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1 INTRODUCTION Lewice [10], FENSAP-ICE Drop3d [3]). The model equa-

i . . . .. tions and the numerical method will rst be presented before
Icing effect is one of the main concerns for aircraft security

: . 0demonstrating the 3D capabilities in the results section, with
and constitutes a very active research eld. In clouds an : S . .

" . comparisons and veri cation against results from the litera-
under cold weather conditions, droplets impact the aerody,[-ure
namic structure. Impinging droplets can solidify or create a=
thin liquid Im depending on ambient temperature and other
ow characteristics. Therefore, ice may accumulate onthe2 EyULERIAN DROPLET FORMULATION AND
wing and induce a lift reduction and a drag increase. As a NUMERICAL SCHEME
consequence, the stall angle is lowered and the general per-
formance is degraded [2]. The Eulerian description of the droplet model involves two

. . . variable elds: the droplet velocity{) and the volume frac-
Ice accretions are still responsible for many crashes and acglh b )

- o . ion of water @). The rst equation is deducted from the
dents [1]. Pre_d_|ct|ng_the_ dropl_ets |mp|ngemer_1t IS _the rst Sterass conservation and the second one from the momentum
to better anticipate in- ight icing and to design ice protec-

) . . . : conservation with the standard particle derivative.
tion devices. Physically, the air ow around the wing trans- P

ports suspended water droplets and, because of their high in- 8

ertia, they impact along the airgraft surface instead of getting 2 Ta +N (au)= 0

around the obstacle [3]. In the literature, two approaches have S éU N Q)
been developed to model the droplets impact; the Lagrangian i +N (aU U)= Fa+ Fyg

one who track the particles in their individual motion and the
Eulerian one who describes the droplets continuously as &ravity, Fg, and air friction,Fs, act on the droplets and take

density (or volume fraction of water) and a velocity eld. the following dimensional form

In this work, the Eulerian approach is chosen. The objective Ma

of this study, is to extend the capabilities of the open-source Fg=a(l m)g (2a)
SU2 CFD software [4] to 3D aircraft icing using the Eulerian

droplet model formulation to solve the droplet impingement Fa= a3“ac Re(Ua U) (2b)
[5]. The architecture of SU2, solving PDE systems, suits 4r yd?

well for the implementation of the Eulerian droplet model. whereReis the Reynold number of the droplets in the air
In this paper, the main purpose is to implement a numericallyow, U, the air velocityC the experimental drag coef cient,
stable nite volume scheme for the Eulerian formulation of d the average droplet diameter ang s, r w the density and
the droplet equations. The resulting method should preserwgiscosity of the air and the water density.

physical properties such as the density positivity and must

produce accurate results compared to existing codes (NAS_At the wall,_spemal boun_dary cqndltlons are needed to mim-
ics droplet impact. The impinging droplets are absorbed by



the wall but cannot leave the wall. Slip or noslip wall, or
outlet boundary condition are unsuitable on the aircraft solid
surface. Consider a droplet with a velocitly that ow on a
surface with a normal vectar positive away from the wall.
When the projection of the droplet velocity on the surface is
positive, the net ux of the droplet that leave the surface is
0. As a consequence the boundary condition depends of the
velocity projection sign to match the physical behaviour:

aUp=0 fUn O

3 . . .
aUp= aU  otherwise ®3) Figure 1: The HLLC Riemann solver

The vector of conservative variabl®g = (a;aU) is intro-

The resulting set of equations 1 is close to the Euler equaduced and the general law of conservation takes the following
tions but without a pressure term. Consequently, the resulform with (F, G, H) the ux matrix:
ing system is not strictly hyperbolic and standard Riemann
solvers can not be used. Many approaches have been devel- W + IxF(W) + T,G(W) + T H(W) =S (6)
oped to solve this problem such as using a Jordan decompo-
siti(_)r! or introduc'ing a small term to arti cially restpre hyper- On an interface between two cells, withthe normal vector
bolicity [8]. In this study, the adopted approach is to add to _ .

. andV = U n, the transversal ux is:
the momentum part of the droplet model an isothermal pres-
sure termagd, proportional to the volume fraction of water
a, and whergy is gravity andd the droplet diameter. This aVv
term, Fp, is also added to the source term so that the system ZW)=(FEGH)(W) n= U+ agdn
remains exact [5].

@)

The droplet equations satisfy the rotational invariance prop-
erty like the Euler equations. As a consequence, the solver

8 is constructed from a reduce conservation law and involves
2 fa +N (aU)= 0 rotations to move the problem from the cross direction to the
> ;U - (4)  xone. This property greatly simplify the solver construction

S +N (aU U+ agdl)= Fa+ Fg+ Fy and involves one or two rotation matrices depending on the

problem dimension.

In 3D, the resulting rotation matrix is a combination oga
ande, rotation : Ty(dy; 0z) = Ty(ay) Tx(0z). In that case, the
rotational property stands as:

Fn= ~ (5)
Z(W) = tTyzF(TszV) 8)

. . As a consequence, the problem appears as a one dimen-
Near the aircraft surface, in the shadow area, the volume frac-, . . .
. . . Sional pressureless Euler equation with the passive transport
tion can be close to zero. Unphysical negative volume frac- L e .
. . ; . . .of two quantities in the tangential directions. The multidi-
tion may easily appears if an appropriate Riemann solver is . o .
. mensional solver is directly deducted from the 1D one, with
not used. For example the Roe solver can lead to this problem . ~ .
i . - the transversal conservative vectr= T,,W and a modi ed
and high space orders are dif cult to achieve [5]. As a conse- E_tp £
= TyF.

guence, this issue is the main concern to develop positivity-
preserving Rieman solvers. The positivity-preserving prop-The HLLC solver introduces two intermediate stafés and

erty is related to the solver capacity at resolving shock andg which are delimited by three speeds as shown in gure 1.
rarefaction waves. The HLLC approximate Riemann solverThe left and right speedS are constructed from the maxi-
satis es this property and shows a good behaviour at solvingnum and minimum eigenvalues of the Jacobian and the star
the intermediate waves [6]. It has consequently been chosearegion wave speed3() derive from Rankine-Hugoniot con-
and adapted to this problem by [5]. ditions rearrangement [6].



For large computational domain and steady solution, explicit

S =V p ad (9a) schemes are computationally intensive and may show conver-
L Q EL gence issues for large time step. In order to use larger CFL
SK=VWw+0ogr gd (9b)  numbers, implicit schemes are mandatory. The full discrete
SarVk R SaiM 9) numerical scheme is, with the implicit Euler time scheme,
= arVR %) alM. 9) (9¢) W2 the average ofv on the celKK at the n-th iterationf=y

anng;K the average of, andFg andDt the time step:

Ok is a modulation term to better resolve shock waves and
a is the density in the star region and can be expressed with
integral relations between each regions.

Dt
. 1_ 1 1
BK;WR L= WR o FI FRY

8 s ___ 0 1K 1
? a if a a Dt 0
- — 1 K o ..
&=, ax (10a) ?% a ig ZucWRhwrl) gdapit n X
: 1 ifa ax 1N 23K
+a a +a At
a =% (v WPgg  om) (15)

The numerical ux depends of the velocities signs and theA

. . : non-linear system needs to be solve at each time iteration.
intermediate states are taken according to Toro [6].

The linearized system involves the numerical ux Jacobian
wich is almost the original system Jacobian due to the solver

g EiL) to s structure [7]:
B Wi = WO S WL WY ifS 00
3F(WR+ S(Wg WR) ifS 0 0 1
" F(WR) fS O 0 Ny Ny nz
(1) - B Vuragdn  V+nw nu nu §
Vv+ agdn, NV V+nyv nv
0 1 1 Vw+ agdn, MW W V+ nw
Wy = aKz \éK @5 A (12) | | | (16)
V Depending on the signs &, Sz andS , the correction term

. _ o . S(Wg W) and its Jacobian can be added. This term can
WhereV\ is the tangential velocity in the transversal direc- pe partially or completely neglected in the Jacobians for the
tion. sake of simplicity at the cost of a slower convergence rate for
This expression of the ux involves multiple rotations and, Stéady computations. In this study, the adopted Jacobians for
as a consequence, is not numerically optimal. Simple algelh® 1eft and right states are only the system Jacobian com-
braic manipulations give those simpler forms and remove th@uted with either states.
rotations: A regular MUSCL (Monotone Upstream Scheme for Con-

servation Law) extension is possible within SU2 in order to
reach a higher than one space convergence order. A standard

t - akVik d order TVD limiter is used t tability [9
TF(TWk) akVi Uk + axgdn (13a) second order imiter is used to ensure stability [9].
. S W 0
(W TWg)= s 5 Wkrak(Sa Vi) 3 RESULTS

(13b) 3.1 VERIFICATION

The additional source term is computed at the same time aphe positivity-preserving property is closely related to the

the ux by considering the volume fraction of water between solver capabilities at resolving shock and more importantly,

two cells according to the HLLC numerical ux: rarefaction waves which often occur in low density areas.

8 . In order to showcase the solver in those situations, two 1D
aL if 0 S L. . .

5 , explicit simulations (only the hyperbolic part of the droplet
a ifS 0 S (14) equations) creating a rarefaction and a shock wave are estab-

gag fS 0 = lished and the results are compared to the analytical solutions

ar ifSR 0 [5].

arL=



i ary condition (3), some numerical instability appears in low
i /. ’ densities areas where the velocity is also really low. In those
’ - 1 cases, to ensure stability, the droplet velocity is approximated
1° by the air velocity. Because of the low density, this approxi-
1? mation has minor to no effect on the collection ef ciencies.
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Figure 2: Density and velocity solutions for the 1D rarefac-
tion wave,g= 9:81,d = 0:1m
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Figure 3: Density and velocity solutions for the 1D shock

,g= 9:81,d= 0:23m . . .
wave.g Figure 4: The droplet velocity and volume fraction of water

on a NACA 65415 airfoil,d = 21um Mach=0.23, AoA=8,
Transmissive boundary conditions are taken on both side [9hord=0928m
As shown, gure 2, the density is accurate (the maximum
residue is below @ with 100 points) and remains positive.
In the wet region the velocity residue is just as low whereaslo better understand the scheme behaviour, the density and
in the dry region, the zero speed area does not appear. Thelocity are represented in gure 4 for the NACA£EL5 air-
resolution of shock waves does not present this problem a®il. The wet and dry regions are clearly visible around the
shown in gure 3. However, the density maximum in the areaairfoil. On the nose, droplets accumulate and close to the
of the shock is about 15% higher than the exact solution antrailing edge a dry region appears. The 1D rarefaction wave
the velocity 5 % higher with the Van Albada limiter. Overall test showcases the HLLC dif culties to accurately solve the
the shock is overestimated but this issue is really ux limitervelocity in low density areas. This behaviour manifests in
dependant. The computed solutions with the same scheme the region above the upper surface of the airfoil where a non
[5] are similar. physical discontinuity appears. The highest residuals are con-
centrated in this area and slow down the convergences on the
velocity. The residual is de ned as the norm of the difference
between to consecutive solutions. Fortunately, those speeds
are associated with low densities and as a consequence, are
got accompanied with particles transport.

Within SU2, the droplet solution is computed around a NACA
65,415 cambered airfoil at different angles of attack for an
Euler air ow solution with the implicit scheme. As a rst ap-
proximation, the arti cial source terrf, is disregarded. As

a matter of fact, 1D and 2D rarefaction and shock wave test
have shown that its effect is negligible when compared to tho study the space convergence properties of the scheme, a
physical source terms. Regarding the really speci ¢ boundmesh series is considered for the same airfoil with an approx-



n 2
ence element siza.s (for the coarse mesh) is about the size
of the chord divided by 200. The local collection ef ciency
b= aU n=Uy, with Uy the air velocity at far eld, is com-
puted around the pro le for each meshes. The local collection
ef ciency represents the droplet impingement intensity on the
pro le surface and is the quantity of interest in the context of
icing.

. . h
imate element size dfi, = 14Lf (n2 J1;4K. The refer-
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Figure 5: Local collection ef ciency sensibility to the mesh
size on a NACA 65415 airfoil, d = 21pm Mach=0.23,
A0A=0° and AoA=8&, chord=0928m

Firstly, the maximum remains the same (0.2% between the

nest and the coarsest mesh) at both angles. The collectiom order to study in detail the in uence of mesh re nement on
areas are almost identical (0.4%) at But at 0 a small vari-  the droplet solution, cuts are made on the water volume frac-
ation (5%) occurs between the nest and the coarsest mestion and velocity elds in normal and tangential directions to
On the lower surface at 8the collection ef ciency slightly the NACA 65415 airfoil at two speci ¢ positions ( gure 6).
increases with the mesh re nement by 2% at most betweeifhe rst one is on the dry area of the upper surface aafd
each solution. Overall, at both incidence angles, the collecthe second one at &n the lower surface where the collec-
tion ef ciencies are really similar and show only minor vari- tion ef ciency changes the most between meshes as shown in
ations between each other. This analysis suggests that thgure 5. Those cuts should show the shock and rarefaction
collection ef ciency is very little sensitive to the mesh size. waves between the areas of low and high densities.



Aoh=0", d=21 um merical scheme order drop to 1 in the high gradient area and

Xcoarse density H
ral Coaree denty — | 140 in our case, close to the shock waves.
Medium density
13- Fine density —— 4 130
Xcoarse x-velocity — —
12+ Coarse x-velocity — — 4 120 po 4
Medium x-velocity AoA=8°, d=21 um
11 Fine x-velocity = — 4 110 2 100

Xcoarse density ——
Coarse density ——
Medium density 4 9
Fine density ——
Xcoarse x-velocity — —
Coarse x-velocity — — 1
Medium x-velocity 1
Fine x-velocity — — 1 79
Xcoarse y-velocity « + + = -
Coarse y-velocity - - - -
Medium y-velocity 3 60
Fine y-velocity - - - -

Xcoarse y-velocity - - + -
Coarse y-VeToeTy
Medium y-velocity 1.8
09+ = Fine y-velocity - - - - - 90

Volume fraction of water
Velocity magnitude
-
&

Volume fraction of water
-
.
Velocity magnitude

10

. . . . . . 0
0 001 002 003 004 005 006 007 008 009 01 011 012
Position relative to the airfoil surface 4T 110

AoA=0°,d=21um T et
15 150 e

Xcoarse density foe
1.4 Coarse density
Medium density
13} Fine density
Xcoarse xvelocity — — | 1,0

0 0.01 002 003 004 005 006 007 008 009 01
Position relative to the airfoil surface

12

A0A=8°, d=21 um

11
Xcoarse density ——

Coarse density —— 7
Medium density 3 90
Fine density ——
Xcoarse x-velocity = — |
Coarse x-velocity — — 1
Medium x-velocity |
Fine x-velocity — — 1 70
= —= —Xcgarse y-velocity - - - - -
Coarse y-veloetty == = |
Medium y-velocity 1 60
Fine y-velocity - - - - -

09 -

0.8 &

0.7

0.6

Volume fraction of water
Velocity magnitude
-
n

0.5

0.4 -

N
5
Volume fraction of water
-
Velocity magnitude

o2 10 0.9 ‘ / 40
e shot
:j -20 g'i -i‘// ”
0.6 td
0 : . - - - - - - . -20 05 H 20
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 11 1.2
Position along the longitudinal axis 0.4 10
0.3
0.2 - 0
Figure 7: Normal and tangential volume fraction of water and e S U SR S I
velocity on the NACA 65415 airfoil,d = 21um, Mach=0.23, S i vengdnaats

A0A=0°, chord=0928m
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o e . .. velocity on the NACA 65415 airfoil,d = 21um Mach=0.23,
In the rst situation, the diffusion of the shock is clearly visi- A0A=0 = 8. chord=0928m

ble between meshes in both normal and tangential directions.

The volume fraction of water maximum dropped by 15 % be-

tween the xcoarse and the ne mesh in the normal directionln this second situation, the tangential chart explains the nor-
In the tangential direction, the density decreased according tmal volume fraction of water gap close to the airfoil surface.
the element size close to the airfoil surface in the dry areaA shock wave appears at this position and, like in the previ-
The density remains positiva (10 °). In both directions, ous example, the shock is diffused in both directions accord-
the difference between the velocities doesn't exce&@llex-  ing to the mesh size. The convergence orders are the same at
cept in the tangential one where the ne mesh velocity oscil-both angle of attack. The good resolution of shock waves on
lates in the dry area. The maximum magnitude of those varithe lower surface is critical to compute an accurate collection
ations is 30% compared to the nest solution. By analogyef ciency from a numerical point of view. However, the com-
with the 1D rarefaction test case, the low volume fraction ofparisons in the next section show the overall HLLC scheme
water creates this minor instability. Because the velocity igendency to compress the density. As a consequence, humer-
not associated with any particle transport in this dry area, thé&al diffusion does not represent a big issue and a mesh ne
error on the velocity does not impact the volume fraction ofenough to resolve the Euler ow solution is enough to solve
water distribution. the droplet equations.

The euclidean norm calculation of the difference between th8ecause the arti cial source term is neglected, the arti cial
ne mesh volume fraction of water and the other meshes sopressure term changes the system to restore hyperbolicity.
lutions allows to establish the approximate convergence orfhe choice of thed parameter could be different than the
der of the HLLC scheme coupled with a MUSCL extension.droplet diameter and his in uence needs to be studied. A
The density convergence order i85 in the normal direction tangential cut is used on the same airfoil and the velocity and
and 176 in the longitudinal direction. Although this order is volume fraction of water are represented on gure 9 for dif-
smaller than 2, this result was to be expected because the nigrent values of this parameter.



similar (01% gap) than the Euler based solution. Overall,
the Eulerian approach produces closer results to the experi-
ment than the Lagrangian one in those particular cases. Fi-
nally, the use of a Navier-Stokes based air ow seems to lead
to an overall underestimation of the local collection ef ciency
according to Jung and Myong results [5].

Figure 9: Tangential volume fraction of water and velocity
for different stabilisation parameters on the NACA;8%55
airfoil on the upper surface,= 21um Mach=0.23, AcA=8,
chord=0928m

Both the velocity and the volume fraction of water approach

a limit solution when the stabilisation parameter approaches
zero. As a consequence, the system limits seem to be the
same as the scheme limits. Fr 10 ?m, the difference
norm between the solutions is smaller than40As a conse-
guence, the stabilisation parameter does not need to be as low
as possible and the choice of the real droplet diameter as the
stabilisation parameter is usually a good choice to get a good
approximation of the limit solution.

3.2 VALIDATION

In this section, the local collection ef ciency is compared to

other available solutions at a @nd a 8 incidence angle and

with two different droplet diameters ( gure 5 and 10). The _. ) . .

experimental results are obtained with a complex laser sys'f.'gu.re 10'_ Local collectloD ef ciency ‘3” a NACA 6?15
i . airfoil, d = 92um Mach=0.23, AoA=0 and AoA=&,

tem in a scale model by the NASA [10]. Uncertainties re_chord:0928m

mains mainly because of the dif culty to obtain the desired

droplet diameter [10]. Moreover, the LEWICE NASA code

uses a Lagrangian approach to compute the droplet impact dffith ad = 92umdroplet diameter ( gure 10), the previously

the airfoil. The solutions obtained by Jung and Myong [5] aredescribed behaviour is exacerbated. At both angles, in the

computed with their HLLC scheme but with a Navier-Stokesmaximum collection ef ciency areas, both computed solu-

based air ow. tions are almost confounded and predict the same maximum

which is about 15% higher than the experimental one. Out-

As shown, gure 5, the maximum collection ef ciency is side of this area, at Qthe collection ef ciency is much big-
close to LEWICE results but about 5% higher than the exper- ' y g

. . o . ger than expected and the collection range is approximately
imental maximum at both incidence angles. The Lagrang|ar§11wice as big. At 8, on the upper surface the HLLC scheme

code tends to overestimate the captation limits range by af— : . . )
result is closer to the experimental collection ef ciency than
most 50% at 0 and by more than 30% at §on the lower . .
the LEWICE code. However, outside of the maximum area,
surface).  On the contrary, the SU2 HLLC scheme has th%n the lower surface, the Eulerian approach clearly overesti
tendency to underestimate the range by 30% aatid by ’ P Y

less than 5% at 8 Overall, the SU2 HLLC scheme tends mates the collection range as for the other incidence angle.

| ) : . In this situation, the HLLC scheme predicts a collection ef -
to overestimate the collection ef ciency and to underestimate . .

. ; .ciency 10% higher than Lewice.
the collection area. At both angles, the maximum collection

ef ciency of the other HLLC solution (by [5]) is 7% lower Finally, the obtained local collection ef ciency is compared
than the experimental one. However, the collection range ior the NACA 0012 airfoil at a 4incidence angle ( gure 11).



The Drop3D code is part of FENSAP-ICE suite and also usesng. Numerical results within SU2 are in agreement with the

an Eulerian formulation. literature and underscore the good scheme properties espe-
cially in low density areas where the density remains positive
on every test cases. Because of the low local collection ef -
ciency sensitivity to spacial discretization, satisfactory results
can be achieved with relatively coarse meshes. The use of the
Euler equations to compute the air ow is certainly an approx-
imation in this study but its impact remains uncertain at low
angles of attack. Future work could consider the use of a
Navier-Stokes based air ow and the required adjustments to
the boundary condition treatment in order to take the bound-
ary layer into account.
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