Skip to Main content Skip to Navigation
New interface
Conference papers

Improving Short Text Classification Through Global Augmentation Methods

Abstract : We study the effect of different approaches to text augmentation. To do this we use three datasets that include social media and formal text in the form of news articles. Our goal is to provide insights for practitioners and researchers on making choices for augmentation for classification use cases. We observe that Word2Vec-based augmentation is a viable option when one does not have access to a formal synonym model (like WordNet-based augmentation). The use of mixup further improves performance of all text based augmentations and reduces the effects of overfitting on a tested deep learning model. Round-trip translation with a translation service proves to be harder to use due to cost and as such is less accessible for both normal and low resource use-cases.
Complete list of metadata
Contributor : Hal Ifip Connect in order to contact the contributor
Submitted on : Thursday, November 4, 2021 - 3:58:34 PM
Last modification on : Friday, November 5, 2021 - 3:57:59 AM
Long-term archiving on: : Saturday, February 5, 2022 - 7:10:49 PM


 Restricted access
To satisfy the distribution rights of the publisher, the document is embargoed until : 2023-01-01

Please log in to resquest access to the document


Distributed under a Creative Commons Attribution 4.0 International License



Vukosi Marivate, Tshephisho Sefara. Improving Short Text Classification Through Global Augmentation Methods. 4th International Cross-Domain Conference for Machine Learning and Knowledge Extraction (CD-MAKE), Aug 2020, Dublin, Ireland. pp.385-399, ⟨10.1007/978-3-030-57321-8_21⟩. ⟨hal-03414750⟩



Record views