DA) without delays, we show in Appendix A that this term can be bounded as

𝑇∑︁
𝑡=1
⟨𝑔𝑡 , 𝑥̃𝜎−1 (𝑡) − 𝑢⟩ =

𝑇∑︁
𝑡=1
⟨𝑔𝜎 (𝑡) , 𝑥̃𝑡 − 𝑢⟩ ≤

ℎ(𝑢)
𝜂𝜎 (𝑇)

+ 1
2

𝑇∑︁
𝑡=1

𝜂𝜎 (𝑡) ∥𝑔𝜎 (𝑡) ∥2∗ . (6)

Note that the assumption on the learning rate sequence (𝜂𝜎 (𝑡+1) ≤ 𝜂𝜎 (𝑡) ) is crucial for the derivation
of this bound.

Term (b). For the second term, we would like to bound the distance between 𝑥𝑡 and 𝑥̃𝜎−1 (𝑡) , or
equivalently, the distance between 𝑥𝜎 (𝑡) and 𝑥̃𝑡 (since we shall consider all the 𝑡 ∈ {1, . . . , 𝑇}). To
that end, we note that

𝑥𝜎 (𝑡) = 𝑄

(
−𝜂𝜎 (𝑡)

∑︁
𝑠∈S𝜎 (𝑡 )

𝑔𝑠

)
and 𝑥̃𝑡 = 𝑄

©­«−𝜂𝜎 (𝑡)
∑︁
𝑠∈T 𝜎

𝑡−1

𝑔𝑠
ª®¬.

Since the permutation 𝜎 is faithful, we have S𝜎 (𝑡) ⊆ {𝜎(1), .., 𝜎(𝑡 − 1)} = [𝑡 − 1]𝜎 . We can then
use the non-expansivity of the mirror map (Lemma 21 in Appendix A) to get

∥𝑥𝜎 (𝑡) − 𝑥̃𝑡 ∥ ≤ ∥𝜂𝜎 (𝑡)
∑︁
𝑠∈U𝜎

𝑡

𝑔𝑠 ∥∗ ≤ 𝜂𝜎 (𝑡)
∑︁
𝑠∈U𝜎

𝑡

∥𝑔𝑠 ∥∗.

Subsequently,

𝑇∑︁
𝑡=1
⟨𝑔𝑡 , 𝑥𝑡 − 𝑥̃𝜎−1 (𝑡)⟩ =

𝑇∑︁
𝑡=1
⟨𝑔𝜎 (𝑡) , 𝑥𝜎 (𝑡) − 𝑥̃𝑡⟩

≤
𝑇∑︁
𝑡=1
∥𝑔𝜎 (𝑡) ∥∗∥𝑥𝜎 (𝑡) − 𝑥̃𝑡 ∥

≤
𝑇∑︁
𝑡=1

𝜂𝜎 (𝑡) ∥𝑔𝜎 (𝑡) ∥∗
∑︁
𝑠∈U𝜎

𝑡

∥𝑔𝑠 ∥∗. (7)

Combining (5), (6) and (7), we obtain the desired result. ■

3.4 Constant learning rate and lag

To get an idea of the optimal regret that the algorithm can achieve, we fix a constant learning rate
𝜂𝑡 ≡ 𝜂, which we subsequently optimize to minimize the upper-bound on the regret. To proceed, we
define the cumulative lag as

Λ𝜎𝑡 =
𝑡∑︁
𝑠=1

(
∥𝑔𝜎 (𝑠) ∥2∗ + 2∥𝑔𝜎 (𝑠) ∥∗

∑︁
𝑙∈U𝜎

𝑠

∥𝑔𝑙 ∥∗

)
=

∑︁
𝑠∈T 𝜎

𝑡

∥𝑔𝑠 ∥2∗ + 2
∑︁

{𝑠,𝑙 }∈D𝜎
𝑡

∥𝑔𝑠 ∥∗∥𝑔𝑙 ∥∗, (8)

where
D𝜎
𝑡 = {{𝜎(𝑠), 𝑙} : 𝑠 ∈ [𝑡], 𝑙 ∈ U𝜎𝑠 }.
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In words, {𝑠′, 𝑙} ∈ D𝜎
𝑡 if i) 𝑔𝑙 is not used to define 𝑥𝑠′; and ii) after reordering by 𝜎, 𝑙 comes before

𝑠′ and 𝑠′ comes before 𝜎(𝑡). We also write Λ𝑡 = Λid
𝑡 for the lag associated to the standard time

ordering and define 𝐷𝜎𝑡 = card(D𝜎
𝑡 ) =

∑𝑇
𝑡=1 card(U𝜎𝑡 ).

In the above, while 𝐷𝜎𝑡 captures the “total delay” in terms of the reordering induced by 𝜎, the
cumulative lagΛ𝜎𝑡 regroups the actual errors caused by the inability of the learners to compensate the
missing feedback, and gives the most fine-grained characterization of the effect of delayed feedback
on the regret. In the single-agent setting, Joulani et al. (2016) andMcMahan and Streeter (2014) also
considered the same quantity but in the special case where 𝜎 is the ordering-by-arrival permutation
discussed in the previous section. In general, it is clear that Λ𝜎𝑡 ≤ (𝑇 + 2𝐷𝜎𝑡 )𝐺2 provided that all
subgradients are bounded in norm by 𝐺; moreover, if 𝜎 is the identity permutation, we further have
𝐷𝜎𝑡 = 𝐷𝑡 ≤ 𝜈𝑡. With all this in mind, a direct application of Theorem 2 gives the following series
of more explicit bounds.

Corollary 3. Let 𝜎 be a faithful permutation and assume that (DDA) is run with a constant learning
rate 𝜂 > 0. Then:

• If ∥𝑔𝑡 ∥∗ is uniformly bounded and 𝜂 = Θ(1/
√
𝜈𝑇), then Reg𝑇 (𝑢) = O(

√
𝜈𝑇).

• If ∥𝑔𝑡 ∥∗ is uniformly bounded and 𝜂 = Θ(1/
√︁
𝐷𝜎
𝑇
), then Reg𝑇 (𝑢) = O(

√︁
𝐷𝜎
𝑇
).

• If 𝜂 = Θ(1/
√︁
Λ𝜎
𝑇
), then Reg𝑇 (𝑢) = O(

√︁
Λ𝜎
𝑇
).

Corollary 3 recapitulates several types of regret bound that we can expect from (DDA), depending
on the tuning of 𝜂𝑡 (either by using a pessimistic upper bound on the delays and the norms of the
gradients, or using the actual delays and/or received gradients). In particular, if we focus on the
standard time ordering 𝜎 = id, Corollary 3 allows us to recover the optimal data-dependent bound
of O(

√
Λ𝑇 ) that was previously obtained for the single-agent setting by Joulani et al. (2016) and

McMahan and Streeter (2014). Moreover, if we further assume that ∥𝑔𝑡 ∥∗ ≤ 𝐺 for all 𝑡 ∈ [𝑇], we
have Λ𝑇 ≤ (𝑇 + 2𝐷𝑇 )𝐺2, which leads to the well-known O(

√
𝐷𝑇 ) bound on the regret (see e.g.,

Quanrud and Khashabi, 2015).
On the downside, Corollary 3 would seem to suggest that the derived regret bounds depend on

the choice of the permutation 𝜎, a concept that is relevant for the analysis, but which is otherwise
devoid of physical meaning (at least, relative to the sequence of events as it unfolds in real time).
Because of this, the computation of the optimal learning rates required by Corollary 3 seems beyond
reach in practice – even if we assume that the various quantities involved are somehow known to
the agents. However, as we show below, this is not the case: the values of both 𝐷𝜎

𝑇
and Λ𝜎

𝑇
are

independent of 𝜎, and hence, so are the bounds of Corollary 3. To prove this, we first provide a new
characterization of the set D𝜎

𝑡 which is of independent interest:

Proposition 4. Let 𝜎 be a faithful permutation. Then

D𝜎
𝑡 = {{𝑠, 𝑙} ⊆ [𝑡]𝜎 : 𝑠 and 𝑙 are not adjacent in G}. (9)

Proof. By definition of the dependency graph, 𝑠 and 𝑙 are not adjacent in G if and only if {𝑠 ∉ S𝑙, 𝑙 ∉
S𝑠}. We will thus show that

D𝜎
𝑡 = {{𝑠, 𝑙} ⊆ [𝑡]𝜎 : 𝑠 ∉ S𝑙, 𝑙 ∉ S𝑠}.

This relies on a two-way inclusion argument.
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Inclusion (“ ⊆ ”). Let 𝑠 ∈ [𝑡] and 𝑙 ∈ U𝜎𝑠 = T 𝜎
𝑠−1 \S𝜎 (𝑠) . By definition of T

𝜎
𝑡 we have 𝜎(𝑠) ∈ T 𝜎

𝑡

and 𝑙 ∈ T 𝜎
𝑠−1 ⊆ T 𝜎

𝑡 . It remains to prove that 𝜎(𝑠) ∉ S𝑙. We exploit the equivalence

𝑙 ∈ T 𝜎
𝑠−1 ⇐⇒ 𝜎−1(𝑙) ≤ 𝑠 − 1 ⇐⇒ 𝜎−1(𝑙) < 𝜎−1(𝜎(𝑠)) ⇐⇒ 𝜎(𝑠) ∉ T 𝜎

𝜎−1 (𝑙) . (10)

To conclude, we use the fact that𝜎 is a faithful permutation and accordinglyS𝑙 ⊆ T 𝜎

𝜎−1 (𝑙)−1 ⊆ T 𝜎

𝜎−1 (𝑙) .
Along with (10) we deduce that 𝜎(𝑠) ∉ S𝑙.

Containment (“ ⊇ ”). Let {𝑠, 𝑙} ⊂ [𝑡]𝜎 such that 𝑠 ∉ S𝑙 and 𝑙 ∉ S𝑠. We assume without loss of
generality 𝜎−1(𝑙) < 𝜎−1(𝑠). This is indeed equivalent to 𝑙 ∈ T 𝜎

𝜎−1 (𝑠)−1 and therefore 𝑙 ∈ U𝜎
𝜎−1 (𝑠) .

We complete the proof by noting that 𝑠 ∈ [𝑡]𝜎 if and only if 𝜎−1(𝑠) ∈ [𝑡]. ■

In contrast to the original definition of D𝜎
𝑡 , the characterization of Proposition 4 is independent

of the ordering of the timestamps. By defining G𝜎𝑡 as the subgraph of G spanned by the vertices of
[𝑡]𝜎 in G, the proposition says that D𝜎

𝑡 contains exactly the non-adjacent vertex pairs of G𝜎𝑡 . With
this in mind, we readily obtain the following important corollary:

Corollary 5. For any two faithful permutations 𝜎 and 𝜌, we have D𝜎
𝑇

= D𝜌
𝑇
, and, a fortiori,

𝐷𝜎
𝑇
= 𝐷

𝜌

𝑇
and Λ𝜎

𝑇
= Λ

𝜌

𝑇
. In other words, the regret bounds of Corollary 3 are independent of 𝜎.

Proof. Simply note that [𝑇]𝜎 = [𝑇]𝜌 = [𝑇]. ■

Corollary 5 shows that the regret bounds of Corollary 3 are indeed meaningful, as they do not
depend on any “virtual” reordering of time by a faithful permutation. However, given that the
quantities Λ𝑇 and 𝐷𝑇 cannot be assumed known beforehand, the agents might need to employ a
muchmore conservative learning rate of the order ofΘ(1/

√
𝜈𝑇) to minimize their regret. We address

this important issue via the design of suitable adaptive learning methods in the next section.

4. Tuning the learning rate in the presence of delays

In this section, we exploit the template bound of Theorem 2 to design efficient leaning rates that
provably achieve low regret. To clarify our objective, we begin by identifying the main desiderata
that we seek to achieve:

i) Anytime / Restart-free: the algorithm should not require the knowledge of the horizon𝑇 and/or
include a restart schedule where previous information is discarded.

ii) Coordination-free: the learning rate of each agent must be computable based exclusively on
local information without any need for agent coordination.

iii) Data-dependent bounds: the algorithm’s regret guarantees should feature the actual gradients
observed instead of an upper bound thereof.

iv) Adaptivity to delays: the algorithm’s regret should depend on the observed delays and not
only on a pessimistic, worst-case estimate thereof.

To derive a learning rate with the above properties, we will employ an “inverse-root-sum-square”
policy in the spirit of AdaGrad and other adaptive algorithms. (see Lemma 6 in Appendix B for the
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details). This is perhaps easiest to illustrate in the case 𝜎 = id: here, to obtain an O(
√
Λ𝑇 ) regret,

we could employ the policy 𝜂𝑡 = 1/
√
Λ𝑡 = 1/

√︃∑𝑡
𝑠=1 𝜆𝑠 where

𝜆𝑠 = ∥𝑔𝑠 ∥2∗ + 2∥𝑔𝑠 ∥∗
∑︁
𝑙∈U𝑠

∥𝑔𝑙 ∥∗.

The key in the analysis of this policy is provided by the following standard lemma (dating back at
least to Auer et al., 2002b, and proven for completeness in Appendix B):

Lemma 6. For any sequence of real numbers 𝜆1, . . . , 𝜆𝑇 with
∑𝑡
𝑠=1 𝜆𝑠 > 0 for all 𝑡 ∈ [𝑇], we have

𝑇∑︁
𝑡=1

𝜆𝑡√︃∑𝑡
𝑠=1 𝜆𝑠

≤ 2

√︄
𝑇∑︁
𝑡=1

𝜆𝑡 .

Based on this lemma, it is straightforward to show that (DDA) with learning rate 𝜂𝑡 = 1/
√
Λ𝑡

incurs at most O(
√
Λ𝑇 ) regret. However, this policy is not implementable because it involves

unobserved feedback – and hence violates one of our principal desiderata. In the rest of this section,
we show how this difficulty can be circumvented in many relevant scenarios.

4.1 Pessimistic non-adaptive learning rate

To set the stage for the analysis to come, we begin by assuming that the agents know an upper bound
for the maximum delay 𝜏 or the norms of the observed gradients. This leads to 𝜆𝑠 ≤ 𝐺2(1 + 2𝜈) ≤
𝐺2(1 + 2𝜏) and subsequently Λ𝑡 ≤ 𝐺2(1 + 2𝜏)𝑡. Given this preliminary result, it can be tempting
to choose 𝜂𝑡 = Θ(1/𝐺

√︁
𝑡 (1 + 2𝜏)). This is however still unrealistic as the agents do not know the

exact value of 𝑡, and may only estimate it by using 𝑡 ≤ card(S𝑡 ) + 𝜏 + 1. To justify this strategy, we
will need to prove that the corresponding learning rate is indeed non-increasing along some faithful
permutation in order to apply Theorem 2. For this, we will require the following assumption.

Assumption 1. If 𝑠 ∈ S𝑡 then card(S𝑠) < card(S𝑡 ).

In words, the assumption requires that if 𝑔𝑠 is used to compute 𝑥𝑡 , then 𝑥𝑠 is computed with fewer
gradients than 𝑥𝑡 . This is a fairly mild requirement which is in turn implied by the upcoming As-
sumption 2 (see the accompanying discussion). In particular, if the agents also relay the information
card(S𝑡 ) as well, Assumption 1 can be ensured by delaying the actual usage of a received feedback
when necessary.10 Then, when the actual delays are bounded by 𝜏, the gradients {𝑔1, . . . , 𝑔𝑡−𝜏−1}
can always be used for computing 𝑥𝑡 . Therefore, introducing this extra delay will not increase the
maximum delay and has no effect on the regret bound of the following proposition.

Proposition 7. Suppose that Assumption 1 holds, the maximum delay is bounded by 𝜏, and the
norm of the observed gradients is bounded by𝐺. Assume further that (DDA) is run with the learning
rate

𝜂𝑡 =
𝑅

𝐺
√︁
(1 + 2𝜏) (card(S𝑡 ) + 𝜏 + 1)

.

10. In this case, S𝑡 refers to the timestamps of the gradients that are used for the computation of 𝑥𝑡 ; however, this does
not necessarily contain all the gradients that the active agent 𝑖(𝑡) has received by time 𝑡.
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Then, for any 𝑢 such that ℎ(𝑢) ≤ 𝑅2, the generated points 𝑥1, . . . , 𝑥𝑇 enjoy the regret bound

Reg𝑇 (𝑢) ≤ 2𝑅𝐺
√︁
(𝑇 + 𝜏) (1 + 2𝜏).

Proof. We will in fact prove a stronger variant for which it is sufficient to assume that 𝜏 is an upper

bound of the maximum unavailability. Let Λ𝑡 = 𝐺2(1 + 2𝜏) (card(S𝑡 ) + 𝜏 + 1) so that 𝜂𝑡 = 𝑅/
√︃
Λ𝑡 .

We choose a permutation 𝜎 that satisfies if Λ𝑠 < Λ𝑡 then 𝜎−1(𝑠) < 𝜎−1(𝑡) (obviously, such a
permutation always exists). From Assumption 1 and the definition of Λ𝑡 we know that 𝜎 is a faithful
permutation. Moreover, (Λ𝑡 )𝑡 is non-decreasing along 𝜎: indeed, if this were not the case – that
is, if Λ𝜎 (𝑡+1) < Λ𝜎 (𝑡) for some 𝑡 – we would have 𝑡 + 1 = 𝜎−1(𝜎(𝑡 + 1)) < 𝜎−1(𝜎(𝑡)) = 𝑡, a
contradiction.
We nowproceed to prove card(U𝜎𝑡 ) ≤ 𝜏, or equivalently card(S𝜎 (𝑡) ) ≥ 𝑡−1−𝜏. For this we show

[𝑡]𝜎 ⊆ [card(S𝜎 (𝑡) ) + 𝜏 + 1]. Since Λ𝑡 is non-decreasing along 𝜎, for 𝑠 ≤ 𝑡 we have card(S𝜎 (𝑠) ) ≤
card(S𝜎 (𝑡) ). Using the bounded unavailability assumption we get card( [𝜎(𝑠) − 1] \ S𝜎 (𝑠) ) ≤ 𝜏
so that 𝜎(𝑠) − 1 − card(S𝜎 (𝑠) ) ≤ 𝜏 and subsequently 𝜎(𝑠) ≤ card(S𝜎 (𝑡) ) + 𝜏 + 1. This proves
[𝑡]𝜎 ⊆ [card(S𝜎 (𝑡) ) + 𝜏 + 1].
From card(U𝜎𝑡 ) ≤ 𝜏 it follows immediately 𝜆𝜎𝑡 B ∥𝑔𝜎 (𝑡) ∥2∗ + 2∥𝑔𝜎 (𝑡) ∥∗

∑
𝑠∈U𝜎

𝑡
∥𝑔𝑠 ∥∗ ≤ 𝐺2(1+

2𝜏) for all 𝑡. Along with 𝑡 ≤ card(S𝜎 (𝑡) ) + 𝜏 +1 we deduce Λ𝜎𝑡 ≤ 𝐺2(1+2𝜏) (card(S𝜎 (𝑡) ) + 𝜏 +1) =
Λ𝜎 (𝑡) . Applying Theorem 2 and the AdaGrad lemma (Lemma 6), we obtain

Reg𝑇 (𝑢) ≤
ℎ(𝑢)
𝜂𝜎 (𝑇)

+ 1
2

𝑇∑︁
𝑡=1

𝜂𝜎 (𝑡)

(
∥𝑔𝜎 (𝑡) ∥2∗ + 2∥𝑔𝜎 (𝑡) ∥∗

∑︁
𝑠∈U𝜎

𝑡

∥𝑔𝑠 ∥∗

)
≤ 𝑅

√︃
Λ𝜎 (𝑇) +

𝑅

2

𝑇∑︁
𝑡=1

𝜆𝜎𝑡√︃
Λ𝜎 (𝑡)

≤ 𝑅
√︃
Λ𝜎 (𝑇) +

𝑅

2

𝑇∑︁
𝑡=1

𝜆𝜎𝑡√︁
Λ𝜎𝑡

≤ 𝑅
√︃
Λ𝜎 (𝑇) + 𝑅

√︃
Λ𝜎
𝑇
≤ 2𝑅

√︃
Λ𝜎 (𝑇) .

Our assertion then follows by noting that card(S𝜎 (𝑇) ) ≤ 𝜎(𝑇) − 1 ≤ 𝑇 − 1. ■

Proposition 7 shows that, even in the fully decentralized case where no global clock is available,
it is still possible to design implementable algorithms that retain the optimal O(

√
𝜏𝑇) regret bound.

Our next step is to further improve the algorithm so that it can adapt to both the data and the delay of
the feedback. The aforementioned characterization of delay will turn out to be crucial for this task.

4.2 Adaptation to delays in distributed systems

To design a learning rate policy that adapts to both data and delays, we have to find a way to estimate
Λ𝑡 by only using local information of each agent. To that end, define for each agent 𝑖 the individual
ordering-by-arrival as a permutation 𝜎𝑖 of {1, . . . , 𝑇} such that the 𝑘-th received feedback of 𝑖
comes from 𝑥𝜎𝑖 (𝑘) (played by 𝑖 or another player), i.e., the 𝑘-th received feedback of 𝑖 is 𝑔𝜎𝑖 (𝑘) ∈
𝜕 𝑓𝜎𝑖 (𝑘) (𝑥𝜎𝑖 (𝑘) ). With this notation, we can define the set of all feedback received before 𝑔𝑡 by agent
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𝑖; since 𝑔𝑡 is the𝜎−1
𝑖
(𝑡)-th feedback, this set can be defined asF𝑖,𝑡 B {𝜎𝑖 (1), 𝜎𝑖 (2), . . . , 𝜎𝑖 (𝜎−1

𝑖
(𝑡)−

1)}.
Using these definitions and looking closely at the definition of the lag (8), we notice that:
1. The quantity∑𝑡

𝑠=1∥𝑔𝜎 (𝑠) ∥
2
∗ cannot be known at instant𝜎(𝑡) since the set of gradients available

at that time is S𝜎 (𝑡) . It is thus natural to consider approximating it by
∑
𝑠∈S𝜎 (𝑡 ) ∥𝑔𝑠 ∥2∗.

2. For each 𝑡 the quantity∑{𝑠,𝑙 }∈D𝜎
𝑡
∥𝑔𝑠 ∥∗∥𝑔𝑙 ∥∗, gathering the pairs of feedback of [𝑡]𝜎 satisfying

the relation {𝑠 ∉ S𝑙, 𝑙 ∉ S𝑠} (Proposition 4), is generally unknown. Building on the works
of Joulani et al. (2016) and McMahan and Streeter (2014), this sum can be approximated
by ∑

𝑠∈S𝑡
(∥𝑔𝑠 ∥∗

∑
𝑙∈F𝑖 (𝑡 ) ,𝑠\S𝑠

∥𝑔𝑙 ∥∗). In words, for all 𝑠 ∈ S𝑡 , the worker 𝑖(𝑡) aggregates the
feedback received before 𝑔𝑠 but was not used to generate 𝑔𝑠.

Putting these two points together, a reasonable surrogate for Λ𝜎𝑡 would be

Γ𝑡 =
∑︁
𝑠∈S𝑡

(
∥𝑔𝑠 ∥2∗ + 2∥𝑔𝑠 ∥∗

∑︁
𝑙∈F𝑖 (𝑡 ) ,𝑠\S𝑠

∥𝑔𝑙 ∥∗

)
.

To make Γ𝑡 a valid approximation, we would need 𝑠 to satisfy 𝑠 ∉ S𝑙 whenever 𝑙 ∈ F𝑖 (𝑡) ,𝑠 \S𝑠 given
the characterization of Proposition 4. This leads to the following mild assumption: when an agent
receives a gradient 𝑔𝑡 , they must have already received all the feedback that was used to compute it.

Assumption 2. For every worker 𝑖 ∈M and all 𝑡 = 1, 2, . . . , we have S𝑡 ⊆ F𝑖,𝑡 .

The above assumption is notably verified in the following scenarios: i) a coordinator-worker
scheme in which the transmission of the gradients occurs in order, in first-come, first-serve manner;
ii) broadcasting of newly received and computed gradient over a fixed communication network;
iii) whenever two agents communicate their gradient pools are synchronized and the gradients are
exchanged in the order they become available to the agents. As a consequence, Assumption 2 is
satisfied in many relevant setups and can otherwise be enforced by imposing iii) at the price of a
slightly higher communication cost.
Now, since the active agent 𝑖(𝑡) at time 𝑡 knows S𝑡 (by definition) and F𝑖 (𝑡) ,𝑠 for 𝑠 ∈ S𝑡 (by

construction), the quantity Γ𝑡 is indeed computable with purely local information. The agents can
thus run (DDA) with a learning rate of the form 𝜂𝑡 = Θ(1/

√
Γ𝑡 ). The obtained algorithm, which we

call AdaDelay-Dist, is detailed in Algorithm 2; its principal regret guarantee is given below:

Theorem 8. Suppose that the maximum delay is bounded by 𝜏, the norm of the gradients are
bounded by 𝐺, and that Assumption 2 holds. Assume further that (DDA) is run with the learning
rate

𝜂𝑡 =
𝑅

√
Γ𝑡 + 𝛽

. (AdaDelay–Dist)

where 𝛽 > 0 is a positive constant. Then, for all 𝑢 such that ℎ(𝑢) ≤ 𝑅2, the algorithm enjoys the
regret bound

Reg𝑇 (𝑢) ≤ 2𝑅
√︁
Λ𝑇 + 2𝑅

√︁
𝛽 + 𝑅
√
𝛽
𝐺2(2𝜏 + 1)2.

The bound of Theorem 8 differs from the optimal data-dependent bound by at most a time-
independent constant, and this is achieved at the worst-case cost of transmitting an additional scalar
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Algorithm 2: AdaDelay–Dist – from the point of view of agent 𝑖

1: Initialize: G𝑖 ← ∅, Γ̃𝑖 ← 𝛽 > 0
2: while not stopped do
3: asynchronously receive 𝑔𝑡 along with

∑
𝑠∈S𝑡
∥𝑔𝑠 ∥∗ from other agents

4: Γ̃𝑖 ← Γ̃𝑖 + ∥𝑔𝑡 ∥2∗ + 2∥𝑔𝑡 ∥∗(
∑
𝑠∈G𝑖
∥𝑔𝑠 ∥∗ −

∑
𝑠∈S𝑡
∥𝑔𝑠 ∥∗)

5: G𝑖 ← G𝑖 ∪{𝑔𝑡 }
6: Relay the information if necessary

7: asynchronously receive 𝑔𝑡 as a feedback
8: Retrieve ∑𝑠∈S𝑡

∥𝑔𝑠 ∥∗ from the memory
9: Γ̃𝑖 ← Γ̃𝑖 + ∥𝑔𝑡 ∥2∗ + 2∥𝑔𝑡 ∥∗(

∑
𝑠∈G𝑖
∥𝑔𝑠 ∥∗ −

∑
𝑠∈S𝑡
∥𝑔𝑠 ∥∗)

10: G𝑖 ← G𝑖 ∪{𝑔𝑡 }
11: Send 𝑔𝑡 and

∑
𝑠∈S𝑡
∥𝑔𝑠 ∥∗ to other agents

12: if the agent becomes active, i.e., 𝑖(𝑡) = 𝑖 then
13: S𝑡 ← G𝑖
14: 𝜂𝑡 ← 𝑅/

√︃
Γ̃𝑖

15: Play 𝑥𝑡 = arg min𝑥∈X
∑
𝑠∈S𝑡
⟨𝑔𝑠, 𝑥⟩ + ℎ (𝑥)𝜂𝑡

16: end if
17: end while

(i.e., ∑𝑠∈S𝑡
∥𝑔𝑠 ∥∗) per element of feedback sent. Moreover, we should also stress that the algorithm

does not use the global time: as in the case of Proposition 7 time indices are present in Algorithm 2
only for ease of comprehension, notably to highlight the fact that a worker knows (and keeps track)
of the feedback used to produce past points (i.e.,∑𝑠∈S𝑡

∥𝑔𝑠 ∥∗ for each point 𝑥𝑡 played by the worker).
Finally, notice that although the theorem assumes the gradients and delays to be bounded, the
algorithm itself does not require any knowledge of these bounds. A bad estimate of these quantities
would only cause the method to suffer from higher regret at the first iterations.
We will now proceed to prove Theorem 8. To that end, letA𝑖,𝑡 B {{𝑠, 𝑙} : 𝑠 ∈ S𝑡 , 𝑙 ∈ F𝑖,𝑠 \S𝑠}

so that

Γ𝑡 =
∑︁
𝑠∈S𝑡

(
∥𝑔𝑠 ∥2∗ + 2∥𝑔𝑠 ∥∗

∑︁
𝑙∈F𝑖 (𝑡 ) ,𝑠\S𝑠

∥𝑔𝑙 ∥∗

)
=

∑︁
𝑠∈S𝑡

∥𝑔𝑠 ∥2∗ + 2
∑︁

{𝑠,𝑙 }∈A𝑖 (𝑡 ) ,𝑡

∥𝑔𝑠 ∥∗∥𝑔𝑙 ∥∗ (11)

To simplify the notation, we will write A𝑡 = A𝑖 (𝑡) ,𝑡 . In the following proposition, we show that A𝑡
can be characterized in the same way as D𝜎

𝑡 .

Proposition 9. Let 𝜎 be a faithful permutation and let Assumption 2 hold. Then

A𝑡 = {{𝑠, 𝑙} ⊆ S𝑡 : 𝑠 and 𝑙 are not adjacent in G}

Proof. The proof is similar to that of Proposition 4, and we defer it to Appendix B. ■

Thanks to Proposition 4 and Proposition 9, comparing D𝜎
𝑡 with A𝜎 (𝑡) amounts to comparing

[𝑡]𝜎 with S𝜎 (𝑡) . Using the bounded delay assumption, we can prove the following properties on a
faithful permutation.
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Proposition 10. Let 𝜎 be a faithful permutation and assume that the maximum delay is bounded by
𝜏. We have (a) [𝑡]𝜎 ⊆ [𝜎(𝑡) +𝜏]; (b) [𝑡]𝜎 \S𝜎 (𝑡) ⊆ {𝜎(𝑡) −𝜏, . . . , 𝜎(𝑡) +𝜏}; and (c) |𝜎(𝑡) − 𝑡 | ≤ 𝜏.
Main idea of the proof. Proving (a) and (b) simply uses the definition of faithful permutations and
themaximum delay, while to prove (c) we also leverage the fact that𝜎 is a permutation. To streamline
our discussion, the complete proof is again deferred to Appendix B. ■

Interestingly, Proposition 10(a) shows that when the delays are bounded by 𝜏, a faithful permu-
tation can at most move an element 𝜏 steps away from its original position. We are now ready to
provide the complete proof of Theorem 8.

Proof of Theorem 8. Let Λ𝑡 = Γ𝑡 + 𝛽 so that 𝜂𝑡 = 𝑅/
√︃
Λ𝑡 and 𝜎 be a permutation such that i) if

Λ𝑠 < Λ𝑡 then 𝜎−1(𝑠) < 𝜎−1(𝑡); ii) if Λ𝑠 = Λ𝑡 and 𝑠 ∈ S𝑡 then 𝜎−1(𝑠) < 𝜎−1(𝑡). (Λ𝑡 )𝑡 is obviously
non-decreasing along 𝜎 (see proof of Proposition 7). We claim that this is a faithful permutation.
For this, let 𝑠 ∈ S𝑡 and we would like to show 𝜎−1(𝑠) < 𝜎−1(𝑡). By Assumption 2 we have
S𝑠 ⊆ F𝑖 (𝑡) ,𝑠 and from 𝑠 ∈ S𝑡 it holds F𝑖 (𝑡) ,𝑠 ⊆ S𝑡 ; accordingly, S𝑠 ⊆ S𝑡 . Invoking Proposition 9
we deduce A𝑠 ⊆ A𝑡 . Using (11) we then get Λ𝑠 ≤ Λ𝑡 . This inequality along with 𝑠 ∈ S𝑡 imply
𝜎−1(𝑠) < 𝜎−1(𝑡).
In the remainder of the proof, we will use the notation Γ𝑡 = Λ𝑇 = Λ𝜎

𝑇
for 𝑡 > 𝑇 . Let us prove

that Γ𝜎 (𝑡)+2𝜏+1 ≥ Λ𝜎𝑡 for 𝑡 ∈ [𝑇]. This is the case when 𝜎(𝑡) +2𝜏+1 > 𝑇 by the previous definition.
Otherwise, with (8), (11), Propositions 4 and 9, this is equivalent to proving that [𝑡]𝜎 ⊆ S𝜎 (𝑡)+2𝜏+1.
The inclusion holds since on one hand, by Proposition 10 we have [𝑡]𝜎 ⊆ [𝜎(𝑡) + 𝜏] and on
the other hand [𝜎(𝑡) + 𝜏] ⊆ S𝜎 (𝑡)+2𝜏+1 by the definition of maximum delay. This also shows
S𝜎 (𝑡) ⊆ S𝜎 (𝑡)+2𝜏+1, and accordingly, Λ𝜎 (𝑡)+2𝜏+1 ≥ Λ𝜎 (𝑡) . The inequality is still true when
𝜎(𝑡) + 2𝜏 + 1 > 𝑇 as Γ𝑡 ≤ Λ𝑇 always holds by Propositions 4 and 9 and S𝑡 ⊆ [𝑇]. Applying
Theorem 2 gives

Reg𝑇 (𝑢) ≤
ℎ(𝑢)
𝜂𝜎 (𝑇)

+ 1
2

𝑇∑︁
𝑡=1

𝜂𝜎 (𝑡)

(
∥𝑔𝜎 (𝑡) ∥2∗ + 2∥𝑔𝜎 (𝑡) ∥∗

∑︁
𝑠∈U𝜎

𝑡

∥𝑔𝑠 ∥∗

)
≤ 𝑅

√︃
Λ𝜎 (𝑇) +

𝑅

2

𝑇∑︁
𝑡=1

𝜆𝜎𝑡√︃
Λ𝜎 (𝑡)

= 𝑅

√︃
Λ𝜎 (𝑇) +

𝑅

2

𝑇∑︁
𝑡=1

©­­«
1√︃

Λ𝜎 (𝑡)+2𝜏+1

+ 1√︃
Λ𝜎 (𝑡)

− 1√︃
Λ𝜎 (𝑡)+2𝜏+1

ª®®¬𝜆𝜎𝑡 ,
where we write 𝜆𝜎𝑡 = ∥𝑔𝜎 (𝑡) ∥2∗ + 2∥𝑔𝜎 (𝑡) ∥∗

∑
𝑠∈U𝜎

𝑡
∥𝑔𝑠 ∥∗. From Proposition 10 we know that [𝑡]𝜎 \

S𝜎 (𝑡) ⊆ {𝜎(𝑡) − 𝜏, . . . , 𝜎(𝑡) + 𝜏}. Since [𝑡 − 1]𝜎 = [𝑡]𝜎 \ {𝜎(𝑡)} and 𝜎(𝑡) ∉ S𝜎 (𝑡) , we deduce that

card(U𝜎𝑡 ) ≤ 2𝜏 and hence 𝜆𝜎𝑡 ≤ 𝐺2(1+4𝜏). With the non-negativity of 1/
√︃
Λ𝜎 (𝑡) −1/

√︃
Λ𝜎 (𝑡)+2𝜏+1

and the fact that Λ𝜎𝑡 ≤ Γ𝜎 (𝑡)+2𝜏+1 < Λ𝜎 (𝑡)+2𝜏+1 we then get

Reg𝑇 (𝑢) ≤ 𝑅
√︃
Λ𝜎 (𝑇) +

𝑅

2

𝑇∑︁
𝑡=1

𝜆𝜎𝑡√︁
Λ𝜎𝑡

+ 𝑅
2

𝑇∑︁
𝑡=1

©­­«
1√︃

Λ𝜎 (𝑡)

− 1√︃
Λ𝜎 (𝑡)+2𝜏+1

ª®®¬𝐺2(1 + 4𝜏)
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≤ 𝑅
√︃
Λ𝜎 (𝑇) + 𝑅

√︃
Λ𝜎
𝑇
+ 𝑅

2

𝑇∑︁
𝑡=1

©­­«
1√︃
Λ𝑡

− 1√︃
Λ𝑡+2𝜏+1

ª®®¬𝐺2(1 + 4𝜏)

≤ 2𝑅
√︁
Λ𝑇 + 𝛽 +

𝑅

2
√
𝛽
(2𝜏 + 1) (4𝜏 + 1)𝐺2

≤ 2𝑅
√︁
Λ𝑇 + 2𝑅

√︁
𝛽 + 𝑅
√
𝛽
(2𝜏 + 1)2𝐺2

The second inequality uses Lemma 6 and reorders the timestamps of the sum; the third inequality
upper bounds both Λ𝜎 (𝑇) and Λ𝜎𝑇 = Λ𝑇 by Λ𝑇 + 𝛽 and lower bounds Λ𝑡 by 𝛽; in the last inequality
we employ the fact that

√
𝑎 + 𝑏 ≤

√
𝑎 +
√
𝑏 for all 𝑎, 𝑏 ≥ 0. This concludes the proof. ■

4.3 Adaptation to unbounded delays in the single-agent setting

In this part, we will show that when there is only one agent (i.e., 𝑀 = 1), we can extend the ideas
developed in the previous section to cope even with unbounded delays. In fact, in this situation the
agent knows exactly the delay of each feedback and how each iterate is computed, so they can tune
their learning rate accordingly. This is in sharp contrast with the decentralized case in which the
agents are in general unable to estimate the number of actions that have been played in the network
but for which they have not received the corresponding feedback (i.e., card(U𝑡 )).
To put all this in motion, let𝐺 be an upper bound on the norms of gradients that we assume to be

known by the agent, and let F𝑡 = F1,𝑡 denotes the set of feedback (represented by their timestamps)
received before 𝑔𝑡 . Our goal is to provide an upper bound of Λ𝑡 = Λid

𝑡 that is as tight as possible.
As in Section 4.2, this is done in two steps (we write below D𝑡 = Did

𝑡 for simplicity)

1. The quantity ∑𝑡
𝑠=1∥𝑔𝑠 ∥

2
∗ can be approximated by

∑
𝑠∈S𝑡
∥𝑔𝑠 ∥2∗. Clearly,

𝑡∑︁
𝑠=1
∥𝑔𝑠 ∥2∗ ≤

∑︁
𝑠∈S𝑡

∥𝑔𝑠 ∥2∗ + 𝐺2(card(U𝑡 ) + 1);

2. A proxy for ∑{𝑠,𝑙 }∈D𝑡
∥𝑔𝑠 ∥∗∥𝑔𝑙 ∥∗, is

∑
𝑠∈S𝑡
(∥𝑔𝑠 ∥∗

∑
𝑙∈F𝑠\S𝑠

∥𝑔𝑙 ∥∗). Thanks to Proposition 4
and Proposition 9, we have indeed∑︁

{𝑠,𝑙 }∈D𝑡

∥𝑔𝑠 ∥∗∥𝑔𝑙 ∥∗ ≤
∑︁
𝑠∈S𝑡

(
∥𝑔𝑠 ∥∗

∑︁
𝑙∈F𝑠\S𝑠

∥𝑔𝑙 ∥∗
)
+ 2𝐺2(card(D𝑡 ) − card(A𝑡 )).

In summary, we have shown that Λ𝑡 ≤ Γ𝑡 + 𝐺2𝜏𝑡 where 𝜏𝑡 B 𝑡 + 2𝐷𝑡 − card(S𝑡 ) − 2 card(A𝑡 ).
This has the following immediate consequences:

Proposition 11. Assume that the norms of the gradients are bounded by 𝐺 and the sequence of
active feedback is non-decreasing, i.e., S𝑡 ⊆ S𝑡+1. Assume further that delayed dual averaging
(DDA) is run with the learning rate sequence

𝜂𝑡 = min

(
𝜂𝑡−1,

𝑅√︁
Γ𝑡 + 𝐺2𝜏𝑡

)
(AdaDelay+)
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Algorithm 3: AdaDelay+
1: Initialize: G ← ∅, 𝑡 ← 1, 𝜏 ← 0, Γ← 0.
2: while not stopped do
3: if receive feedback 𝑔𝑡 then
4: 𝜏 ← 𝜏 − 1 − 2(card(G) − card(S𝑡 ))
5: Γ← Γ + ∥𝑔𝑡 ∥2∗ + 2∥𝑔𝑡 ∥∗(

∑
𝑠∈G ∥𝑔𝑠 ∥∗ −

∑
𝑠∈S𝑡
∥𝑔𝑠 ∥∗)

6: G ← G ∪{𝑔𝑡 }
7: else if requested to play an action 𝑥𝑡 then
8: S𝑡 ← G
9: 𝜏 ← 𝜏 + 1 + 2((𝑡 − 1) − card(S𝑡 ))
10: Γ̃← max(Γ̃, Γ + 𝐺2𝜏)
11: 𝑥𝑡 ← arg min𝑥∈X

∑
𝑠∈S𝑡
⟨𝑔𝑠, 𝑥⟩ + (

√︁
Γ̃/𝑅)ℎ(𝑥)

12: 𝑡 ← 𝑡 + 1
13: end if
14: end while

where 𝜏𝑡 = 𝑡 + 2𝐷𝑡 − card(S𝑡 ) − 2 card(A𝑡 ). Then, for any 𝑢 such that ℎ(𝑢) ≤ 𝑅2, the generated
points 𝑥1, . . . , 𝑥𝑇 enjoy the regret bound

Reg𝑇 (𝑢) ≤ 2𝑅 max
1≤𝑡≤𝑇

√︁
Γ𝑡 + 𝐺2𝜏𝑡 ≤ 2𝑅min

(
max

1≤𝑡≤𝑇

√︁
Λ𝑡 + 𝐺2𝜏𝑡 , 𝐺

√︁
𝑇 + 2𝐷𝑇

)
.

Proof. The proof is detailed in Appendix B. We apply Theorem 2 with the choice 𝜎 = id and
conclude by using the inequality Λ𝑡 ≤ Γ𝑡 + 𝐺2𝜏𝑡 and the AdaGrad lemma (Lemma 6). ■

We refer to this new adaptive scheme as AdaDelay+ and we provide one possible pseudocode
implementation as Algorithm 3. Notice that we do not use directly 𝜂𝑡 = 𝑅/

√︁
Γ𝑡 + 𝐺2𝜏𝑡 since wewant

the learning rate to be non-increasing. To the best of our knowledge, AdaDelay+ is the first online
algorithm with regret guarantees that are both data- and delay-dependent, all the while bypassing
the bounded delay assumption. In particular, its regret bound achieves the best of both worlds:
1. When the delays are bounded by 𝜏, we have 𝜏 ≤ 2𝜏2 + 3𝜏 + 1 (proved in Appendix B), so
this worst-case bound still outperforms (by an additive constant) the data-dependent bound of
Theorem 8. In the same setting, Joulani et al. (2016) also proposed an adaptive algorithm
based on FTRL-Prox with a regret bound of the same order.

2. It also achieves the optimal square-root dependence on the cumulative unavailability 𝐷𝑇 no
matter whether the delays are bounded or not.

5. An Optimistic Variant

In previous sections, we have established regret guarantees with respect to the worst case scenario.
In particular, the losses that we encounter can be arbitrary, and even adversarial. Nonetheless, the
environment can have a much more benign nature: there may be patterns of loss functions which can
be exploited to achieve a smaller regret (e.g., losses generated by a game mechanism, slowly-varying
function sequence). In this spirit, optimistic algorithms exploit the predictability of the loss sequence
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to obtain an improved regret bound of the algorithm. In the unconstrained Euclidean setup (X = ℝ𝑑 ,
ℎ = 1/2∥ · ∥2) that we will focus on in the following, the algorithm writes

𝑥𝑡 = 𝑥𝑡−1 − 𝜂 𝑔𝑡− 1
2
,

𝑥𝑡+ 1
2
= 𝑥𝑡 − 𝜂 𝑔̃𝑡+ 1

2
.

(OptGD)

The first update 𝑥𝑡 = 𝑥𝑡−1 − 𝜂𝑔𝑡− 1
2
is a classical online gradient step. However, for optimistic

methods, the point 𝑥𝑡 is not played at time 𝑡; instead, the agent plays 𝑥𝑡+ 1
2
= 𝑥𝑡 − 𝜂 𝑔̃𝑡+ 1

2
after

sensing the gradient of 𝑓𝑡 by designing a gradient guess 𝑔̃𝑡+ 1
2
= 𝑔̃𝑡+ 1

2
(𝑥1, 𝑔 3

2
, . . . , 𝑔𝑡− 1

2
). This is the

optimistic step. Following this action, the player suffers a loss 𝑓𝑡 (𝑥𝑡+ 1
2
) and receives the feedback

𝑔𝑡+ 1
2
∈ 𝜕 𝑓𝑡 (𝑥𝑡+ 1

2
).

The regret of (OptGD) was shown (Chiang et al., 2012; Joulani et al., 2017; Mohri and Yang,
2016; Rakhlin and Sridharan, 2013) to be bounded by

Reg𝑇 (𝑢) ≤
∥𝑢 − 𝑥1∥2

2𝜂
+

𝑇∑︁
𝑡=1

𝜂

2
∥𝑔𝑡+ 1

2
− 𝑔̃𝑡+ 1

2
∥2. (12)

By optimally choosing 𝜂, we attain a regret in O
(√︃∑𝑇

𝑡=1∥𝑔𝑡+ 1
2
− 𝑔̃𝑡+ 1

2
∥2

)
.

This bound gets smaller as 𝑔̃𝑡+ 1
2
gets closer to 𝑔𝑡+ 1

2
(i.e., when the optimistic guess is good),

while we recover the regret of vanilla online gradient descent for 𝑔̃𝑡+ 1
2
= 0 (no optimistic guess). A

possible choice in practice is to use the last received feedback as a guess, i.e., 𝑔̃𝑡+ 1
2
= 𝑔𝑡− 1

2
, in which

case, favorable guarantees can be derived when the function sequence has a small total variation and
when these functions are smooth (see e.g., Chiang et al., 2012; Joulani et al., 2017).
In this section, we present how Delayed Dual Averaging can be extended to incorporate an

optimistic step in the unconstrained Euclidean setup. Importantly, we show that the dual averaging
step has to be done with a smaller learning rate than the optimistic step.

5.1 Delayed Optimistic Dual averaging

While optimistic gradient descent (OptGD) successfully leverages the predictability of the loss
sequence for achieving a smaller regret, the effect of delay on this algorithm remains, as far as we
are aware, unknown.
By extending (DDA) to incorporate an optimistic step, delayed optimistic dual averaging can

then be stated as follows:11

𝑥𝑡 = arg min
𝑥∈ℝ𝑑

∑︁
𝑠∈S𝑡

⟨𝑔𝑠+ 1
2
, 𝑥⟩ + ∥𝑥 − 𝑥1∥2

2𝜂𝑡
= 𝑥1 − 𝜂𝑡

∑︁
𝑠∈S𝑡

𝑔𝑠+ 1
2
,

𝑥𝑡+ 1
2
= arg min

𝑥∈ℝ𝑑

⟨𝑔̃𝑡+ 1
2
, 𝑥⟩ + ∥𝑥 − 𝑥𝑡 ∥

2

2𝛾𝑡
= 𝑥𝑡 − 𝛾𝑡 𝑔̃𝑡+ 1

2
.

(DOptDA)

Following our delay framework, 𝑥𝑡 is computed using gradients from time moments S𝑡 . Similarly,
𝑔̃𝑡+ 1

2
must be derived solely based on information available to the active agent 𝑖(𝑡) at time 𝑡.

11. The same algorithm (in a more general form) is called optimistic FTRL in Joulani et al. (2017). We choose to employ
the term optimistic dual averaging to maintain consistency with preceding sections.

20



Multi-Agent Online Optimization with Delays

One key feature of our algorithm is we allow the optimistic step (i.e., the step that leads to 𝑥𝑡+ 1
2
)

of (DOptDA) to use a larger learning rate than the actual update step (i.e., the step that obtains 𝑥𝑡+1),
i.e., 𝛾𝑡 ≥ 𝜂𝑡 . This additional flexibility allows us to compensate the missing information that have
not arrived due to delays and provides the following regret bound proved in Appendix C.1.

Theorem 12. Assume that the maximum delay is bounded by 𝜏. Let delayed optimistic dual
averaging (DOptDA) be run with learning rate sequences (𝜂𝑡 )𝑡 ∈[𝑇 ] , (𝛾𝑡 )𝑡 ∈[𝑇 ] satisfying 𝜂𝑡+1 ≤ 𝜂𝑡
and (2𝜏 + 1)𝜂𝑡 ≤ 𝛾𝑡 for all 𝑡. Then the regret of the algorithm (evaluated at the points 𝑥 3

2
, . . . , 𝑥𝑇+ 1

2
)

satisfies

Reg𝑇 (𝑢) ≤
∥𝑢 − 𝑥1∥2

2𝜂𝑇
+

𝑇∑︁
𝑡=1

𝛾𝑡

2

(
∥𝑔𝑡+ 1

2
− 𝑔̃𝑡+ 1

2
∥2 − ∥𝑔̃𝑡+ 1

2
∥2

)
.

In Theorem 12, we successfully show that (DOptDA) retains the desired property of un-
delayed optimistic gradient descent: the regret of the algorithm is solely determined by the
distance between 𝑔𝑡+ 1

2
and 𝑔̃𝑡+ 1

2
(see Eq. (12)). Precisely, the theorem guarantees a regret in

O
(√︃
𝜏
∑𝑇
𝑡=1∥𝑔𝑡+ 1

2
− 𝑔̃𝑡+ 1

2
∥2

)
for fix learning rate sequences 𝜂𝑡 ≡ 𝜂, 𝛾𝑡 ≡ (2𝜏+1)𝜂 that are optimally

chosen. Similar to the case of delayed mirror descent and delayed dual averaging, an additional
factor of

√
𝜏 appears in the regret bound, and their regret is recovered tightly by setting 𝑔̃𝑡+ 1

2
= 0.

Remark 2. The bounded delay assumption can in fact be relaxed in Theorem 12. Nonetheless, we
choose to adopt this assumption for ease of understanding. Otherwise, denoting 𝑑𝑡 = card(U𝑡 ) +
card({𝑠 ∈ [𝑇] : 𝑡 ∈ U𝑠}) + 1 and employing a constant update learning rate 𝜂𝑡 ≡ 𝜂 and 𝛾𝑡 = 𝑑𝑡𝜂, we
achieve a regret in O

(√︃∑𝑇
𝑡=1 𝑑𝑡 ∥𝑔𝑡+ 1

2
− 𝑔̃𝑡+ 1

2
∥2

)
. Note that ∑𝑇

𝑡=1 𝑑𝑡 = 2𝐷 + 𝑇 and when 𝑔̃𝑡+ 1
2
= 0

the bound can be inferred from Theorem 2 with the choice 𝜎 = id.

5.2 The necessity of scale separation for robustness to delay

In the following, we discuss the necessity of having a relatively aggressive optimistic step compared
to the update (𝛾𝑡 ≥ 𝜂𝑡 ) in order to be robust to delay.12 Note that taking a more aggressive
extrapolation update compared to the actual state update was shown to clearly improve the robustness
of the extragradient method with respect to both rates and convergence itself in Hsieh et al. (2020).
For this, we consider linear losses 𝑓𝑡 = ⟨𝑔𝑡 , ·⟩ and uniform delay 𝜏 (i.e., every feedback becomes

available after a delay of 𝜏 time steps).13 We define the 𝜏-variation of the loss sequence by
𝐶𝜏
𝑇
=

∑𝑇
𝑡=1∥𝑔𝑡 − 𝑔𝑡−𝜏 ∥

2 where we set 𝑔𝑡 = 0 for 𝑡 ≤ 0. For ease of notation we further denote
𝐶𝜏

+
𝑇

= 𝐶𝜏+1
𝑇
. The following corollary is immediate from Theorem 12.

Corollary 13. In the context of linear losses 𝑓𝑡 = ⟨𝑔𝑡 , ·⟩ and uniform delay 𝜏 (S𝑡 = [𝑡 − 𝜏− 1] for all
𝑡), running delayed optimistic dual averaging (DOptDA) with 𝑔̃𝑡+ 1

2
= 𝑔𝑡−𝜏−1 and constant learning

rates 𝜂 = 𝑅/
√︃
(2𝜏 + 1)𝐶𝜏+

𝑇
and 𝛾 = (2𝜏 + 1)𝜂 where 𝑅 ≥ ∥𝑢 − 𝑥1∥ guarantees the regret bound

Reg𝑇 (𝑢) ≤ 𝑅
√︃
(2𝜏 + 1)𝐶𝜏+

𝑇
.

12. The optimistic step is also called extrapolation step to mirror the vocabulary of the extragradient method Korpelevich
(1976).

13. For linear losses, the gradient does not depend on the calling point and thus 𝑔
𝑡+ 1

2
= ∇ 𝑓𝑡 (𝑥𝑡+ 1

2
) = 𝑔𝑡 .
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This results indicates that with an optimistic learning rate 𝛾 taken (2𝜏 + 1) times bigger than
the update learning rate 𝜂, one can guarantee a regret bound of the order of the square root of
the (𝜏 + 1)-variation. In contrast, we now demonstrate the impossibility to obtain a regret that is
sub-linear in 𝐶𝜏+

𝑇
when 𝛾 = 𝜂 (or even when 𝛾 ≤ 𝜏𝜂).

Theorem 14. Consider the setup of Corollary 13. Let 𝜂 = 𝜂(𝑅,𝑇, 𝜏, 𝐶𝜏+
𝑇
) be uniquely determined

by 𝑅 ≥ ∥𝑢 − 𝑥1∥, the time horizon 𝑇 , the uniform delay 𝜏, and the (𝜏 + 1)-variation 𝐶𝜏+
𝑇
. If we run

delayed optimistic dual averaging (DOptDA) with 𝑔̃𝑡+ 1
2
= 𝑔𝑡−𝜏− 1

2
and 𝛾 ≤ 𝜏𝜂, it is impossible to

guarantee a regret in 𝑜(max(𝐶𝜏+
𝑇
,
√
𝑇)).

Proof. The proof is reported in Appendix C.2; its construction is partially inspired by Chiang et al.
(2012), and as a special case, in the undelayed setting, we recover the result that the optimistic step
is necessary to guarantee a regret in O

(√︃∑𝑇
𝑡=1∥𝑔𝑡 − 𝑔𝑡−1∥2

)
.

Nonetheless, in the original proof of Chiang et al. (2012), the learning rate was first fixed and then
a loss sequence was constructed to yield large regret, which could possibly also prevent optimistic
algorithms to achieve low regret. Our approach fixes this fallacy by informing the algorithm of the
variation in advance so that optimistic algorithms provably obtain low regrets on these sequences
(cf. Corollary 13). ■

Finally, we also show that among all the online algorithms with the same prior information, the
bound achieved in Corollary 13 is tight in its dependence on 𝜏 and 𝐶𝜏+

𝑇
.

Proposition 15. For any online learning algorithm with prior knowledge of 𝑇 , 𝜏 and 𝐶𝜏 ≥ 𝐶𝜏+
𝑇
,

there exists a sequence of linear losses such that if the feedback is subject to constant delay 𝜏, then
the regret of the algorithm on this sequence with respect to a vector 𝑢 with ∥𝑢−𝑥1∥ ≤ 1 isΩ(

√︁
𝜏𝐶𝜏).

Proof. The proof is reported in Appendix C.3. It combines the standard Ω(
√
𝑇) lower bound of

undelayed online learning with idea from Langford et al. (2009). ■

Thus, in this section we showed that using (DOptDA) with a double learning rate strategy
enables to achieve a O(

√︃
𝜏𝐶𝜏

+
𝑇
) regret which is tight among online learning methods and out of

reach of single learning rate (DOptDA).

5.3 Delayed online learning with slow variation

Now that we laid out our main results concerning the optimistic variant of delayed dual averaging,
we investigate the choice of 𝑔̃𝑡+ 1

2
for slowly varying loss functions ( 𝑓𝑡 )𝑡 ∈[𝑇 ] .

For this, we consider the case where the full gradient ∇ 𝑓𝑡 is obtained as a feedback (and not
only 𝑔𝑡 = ∇ 𝑓𝑡 (𝑥𝑡 )). Using this kind of feedback, we can compute the gradient of the last received
function at the current point immediately14 and use it as a guess for the current function’s gradient.
Formally, we make the following assumption.

Assumption 3. The feedback associated to time step 𝑡 is the whole vector field 𝑉𝑡 = ∇ 𝑓𝑡 , the
evaluation of which at any point 𝑥 ∈ ℝ𝑑 is immediate and does not induce any delay.

14. i.e., without any delay, the delays considered here are either due to communication between agents or inherent to the
feedback mechanism.
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The first part of the assumption is sometimes referred as the “full-information” online learning
model, and is typically satisfied when the learning system is used for prediction (e.g., classification,
regression). In fact, in such problems, the actions of the agents represent the model parameters,
for which the whole loss and its gradient can be computed once the corresponding data is observed
(Shalev-Shwartz, 2011).
With this assumption, we can set 𝑔̃𝑡+ 1

2
= 𝑉𝑡 (𝑥𝑡 ) where 𝑉𝑡 is some past vector field (i.e., 𝑉𝑡 = 𝑉𝑠

for some 𝑠 ∈ S𝑡 ). Now, for smooth losses, the following regret bound can be derived.

Theorem 16. Let the maximum delay be bounded by 𝜏 and that Assumption 3 holds. Assume
in addition that the vector fields 𝑉𝑡 are 𝐿-Lipschitz continuous. Take 𝑔̃𝑡+ 1

2
= 𝑉𝑡 (𝑥𝑡 ), 𝜂𝑡+1 ≤ 𝜂𝑡 ,

(2𝜏 + 1)𝜂𝑡 ≤ 𝛾𝑡 , and 2𝛾2
𝑡 𝐿

2 ≤ 1. Then, the regret of delayed optimistic dual averaging (DOptDA)
(evaluated at the points 𝑥 3

2
, . . . , 𝑥𝑇+ 1

2
) satisfies

Reg𝑇 (𝑢) ≤
∥𝑢 − 𝑥1∥2

2𝜂𝑇
+

𝑇∑︁
𝑡=1

𝛾𝑡 ∥𝑉𝑡 (𝑥𝑡 ) −𝑉𝑡 (𝑥𝑡 )∥2.

Proof. The proof is immediate from Theorem 12 and is deferred to Appendix C.4. ■

Theorem 16 reduces the problem of choosing an adequate vector 𝑔̃𝑡+ 1
2
to that of choosing an

operator 𝑉𝑡 which approximates well 𝑉𝑡 . In our setup of full gradient feedback with a loss sequence
evolving slowly over time, one natural option is reuse some recent function for the constitution of
𝑉𝑡 . Since we are in a distributed setting, the evolution of the loss functions may have both global
and local components. We discuss these two typical cases below.

Example 1 (Global variation). If the loss functions vary slowly following a global trend, we can
timestamp every gradient field which makes it possible to choose 𝑉𝑡 = 𝑉𝑡 where 𝑡 = maxS𝑡 , i.e.,
the active agent 𝑖(𝑡) uses the most recent data available at hand (independent of its source) when
playing 𝑥𝑡 . This would however require the agents to share the whole vector field 𝑉𝑡 .

Example 2 (Local variation). If the loss functions vary slowly for all the agents, the active agent 𝑖(𝑡)
can choose the last feedback corresponding to a point it played, i.e., 𝑉𝑡 = 𝑉𝑡 where 𝑡 = max{𝑠 ∈ S𝑡 :
𝑖(𝑠) = 𝑖(𝑡)}. Compared to Example 1, we gain in terms of both data privacy and communication
efficiency since only the gradients 𝑔𝑡+ 1

2
need to be shared among the agents in this scenario.

Denoting the total deviation of our approximation by 𝐶𝑇 =
∑𝑇
𝑡=1∥𝑉𝑡 (𝑥𝑡 ) −𝑉𝑡 (𝑥𝑡 )∥

2, Theorem 16
guarantees a regret inO(𝑅2𝜏𝐿+𝑅

√
𝜏𝐶𝑇 ) for suitably chosen constant learning rate sequences 𝜂𝑡 ≡ 𝜂

and 𝛾𝑡 ≡ 𝛾. In both Examples 1 and 2, 𝐶𝑇 characterizes some variation of the loss sequence over
time. However, the optimal choice of the 𝜂 and 𝛾 allowing us to obtain the aforementioned regret
guarantee depends on 𝐶𝑇 , which cannot be known in advance. To circumvent this issue, we can
again design an adaptive learning rate schedule in the spirit of AdaGrad by assuming knowledge on
an universal bound for the difference ∥𝑉𝑡 (𝑥𝑡 ) − 𝑉𝑡 (𝑥𝑡 )∥2. For the following result, we simply resort
to the standard assumption of bounded gradients.

Proposition 17. Let the maximum delay be bounded by 𝜏 and let Assumptions 2 and 3 hold. Further
suppose that 𝑉𝑡 are 𝐿-Lipschitz continuous and both 𝑉𝑡 , 𝑉𝑡 have their norm bounded by 𝐺. Then for
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any 𝑢 such that ∥𝑢−𝑥1∥ ≤ 𝑅, running delayed optimistic dual averaging (DOptDA) with 𝑔̃𝑡 = 𝑉𝑡 (𝑥𝑡 ),

𝛾𝑡 = min
©­­­­«

𝑅
√

4𝜏 + 1

2
√︂(∑

𝑠∈S𝑡
∥𝑉𝑠 (𝑥𝑠) −𝑉𝑠 (𝑥𝑠)∥2 + 4𝐺2(𝜏 + 1)

) , 1
√

2𝐿

ª®®®®¬
,

and

𝜂𝑡 = min
©­­­­«

𝑅

2
√︂
(4𝜏 + 1)

(∑
𝑠∈S𝑡
∥𝑉𝑠 (𝑥𝑠) −𝑉𝑠 (𝑥𝑠)∥2 + 4𝐺2(3𝜏 + 1)

) , 1
√

2𝐿 (4𝜏 + 1)

ª®®®®¬
guarantees

Reg𝑇 (𝑢) ≤ max
(√

2𝑅2𝐿 (4𝜏 + 1), 2𝑅
√︁
(4𝜏 + 1) (𝐶𝑇 + 4𝐺2(3𝜏 + 1))

)
.

Proof. The proof is deferred to Appendix C.5. Notice that the adaptive learning rates are not
necessarily non-increasing and therefore Theorem 16 can not be directly applied. To address this
challenge, we rely on the use of faithful permutations and adapt both Theorem 12 and Theorem 16
to accommodate more flexible learning rate schedules. ■

Compared to the optimal regret that can be achieved with prior knowledge of 𝐶𝑇 , the bound is
only degraded by a constant factor. To implement this learning rate schedule, the computation of
𝛾𝑡 and 𝜂𝑡 needs to be made possible. This would require the agents to relay ∥𝑉𝑡 (𝑥𝑡 ) − 𝑉𝑡 (𝑥𝑡 )∥ in
addition to 𝑔𝑡+ 1

2
= 𝑉𝑡 (𝑥𝑡+ 1

2
) after receiving 𝑉𝑡 .

Remark 3. At the price of aworse dependence on the constants, we can use the difference ∥𝑉𝑡 (𝑥𝑡+ 1
2
)−

𝑉𝑡 (𝑥𝑡 )∥ instead of ∥𝑉𝑡 (𝑥𝑡 ) −𝑉𝑡 (𝑥𝑡 )∥ in the computation of the learning rates, which prevents us from
an extra evaluation of the operator; see e.g., Joulani et al., 2017, Corollary 9.

6. Discussion

In this section, we discuss several links of our work to other, existing results whose detailed
presentation would have otherwise interrupted the flow of our paper.

6.1 Related work

Our work lies at the interface between multiple active research areas, each tackling a specific aspect
of the general framework considered in this paper. We provide below a more focused view into each
of these topics, namely: i) online learning with delays; ii) multi-agent online learning; iii) distributed
online optimization; and iv) asynchronous optimization.

Online learning with delays. The research on the delayed feedback problem in online learningwas
pioneered byWeinberger andOrdentlich (2002), in which it was shown that running 𝜏+1 independent
learners guaranteed the minimax regret O(

√
𝜏𝑇) when the feedback is uniformly delayed by 𝜏 time

steps. The same strategy was further analyzed by Joulani et al. (2013) for more complex delay
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mechanisms. However, maintaining a pool of learners can be prohibitively resource intensive.
Therefore, another line of research focuses on investigating the effect of delays on gradient-based
methods.
In Langford et al. (2009), the same O(

√
𝜏𝑇) bound on the regret was first derived for a slowed-

down version of online gradient descent (i.e., running the algorithm with smaller learning rates)
under the constant delay assumption. Comprehensive studies were later provided by McMahan and
Streeter (2014), Quanrud and Khashabi (2015) and Joulani et al. (2016). In more detail, denoting by
𝐷 the aggregated feedback delay after 𝑇 rounds, Quanrud and Khashabi (2015) established a regret
bound in O(

√
𝐷) for online gradient descent and dual averaging, and suggested using the classical

doubling trick to dynamically adjust the learning rate.15 Assuming bounded delays, both McMahan
and Streeter (2014) and Joulani et al. (2016) devised delay-adaptive methods in order to obtain
data-dependent bounds. The former centered on online gradient descent in the unconstrained case
while the latter was based on online mirror descent and FTRL-prox. Under the same setting, Joulani
et al. (2019) also presented an adaptive method with a data-dependent bound which however has a
worst-case dependence on the delay. Very recently, Cao et al. (2020) extended the delayed feedback
analysis to an online saddle-point algorithm which handled the constraints through Lagrangian
relaxation.
Our work differs from the above in that we consider a multi-agent setup in which feedback does

not arrive to the agents at the same time. To the best of our knowledge, this situation has never
been considered before and gives rise to extra challenges that call for novel techniques. In fact, even
though both McMahan and Streeter (2014) and Joulani et al. (2019) also dealt with asynchronous
online optimization, they focused on the coordinator-worker setting. It is thus possible there for the
agents/workers to exploit a quantity stocked on the server (e.g., an inexact global clock in Joulani
et al. (2019)). This is generally impossible in our setup.
The impact of delays has equally been studied in the literature on multi-armed bandits, both

stochastic (Pike-Burke et al., 2018; Vernade et al., 2017) and adversarial (Cesa-Bianchi et al., 2018;
Li et al., 2019; Cesa-Bianchi et al., 2019). The setting of these papers is quite different from the
online optimization problems we consider in our paper, so there is no overlap in results or techniques.

Multi-agent online learning. Multi-agent online learning encompasses a broad spectrum of prob-
lems, including distributed online optimization (discussed next), multi-agent bandits (Bar-On and
Mansour, 2019; Cesa-Bianchi et al., 2019; Szorenyi et al., 2013; Xu et al., 2015), and games (Cesa-
Bianchi and Lugosi, 2006; Héliou et al., 2020). In a very recent paper, Cesa-Bianchi et al. (2020)
considered a cooperative online learning problem in which a different set of agents is activated
at each round, they encounter the same loss, and they receive immediately the relevant gradient
feedback after playing. While this setting is different from our own (there are no feedback delays
and a fixed underlying communication graph is assumed), this is the first paper that we are aware of
and which considers asynchronous activation in multi-agent online convex optimization problems.

Distributed online optimization. In distributed online convex optimization, the agents coopera-
tively optimize a sequence of global costs which are defined as the sum of local loss functions, each
associated with an agent. Under this setup, consensus-based distributed algorithms were proposed
and shown to achieve sublinear regret (Hosseini et al., 2013; Yan et al., 2012). More recently,
Shahrampour and Jadbabaie (2017) and Zhang et al. (2019) further modified these algorithms to

15. Due to a lack of consensus in the literature, Quanrud and Khashabi (2015) used the name online mirror descent to
refer to dual averaging. See Remark 4 for further discussion.
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cope with dynamic regret, whereas the case of a time-varying network topology was examined in
Mateos-Núnez and Cortés (2014) and Akbari et al. (2015).
Nonetheless, all of the above works concern the synchronous scenario, and this is true for

both the activation of the agents (all the agents engage in each iteration) and the communication
between the agents (which are performed without any delay). In contrast, our framework allows
for asynchronous activations as well as asynchronous communication. Moreover, the underlying
communication topology is not modeled explicitly and it is possible to have agents that leave and
join freely during the learning process. For sake of concreteness, we further explain in the next
section how our method can be used to solve problems that are studied in this line of research.

Asynchronous optimization. For optimization problems that have a sum structure (e.g., over
different parts of some dataset, or over several agents), a large part of the literature is based on a
random sampling of one or several of the functions leading to a partial use of the data or of the
links between agents. This stems from the study of randomized fixed point operators (Bianchi et al.,
2015; Combettes and Pesquet, 2015), later extended to delayed settings (Mania et al., 2017; Peng
et al., 2016; Leblond et al., 2017). This kind of randomized algorithms is incompatible with the
setup considered in our paper in which the agents are activated – not sampled.
In the case when a coordinator uses several workers to gather asynchronously gradient feedback,

several variants of the proximal gradient algorithm were shown to be efficient, see Aytekin et al.
(2016), Vanli et al. (2018) and Mishchenko et al. (2020), the latter allowing for unbounded delays.
However, the analyses of these methods are based on the study of the distance between the iterates
and the minimizer of the problem which hinders their extension to the online setting.
Finally, we are aware of very few works on open networks where agents can freely join and leave

the system. These exceptions treat the simpler problem of averaging local values and focus on the
system’s stability (Hendrickx and Martin, 2017; Franceschelli and Frasca, 2020; de Galland et al.,
2020). These ideas were recently extended to study the stability of decentralized gradient descent in
open networks (Hendrickx and Rabbat, 2020) but, again, there is no overlap with our work.

6.2 Online algorithms are not equally robust to delays

In this paper, we have paid exclusive attention to variants of dual averaging (DA). Another family of
algorithms that the agents may follow to minimize their regret is online mirror descent (OMD) and
its variants. While these two types of methods achieve the same order of regret in many situations,
they are not equally robust to delays in our setup, as explained below.
To define OMD, we make the additional assumption that the subdifferential 𝜕ℎ admits a contin-

uous selection denoted by ∇ ℎ. The Bregman divergence induced by ℎ is then written as

𝐷ℎ (𝑥, 𝑥 ′) = ℎ(𝑥) − ℎ(𝑥 ′) − ⟨∇ ℎ(𝑥 ′), 𝑥 − 𝑥 ′⟩.

Subsequently, the update of OMD is

𝑥𝑡 = arg min
𝑥∈X

{
⟨𝑔𝑡−1, 𝑥⟩ +

1
𝜂𝑡−1

𝐷ℎ (𝑥, 𝑥𝑡−1)
}
= 𝑄 (∇ℎ(𝑥𝑡−1) − 𝜂𝑡−1𝑔𝑡−1) . (OMD)

The main difference between (OMD) and (DA) is that (OMD) generates a new point by combining
the last gradient with the last prediction, while (DA) combines all past gradients and then generates
a prediction, without explicitly using the last available prediction.
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The two algorithms (OMD) and (DA) are not equally robust to delays. Indeed, if feedback from
different rounds arrives out-of-order (due to the presence of delays), the natural extension of the
methods would be to use them as if they corresponded to the last played point. The sequence of
points generated by the algorithms would then be different than with ordered feedback. However, for
(DA), the final output after all feedback has arrived will be the same for all agents, in contrast to that
of (OMD). This is because, in dual averaging, all gradients enter the model with the same weight
(Nesterov, 2009a, Sec. 1.2); this is a very appealing feature, especially when trying to incorporate
delayed gradients or gradients generated by other agents.

Remark 4. The origins of the above methods can be traced to Nemirovski and Yudin (1983), but
there is otherwise no consensus on terminology in the literature. The specific formulation (OMD)
is sometimes referred to as “eager” mirror descent, in contrast to the method’s “lazy” variant which
outputs 𝑥𝑡 ← 𝑄(−∑

𝑠<𝑡 𝜂𝑠𝑔𝑠), see e.g., Nesterov (2009a) or Mertikopoulos and Zhou (2019). These
variants coincide when ℎ is infinitely “steep” at the boundary of X , i.e., dom 𝜕ℎ ∩ X = riX ;
otherwise, they lead to different sequences of play (Kwon and Mertikopoulos, 2017). The “dual
averaging” variant is due to Nesterov (2009a), and differs from the lazy variant of (OMD) in that all
gradients enter the algorithm with the same weight. From an online learning viewpoint, (DA) can
also be seen as a “linearized” version of the FTRL class of algorithms (Shalev-Shwartz and Singer,
2006), and coincides with FTRL when the loss functions encountered are linear. For a survey, see
Juditsky et al. (2019), McMahan (2017), Mertikopoulos (2019), and references therein.

6.3 Multi-agent online learning for minimization of global losses

Throughout the paper, our analysis has focused on the agents’ individual losses ( 𝑓𝑡 being the loss
of the active agent 𝑖 = 𝑖(𝑡)), and thus lead to regret bounds that characterize how much the whole
network actually pays. While these bounds have an interest, networks of agents may also want to
monitor global losses over the agents. This is typically the case of distributed online optimization,
where the agents cooperate to solve a time-varying global problem.
In this section, we demonstrate the flexibility of our framework by showing that the aforemen-

tioned algorithms and analyses can be easily extended to this setup. This, on one hand, bridges the
gap between our work and the broad corpus of literature on distributed online optimization, and, on
the other hand, provides the occasion to directly address the case of open networks where agents can
join and depart the optimization process freely.

6.3.1 From effective regret to collective regret

In distributed optimization, it is often assumed that multiple predictions are made in a same time
slot. Formally, we denote by 𝑀𝑡 the number of active agents at time 𝑡 and identify these agents
from 1 to 𝑀𝑡 instead of identifying each agent independently. This notation clarifies the fact that the
agents are anonymous with respect to the algorithm and each other. The functions and the played
points at time 𝑡 are respectively denoted by 𝑓1,𝑡 , . . . , 𝑓𝑀𝑡 ,𝑡 and 𝑥1,𝑡 , . . . , 𝑥𝑀𝑡 ,𝑡 .
By directly extending the regret defined by (1) to our current setup, we obtain the following:

Regℓ𝑇 (𝑢) =
𝑇∑︁
𝑡=1

𝑀𝑡∑︁
𝑖=1

𝑓𝑖,𝑡 (𝑥𝑖,𝑡 ) −
𝑇∑︁
𝑡=1

𝑀𝑡∑︁
𝑖=1

𝑓𝑖,𝑡 (𝑢), (Effective Regret)

where the superscript ℓ means that the regret sums over the local costs of the learners. Each agent
only pays for the function it serves and the ultimate goal for a single agent is to perform well on
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the functions that it encounters. As an example, on-device machine learning aims to equip users’
personal devices with intelligent machine features such as conversational understanding and image
recognition, for the purposes of providing a satisfying user experience to each individual (Shi et al.,
2016; Wang et al., 2020).
In contrast, we can also define global loss functions 𝑓𝑡 =

∑𝑀𝑡

𝑖=1 𝑓𝑖,𝑡 at every instant 𝑡 and evaluate
each active agents’ actionwith respect to this function. This leads to the following regret formulation:

Reg𝑔
𝑇
(𝑢) =

𝑇∑︁
𝑡=1

𝑀𝑡∑︁
𝑖=1

𝑓𝑖,𝑡 (𝑥1,𝑡 ) −
𝑇∑︁
𝑡=1

𝑀𝑡∑︁
𝑖=1

𝑓𝑖,𝑡 (𝑢), (Collective Regret)

where, instead of evaluating 𝑓𝑖,𝑡 at the point 𝑥𝑖,𝑡 played by learner 𝑖, we now evaluate all the 𝑓𝑖,𝑡 at
a single point 𝑥1,𝑡 independently of the worker 𝑖. The choice of the reference agent can vary with
time; it is however possible to fix its index to 1 in advance given that the attribution of the worker
indices at each 𝑡 is arbitrary.
When the number of agents are fixed, collective regret reduces to the usual regret formulation

employed in the distributed online optimization literature (Hosseini et al., 2013; Shahrampour and
Jadbabaie, 2017; Yan et al., 2012). This performance measure suits better the applications related
to wireless sensor networks such as distributed estimation (Rabbat and Nowak, 2004) and data
fusion (Nakamura et al., 2007; Raza et al., 2015). In fact, sensor networks are mostly deployed
for a common objective shared by all the sensors. To attain this objective, the sensor nodes may
need to cooperate to track some unknown variable or to collaborate to learn a global assessment
of the situation. The collective regret then measures each agent’s performance with respect to this
collective mission, hence the name thereof.
Finally, our formulation also admits the additional flexibility of involving different sets and

numbers of agents at each iteration. This is of particularly interest for open multi-agent systems
(Hendrickx and Martin, 2017) and elastic distributed learning (Narayanamurthy et al., 2013).
Now, provided that all the loss functions 𝑓𝑖,𝑡 are 𝐺-Lipschitz, the relation between Reg𝑔

𝑇
and

Regℓ
𝑇
is quite direct as formulated in the following lemma.

Lemma 18. Assume that all the loss functions 𝑓𝑖,𝑡 are 𝐺-Lipschitz; then,

Reg𝑔
𝑇
(𝑢) ≤ Regℓ𝑇 (𝑢) +

𝑇∑︁
𝑡=1

𝑀𝑡∑︁
𝑖=1

𝐺∥𝑥𝑖,𝑡 − 𝑥1,𝑡 ∥.

6.3.2 Decentralized Delayed Dual Averaging

Thanks to Lemma 18, a bound on the effective regret can be directly translated into one on the
collective regret as long as the distances between the agents’ predictions for a same moment can
be controlled. To illustrate this idea, we adapt DDA to the current setup and bound its induced
collective regret for appropriately chosen learning rates. Let us first slightly extend the previously
introduced notations and concepts to the current framework: The set of available gradients at time
𝑡 for a worker 𝑖, S𝑖,𝑡 , now represents the set of the (learner, time) indices of the feedback available
for playing 𝑥𝑖,𝑡 so that if ( 𝑗 , 𝑠) ∈ S𝑖,𝑡 then necessarily 𝑠 ∈ [𝑡 − 1]. The maximum delay 𝜏 is to be
understood with respect to the global time index 𝑡. That is, for every 𝑠 ∈ [𝑡 − 𝜏−1] and 𝑗 ∈ [𝑀𝑠] we
must have ( 𝑗 , 𝑠) ∈ S𝑖,𝑡 . We also introduce the (root mean square) average number of active agents
by 𝑀 =

√︃
(1/𝑇)∑𝑇

𝑡=1 𝑀𝑡
2.
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With these notations, the update of decentralized delayed dual averaging (D-DDA) writes at time
𝑡 for an agent 𝑖 as

𝑥𝑖,𝑡 = arg min
𝑥∈X

∑︁
( 𝑗 ,𝑠) ∈S𝑖,𝑡

⟨𝑔 𝑗 ,𝑠, 𝑥⟩ +
ℎ(𝑥)
𝜂𝑖,𝑡

, (D-DDA)

where 𝑔 𝑗 ,𝑠 ∈ 𝜕 𝑓 𝑗 ,𝑠 (𝑥 𝑗 ,𝑠). In order to understand the mechanics of collective regret in our setup, we
restrict our self to the case of a fixed learning rate 𝜂𝑖,𝑡 ≡ 𝜂.16 To bound the collective regret, three
elements come into play:

• the effective regret. For this part, we change the time indices to have exactly one point played
at each time. We define 𝑁𝑡 =

∑𝑡
𝑠=1 𝑀𝑠 and 𝑁 = 𝑁𝑇 ; then, the index of worker 𝑖 at time 𝑡 is

changed to 𝜙(𝑖, 𝑡) = 𝑁𝑡−1 + 𝑖 (so that only one action is performed at that time). This maps
our problem to the setting of Theorem 2 with 𝜂𝑡 ≡ 𝜂 and thus with 𝜎 = id we get

Regℓ𝑇 (𝑢) ≤
ℎ(𝑢)
𝜂
+ 1

2

𝑁∑︁
𝑚=1

𝜂

(
∥𝑔′𝑚∥2∗ + 2∥𝑔′𝑚∥∗

∑︁
𝑙∈[𝑚−1]\S′𝑚

∥𝑔′𝑙 ∥∗

)
(13)

where 𝑔′
𝜙 (𝑖,𝑡) = 𝑔𝑖,𝑡 and S

′
𝜙 (𝑖,𝑡) = {𝜙( 𝑗 , 𝑠) : ( 𝑗 , 𝑠) ∈ S𝑖,𝑡 }.

• the maximal delay 𝜏. Bounding from above the number of unavailable gradients for a (learner,
time) pair and translating this condition to bound card( [𝑚 − 1] \ S ′𝑚), we get

Regℓ𝑇 (𝑢) ≤
ℎ(𝑢)
𝜂
+ 𝜂(𝜏 + 1)𝐺2

𝑇∑︁
𝑡=1

𝑀2
𝑡 . (14)

• the non-expansiveness of the mirror map (Lemma 21). This part enables us to go from the
effective regret to the collective regret using Lemma 18.

Putting together these points we manage to show the following bound on the collective regret,
the full proof being deferred to Appendix D.

Proposition 19. Assume that the maximum delay is bounded by 𝜏 and that all the loss functions
are 𝐺-Lipschitz. For any 𝑢 satisfying ℎ(𝑢) ≤ 𝑅2, running decentralized delayed dual averaging
(D-DDA) with constant stepsize

𝜂𝑖,𝑡 ≡ 𝜂 =
𝑅

𝐺𝑀
√︁
(2𝜏 + 1)𝑇

guarantees the following upper bound on the collective regret

Reg𝑔
𝑇
(𝑢) ≤ 2𝑅𝐺𝑀

√︁
(2𝜏 + 1)𝑇 = O(𝑀

√
𝜏𝑇).

As a sanity check, we can see that when there is no delay (𝜏 = 0) and a fixed number of agents
(𝑀𝑡 ≡ 𝑀), the proposition ensures a regret in O(𝑀

√
𝑇). This corresponds to the regret achieved

by dual averaging on 𝑓𝑡 =
∑𝑀
𝑖=1 𝑓𝑖,𝑡 which is 𝑀𝐺-Lipschitz (Hazan, 2016, Section 5.2; ?; see also

Appendix A). Nonetheless, since the network of agents may be evolving, the average number of
workers 𝑀 may often not be available in advance; neither is the time horizon 𝑇 nor the current time
index 𝑡. Exploiting the ideas of Section 4, we provide in Appendix D an implementable learning
rate scheme that achieves a regret in O(

√
𝜏𝑁𝑀max) where 𝑀max = max1≤𝑡≤𝑇 𝑀𝑡 .

16. We bypass this limitation in Appendix D by we providing an implementable variable learning rate strategy that
provably achieves small collective regret.
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7. Concluding remarks

Our aim in this paper was to design adaptive and non-adaptive learning algorithms that can provably
achieve low regret in the presence of delays and asynchronicities in both single- and multi-agent
environments. This was achieved by means of a general dual averaging framework for handling
delays and deriving regret bounds under various learning rate policies including adaptive and data-
dependent ones. In addition, we paid special attention to the decentralized case (which includes open
networks of agents collaborating to achieve a low collective regret), and we showed how our analysis
can be improved further through the use of optimistic policies in slowly-varying environments.

Our work provides the basis for a number of subsequent extensions of independent interest.
One particular direction concerns the case where the agents’ gradient feedback is corrupted by
noise, either exogenous (e.g., stemming from environmental fluctuations) or endogenous (e.g., from
mini-batch sampling in the case of empirical risk objectives). Equally important is the choice of
target regret measure: in addition to the agents’ effective and collective regret, there is a fair number
of network applications in which dynamic regret considerations could be equally relevant. In this
regard, it would be important to see if the proposed policies lead to low dynamic regret – or how to
modify them to achieve this more demanding benchmark.

Finally, if the agents only have access to their incurred losses at each stage, it is possible to
reconstruct a biased estimate of the corresponding subgradients using a stochastic approximation
estimator – either single-point (Flaxman et al., 2005) or two-point (Agarwal et al., 2010). However,
in addition to the bias introduced by this indirect sampling process, the variance of the single-
point estimator also grows unbounded as the process unfolds; moreover, in multi-agent settings,
the agent performing an update must have access to both the loss incurred by another agent at a
different (known) timestamp and the actual sampling perturbation / direction employed by the agent
that incurred said loss. Phenomena such as these lead to significant difficulties – both technical
and conceptual – in the analysis of adaptive algorithms, and require completely new techniques to
handle. We defer work on this fruitful research direction to the future.

Acknowledgments

This research was partially supported by the COST Action CA16228 “European Network for Game
Theory” (GAMENET), and the French National Research Agency (ANR) in the framework of the
“Investissements d’avenir” program (ANR-15-IDEX-02), the LabEx PERSYVAL (ANR-11-LABX-
0025-01), MIAI@Grenoble Alpes (ANR-19-P3IA-0003), and the grants ORACLESS (ANR-16-
CE33-0004) and ALIAS (ANR-19-CE48-0018-01).

Appendix A. Undelayed dual averaging

Our paper studies several variants of dual averaging in various delayed/distributed setups. For sake
of completeness, we include here an analysis of the vanilla dual averaging algorithm in the basic
undelayed online learning setting. For a thorough study of the algorithm the readers can refer to the
textbook Hazan, 2016, Section 5 and ?.
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Let us consider a sequence of first-order feedback 𝑔1, . . . , 𝑔𝑇 . At time 𝑡 dual averaging computes

𝑥𝑡 = arg min
𝑥∈X

𝑡−1∑︁
𝑠=1
⟨𝑔𝑠, 𝑥⟩ +

ℎ(𝑥)
𝜂𝑡

. (DA)

We recall that the mirror map is defined as 𝑄 : 𝑦 ↦→ arg min𝑥∈X ⟨−𝑦, 𝑥⟩ + ℎ(𝑥). We can thus write
𝑥𝑡 = 𝑄(𝑦𝑡 ) where 𝑦𝑡 = −𝜂𝑡

∑𝑡−1
𝑠=1 𝑔𝑠 may be viewed as the dual point of 𝑥𝑡 . We have the following

standard result concerning the (linearize) regret achieved by the algorithm.

Proposition 20. Let online dual averaging (DA) be run with non-increasing learning rates (𝜂𝑡 )𝑡 ∈[𝑇 ] .
Then, the generated points 𝑥1, . . . , 𝑥𝑇 satisfy

LinReg𝑇 (𝑢) :=
𝑇∑︁
𝑡=1
⟨𝑔𝑡 , 𝑥𝑡 − 𝑢⟩ ≤

ℎ(𝑢)
𝜂𝑇
+ 1

2

𝑇∑︁
𝑡=1

𝜂𝑡 ∥𝑔𝑡 ∥2∗ .

Proof. Let us fix 𝑢 ∈ X and define the associated estimate sequence

𝜓𝑡 (𝑥) =
𝑡−1∑︁
𝑠=1
⟨𝑔𝑠, 𝑥 − 𝑢⟩ +

ℎ(𝑥)
𝜂𝑡

.

We will show that

𝜓𝑡 (𝑥𝑡 ) ≤ 𝜓𝑡+1(𝑥𝑡+1) − ⟨𝑔𝑡 , 𝑥𝑡+1 − 𝑢⟩ −
1

2𝜂𝑡
∥𝑥𝑡+1 − 𝑥𝑡 ∥2. (15)

On one hand, by 𝜂𝑡+1 ≤ 𝜂𝑡 and the non-negativity of ℎ,

𝜓𝑡+1(𝑥𝑡+1) = 𝜓𝑡 (𝑥𝑡+1) + ⟨𝑔𝑡 , 𝑥𝑡+1 − 𝑢⟩ +
(

1
𝜂𝑡+1
− 1
𝜂𝑡

)
ℎ(𝑥𝑡+1) ≥ 𝜓𝑡 (𝑥𝑡+1) + ⟨𝑔𝑡 , 𝑥𝑡+1 − 𝑢⟩. (16)

On the other hand, by the definition of 𝑥𝑡 we have 𝑦𝑡 ∈ 𝜕ℎ(𝑥𝑡 ). Thus

𝜓𝑡 (𝑥𝑡+1) − 𝜓𝑡 (𝑥𝑡 ) =
𝑡−1∑︁
𝑠=1
⟨𝑔𝑠, 𝑥𝑡+1 − 𝑥𝑡⟩ +

ℎ(𝑥𝑡+1)
𝜂𝑡

− ℎ(𝑥𝑡 )
𝜂𝑡

= − 1
𝜂𝑡
⟨𝑦𝑡 , 𝑥𝑡+1 − 𝑥𝑡⟩ +

ℎ(𝑥𝑡+1)
𝜂𝑡

− ℎ(𝑥𝑡 )
𝜂𝑡
≥ 1

2𝜂𝑡
∥𝑥𝑡+1 − 𝑥𝑡 ∥2. (17)

The inequality holds thanks to the 1-strong convexity of ℎ. Summing (16), (17) and rearranging the
terms we obtain (15).
Next, let 𝜂𝑇+1 = 𝜂𝑇 and define 𝑥𝑇+1 by (DA) (We can do this since 𝑥𝑇+1 is not used in the

computation of LinReg𝑇 ). Leveraging on (15), we bound the regret as follows:

LinReg𝑇 (𝑢) :=
𝑇∑︁
𝑡=1
⟨𝑔𝑡 , 𝑥𝑡 − 𝑢⟩

=
𝑇∑︁
𝑡=1
(⟨𝑔𝑡 , 𝑥𝑡 − 𝑥𝑡+1⟩ + ⟨𝑔𝑡 , 𝑥𝑡+1 − 𝑢⟩)

≤
𝑇∑︁
𝑡=1

(
𝜂𝑡

2
∥𝑔𝑡 ∥2∗ +

1
2𝜂𝑡
∥𝑥𝑡+1 − 𝑥𝑡 ∥2 + 𝜓𝑡+1(𝑥𝑡+1) − 𝜓𝑡 (𝑥𝑡 ) −

1
2𝜂𝑡
∥𝑥𝑡+1 − 𝑥𝑡 ∥2

)
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= 𝜓𝑇+1(𝑥𝑇+1) − 𝜓1(𝑥1) +
1
2

𝑇∑︁
𝑡=1

𝜂𝑡 ∥𝑔𝑡 ∥2∗

≤ ℎ(𝑢)
𝜂𝑇
+ 1

2

𝑇∑︁
𝑡=1

𝜂𝑡 ∥𝑔𝑡 ∥2∗ . (18)

In the last inequality we used

𝜓𝑇+1(𝑥𝑇+1) = min
𝑥∈X

𝜓𝑇+1(𝑥) ≤ 𝜓𝑇+1(𝑢) =
ℎ(𝑢)
𝜂𝑇+1

=
ℎ(𝑢)
𝜂𝑇

and 𝜓1(𝑥1) = ℎ(𝑥1)/𝜂1 ≥ 0. (18) is exactly what we want to prove, so this ends the proof. ■

We next prove the non-expansiveness of the mirror map which are used multiple times in our
analyses (for a reference, see e.g., Hiriart-Urruty and Lemaréchal, 2001, Chapter E, Thm. 4.2.1, or
Zalinescu, 2002, Cor. 3.5.11).

Lemma 21. The mirror map is non-expansive, i.e., ∥𝑄(𝑦) −𝑄(𝑦′)∥ ≤ ∥𝑦− 𝑦′∥∗ for all 𝑦, 𝑦′ ∈ ℝ𝑑 .17

Proof. Let 𝑥 = 𝑄(𝑦) and 𝑥 ′ = 𝑄(𝑦′). By definition of the mirror map,

𝑥 = arg min
𝑥̂∈X

⟨−𝑦, 𝑥⟩ + ℎ(𝑥), 𝑥 ′ = arg min
𝑥̂∈X

⟨−𝑦′, 𝑥⟩ + ℎ(𝑥).

The optimality condition implies that 𝑦 ∈ 𝜕ℎ(𝑥) and 𝑦′ ∈ 𝜕ℎ(𝑥 ′). Hence, with the Cauchy–Schwarz
inequality and the 1-strong convexity of ℎ with respect to ∥·∥, we have

∥𝑦 − 𝑦′∥∗∥𝑥 ′ − 𝑥∥ ≥ ⟨𝑦′ − 𝑦, 𝑥 ′ − 𝑥⟩ ≥ ∥𝑥 − 𝑥 ′∥2.

It follows immediately ∥𝑦 − 𝑦′∥∗ ≥ ∥𝑥 − 𝑥 ′∥. ■

Appendix B. Missing proofs for variable learning rate methods

In this part, we complete the proofs of the results presented in Section 4. To begin, the well-known
“inverse-root-sum” lemma (see e.g., Auer et al., 2002b, Lemma 3.5) is essential for proving the
regret guarantees of these methods.

Lemma 6. For any sequence of real numbers 𝜆1, . . . , 𝜆𝑇 with
∑𝑡
𝑠=1 𝜆𝑠 > 0 for all 𝑡 ∈ [𝑇], we have

𝑇∑︁
𝑡=1

𝜆𝑡√︃∑𝑡
𝑠=1 𝜆𝑠

≤ 2

√︄
𝑇∑︁
𝑡=1

𝜆𝑡 .

Proof. The function 𝑦 ∈ ℝ+ ↦→ √𝑦 being concave and has derivative 𝑦 ↦→ 1/(2√𝑦), it holds for
every 𝑧 ≥ 0,

√
𝑧 ≤ √𝑦 + 1

2√𝑦 (𝑧 − 𝑦).

17. Precisely, 𝑄 is non-expansive because we are assuming that the strong convexity constant of ℎ is 1. Otherwise it
would just be Lipschitz continuous, and clearly this would only influence our results by a constant factor (that depends
on the strong convexity constant of ℎ).
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Take 𝑦 = ∑𝑡
𝑠=1 𝜆𝑠 and 𝑧 =

∑𝑡−1
𝑠=1 𝜆𝑠 gives

2

√︄
𝑡−1∑︁
𝑠=1

𝜆𝑠 +
𝜆𝑡√︃∑𝑡
𝑠=1 𝜆𝑠

≤ 2

√︄
𝑡∑︁
𝑠=1

𝜆𝑠 .

We conclude by summing the inequality from 𝑡 = 2 to 𝑡 = 𝑇 and using
√
𝜆1 ≤ 2

√
𝜆1. ■

Recall that A𝑖,𝑡 = {{𝑠, 𝑙} : 𝑠 ∈ S𝑡 , 𝑙 ∈ F𝑖,𝑠 \ S𝑠} and A𝑡 = A𝑖 (𝑡) ,𝑡 . The next two propositions
were used in the proof of Theorem 8.

Proposition 9. Let 𝜎 be a faithful permutation and let Assumption 2 hold. Then

A𝑡 = {{𝑠, 𝑙} ⊆ S𝑡 : 𝑠 and 𝑙 are not adjacent in G}

Proof. We will prove
A𝑡 = {{𝑠, 𝑙} ⊆ S𝑡 : 𝑠 ∉ S𝑙, 𝑙 ∉ S𝑠}

by a two-way inclusion argument.

Inclusion (“ ⊆ ”). Let 𝑠 ∈ S𝑡 and 𝑙 ∈ F𝑖 (𝑡) ,𝑠 \ S𝑠. The inclusion 𝑙 ∈ F𝑖 (𝑡) ,𝑠 means that 𝑔𝑙 arrives
earlier than 𝑔𝑠 on node 𝑖(𝑡). As all the available gradients are used when playing 𝑥𝑡 and 𝑠 ∈ S𝑡 , we
deduce 𝑙 ∈ S𝑡 . On the other hand, 𝑙 ∈ F𝑖 (𝑡) ,𝑠 also implies 𝑠 ∉ F𝑖 (𝑡) ,𝑙. Using Assumption 2 we know
that S𝑙 ⊆ F𝑖 (𝑡) ,𝑙, and consequently 𝑠 ∉ S𝑙.

Containment (“ ⊇ ”). Let {𝑠, 𝑙} ⊆ S𝑡 such that 𝑠 ∉ S𝑙 and 𝑙 ∉ S𝑠. Since either 𝑙 ∈ F𝑖 (𝑡) ,𝑠 or
𝑠 ∈ F𝑖 (𝑡) ,𝑙 (but not both) we conclude immediately {𝑠, 𝑙} ∈ A𝑖 (𝑡) ,𝑡 = A𝑡 . ■

Proposition 10. Let 𝜎 be a faithful permutation and assume that the maximum delay is bounded by
𝜏. We have (a) [𝑡]𝜎 ⊆ [𝜎(𝑡) +𝜏]; (b) [𝑡]𝜎 \S𝜎 (𝑡) ⊆ {𝜎(𝑡) −𝜏, . . . , 𝜎(𝑡) +𝜏}; and (c) |𝜎(𝑡) − 𝑡 | ≤ 𝜏.

Proof. (a) Let 𝑠, 𝑡 ∈ [𝑇] such that 𝑠 ≤ 𝑡. We need to prove 𝜎(𝑠) ≤ 𝜎(𝑡) + 𝜏. Assume the
opposite, that is, 𝜎(𝑠) > 𝜎(𝑡) + 𝜏. Then, from the bounded delay assumption, 𝜎(𝑡) ∈ S𝜎 (𝑠) . 𝜎
being a faithful permutation, this implies 𝑡 = 𝜎−1(𝜎(𝑡)) < 𝜎−1(𝜎(𝑠)) = 𝑠, a contradiction. Finally,
𝑇𝜎𝑡 = {𝜎(1), . . . , 𝜎(𝑡)} = {𝜎(𝑠) : 𝑠 ≤ 𝑡} and hence 𝑇𝜎𝑡 ⊆ [𝜎(𝑡) + 𝜏].
(b) This is immediate from (a) and the inclusion [𝜎(𝑡) − 𝜏 − 1] ⊆ S𝜎 (𝑡) which holds since the

maximum delay is assumed to be bounded by 𝜏.
(c) Fix 𝑡 ∈ [𝑇]. For all 𝑠 ≤ 𝑡, we have 𝜎(𝑠) ≤ 𝜎(𝑡) + 𝜏 and therefore max𝑠≤𝑡 𝜎(𝑠) ≤ 𝜎(𝑡) + 𝜏.

𝜎 being a permutation of [𝑇], it holds max𝑠≤𝑡 𝜎(𝑠) ≥ 𝑡 and subsequently 𝑡 ≤ 𝜎(𝑡) + 𝜏. Similarly,
we also have 𝜎(𝑡) − 𝜏 ≤ min𝑡≤𝑠 𝜎(𝑠) and min𝑡≤𝑠 𝜎(𝑠) ≤ 𝑡. This implies 𝜎(𝑡) − 𝜏 ≤ 𝑡. Combining
the two we conclude |𝜎(𝑡) − 𝑡 | ≤ 𝜏. ■

We close this section with the single-agent adaptive algorithm (AdaDelay+).

Proposition 11. Assume that the norms of the gradients are bounded by 𝐺 and the sequence of
active feedback is non-decreasing, i.e., S𝑡 ⊆ S𝑡+1. Assume further that delayed dual averaging
(DDA) is run with the learning rate sequence

𝜂𝑡 = min

(
𝜂𝑡−1,

𝑅√︁
Γ𝑡 + 𝐺2𝜏𝑡

)
(AdaDelay+)
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where 𝜏𝑡 = 𝑡 + 2𝐷𝑡 − card(S𝑡 ) − 2 card(A𝑡 ). Then, for any 𝑢 such that ℎ(𝑢) ≤ 𝑅2, the generated
points 𝑥1, . . . , 𝑥𝑇 enjoy the regret bound

Reg𝑇 (𝑢) ≤ 2𝑅 max
1≤𝑡≤𝑇

√︁
Γ𝑡 + 𝐺2𝜏𝑡 ≤ 2𝑅min

(
max

1≤𝑡≤𝑇

√︁
Λ𝑡 + 𝐺2𝜏𝑡 , 𝐺

√︁
𝑇 + 2𝐷𝑇

)
.

Proof. Let Λ𝑡 = 𝑅2/𝜂2
𝑡 so that 𝜂𝑡 = 𝑅/

√︃
Λ𝑡 . It holds that Λ𝑡 ≥ Γ𝑡 + 𝜏𝑡𝐺2 ≥ Λ𝑡 . The first inequality

comes from the definition of 𝜂𝑡 and the second inequality was shown in Section 4.3. Applying
Theorem 2 with 𝜎 = id and Lemma 6 yields

Reg𝑇 (𝑢) ≤
ℎ(𝑢)
𝜂𝑇
+ 1

2

𝑇∑︁
𝑡=1

𝜂𝑡

(
∥𝑔𝑡 ∥2∗ + 2∥𝑔𝑡 ∥∗

∑︁
𝑠∈U𝑡

∥𝑔𝑠 ∥∗

)
≤ 𝑅

√︃
Λ𝑇 +

𝑅

2

𝑇∑︁
𝑡=1

1
√
Λ𝑡

(
∥𝑔𝑡 ∥2∗ + 2∥𝑔𝑡 ∥∗

∑︁
𝑠∈U𝑡

∥𝑔𝑠 ∥∗

)
≤ 𝑅

√︃
Λ𝑇 + 𝑅

√︁
Λ𝑇 ≤ 2𝑅

√︃
Λ𝑇 .

Since Λ𝑇 = max1≤𝑡≤𝑇 Γ𝑡 + 𝜏𝑡𝐺2, we have already proved the first inequality. For the second
inequality, we use both Γ𝑡 ≤ Λ𝑡 and Γ𝑡 ≤ (card(S𝑡 ) + 2 card(A𝑡 ))𝐺2 (cf. (11)). ■

When the delays are bounded by a constant, it is possible to further bound 𝜏 from above, as
shown below.

Proposition 22. Assume that the maximum delay is bounded by 𝜏. Then 𝜏 ≤ 2𝜏2 + 3𝜏 + 1.

Proof. To begin, we have 𝑡 − card(S𝑡 ) ≤ 𝜏 + 1 as [𝑡 − 𝜏 − 1] ⊆ S𝑡 . Next, let us consider a pair
{𝑠, 𝑙} ∈ D𝑡 \A𝑡 . From Proposition 9 we know that {𝑠, 𝑙} ⊈ S𝑡 , so we have either 𝑠 ∈ {𝑡 − 𝜏, . . . , 𝑡}
or 𝑙 ∈ {𝑡 − 𝜏, . . . , 𝑡}. Without loss of generality, we suppose 𝑠 < 𝑙, then 𝑙 ∈ {𝑡 − 𝜏, . . . , 𝑡}. By
Proposition 4 we have 𝑠 ∉ S𝑙, and thus 𝑠 ∈ {𝑙 − 𝜏, . . . , 𝑙 − 1}. This shows card(D𝑡 \A𝑡 ) ≤ 𝜏(𝜏 + 1).
We can therefore conclude 𝜏𝑡 ≤ 2𝜏(𝜏 + 1) + 𝜏 + 1 = 2𝜏2 + 3𝜏 + 1. ■

Therefore, the bound of Proposition 11 potentially improves upon the bounds obtained inMcMa-
han and Streeter (2014) and Joulani et al. (2016).

Appendix C. Proofs related to the optimistic variant

C.1 Delayed optimistic dual averaging

Theorem 12. Assume that the maximum delay is bounded by 𝜏. Let delayed optimistic dual
averaging (DOptDA) be run with learning rate sequences (𝜂𝑡 )𝑡 ∈[𝑇 ] , (𝛾𝑡 )𝑡 ∈[𝑇 ] satisfying 𝜂𝑡+1 ≤ 𝜂𝑡
and (2𝜏 + 1)𝜂𝑡 ≤ 𝛾𝑡 for all 𝑡. Then the regret of the algorithm (evaluated at the points 𝑥 3

2
, . . . , 𝑥𝑇+ 1

2
)

satisfies

Reg𝑇 (𝑢) ≤
∥𝑢 − 𝑥1∥2

2𝜂𝑇
+

𝑇∑︁
𝑡=1

𝛾𝑡

2

(
∥𝑔𝑡+ 1

2
− 𝑔̃𝑡+ 1

2
∥2 − ∥𝑔̃𝑡+ 1

2
∥2

)
.

Proof. Let us consider the virtual iterates

𝑥̃𝑡 = 𝑥1 − 𝜂𝑡
𝑡−1∑︁
𝑠=1

𝑔𝑠+ 1
2
.
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We define the estimate sequence

𝜓𝑡 (𝑥) =
𝑡−1∑︁
𝑠=1
⟨𝑔𝑠+ 1

2
, 𝑥 − 𝑢⟩ + ∥𝑥 − 𝑥1∥2

2𝜂𝑡
.

Notice that the regret is measured with the leading states

𝑓𝑡 (𝑥𝑡+ 1
2
) − 𝑓𝑡 (𝑢) ≤ ⟨𝑔𝑡+ 1

2
, 𝑥𝑡+ 1

2
− 𝑢⟩ = ⟨𝑔𝑡+ 1

2
, 𝑥𝑡+ 1

2
− 𝑥̃𝑡+1⟩ + ⟨𝑔𝑡+ 1

2
, 𝑥̃𝑡+1 − 𝑢⟩ (19)

As shown in the proof of Proposition 20, we have

⟨𝑔𝑡+ 1
2
, 𝑥̃𝑡+1 − 𝑢⟩ ≤ 𝜓𝑡+1(𝑥̃𝑡+1) − 𝜓𝑡 (𝑥̃𝑡 ) −

1
2𝜂𝑡
∥𝑥̃𝑡+1 − 𝑥̃𝑡 ∥2. (20)

For the other term, we recall the definition U𝑡 = [𝑡 − 1] \ S𝑡 and define 𝜈𝑡 = card(U𝑡 ). Then,

⟨𝑔𝑡+ 1
2
, 𝑥𝑡+ 1

2
− 𝑥̃𝑡+1⟩ = ⟨𝑔𝑡+ 1

2
, 𝑥𝑡+ 1

2
− 𝑥𝑡⟩ + ⟨𝑔𝑡+ 1

2
, 𝑥𝑡 − 𝑥̃𝑡⟩ + ⟨𝑔𝑡+ 1

2
, 𝑥̃𝑡 − 𝑥̃𝑡+1⟩

= ⟨𝑔𝑡+ 1
2
,−𝛾𝑡 𝑔̃𝑡+ 1

2
⟩ + ⟨𝑔𝑡+ 1

2
, 𝜂𝑡

∑︁
𝑠∈U𝑡

𝑔𝑠+ 1
2
⟩ + ⟨𝑔𝑡+ 1

2
, 𝑥̃𝑡 − 𝑥̃𝑡+1⟩

=
𝛾𝑡

2

(
∥𝑔𝑡+ 1

2
− 𝑔̃𝑡+ 1

2
∥2 − ∥𝑔𝑡+ 1

2
∥2 − ∥𝑔̃𝑡+ 1

2
∥2

)
+ 𝜂𝑡

∑︁
𝑠∈U𝑡

⟨𝑔𝑡+ 1
2
, 𝑔𝑠+ 1

2
⟩ + ⟨𝑔𝑡+ 1

2
, 𝑥̃𝑡 − 𝑥̃𝑡+1⟩

≤ 𝛾𝑡
2

(
∥𝑔𝑡+ 1

2
− 𝑔̃𝑡+ 1

2
∥2 − ∥𝑔𝑡+ 1

2
∥2 − ∥𝑔̃𝑡+ 1

2
∥2

)
+ 𝜂𝑡

2
∥𝑔𝑡+ 1

2
∥2 + 1

2𝜂𝑡
∥𝑥̃𝑡 − 𝑥̃𝑡+1∥2 +

𝜈𝑡𝜂𝑡

2
∥𝑔𝑡+ 1

2
∥2 + 𝜂𝑡

2
∑︁
𝑠∈U𝑡

∥𝑔𝑠+ 1
2
∥2. (21)

Combining (19), (20), (21) and summing from 𝑡 = 1 to 𝑇 yields

Reg𝑇 (𝑢) ≤ 𝜓𝑇+1(𝑥̃𝑇+1) − 𝜓1(𝑥̃1) +
𝑇∑︁
𝑡=1

𝛾𝑡

2

(
∥𝑔𝑡+ 1

2
− 𝑔̃𝑡+ 1

2
∥2 − ∥𝑔̃𝑡+ 1

2
∥2

)
+

(
−𝛾𝑡

2
+ (𝜈𝑡 + 1)𝜂𝑡

2
+

∑︁
𝑡 ∈U𝑙

𝜂𝑙

2

)
∥𝑔𝑡+ 1

2
∥2. (22)

Since the maximum delay is 𝜏, we have 𝜈𝑡 ≤ 𝜈 ≤ 𝜏 and if 𝑡 ∈ U𝑙 it holds 𝑙 > 𝑡 ≥ 𝑙 − 𝜏 giving that
card({𝑙 : 𝑡 ∈ U𝑙}) ≤ 𝜏. Moreover, as (𝜂𝑡 )𝑡 ∈ℕ is a decreasing sequence, 𝑡 ∈ U𝑙 also implies 𝜂𝑙 ≤ 𝜂𝑡 .
The last term of (22) can thus be bounded as following(

−𝛾𝑡
2
+ (𝜈𝑡 + 1)𝜂𝑡

2
+

∑︁
𝑡 ∈U𝑙

𝜂𝑙

2

)
∥𝑔𝑡+ 1

2
∥2 ≤ 1

2
((2𝜏 + 1)𝜂𝑡 − 𝛾𝑡 )∥𝑔𝑡+ 1

2
∥2 ≤ 0, (23)

where the second inequality leverages the condition 𝛾𝑡 ≥ (2𝜏 + 1)𝜂𝑡 .
To conclude, we use 𝜓𝑇+1(𝑥̃𝑇+1) ≤ 𝜓𝑇+1(𝑢) and observe that 𝜓1(𝑥̃1) = 𝜓1(𝑥1) = 0 by definition,

so that

Reg𝑇 (𝑢) ≤
∥𝑢 − 𝑥1∥2

2𝜂𝑇+1
+

𝑇∑︁
𝑡=1

𝛾𝑡

2

(
∥𝑔𝑡+ 1

2
− 𝑔̃𝑡+ 1

2
∥2 − ∥𝑔̃𝑡+ 1

2
∥2

)
.

Let 𝜂𝑡+1 = 𝜂𝑡 and we get the desired bound. ■
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C.2 The necessity of scale separation

Theorem 14. Consider the setup of Corollary 13. Let 𝜂 = 𝜂(𝑅,𝑇, 𝜏, 𝐶𝜏+
𝑇
) be uniquely determined

by 𝑅 ≥ ∥𝑢 − 𝑥1∥, the time horizon 𝑇 , the uniform delay 𝜏, and the (𝜏 + 1)-variation 𝐶𝜏+
𝑇
. If we run

delayed optimistic dual averaging (DOptDA) with 𝑔̃𝑡+ 1
2
= 𝑔𝑡−𝜏− 1

2
and 𝛾 ≤ 𝜏𝜂, it is impossible to

guarantee a regret in 𝑜(max(𝐶𝜏+
𝑇
,
√
𝑇)).

Proof. Assume, for the sake of contradiction, that there exists 𝜂 = 𝜂(𝑅,𝑇, 𝜏, 𝐶𝜏+
𝑇
) and a correspond-

ing 𝛾 with 𝛾 ≤ 𝜏𝜂 such that (DOptDA) with 𝑔̃𝑡+ 1
2
= 𝑔𝑡−𝜏−1 guarantees a regret in 𝑜(max(𝐶𝜏+

𝑇
,
√
𝑇)).

Formally, we define a round of the algorithm as a composition a loss sequence, a delay mechanism,
a initial point 𝑥1 and a competing vector 𝑢, and denote by R(𝑅,𝑇, 𝜏, 𝐶𝜏

+
𝑇
) the set of all the rounds

with time horizon 𝑇 , (𝜏 + 1)-variation 𝐶𝜏+
𝑇
, uniform delay 𝜏 and ∥𝑢 − 𝑥1∥ ≤ 𝑅. Then, fixing 𝑅

and 𝜏, for every 𝜀 > 0, we can find 𝑁 > 0 such that if max(𝐶𝜏+
𝑇
,
√
𝑇) ≥ 𝑁 , the regret achieved by

the algorithm for every instance inR(𝑅,𝑇, 𝜏, 𝐶𝜏+
𝑇
) is smaller than 𝜀max(𝐶𝜏+

𝑇
,
√
𝑇). The proof then

consists in finding two instances of R(𝑅,𝑇, 𝜏, 𝐶𝜏+
𝑇
) such that the regret achieved by the algorithm

on these two instances can not be simultaneously smaller than 𝜀max(𝐶𝜏+
𝑇
,
√
𝑇).

For this, we fix the delay 𝜏, set 𝑅 = 1 without loss of generality and explicit these two instances
in the following (X = ℝ):
1. Let 𝐾, ℓ > 𝜏 be two positive integers. We first consider a loss sequence of length 2𝐾ℓ + 𝜏 + 1

(i.e., 𝑇 = 2𝐾ℓ + 𝜏 + 1) as illustrated below:

−1 . . . − 1︸       ︷︷       ︸
ℓ

+1 . . . + 1︸      ︷︷      ︸
ℓ

. . . −1 . . . − 1︸       ︷︷       ︸
ℓ

+1 . . . + 1︸      ︷︷      ︸
ℓ︸                                                                    ︷︷                                                                    ︸

2𝐾ℓ losses

−1 . . . − 1︸       ︷︷       ︸
𝜏+1

A period is defined as a subsequence of 2ℓ losses with ℓ consecutive −1s followed by ℓ consecutive
+1s. The whole loss sequence is then composed of 2𝐾 periods followed by 𝜏+1 consecutive−1s. We
would like to compute the regret achieved by (DOptDA) with 𝜂, 𝛾, 𝑔̃𝑡+ 1

2
as specified in the statement

and 𝑥1 = 𝑢 = 0.
For the first 𝜏 + 1 steps, the algorithm stays at 𝑥1 = 𝑢 so the accumulative regret is 0. For the

remaining of the round, the algorithm goes through the same trajectory for each period of delayed
feedback vectors it receives and this happens 𝐾 times. To compute the regret, we just need to match
the position of the iterate with the actual loss at each moment, which is done in Fig. 4 (as the loss
vectors of a single period sum to 0, after receiving all the vectors from one period it is as if we
started again from 𝑥1 = 𝑢 = 0). Notice that the algorithm uses the most recent vector it receives for
extrapolation.
The regret for each period of feedback is thus

Reg𝑝𝑒𝑟 =
−(ℓ − 𝜏 − 1) (ℓ − 𝜏)𝜂

2
− (ℓ − 𝜏 − 1)𝛾 + (𝜏 + 1) (2ℓ − 𝜏)𝜂

2
+ (𝜏 + 1)𝛾

+ (ℓ − 𝜏 − 1) (ℓ + 𝜏)𝜂
2

− (ℓ − 𝜏 − 1)𝛾 − (𝜏 + 1)𝜏𝜂
2

+ (𝜏 + 1)𝛾

= (𝜏 + 1) (ℓ − 𝜏)𝜂 + (ℓ − 𝜏 − 1)𝜏𝜂 + 2(2𝜏 − ℓ + 2)𝛾
= (𝜂 + 2𝜏𝜂 − 2𝛾)ℓ − 2𝜏(𝜏 + 1)𝜂 + (4𝜏 + 4)𝛾.
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𝒕 𝜏 + 2 . . . ℓ ℓ + 1 · · · ℓ + 𝜏 + 1 ℓ + 𝜏 + 2 . . . 2ℓ 2ℓ + 1 . . . 2ℓ + 𝜏 + 1
𝒙𝒕 𝜂 . . . (ℓ − 𝜏 − 1)𝜂 (ℓ − 𝜏)𝜂 · · · ℓ𝜂

+𝛾
(ℓ − 1)𝜂 . . . (𝜏 + 1)𝜂 𝜏𝜂 . . . 0

−𝛾
𝒈𝒕 −1 +1 −1

Figure 4: Illustration of the evolution of the optimistic algorithm for a period of feedback in the first
example of the proof of Theorem 14. The time is taken modulo 2ℓ.

Accordingly, the total regret is

Reg1 = 𝐾 ((𝜂 + 2𝜏𝜂 − 2𝛾)ℓ − 2𝜏(𝜏 + 1)𝜂 + (4𝜏 + 4)𝛾) ≥ 𝐾 (ℓ − 2𝜏(𝜏 + 1))𝜂,

where for the inequality we use the fact that 𝛾 ≤ 𝜏𝜂.
Moreover, for every 𝑚 ∈ ℕ0, from time 2𝑚ℓ + 𝜏 + 2 to 2𝑚ℓ + 2ℓ + 𝜏 + 1 the (𝜏 + 1)-variation

increases by 8(𝜏 + 1): there are 𝜏 + 1 switches both from −1 to +1 and from +1 to −1 with each
switch contributing 4 to the variation. Remember also that in the definition of the 𝐶𝜏+

𝑇
we compare

the first 𝜏 + 1 losses with 0. For the whole sequence we therefore count 𝐶𝜏+
𝑇

= (8𝐾 + 1) (𝜏 + 1).
2. We now construct another example with the same 𝑇, 𝐶𝜏+

𝑇
as follows (with ℓ > 4𝜏 + 4):

0 . . . 0︸  ︷︷  ︸
𝜏+1

1 . . . 1︸  ︷︷  ︸
𝜏+1

. . . 0 . . . 0︸  ︷︷  ︸
𝜏+1

1 . . . 1︸  ︷︷  ︸
𝜏+1︸                                                ︷︷                                                ︸

8𝐾 (𝜏+1) losses

0 . . . 0︸  ︷︷  ︸
2𝐾ℓ−8𝐾 (𝜏+1)

1 . . . 1︸  ︷︷  ︸
𝜏+1

In particular, 2𝐾ℓ − 8𝐾 (𝜏 + 1) > 2𝐾 > 𝜏 + 1. It follows immediately 𝐶𝜏+
𝑇

= (8𝐾 + 1) (𝜏 + 1) and of
course 𝑇 = 2𝐾ℓ + 𝜏 + 1.
Let 𝑥1 = 0 and 𝑢 = −1. In the sequence the loss 1 appears (4𝐾 + 1) (𝜏 + 1) times while the

remaining feedback are all 0s. Given that the last 𝜏 + 1 losses are never received by the algorithm,
we have indeed always 𝑥𝑡 ≥ −4𝐾 (𝜏 + 1)𝜂 − 𝛾. The regret can therefore be lower bounded as:

Reg2 =
𝑇∑︁
𝑡=1

𝑔𝑡 (𝑥𝑡 + 1)

=
𝑇∑︁
𝑡=1

𝑔𝑡𝑥𝑡 + (4𝐾 + 1) (𝜏 + 1)

≥ (4𝐾 + 1) (𝜏 + 1) − 4𝐾 (4𝐾 + 1) (𝜏 + 1)2𝜂 − (4𝐾 + 1) (𝜏 + 1)𝛾
≥ (4𝐾 + 1) (𝜏 + 1) − (4𝐾 + 1)2(𝜏 + 1)2𝜂,

where in the last inequality we use again 𝛾 ≤ 𝜏𝜂.
Conclude. We choose 𝐾, ℓ so that ℓ = (16𝐾 +9) (𝜏 +1)2 +2𝜏(𝜏 +1) > 4𝜏 +4. Notice that 𝑇 and

𝐶𝜏
+
𝑇
can be made arbitrarily large. We run the algorithm in question on the two problem instances

described above. We have on one side

Reg1 ≥ 𝐾 (ℓ − 2𝜏(𝜏 + 1))𝜂 = (16𝐾2 + 9𝐾) (𝜏 + 1)2𝜂.

37



Hsieh, Iutzeler, Malick, and Mertikopoulos

On the other side,

Reg2 ≥ (4𝐾 + 1) (𝜏 + 1) − (4𝐾 + 1)2(𝜏 + 1)2𝜂
≥ (4𝐾 + 1) (𝜏 + 1) − (16𝐾2 + 9𝐾) (𝜏 + 1)2𝜂.

Recalling that 𝐶𝜏+
𝑇

= (8𝐾 + 1) (𝜏 + 1), the above shows

Reg1 +Reg2 ≥ (4𝐾 + 1) (𝜏 + 1) ≥ 𝐶𝜏+𝑇 /2.

Similarly, we have 𝑇 = 2𝐾ℓ + 𝜏 + 1 ≤ (32𝐾2 + 22𝐾) (𝜏 + 1)2. As a consequence

Reg1 +Reg2 ≥ (4𝐾 + 1) (𝜏 + 1) ≥
√
𝑇/2.

To summarize, we have proven for some 𝑇 and 𝐶𝜏+
𝑇
arbitrarily large, we can find two instances from

R(𝑅,𝑇, 𝜏, 𝐶𝜏+
𝑇
) so that the regrets achieved by the algorithm on these two instances satisfy

max(Reg1,Reg2) ≥ max(𝐶𝜏+𝑇 ,
√
𝑇)/2.

This is in contradiction with the initial hypothesis by choosing 𝜀 = 1/2. ■

C.3 A lower bound for delayed online learning

Proposition 15. For any online learning algorithm with prior knowledge of 𝑇 , 𝜏 and 𝐶𝜏 ≥ 𝐶𝜏+
𝑇
,

there exists a sequence of linear losses such that if the feedback is subject to constant delay 𝜏, then
the regret of the algorithm on this sequence with respect to a vector 𝑢 with ∥𝑢−𝑥1∥ ≤ 1 isΩ(

√︁
𝜏𝐶𝜏).

Proof. Let ℓ = 𝐶𝜏/(4(𝜏 + 1)) be a positive integer and 𝑇 = (𝜏 + 1)ℓ. We consider 𝔄 an arbitrary
online algorithm compatible with delayed feedback. From𝔄 we define𝔄/𝜏 another online algorithm
as follows: For any sequence of losses with undelayed feedback, we repeat each loss 𝜏 + 1 times and
only send the feedback after a delay of 𝜏. In other words, for the loss sequence 𝑔1, 𝑔2, . . ., at the end
of iteration 𝑘 (𝜏 + 1) to 𝑘 (𝜏 + 1) + 𝜏 we receive feedback 𝑔𝑘−1 (with the convention 𝑔0 = 0) while we
suffer a loss ⟨𝑔𝑘 , 𝑥𝑡⟩ from iteration 𝑝𝑘 = (𝑘 − 1) (𝜏 + 1) + 1 to 𝑘 (𝜏 + 1). We then play 𝔄 on this new
loss sequence with delayed feedback and after every 𝜏+1 iterations we return 𝑥𝑘 =

∑𝑝𝑘+𝜏
𝑡=𝑝𝑘

𝑥𝑡/(𝜏+1).
This is a legitimate online algorithm because the knowledge of 𝑔𝑘 is not required for playing 𝑥𝑘 .
Moreover, the regret achieved by 𝔄 on the constructed sequence is exactly 𝜏 + 1 times the regret
achieved by 𝔄/𝜏 on the original sequence.
We now apply the thewell knownΩ(

√
ℓ) lower bound for a horizon of ℓ (see e.g., Shalev-Shwartz,

2007), and this proves the existence of a sequence of linear losses of length ℓ and a corresponding
𝑢 with ∥𝑢 − 𝑥1∥ ≤ 1 such that the regret achieved by 𝔄/𝜏 is Ω(

√
ℓ). Moreover, the loss vectors are

either 1 or −1. Let us now considered the loss sequence constructed as in the previous paragraph.
The (𝜏 + 1)-variation 𝐶𝜏+

𝑇
is then bounded by (𝜏 + 1) + 4(𝜏 + 1) (ℓ − 1) < 𝐶𝜏 and we have effectively

𝑇 = (𝜏 + 1)ℓ. To finish, we observe that the regret achieved by 𝔄 on the constructed sequence is
Ω((𝜏 + 1)

√
ℓ) and (𝜏 + 1)

√
ℓ ∼

√︁
𝜏𝐶𝜏/2 (where ∼ stands for asymptotically equivalent). ■

C.4 Delayed online learning with slow variation

Theorem 16. Let the maximum delay be bounded by 𝜏 and that Assumption 3 holds. Assume
in addition that the vector fields 𝑉𝑡 are 𝐿-Lipschitz continuous. Take 𝑔̃𝑡+ 1

2
= 𝑉𝑡 (𝑥𝑡 ), 𝜂𝑡+1 ≤ 𝜂𝑡 ,
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(2𝜏 + 1)𝜂𝑡 ≤ 𝛾𝑡 , and 2𝛾2
𝑡 𝐿

2 ≤ 1. Then, the regret of delayed optimistic dual averaging (DOptDA)
(evaluated at the points 𝑥 3

2
, . . . , 𝑥𝑇+ 1

2
) satisfies

Reg𝑇 (𝑢) ≤
∥𝑢 − 𝑥1∥2

2𝜂𝑇
+

𝑇∑︁
𝑡=1

𝛾𝑡 ∥𝑉𝑡 (𝑥𝑡 ) −𝑉𝑡 (𝑥𝑡 )∥2.

Proof. The proof is immediate from Theorem 12. Indeed,

∥𝑉𝑡 (𝑥𝑡+ 1
2
) −𝑉𝑡 (𝑥𝑡 )∥2 ≤ 2∥𝑉𝑡 (𝑥𝑡+ 1

2
) −𝑉𝑡 (𝑥𝑡 )∥2 + 2∥𝑉𝑡 (𝑥𝑡 ) −𝑉𝑡 (𝑥𝑡 )∥2.

Then, using the Lipschitz continuity of 𝑉𝑡 and the condition 2𝛾2
𝑡 𝐿

2 ≤ 1, we have:

2∥𝑉𝑡 (𝑥𝑡+ 1
2
) −𝑉𝑡 (𝑥𝑡 )∥2 ≤ 2𝐿2∥𝑥𝑡+ 1

2
− 𝑥𝑡 ∥2 = 2𝛾𝑡2𝐿2∥𝑉𝑡 (𝑥𝑡 )∥2 ≤ ∥𝑉𝑡 (𝑥𝑡 )∥2.

In other words, we have proven ∥𝑔𝑡+ 1
2
− 𝑔̃𝑡+ 1

2
∥2 − ∥𝑔̃𝑡+ 1

2
∥2 ≤ 2∥𝑉𝑡 (𝑥𝑡 ) − 𝑉𝑡 (𝑥𝑡 )∥2 and the bound

follows. ■

C.5 More flexible learning rates

In order prove Proposition 17, we generalize both Theorem 12 and Theorem 16 to the case where
the learning rate is non-increasing along a faithful permutation.

Theorem 12′. Assume that the maximum delay is bounded by 𝜏. Consider a faithful permutation 𝜎
and let delayed optimistic dual averaging (DOptDA) be run with learning rate sequences (𝜂𝑡 )𝑡 ∈[𝑇 ] ,
(𝛾𝑡 )𝑡 ∈[𝑇 ] satisfying 𝜂𝜎 (𝑡+1) ≤ 𝜂𝜎 (𝑡) and (4𝜏 + 1)max{𝑠: |𝑠−𝑡 | ≤𝜏 } 𝜂𝑠 ≤ 𝛾𝑡 for all 𝑡. Then, the regret
of the algorithm (evaluated at the points 𝑥 3

2
, . . . , 𝑥𝑇+ 1

2
) satisfies

Reg𝑇 (𝑢) ≤
∥𝑢 − 𝑥1∥2

2𝜂𝑇
+

𝑇∑︁
𝑡=1

𝛾𝑡

2

(
∥𝑔𝑡+ 1

2
− 𝑔̃𝑡+ 1

2
∥2 − ∥𝑔̃𝑡+ 1

2
∥2

)
.

Proof. We define the virtual iterates

𝑥̃𝑡 = 𝑥1 − 𝜂𝜎 (𝑡)
𝑡−1∑︁
𝑠=1

𝑔𝜎 (𝑠)+ 1
2
.

We then decompose

𝑓𝑡 (𝑥𝑡+ 1
2
) − 𝑓𝑡 (𝑢) ≤ ⟨𝑔𝑡+ 1

2
, 𝑥𝑡+ 1

2
− 𝑢⟩ = ⟨𝑔𝑡+ 1

2
, 𝑥𝜎 (𝑡)+ 1

2
− 𝑥̃𝑡+1⟩ + ⟨𝑔𝑡+ 1

2
, 𝑥̃𝑡+1 − 𝑢⟩.

Following closely the proof of Theorem 12, we obtain

Reg𝑇 (𝑢) ≤
∥𝑢 − 𝑥1∥2
2𝜂𝜎 (𝑇)

+
𝑇∑︁
𝑡=1

𝛾𝑡

2

(
∥𝑔𝑡+ 1

2
− 𝑔̃𝑡+ 1

2
∥2 − ∥𝑔̃𝑡+ 1

2
∥2

)
+ ©­«−

𝛾𝜎 (𝑡)
2
+
(card(U𝜎𝑡 ) + 1)𝜂𝜎 (𝑡)

2
+

∑︁
𝜎 (𝑡) ∈U𝜎

𝑙

𝜂𝜎 (𝑙)
2

ª®¬ ∥𝑔𝜎 (𝑡)+ 1
2
∥2.

Invoking Proposition 10, we know that [𝑡]𝜎 \ S𝜎 (𝑡) ⊆ {𝜎(𝑡) − 𝜏, . . . , 𝜎(𝑡) + 𝜏}. Given that
𝜎(𝑡) ∉ [𝑡 − 1]𝜎 , this implies U𝜎𝑡 ⊆ {𝜎(𝑡) − 𝜏, . . . , 𝜎(𝑡) − 1} ∪{𝜎(𝑡) + 1, . . . , 𝜎(𝑡) + 𝜏}. Therefore,
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card(U𝜎𝑡 ) ≤ 2𝜏 and if 𝜎(𝑡) ∈ U𝜎
𝑙
then |𝜎(𝑡) − 𝜎(𝑙) | ≤ 𝜏 while 𝜎(𝑡) ≠ 𝜎(𝑙), which also shows

card({𝑙 : 𝜎(𝑡) ∈ U𝜎
𝑙
}) ≤ 2𝜏. Accordingly,

(card(U𝜎𝑡 ) + 1)𝜂𝜎 (𝑡)
2

+
∑︁

𝜎 (𝑡) ∈U𝜎
𝑙

𝜂𝜎 (𝑙)
2
≤
(4𝜏 + 1)max{𝑠: |𝑠−𝜎 (𝑡) |≤𝜏 } 𝜂𝑠

2
.

With the assumption 𝛾𝑡 ≥ (4𝜏 + 1)max{𝑠: |𝑠−𝑡 | ≤𝜏 } 𝜂𝑠, we effectively deduce

Reg𝑇 (𝑢) ≤
∥𝑢 − 𝑥1∥2
2𝜂𝜎 (𝑇)

+
𝑇∑︁
𝑡=1

𝛾𝑡

2

(
∥𝑔𝑡+ 1

2
− 𝑔̃𝑡+ 1

2
∥2 − ∥𝑔̃𝑡+ 1

2
∥2

)
.

This proves the theorem. ■

Theorem 16′. Let the maximum delay be bounded by 𝜏 and that Assumption 3 holds. Assume in
addition that the vector fields 𝑉𝑡 are 𝐿-Lipschitz continuous. Consider a faithful permutation 𝜎 and
take 𝑔̃𝑡 = 𝑉𝑡 (𝑥𝑡 ), 𝜂𝜎 (𝑡+1) ≤ 𝜂𝜎 (𝑡) , (4𝜏 + 1)max{𝑠: |𝑠−𝑡 | ≤𝜏 } 𝜂𝑠 ≤ 𝛾𝑡 , and 2𝛾2

𝑡 𝐿
2 ≤ 1. Then, the regret

of delayed optimistic dual averaging (DOptDA) (evaluated at the points 𝑥 3
2
, . . . , 𝑥𝑇+ 1

2
) satisfies

Reg𝑇 (𝑢) ≤
∥𝑢 − 𝑥1∥2
2𝜂𝜎 (𝑇)

+
𝑇∑︁
𝑡=1

𝛾𝑡 ∥𝑉𝑡 (𝑥𝑡 ) −𝑉𝑡 (𝑥𝑡 )∥2.

Proof. Apply Theorem 12′ and bound the term ∥𝑔𝑡+ 1
2
− 𝑔̃𝑡+ 1

2
∥2 − ∥𝑔̃𝑡+ 1

2
∥2 as in the proof of Theo-

rem 16. ■

Proposition 17. Let the maximum delay be bounded by 𝜏 and let Assumptions 2 and 3 hold. Further
suppose that 𝑉𝑡 are 𝐿-Lipschitz continuous and both 𝑉𝑡 , 𝑉𝑡 have their norm bounded by 𝐺. Then for
any 𝑢 such that ∥𝑢−𝑥1∥ ≤ 𝑅, running delayed optimistic dual averaging (DOptDA) with 𝑔̃𝑡 = 𝑉𝑡 (𝑥𝑡 ),

𝛾𝑡 = min
©­­­­«

𝑅
√

4𝜏 + 1

2
√︂(∑

𝑠∈S𝑡
∥𝑉𝑠 (𝑥𝑠) −𝑉𝑠 (𝑥𝑠)∥2 + 4𝐺2(𝜏 + 1)

) , 1
√

2𝐿

ª®®®®¬
,

and

𝜂𝑡 = min
©­­­­«

𝑅

2
√︂
(4𝜏 + 1)

(∑
𝑠∈S𝑡
∥𝑉𝑠 (𝑥𝑠) −𝑉𝑠 (𝑥𝑠)∥2 + 4𝐺2(3𝜏 + 1)

) , 1
√

2𝐿 (4𝜏 + 1)

ª®®®®¬
guarantees

Reg𝑇 (𝑢) ≤ max
(√

2𝑅2𝐿 (4𝜏 + 1), 2𝑅
√︁
(4𝜏 + 1) (𝐶𝑇 + 4𝐺2(3𝜏 + 1))

)
.

Proof. Let 𝐶𝑡 =
∑
𝑠∈S𝑡
∥𝑉𝑠 (𝑥𝑠) − 𝑉𝑠 (𝑥𝑠)∥2. We consider a permutation 𝜎 such that (i) if 𝐶𝑠 < 𝐶𝑡

then 𝜎−1(𝑠) < 𝜎−1(𝑡); (ii) if 𝐶𝑠 = 𝐶𝑡 and 𝑠 ∈ S𝑡 then 𝜎−1(𝑠) < 𝜎−1(𝑡). The sequence (𝐶𝑡 )𝑡 is
non-decreasing along 𝜎 (see e.g., proof of Proposition 7) and accordingly the learning rate sequence
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(𝜂𝑡 )𝑡 is non-decreasing along 𝜎. Moreover, if 𝑠 ∈ S𝑡 , we have S𝑠 ⊆ F𝑖 (𝑡) ,𝑠 ⊆ S𝑡 thanks to
Assumption 2. This implies 𝐶𝑠 ≤ 𝐶𝑡 ; subsequently 𝜎−1(𝑠) < 𝜎−1(𝑡). The above shows that 𝜎 is
a faithful permutation. The condition 2𝛾2

𝑡 𝐿
2 ≤ 1 is automatically satisfied by the definition of 𝛾𝑡 .

To apply Theorem 16′, the last missing piece is to prove (4𝜏 + 1)max{𝑠: |𝑠−𝑡 | ≤𝜏 } 𝜂𝑠 ≤ 𝛾𝑡 . This boils
down to showing that

𝐶𝑠 + 4𝐺2(3𝜏 + 1) ≥ 𝐶𝑡 + 4𝐺2(𝜏 + 1) (24)

for all 𝑠 ∈ [𝑇] ∩{𝑡 − 𝜏, . . . , 𝑡 + 𝜏}. The maximum delay being bounded by 𝜏, we have | card(S𝑠) −
card(S𝑡 ) | ≤ |𝑠 − 𝑡 | + 𝜏. By bounding each ∥𝑉𝑙 (𝑥𝑙) − 𝑉𝑙 (𝑥𝑙)∥2 by 4𝐺2, we indeed prove (24) for 𝑠
such that |𝑠 − 𝑡 | ≤ 𝜏.
With all this at hand, applying Theorem 16′ gives

Reg𝑇 (𝑢) ≤
∥𝑢 − 𝑥1∥2
2𝜂𝜎 (𝑇)

+
𝑇∑︁
𝑡=1

𝛾𝑡 ∥𝑉𝑡 (𝑥𝑡 ) −𝑉𝑡 (𝑥𝑡 )∥2.

As themaximumdelay is bounded by 𝜏 and the gradients are bounded by𝐺, we have𝐶𝑡+4𝐺2(𝜏+1) ≥
𝐶𝑡 . Invoking Lemma 6 then gives

Reg𝑇 (𝑢) ≤
∥𝑢 − 𝑥1∥2
2𝜂𝜎 (𝑇)

+ 𝑅
√

4𝜏 + 1
2

𝑇∑︁
𝑡=1

1
√
𝐶𝑡
∥𝑉𝑡 (𝑥𝑡 ) −𝑉𝑡 (𝑥𝑡 )∥2

≤ 𝑅2

2𝜂𝜎 (𝑇)
+ 𝑅

√︁
(4𝜏 + 1)𝐶𝑇 .

(25)

We bound the second term by

𝑅
√︁
(4𝜏 + 1)𝐶𝑇 ≤ 𝑅

√︃
(4𝜏 + 1) (𝐶𝑇 + 4𝐺2(3𝜏 + 1)) ≤ 𝑅2

2𝜂𝑇
≤ 𝑅2

2𝜂𝜎 (𝑇)
. (26)

Combining (25) and (26) we get Reg𝑇 (𝑢) ≤ 𝑅2/𝜂𝜎 (𝑇) . We can conlcude by using the definition of
𝜂𝜎 (𝑇) and 𝐶𝜎 (𝑇) ≤ 𝐶𝑇 . ■

Appendix D. Regret bounds for decentralized delayed dual averaging

The proofs in this part leverage on Lemma 18, which we recall below.

Lemma 18. Assume that all the loss functions 𝑓𝑖,𝑡 are 𝐺-Lipschitz; then,

Reg𝑔
𝑇
(𝑢) ≤ Regℓ𝑇 (𝑢) +

𝑇∑︁
𝑡=1

𝑀𝑡∑︁
𝑖=1

𝐺∥𝑥𝑖,𝑡 − 𝑥1,𝑡 ∥.

These proofs can thus be divided into two essential parts: a bound on the effective regret and
a bound on the inter-agent discrepancies. For the first part we will utilize the change of index
𝜙(𝑖, 𝑡) = 𝑁𝑡−1 + 𝑖 introduced in Section 6.3.2, where 𝑁𝑡 =

∑𝑡
𝑠=1 𝑀𝑠 and 𝑁 = 𝑁𝑇 . We also recall the

notations 𝑔′
𝜙 (𝑖,𝑡) = 𝑔𝑖,𝑡 and S

′
𝜙 (𝑖,𝑡) = {𝜙( 𝑗 , 𝑠) : ( 𝑗 , 𝑠) ∈ S𝑖,𝑡 }.
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D.1 Fixed learning rate

Proposition 19. Assume that the maximum delay is bounded by 𝜏 and that all the loss functions
are 𝐺-Lipschitz. For any 𝑢 satisfying ℎ(𝑢) ≤ 𝑅2, running decentralized delayed dual averaging
(D-DDA) with constant stepsize

𝜂𝑖,𝑡 ≡ 𝜂 =
𝑅

𝐺𝑀
√︁
(2𝜏 + 1)𝑇

guarantees the following upper bound on the collective regret

Reg𝑔
𝑇
(𝑢) ≤ 2𝑅𝐺𝑀

√︁
(2𝜏 + 1)𝑇 = O(𝑀

√
𝜏𝑇).

Proof. Let us start with (13). Since the loss functions are𝐺-Lipschitz, the subgradients are bounded
by 𝐺.

Regℓ𝑇 (𝑢) ≤
ℎ(𝑢)
𝜂
+ 1

2

𝑁∑︁
𝑚=1

𝜂

(
∥𝑔′𝑚∥2∗ + 2∥𝑔′𝑚∥∗

∑︁
𝑙∈[𝑚−1]\S′𝑚

∥𝑔′𝑙 ∥∗

)
≤ ℎ(𝑢)

𝜂
+ 𝜂

2

𝑁∑︁
𝑚=1
(1 + 2 card( [𝑚 − 1] \ S ′𝑚))𝐺2. (27)

To bound card( [𝑚 − 1] \ S ′𝑚), we write 𝑚 = 𝜙(𝑖, 𝑡). On one hand, the subgradients

{𝑔𝑖−1,𝑡 , . . . , 𝑔1,𝑡 } = {𝑔′𝑚−1, . . . , 𝑔
′
𝑚−𝑖+1}

of instant 𝑡 are necessarily unavailable when making the prediction 𝑥𝑖,𝑡 = 𝑥 ′𝑚. On the other hand,
the maximum delay assumption guarantees that all the subgradients received before time 𝑡 − 𝜏 are
used in the computation of 𝑥𝑖,𝑡 . This leads to the inequality

card( [𝑚 − 1] \ S ′𝑚) ≤ 𝑖 − 1 +
𝜏∑︁
𝑠=1

𝑀𝑡−𝑠,

with the convention 𝑀𝑙 = 0 if 𝑙 ≤ 0. Subsequently, for any 𝑡 ∈ [𝑇],
𝑁𝑡∑︁

𝑚=𝑁𝑡−1+1
card( [𝑚 − 1] \ S ′𝑚) ≤

𝑀𝑡 (𝑀𝑡 − 1)
2

+ 𝑀𝑡
𝜏∑︁
𝑠=1

𝑀𝑡−𝑠 ≤
(𝜏 + 1)

2
𝑀2
𝑡 +

1
2

𝜏∑︁
𝑠=1

𝑀2
𝑡−𝑠 . (28)

Substituting (28) in (27) then yields

Regℓ𝑇 (𝑢) ≤
ℎ(𝑢)
𝜂
+ 𝜂(𝜏 + 1)𝐺2

𝑇∑︁
𝑡=1

𝑀2
𝑡 . (29)

We proceed to bound the difference ∥𝑥𝑖,𝑡 − 𝑥 𝑗 ,𝑡 ∥ for all 𝑡 ∈ [𝑇] and 𝑖, 𝑗 ∈ [𝑀𝑡 ]. In fact, we have
𝑥𝑖,𝑡 = 𝑄(−𝑦𝑖,𝑡 ) and 𝑥 𝑗 ,𝑡 = 𝑄(−𝑦 𝑗 ,𝑡 ) where 𝑦𝑖,𝑡 = 𝜂

∑
(𝑘,𝑠) ∈S𝑖,𝑡

𝑔𝑘,𝑠 and 𝑦 𝑗 ,𝑡 = 𝜂
∑
(𝑘,𝑠) ∈S 𝑗,𝑡

𝑔𝑘,𝑠.
From the maximum delay assumption we know that S𝑖,𝑡 and S 𝑗 ,𝑡 differ by at most

∑𝜏
𝑠=1 𝑀𝑡−𝑠

samples. Using the 𝐺-Lipshitz continuity of the loss functions and the non-expansiveness of the
mirror map (Lemma 21), we obtain

𝑀𝑡∑︁
𝑖=1

𝐺∥𝑥𝑖,𝑡 − 𝑥 𝑗 ,𝑡 ∥ ≤ 𝜂𝐺2𝑀𝑡

𝜏∑︁
𝑠=1

𝑀𝑡−𝑠 ≤ 𝜂𝐺2

(
𝜏𝑀2

𝑡

2
+ 1

2

𝜏∑︁
𝑠=1

𝑀2
𝑡−𝑠

)
. (30)
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With (29) and (30), invoking Lemma 18 gives

Reg𝑔
𝑇
(𝑢) ≤ ℎ(𝑢)

𝜂
+ 𝜂(2𝜏 + 1)𝐺2

𝑇∑︁
𝑡=1

𝑀2
𝑡 .

The theorem follows immediately. ■

D.2 Learning rates based on the number of received feedbacks

As discussed in Section 6.3.2, the learning rate proposed in Proposition 19 is generally not imple-
mentable in practice. We will show below that a learning rate scheme similar to the one considered
in Section 4.1 equally guarantees low collective regret. To begin with, we rewrite Assumption 1 to
accommodate the new notation.

Assumption 1′. If ( 𝑗 , 𝑠) ∈ S𝑖,𝑡 then card(S 𝑗 ,𝑠) < card(S𝑖,𝑡 ).

Under this assumption, we prove the following theorem which further extends the result of
Proposition 7.

Proposition 23. Let Assumption 1′ hold. Suppose that the maximum delay is bounded by 𝜏 and that
all the loss functions are 𝐺-Lipschitz. Then, for any 𝑢 satisfying ℎ(𝑢) ≤ 𝑅2, decentralized delayed
dual averaging (D-DDA) with stepsizes

𝜂𝑖,𝑡 =
𝑅

𝐺
√︁
(5𝜏 + 3) (card(S𝑖,𝑡 ) + (𝜏 + 1)𝑀max)𝑀max

(31)

guarantees a collective regret in

Reg𝑔
𝑇
(𝑢) = O(

√︁
𝜏𝑁𝑀max).

Proof. With a slight abuse of notation, we will only work with the (worker, time) index pair in this
proof, but it should be understood that the change of index 𝜙 indeed intervenes implicitly when we
apply the arguments of the previous sections (notably when we compare the indices). Compared
to Proposition 19, the two additional difficulties here are: i) the non-monotonicity of learning rates
which are solved by the introduction of a suitable faithful permutation; ii) the predictions of a time
instant are not generated by the same learning rate, but we still manage to control the deviation since
these learning rates are close enough.
To begin, we consider a permutation 𝜎 satisfying 𝜎−1( 𝑗 , 𝑠) < 𝜎−1(𝑖, 𝑡) if card(S 𝑗 ,𝑠) <

card(S𝑖,𝑡 ). Such a𝜎 is necessarily faithful according toAssumption 1′. We claim that card(U𝜎
𝜎−1 (𝑖,𝑡) ) ≤

(𝜏 + 1)𝑀max (where U𝜎𝜎−1 (𝑖,𝑡) = [𝜎
−1(𝑖, 𝑡) − 1]𝜎 \ S𝑖,𝑡 ). Let 𝑠 ∈ {0, . . . , 𝜏} such that 𝑁𝑡+𝑠−𝜏 >

card(S𝑖,𝑡 ) ≥ 𝑁𝑡+𝑠−𝜏−1. Then for any 𝑗 ∈ [𝑀𝑡+𝑠+1] it holds card(S 𝑗 ,𝑡+𝑠+1) ≥ 𝑁𝑡+𝑠−𝜏 > card(S𝑖,𝑡 )
and accordingly 𝜎−1(𝑖, 𝑡) < 𝜎−1( 𝑗 , 𝑡 + 𝑠 + 1). In other words, if 𝜎−1(𝑘, 𝑙) < 𝜎−1(𝑖, 𝑡) for some
𝑙 ∈ [𝑇] and 𝑘 ∈ [𝑀𝑙] then 𝑙 ≤ 𝑡 + 𝑠, and subsequently card( [𝜎−1(𝑖, 𝑡) − 1]𝜎) ≤ 𝑁𝑡+𝑠. We have
therefore

card( [𝜎−1(𝑖, 𝑡) − 1]𝜎 \ S𝑖,𝑡 ) ≤ 𝑁𝑡+𝑠 − 𝑁𝑡+𝑠−𝜏−1 =
𝜏∑︁
𝑙=0

𝑀𝑡+𝑠−𝑙 ≤ (𝜏 + 1)𝑀max.
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Since 𝜂𝑖,𝑡 ≤ 𝜂 𝑗 ,𝑠 if and only if card(S𝑖,𝑡 ) ≥ card(S 𝑗 ,𝑠), we have indeed 𝜂𝜎 ( (𝑖,𝑡)+1) ≤ 𝜂𝜎 (𝑖,𝑡) .
Invoking Theorem 2, one has (notice that the sum is ordered differently as stated in the theorem)

Regℓ𝑇 (𝑢) ≤
ℎ(𝑢)

𝜂𝜎 (𝑀𝑇 ,𝑇)
+ 1

2

𝑇∑︁
𝑡=1

𝑀𝑡∑︁
𝑖=1

𝜂𝑖,𝑡
©­«∥𝑔𝑖,𝑡 ∥2∗ + 2∥𝑔𝑖,𝑡 ∥∗

∑︁
𝑠∈U𝜎

𝜎−1 (𝑖,𝑡 )

∥𝑔𝑠 ∥∗
ª®¬

≤ ℎ(𝑢)
min𝑡 ∈[𝑇 ],𝑖∈[𝑀𝑡 ] 𝜂𝑖,𝑡

+ 1
2

𝑇∑︁
𝑡=1

(
max
𝑖∈[𝑀𝑡 ]

𝜂𝑖,𝑡

)
𝐺2(2𝜏 + 3)𝑀𝑡𝑀max. (32)

In the second step we bound the difference ∥𝑥𝑖,𝑡 − 𝑥 𝑗 ,𝑡 ∥ for 𝑖, 𝑗 ∈ [𝑀𝑡 ]. Similar to the proof
of Proposition 19, we write 𝑥𝑖,𝑡 = 𝑄(−𝑦𝑖,𝑡 ) and 𝑥 𝑗 ,𝑡 = 𝑄(−𝑦 𝑗 ,𝑡 ) where 𝑦𝑖,𝑡 = 𝜂𝑖,𝑡

∑
(𝑘,𝑠) ∈S𝑖,𝑡

𝑔𝑘,𝑠
and 𝑦 𝑗 ,𝑡 = 𝜂 𝑗 ,𝑡

∑
(𝑘,𝑠) ∈S 𝑗,𝑡

𝑔𝑘,𝑠. By the non-expansiveness of the mirror map (Lemma 21) it is then
sufficient to bound ∥𝑦𝑖,𝑡 − 𝑦 𝑗 ,𝑡 ∥. For ease of notation, in the rest of the proof we will denote by S∩
the intersection of S𝑖,𝑡 and S 𝑗 ,𝑡 , i.e., S∩ = S𝑖,𝑡 ∩S 𝑗 ,𝑡 . It follows

∥𝑦𝑖,𝑡 − 𝑦 𝑗 ,𝑡 ∥ = ∥(𝜂𝑖,𝑡 − 𝜂 𝑗 ,𝑡 )
∑︁

(𝑘,𝑠) ∈S∩
𝑔𝑘,𝑠 + 𝜂𝑖,𝑡

∑︁
(𝑘,𝑠) ∈S𝑖,𝑡\S∩

𝑔𝑘,𝑠 − 𝜂 𝑗 ,𝑡
∑︁

(𝑘,𝑠) ∈S 𝑗,𝑡\S∩
𝑔𝑘,𝑠 ∥

≤ |𝜂𝑖,𝑡 − 𝜂 𝑗 ,𝑡 |
∑︁

(𝑘,𝑠) ∈S∩
∥𝑔𝑘,𝑠 ∥ + 𝜂𝑖,𝑡

∑︁
(𝑘,𝑠) ∈S𝑖,𝑡\S∩

∥𝑔𝑘,𝑠 ∥ + 𝜂 𝑗 ,𝑡
∑︁

(𝑘,𝑠) ∈S 𝑗,𝑡\S∩
∥𝑔𝑘,𝑠 ∥

≤ 𝐺 ( |𝜂𝑖,𝑡 − 𝜂 𝑗 ,𝑡 | card(S∩) +max(𝜂𝑖,𝑡 , 𝜂 𝑗 ,𝑡 ) card(S𝑖,𝑡△S 𝑗 ,𝑡 ))
≤ 𝐺 ( |𝜂𝑖,𝑡 − 𝜂 𝑗 ,𝑡 |𝑁𝑡−1 +max(𝜂𝑖,𝑡 , 𝜂 𝑗 ,𝑡 )𝜏𝑀max). (33)

In the last inequality we use the fact that if one element belongs to one set but not the other then it
must come from the last 𝜏 time steps.
To control |𝜂𝑖,𝑡 − 𝜂 𝑗 ,𝑡 |, we note that for any 𝑏 > 𝑎 > 0, it holds

1
√
𝑎
− 1
√
𝑏
=

𝑏 − 𝑎
√
𝑎𝑏(
√
𝑎 +
√
𝑏)
≤ 𝑏 − 𝑎

2𝑎
√
𝑎
.

For every 𝑘 ∈ [𝑀𝑡 ], we have card(S𝑘,𝑡 ) + (𝜏 + 1)𝑀max ≥ 𝑁𝑡 > 𝑁𝑡−1. Therefore, with the stepsize
rule (31), we get

|𝜂𝑖,𝑡 − 𝜂 𝑗 ,𝑡 | ≤
𝑅 | card(S𝑖,𝑡 ) − card(S 𝑗 ,𝑡 ) |
2𝐺𝑁𝑡−1

√︁
(5𝜏 + 3)𝑁𝑡𝑀max

≤ 𝑅𝜏𝑀max

2𝐺𝑁𝑡−1
√︁
(5𝜏 + 3)𝑁𝑡𝑀max

. (34)

Let us denote 𝜂𝑡 = 𝑅/(𝐺
√︁
(5𝜏 + 3)𝑁𝑡𝑀max); then 𝜂𝑖,𝑡 ≤ 𝜂𝑡 for all 𝑖 ∈ [𝑀𝑡 ]. We also take

¯
𝜂 =

𝑅

𝐺
√︁
(5𝜏 + 3) (𝑁𝑀max + (𝜏 + 1)𝑀2

max)
so that 𝜂𝑖,𝑡 ≥

¯
𝜂 for all 𝑡 ∈ [𝑇], 𝑖 ∈ [𝑀𝑡 ]. We conclude with the help of Lemmas 6, 18 and 21, and

the inequalities (32), (33) and (34):

Reg𝑔
𝑇
(𝑢) ≤ ℎ(𝑢)

¯
𝜂
+ 1

2

𝑇∑︁
𝑡=1

(
𝜂𝑡𝐺

2(4𝜏 + 3)𝑀𝑡𝑀max +
𝑅𝐺𝜏𝑀𝑡𝑀max√︁
(5𝜏 + 3)𝑁𝑡𝑀max

)
=
ℎ(𝑢)

¯
𝜂
+ 1

2

𝑇∑︁
𝑡=1

𝑅𝐺 (5𝜏 + 3)𝑀𝑡𝑀max√︁
(5𝜏 + 3)𝑁𝑡𝑀max

≤ 𝑅𝐺
√︃
(5𝜏 + 3) (𝑁𝑀max + (𝜏 + 1)𝑀2

max) + 𝑅𝐺
√︁
(5𝜏 + 3)𝑁𝑀max.
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Accordingly, Reg𝑔
𝑇
(𝑢) = O(

√
𝜏𝑁𝑀max). ■

Note that the bound of Proposition 23 directly features the total number of actions taken in the
full process; it is thus (at least partly) adaptive to the number of agents. More importantly, since
card(S𝑖,𝑡 ) is obviously available to each agent at time 𝑡, the learning rate (31) is indeed implementable
by every single agent as long as the constants 𝐺, 𝜏, and 𝑀max are known. We leave the design of
fully adaptive methods in the sense of (AdaDelay–Dist) as an open question.
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