N

HAL

open science

An Optimised Flow for Futures: From Theory to
Practice

Nicolas Chappe, Ludovic Henrio, Amaury Maillé, Matthieu Moy, Hadrien
Renaud

» To cite this version:

Nicolas Chappe, Ludovic Henrio, Amaury Maillé, Matthieu Moy, Hadrien Renaud. An Optimised

Flow for Futures: From Theory to Practice.

The Art, Science, and Engineering of Programming,

2021, 6 (1), pp.1-41. 10.22152/programming-journal.org/2022/6/3 . hal-03440766

HAL Id: hal-03440766
https://inria.hal.science/hal-03440766

Submitted on 22 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-03440766
https://hal.archives-ouvertes.fr

An Optimised Flow for Futures: From Theory to Practice

Nicolas Chappe?, Ludovic Henrio?, Amaury Maillé?, Matthieu Moy?, and
Hadrien Renaud®P

a Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP, F-69342, LYON Cedex o7, France

b Ecole Polytechnique/Institut Polytechnique de Paris, Palaiseau, France

Abstract A future is an entity representing the result of an ongoing computation. A synchronisation with
a “get” operation blocks the caller until the computation is over, to return the corresponding value. When
a computation in charge of fulfilling a future delegates part of its processing to another task, mainstream
languages return nested futures, and several “get” operations are needed to retrieve the computed value (we
call such futures “control-flow futures”). Several approaches were proposed to tackle this issues: the “forward”
construct, that allows the programmer to make delegation explicit and avoid nested futures, and “data-flow
explicit futures” which natively collapse nested futures into plain futures.

This paper supports the claim that data-flow explicit futures form a powerful set of language primitives, on
top of which other approaches can be built. We prove the equivalence, in the context of data-flow explicit
futures, between the “forward” construct and classical “return” from functions. The proof relies on a branching
bisimulation between a program using “forward” and its “return” counterpart. This result allows language
designers to consider “forward” as an optimisation directive rather than as a language primitive.

Following the principles of the Godot system, we provide a library implementation of control-flow futures,
based on data-flow explicit futures implemented in the compiler. This small library supports the claim that the
implementation of classical futures based on data-flow ones is easier than the opposite. Our benchmarks show
the viability of the approach from a performance point of view.

ACM CCS 2012
= Computing methodologies - Distributed programming languages; Parallel programming languages;
= Theory of computation - Program semantics;

Keywords parallelism, programming languages, futures

The Art, Science, and Engineering of Programming

Submitted September 30, 2020
Published July 15, 2021
Dol 10.22152/programming-journal.org/2022/6/3

@ © Nicolas Chappe, Ludovic Henrio, Amaury Maillé, Matthieu Moy, and Hadrien Renaud
This work is licensed under a “CC BY 4.0” license.

In The Art, Science, and Engineering of Programming, vol. 6, no. 1, 2022, article 3; 41 pages.

https://doi.org/10.22152/programming-journal.org/2022/6/3
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

An Optimised Flow for Futures: From Theory to Practice

EJ Introduction

A future [4] is an entity representing the result of an ongoing computation. It is used
when launching a sub-task in parallel with the current task to later retrieve the result
computed by the sub-task. A future is resolved when the associated value is computed.
Futures have been used for more than 30 years now, and their adoption became wider
and reached mainstream object-oriented languages during the last 20 years. Futures
are used as a high-level parallelism paradigm in the standard libraries of Java, Scala,
JavaScript, C++, or in the Akka and ProActive toolkits. A future is at the same time
a container for some data and a way to synchronise processes: programs that use
futures wait for the resolution of the future before executing some piece of code.

To classify futures, the classical approach is to distinguish implicit from explicit
futures [7, 28], i.e whether there are dedicated operations to access a future’s content
(explicit) or not (implicit). We demonstrated [12, 17] that the way synchronisation
is performed is a more distinctive feature. In particular futures should be classified
depending on whether they are equipped with a data-flow or a control-flow synchro-
nisation. We call the synchronisation “control-flow” when the execution of a given
statement releases the synchronisation, and “data-flow” when it is the availability of
some data that releases the synchronisation; such a distinction appears when nesting
futures (see next paragraph). Control-flow futures are explicit by nature and generally
typed using a parametric type of the form Fut[T]. Traditionally, data-flow futures have
been implicit, but we showed they could be explicit as well. The typing of data-flow
explicit futures requires specific typing rules that prevent the construction of nested
future types. We call data-flow explicit futures flows [12] and denote their type Flow[T].
The type system for flows relies on a collapse rule that transforms a type of the form
Flow[Flow[T]] into Flow[T].

Delegation and Future Nesting The distinction between control-flow and data-flow
synchronisation makes a particular sense when the asynchronous task responsible for
resolving a future delegates the resolution of this future to another asynchronous task
(i.e. terminates its execution with a return asynchronous-call) and provides another
future as the computed value. With control-flow futures, two synchronisations (e.g.
get(get(nested_future))) are necessary to fetch the result: one waiting for the task that
delegates and another for the task that resolves the future. With data-flow futures, a
single synchronisation (e.g. get*(nested_future)) is necessary to wait for the resolution
of both tasks. See listing 1.b on page 5 for an example of such a delegation. It is also
in case of delegation that the difference between type systems is visible: the type of
the result of an asynchronous call itself delegated asynchronously to another entity
will be of the form Fut[Fut[int]]; with data-flow explicit futures such a type is collapsed
into Flow[int].

Encore [9] is a language with control-flow futures but a focus on data-flow like
synchronisations. Encore is an active object language extended with a forward con-
struct allowing the programmer to encode delegation without creating nested future
types [11]. The direct semantics of forward relies on future chaining but an optimising
compilation phase avoids chaining and uses promises. Promises are variants of futures

32

Nicolas Chappe, Ludovic Henrio, Amaury Maillé, Matthieu Moy, and Hadrien Renaud

that are explicitly resolved through a set operation while a future is resolved when
the associated task terminates.

Contribution Compared to the previous works, this article further investigates the

use of data-flow explicit futures and illustrates the benefits of this new kind of futures

over existing ones. More precisely:

= We present both a formal definition and a concrete implementation of data-flow
explicit futures in the Encore language.

= We illustrate the expressiveness and ease of programming brought by data-flow
explicit futures both with illustrative examples and by showing that control-flow
futures can easily be encoded from data-flow explicit futures; as such we provide
the first complete implementation of an encoding of the Godot approach [12].

= The formal aspects of this article are based on DeF, a new core calculus dedicated to
the study of data-flow explicit futures. DeF is not meant to be a new programming
language, but rather a minimalistic formal language, expressive enough to be
representative of existing mainstream languages. Because we target mainstream
languages with imperative aspects, we define this calculus with a mutable state
and some standard imperative constructs. It also features asynchronous calls that
take advantage of data-flow explicit futures. The main improvement over Godot,
a lambda-based calculus with data-flow explicit futures [12], is our support for
mutable state.

= We formally and experimentally study one of the most promising optimisations
enabled by data-flow futures: with data-flow explicit futures, the return and the
forward primitives have the same semantics. We prove this equivalence and in-
vestigate the benefits we could obtain by exploiting it. Our calculus includes the
formalisation of the forward* primitive with a novel typing rule that is safe even
when the function that performs a forward* is invoked synchronously.

Organisation of the Paper Section 2 presents existing future constructs and illustrates
the benefits of data-flow explicit futures on an example. Section 3 presents DeF, a
core calculus of data-flow explicit futures, its syntax, semantics, and type system.
The extension of DeF with a forward* primitive is called DeF+F, it is also defined in
this section. Section 4 proves that the return and the forward* primitives have the
same behaviour by exhibiting a branching bisimulation between programs that use
the forward* primitive and programs that only use return. Section 5 presents our
DeF extension to Encore, the encoding of control-flow futures based on data-flow
explicit futures, the implementation of the forward* primitive and concludes with a
performance evaluation of the constructs presented in this paper.

3:3

An Optimised Flow for Futures: From Theory to Practice

[FJ Context and Related Work
2.4 A Brief History of Futures

“Futures” are a programming abstraction that has been introduced by [4]. It has then
been used in programming languages like MultiLisp [16]. Futures provide an elegant
form of parallelism by enabling the creation of asynchronous tasks that return a result.
The synchronisation mechanism provided by futures is closely related with the flow of
data in the programs. In MultiLisp, the future construct creates a thread and returns
a future that can be manipulated by operations like assignment that do not need a
real value, but the program would automatically block when performing an operation
that requires the future value (e.g. an arithmetic operation). In MultiLisp, futures are
implicitly accessed in the sense that there is no specific instruction for accessing a
future but there is an explicit statement for creating them. Typed futures appeared
with ABCL/f [27] to represent the result of asynchronous method invocations, i.e.
invocations performed in parallel with the code that triggered them.

The first work on formalisation of futures was probably realised by Flanagan and
Felleissen [13, 14] and was already focused on the difference between explicit and
implicit future access. This work studies the futures of MultiLisp, that are explicitly
created but implicitly accessed. The authors translate a program with futures into a
lower-level program that explicitly retrieves futures, and then optimise the number
of necessary future retrievals. In a similar vein, A(fut) [24] is a concurrent lambda
calculus with futures with cells and handles. Futures in A(fut) are explicitly created,
similarly to MultiLisp. Alice ML [23] can be considered as an implementation of A(fut).

While the first adoptions of futures were in functional languages, they are nowadays
used in imperative and object-oriented programming. For example, futures now exist
in many mainstream languages such as C++, Java, Javascript, Scala, ...In particular
futures play a central role in actor [2] and active object languages [7], which are
based on asynchronous communications between single-threaded entities. They use
futures to represent replies to asynchronous messages. Except for ProActive [3], actor
and active-object languages use explicit futures [9, 20, 21, 29]. In this context, De
Boer et al. [8] designed a compositional proof theory for active objects, that puts a
strong emphasis on the modelling of futures.

2.2 Motivational Examples

Listing 1 shows the same simple program in different languages and using different
constructs: with control-flow explicit futures in Encore, with data-flow explicit futures
in our extension to Encore, and with implicit futures in ProActive. The syntax of
these languages is mostly simple object oriented programming except the following:
in Encore, ! triggers an asynchronous method invocation that returns a control-flow
explicit future; ! is the equivalent operation that creates data-flow futures; Fut[T] (resp.
Flow[T]) is the type of a control-flow explicit future (resp. a data-flow explicit future)
that will be resolved by a value of type T; get (resp. get*) waits for the resolution of a
control-flow explicit future (resp. a data-flow explicit future) and returns its value.

34

Nicolas Chappe, Ludovic Henrio, Amaury Maillé, Matthieu Moy, and Hadrien Renaud

H Listing1

A simple actor example: control-flow explicit futures, data-flow explicit futures

and implicit futures (that are always data-flow).

a) Encore (control-flow explicit futures)

active class B
def bar(t: int): int
t*2
end

def foo(x: int): Fut[int]
valt=x+1
val beta = new B()
betalbar(t)

end

-- we need this function as foo cannot take
< both fut and int
def foo_fut(x: Fut[int]): Fut[int]
this.foo(get(x))
end
end

active class Main
def main(): unit
val alpha = new B()
-- Asynchronous call using !, returns a
— future
val x: Fut[Fut[int]] = alpha!foo(1)
val y: int = get(get(x)) + 1
val z: Fut[Fut[int]] = alpha!foo_fut(get(x))
println(get(get(z))) -- 10
end
end

b) Encore with DeF (our extension)

active class B
def bar(t: int): int
t*2
end

def foo(x: Flow[int]): Flow[int]
val t = get*(x) + 1
val beta = new B()
betallbar(t)
end
end

active class Main
def main(): unit
val alpha = new B()
-- Asynchronous call using !!, returns a flow
val x: Flow[int] = alpha!!foo(1) -- this lifts 1
— from int to Flow[int]
vary: int = get*(x) + 1
val z: Flow[int] = alpha!foo(x)
println(get*(z)) -- 10
end
end

¢) ProActive, implicit futures (Complete code for this example can be found on this gist)

public class B {
/[... define newB, main ...

public Wrappedint bar(Wrappedint t) {
return t.mult(2);

}

public WrappedInt foo(Wrappedint x) throws Exception {

Wrappedint t = x.add(1);
B beta = newB();
return beta.bar(t);

}

public static void realMain() throws Exception {

B alpha = newB();

Wrappedint x = alpha.foo(new Wrappedint(1)); // Method call on active object = asynchronous
— call, returns an implicit future implementing the WrappedIint interface

Wrappedint y = x.add(1); // Forces synchronisation

Wrappedint z = alpha.foo(x);

System.out.println(z); // Forces synchronisation

35

https://gist.github.com/HadrienRenaud/d5b9198fdeee9118382d532a8e24489f

An Optimised Flow for Futures: From Theory to Practice

In this article and in our implementation we use two different operators get and
get* to distinguish operations on control-flow explicit futures and on data-flow explicit
futures. Using polymorphism to offer a single primitive would be possible but we
believe it is better to expose the programmer to two different operators that have a
different semantics.

The example creates an actor alpha that is invoked asynchronously to perform the
operation foo. The operation is partially delegated to an actor named beta as the
result of foo is an asynchronous call to the method bar of beta. Notice the nested
future type that exists with control-flow explicit futures (listing 1.a line 22) due to
the delegated call and the subsequent double get operation line 23. With data-flow
explicit futures, there are never two nested Flow types and never two consecutive
invocations of get*. We call these futures data-flow because get* always returns data,
never a future, but they are still explicit in the sense that the user needs to call get*
akin to get in control-flow explicit futures. In ProActive, futures are implicit and the
synchronisation occurs automatically on line 17 when an operation is triggered on
the future. Implicit futures are always data-flow: because the type and the way to
access data are transparent to the user, neither nested future types nor double-get
operations would make sense for them. Finally, the example illustrates the invocation
of a function with a future as parameter. With control-flow explicit futures the fact
that a parameter is a future is explicit in a method’s signature, but with data-flow
explicit futures it is not necessary to declare two methods foo as an integer can be
passed as parameter where a Flow[int] is expected. The synchronisation on line 7 of
listing 1.b is resolved immediately if the parameter x is in fact an integer (that has
been lifted to a Flow).

This example shows that the data-flow explicit futures are a good middle point
between implicit futures and control-flow explicit futures, where the user keeps
control over the synchronisation but delegates the chain handling to the language.
The type system with data-flow explicit futures avoids the need for method duplication
by automatically lifting native types to Futures. We now define more formally the
different existing kinds of Futures, and position our work accordingly.

2.3 The Limitations of Existing Future and Promise Constructs

Two initial works highlighted the differences between explicit and implicit futures.
First, it has been shown that adapting a static analysis [15] from explicit to implicit
futures is difficult mostly because, with implicit futures, an unbounded number of
synchronisation can be triggered by a given statement. Also the proof of correctness
of the ProActive backend for ABS revealed the impossibility to simulate exhaustively
control-flow synchronisation on implicit futures [19], this was due to the fact that
synchronisation on implicit and explicit futures cannot observe the same thing.

Following this, a first active object version of data-flow explicit futures was proposed
in a report [17]. Then the Godot system [12] was designed. It includes both data-flow
and control-flow explicit futures and illustrates how to encode one into the other. The
Godot system highlights three shortcomings of standard explicit futures and offers
solutions:

3:6

Nicolas Chappe, Ludovic Henrio, Amaury Maillé, Matthieu Moy, and Hadrien Renaud

The Future Type Proliferation Problem leading to the nesting of future types in case

of delegated calls. Line 22 of listing 1.a shows a nesting of future types. Data-flow
explicit futures solve this problem.

The Future Reference Proliferation Problem referring to the possibly long chain of fu-

ture references that has to be followed to reach the resolved future with either
implicit or explicit futures in case of delegated calls. The use of forward can solve
this problem.

The Fulfilment Observation Problem referring to the fact that the events observed with

data-flow and with control-flow synchronisations are not the same. Indeed control-
flow futures are better adapted to observe the flow of computation, e.g. in a
scheduler, whereas data-flow futures are better adapted to express a computation
and its data dependencies, e.g. in the resolution of a computational problem.

The current limitations of the Godot system are:

The provided semantics is based on a stateless calculus while most of the languages
that use futures are stateful. In particular the semantics does not allow a program
to create a cycle of futures. While not desirable in practice, such cycles can happen
as a consequence of the fact that the host language allows side effects. Our calculus
is stateful and thus more representative of the existing implementations of futures.

Incomplete implementation: the artefact associated with [12] encodes data-flow
futures as a library built on top of the control-flow futures of Scala. It cannot
handle parametric types that contain futures. Technically, the collapse rule is
implemented at the time of creation of Flow to avoid creating a Flow[Flow[T]], but a
Flow[Flow[T]] can be created by using a parametric type Foo[T] and instantiating it
with T=Flow[T’]. In this case the compiler has no way to collapse such types, and
the type proliferation problem remains. To the best of our knowledge, no solution
to this problem can work in a library-based approach without specific language
support.

We perform the reverse encoding (modify the language and compiler to implement
data-flow natively, and encode control-flow on top of data-flow) and fully supports
parametric types. The encoding of control-flow futures on top of data-flow ones
was defined formally in [12], but was not implemented and therefore not studied
experimentally.

The typing rule of [12] for forward* allows calling synchronously a method that
actually runs asynchronously, adding an implicit synchronisation. We believe this
implicit synchronisation contradicts the principles of explicit futures, and as such,
we provide a safer typing rule for forward*.

About Promises A promise is a future plus a handler that must be invoked to resolve

the future. The handler is created at the same time as the future and any process that
knows the handler can resolve the future. The advantage is that the resolution of the
future is not tied to a given process. Promises do not suffer from the limitations of
futures concerning delegation but they are more difficult to program. Indeed it is in
general not possible to ensure that a promise is resolved exactly once [1]. Data-flow
futures, explicit or implicit, keep the single resolution guarantee of futures while

3.7

An Optimised Flow for Futures: From Theory to Practice

changing dynamically the thread responsible for fulfilling a future, which is the major
advantage of promises compared to futures. Promises are used internally in Encore [11]
to implement the forward primitive efficiently while avoiding the risks mentioned
above.

About Non-Blocking Future Access Another future access method is to register a
continuation that will be executed asynchronously upon future resolution. It exists
for example in Creol and AmbientTalk [10], where futures can only be accessed
asynchronously, i.e. the programmer can only register some piece of code that will be
executed when the future is resolved. Creol interrupts the execution of the current
thread while waiting for the future. In AmbientTalk, when-becomes-catch behaves
similarly but also a method invocation on a future generates an asynchronous invo-
cation that will be scheduled when the future is resolved. In Akka, blocking future
access is possible (using Await.result or Await.ready) but asynchronous future accesses
should be preferred according to the documentation. Asynchronous reaction on future
resolution is called future chaining in Encore [9], where it is provided by a ~~> operator
(also called then). This operator registers code to be executed when the future is
resolved; for example, with fut.then(lambda x ...) the resolution of fut triggers the
execution of the lambda-expression on the right.

The advantage of non-blocking future accesses is that they prevent deadlocks. The
counterpart is that the absence of synchronisation instruction makes it difficult to
reason on the computations that are finished or not at a given program point. Many
complete programming languages like Encore, ABS, and Akka feature both blocking
and non-blocking future access.

Non-blocking access to data-flow futures makes perfect sense and, while our formal-
isation focuses on blocking synchronisation on futures, our results can be extended
to non-blocking future access. On the practical side, we implemented non-blocking
future access for data-flow futures in Encore (called chaining and denoted ~~>*).

2.4 Positioning and Discussion

The traditional classification of futures differentiates explicit from implicit futures [7,
28]. What is generally meant by the explicit vs implicit classification is the existence
of 1) a specific type construct for futures (e.g., futlint]), and 2) a specific future access
primitive (e.g., get). In this sense our futures are explicit. However in all mainstream
implementations of explicit futures, the type system for futures relies on classical
parametric types that enforce a control-flow synchronisation on futures. Data-flow
explicit futures are explicit but with a type system and synchronisation semantics that
are different from usual explicit futures that use parametric types. Specifically, the
type system of data-flow explicit futures collapses Flow[Flow[T]] into Flow[T] and it can
lift T to Flow[T]. Collapsing enables data-flow synchronisation on futures while lifting
allows a non-future type to be considered as a future.

One major example of a library with data-flow synchronisation on futures is the
ProActive library [3]. GCM components [5], and a content addressable network [25]

3:8

Nicolas Chappe, Ludovic Henrio, Amaury Maillé, Matthieu Moy, and Hadrien Renaud

are two major projects that use the library. They both rely on delegation to route
messages and on data-flow synchronisation for the access to results of invocations.

Data-flow synchronisation is more adapted to the programming of computations
manipulating values. Control-flow synchronisation is better adapted to control ex-
plicitly the scheduling of tasks. Overall, control-flow explicit futures and data-flow
explicit futures should probably coexist in a good programming library [12]. A short
summary of the kinds of futures and their typical uses is given in table 1.

B Table1 Summary of kinds of futures

Explicit Implicit
Benefits Easier debuggin Concise
Suitable for gs1ns
C++, Java . .
Control-flow task schedulers, ... > Java, impossible
Scala, Encore
. . Godot, MultiLisp,
Data-flow computation using data o .
our contribution ProActive

This article presents our modification to the Encore compiler to add support for
data-flow explicit futures in addition to the existing explicit futures. We chose Encore
because it is a full-fledged language and its compiler and type-checker are not too big.
Moreover, Encore is an actor language where it is simple to create small examples that
illustrate the delegation of asynchronous invocations and data-flow explicit futures.

This article also proposes an encoding of control-flow synchronisation based on
data-flow explicit futures. This direction is the opposite one compared to the artefact
of Godot [12], i.e. a Scala library that provides data-flow explicit futures based on
existing control-flow explicit futures. Our encoding implementation is also more
complete as it can fully deal with parametric types but its syntax is less nice: we
only provide a set of functions and have no way to extend the syntax because our
implementation is an Encore library. By implementing control-flow explicit futures as
a library in a language that only provides data-flow explicit ones, the compiler has a
single future primitive and the programmer can use both kinds of futures. We believe
this approach is adapted to most languages that use explicit futures or promises.

Implementation matters are further discussed in section 5.

[E] Data-Flow Explicit Futures: Principles and Semantics

This section presents two core languages called DeF (for data-flow explicit futures)
and DeF+F that extends DeF with a forward* operator. DeF features data-flow explicit
futures exclusively, functions that can be called synchronously or asynchronously, and
a global state that enables imperative programming. We designed DeF as a minimalistic
calculus but expressive enough so that our results on data-flow futures would still be
relevant on a wide range of more complex calculi.

Our languages are equipped with a type system. Compared to our implementation
of data-flow explicit futures in Encore we do not encode objects or actors and con-

39

An Optimised Flow for Futures: From Theory to Practice

B Table2 Static syntax of DeF.

P = Tx M{Txs} program
M = TwnT x){T xs} function
s u= skip | x=2 | ifv{s}else{s} | s;s | returnv statements
z u= e | mv) | mv) | getxv right-hand-side of assignments
e = v | vV expressions
v = x | integer-and-boolean-values atoms
B 1= 1Int | Bool basic type
T B | Flow|[B] Type

M Table3 Runtime Syntax of DeF.

cn = a)F configuration
F o= f(Qf(w) set of futures in configuration (unresolved / resolved)
q = {{|s} stack frame
w = f | b runtime values: future identifiers and basic values
b ::= integer-and-boolean-values values of basic types
fia = [x—w local and global store
s u= skip | x=2 | ifv{s}else{s} | s;s | returnv statements

v = x | w variable or runtime value

e = v | vV expressions with runtime values

z = e | m(V) | m¥) | getxv right hand side of assignments

sequently data-races exist in DeF but not in Encore. We show in section 5.3 how to
implement control-flow explicit futures on top of DeF.

34 Syntax of DeF

We use the following notations in our syntax. A bar over an expression, e.g. q denotes
a list. All lists are ordered, except the set of futures in a configuration. @ is the empty
list, and q#q is the ordered list ¢ with q prepended to it. As for sets of futures, FF’
simply denotes the union of the sets F and F’. ® denotes any usual integer or boolean
binary operator. Table 2 shows the static syntax of DeF. A program P is made of a
list of typed global variable declarations, a list of function definitions, and a main
function (s is the body of the main function). Each function M has a return type, a
name, a list of typed arguments, a list of typed local variables, and a statement that
is the function body. Asynchronous function calls are supported via the !m(V) syntax.
If B is a basic type, Flow[B] denotes the type of a data-flow explicit future that is to
be resolved by a value of type B.

Table 3 describes the runtime syntax of DeF. The configuration of a running DeF
program contains a global store a, a set of resolved futures f (w) and a set of unresolved
futures f (q) each associated with a running call stack q. Each frame q of a call stack
contains a local store ¢ and a statement to be executed s. Each store is defined as a
mapping from variable names to runtime values where runtime values w are basic

3:10

Nicolas Chappe, Ludovic Henrio, Amaury Maillé, Matthieu Moy, and Hadrien Renaud

values b and future identifiers f. Note that we also allow expressions and future
values to contain future identifiers, this will be useful for evaluating get+ statements.

To evaluate a program P = T x M {T’ x’ s} one must place it in an initial configu-
ration. To do this we suppose that all variables have an initialisation value denoted?
0. The initial configuration for P is: a) fy({£|s}) where f, is any future identifier,
the global store a = [X — 0] maps all global variables to an initialisation value, and
¢ = [x’ — 0] maps all local variables of the main body to an initialisation value.

The sequence s ; s is associative and skip is neutral as the statement has no effect;
thus we can rewrite any statement s under the form s’ ; s” where s’ is not a sequence
(and s” might be skip if s is a single statement). In the following we suppose that every
statement is rewritten under this form (this simplifies the operational semantics).

Configurations are identified modulo reordering of futures (hence Ff picks any f in
the set, not necessarily the last one) and future identifiers are unique; if f (w) € cn and
f (w')ecn, necessarily w=w'. Thus a configuration can be considered as a mapping
from future identifiers to call stacks or values.

3.2 Semantics of DeF

Figure 1 details the small-step operational semantics of DeF that uses three notations:

= Similarly to other languages with binding of methods or functions [20], provided
the program that is evaluated defines a function T m(T x) {T y s}, the bind operator
instantiates a new stack frame with the local environment and the body of the

function to be executed: bind(m,w) = {[X — W,y — 0] | s}

= Given two stores a and ¢, (a+/) is the union of the two stores with values taken in ¢
in case of conflict: (a+£)(x) = £(x) if x e dom(¢) and (a+¢)(x) = a(x) otherwise?

= Given two stores a and ¢, (a + £)[x — w] is defined as (a, £[x — w]) if x € dom(¢),
or (a[x — w],£) otherwise.

Our semantics features asynchronous calls. INVK-AsyNc spawns an asynchronous
task by adding an unresolved future to the configuration. From this point, the callee
executes the spawned task in parallel with the caller. Once the spawned task is
completed, the callee fulfils the future through the rule RETURN-AsyNc. The semantic
rules for synchronous calls are more standard. INVK-SyNc pushes a new stack frame
initialised in accordance with the function called and the arguments provided, and
RETURN-SYNC pops the current stack frame and resumes the execution of the caller
with the return value properly propagated.

The get* operator retrieves the value of a future f, defining the synchronisation
points of a DeF program. Indeed, rules GET-FUTURE and GET-DATA are only enabled
when getting a future of the form f(w), that is, a fulfilled future. Consequently,
performing a get* on an unresolved future blocks the process trying to access the
future. Thus, this introduces a synchronisation when getting an unresolved future.

! Defining initial values for each existing type is not detailed here, note that 0 is a valid value
for a Flow[int], corresponding to an already resolved future.
2 We suppose that the program is type-checked and every variable is declared.

31

An Optimised Flow for Futures: From Theory to Practice

x € dom(¢) [[V]]l =k [[v,]]lf =k SKIP

[wlle =w [xlle = €0x) [vev]e = kek a)F f({t|skip;s}#q)
—a)F f({t|s}#q)

AssIGN INVK-AsYNC

lellaye=w (a+O)[x—>w]=a +{ [Vllese =w bind(m,w)=q" f’ fresh
a)F f({t|x=e;s}#q) a)F f({t|x=m(v);s}#q)
—a') F f({t'|s}#q) —a)F f({t|x=f";s}#q) f'(d)
INVK-SyNC RETURN-ASYNC
[Plare =% bind(m,) = ¢ [V]ase = w
a)F f({{|x=m(v);s}#q) a)F f({{ | returnv;s}) —>a)F f(w)

—a)F f(¢#{t|x=m(V);s}#q)

RETURN-SYNC
[[V]]a+€’ =w
a)F f({{' | return v ;s}#{l | x=m(v);s'}#q)
—a)F f({t|x=w;s'}#q)

GET-FUTURE GET-DATA
[[ﬂ]a-&-l = f/ [[V]]a+l =Db
a)F f({t|y=get=v;s}#q) f'(W a)F f({t|y =getsv;s}#q)
—a)F f({t|y=get=w;s}#q) f'(w) —a)F f({t|y=Db;s}#q)

B Figure1 Semantics of DeF (rules IF-TRUE and IF-FALSE for reducing if omitted). Recall
that the set of futures F in a configuration is not ordered.

Once the relevant future is fulfilled, repeated applications of GET-FUTURE will
follow a sequence of futures and, unless there is a loop of futures or a deadlock,
GET-DaTa will finally provide the result of the get* operation.

Concretely, if there is a sequence of futures fo(f) ... fa_1(fa) fa(w) in the configu-
ration cn (with w not a future), a statement y = getx f, will become a y = get= f;
statement thanks to the GET-FUTURE semantic rule, then y = getx f,, and so on,
until yielding a y = get* w statement. At this point, the GET-DATA rule can be
applied, reducing the statement to y = w. This resolution takes place at every get*
statement: another get= f, will lead to the same series of GET-FUTURE applications.
In this example DeF futures differ from control-flow explicit futures, as for the latter
getting from f, to w would have needed n + 1 explicit get statements. When n cannot
be defined statically such a sequence is not expressible in the case of control-flow
explicit futures. This makes sense as a sequence of n + 1 futures is the result of n + 1
levels of asynchronous delegations. Control-flow explicit futures follow the control-flow
of the program while data-flow explicit futures follow its data-flow.

Example We show here a few examples of application of the semantics inspired by
the Encore program in listing 1.b.

3112

Nicolas Chappe, Ludovic Henrio, Amaury Maillé, Matthieu Moy, and Hadrien Renaud

A function invocation corresponding to the call to foo can be expressed by the
following reduction (applying the rule INVK-ASYNC):

@) fol{@ | x=lfoo(1); ...; y = getx x})
=) fo{@|x=f;..;y=getsx}) f({[x —1]]..})

Later on the resolution of future f will be delegated to a bar function that returns
4. We reach the following configuration and apply the RETURN-AsyNc rule:

@) fol{lx = f]1y =gets x}) f({[x— Ly f'][return y}) f'(4)
= @) fo{lx = f1|y = getx x}) f(f') f'(4)

Finally, the y = get=* x statement can be reduced, fetching the future value in three
steps (2 GET-FUTURE and one GET-DATA)

@) fo{lx = flly =getxx}) f(f) f'(4) = @) fol{[x — f1|y = get= f'}) F(f') f'(4)
= @) fol{lx = flly =get=4}) f(f) f'(4) — @) fo{lx = flly =4}) F(f') f'(4)

3.3 Syntax and Semantics of DeF+F

We now extend the language with a forward* statement. forward* takes a Flow as
parameter and can be used instead of return to terminate the execution of a function.
forward* f delegates the computation performed by the current task to the task that is
computing f but only if forward* f is in the body of a function called asynchronously.
If the function is called synchronously, forward* behaves like return. We present the
consequences of this addition on syntax and semantics. The static syntax of DeF+F is
the same as DeF plus a forward* statement:

su=skip | x=2 | ifv{s}else{s} | s;s | returnv | forwards v

The runtime configurations of DeF+F have one more kind of future: chained futures.

F::=f(q) f(w) f(chain f')

Figure 2 defines the four semantic rules associated with forward*. FORWARD-SYNC
is similar to RETURN-SyYNcC and allows using forward* with the same semantics as
return in synchronous calls context, FORWARD-DATA is similar to RETURN-ASYNC
but limited to the trivial case of a forward* of a non-future value.

The rule FORwWARD-AsyNc complements them by handling the forwarding of future
values in an asynchronous context. Where RETURN-AsYNc would have inserted an
f(f’) into the context, FORWARD-ASYNC inserts a f(chain f’) instead. Then, an
application of CHAIN-UPDATE will replace the chained future with a resolved future.

Concretely, if there is a sequence of futures fy(chain f;)...f,_;(chain f,,) f,(w) in
the configuration cn, CHAIN-UPDATE will replace f,_;(chain f,) with f,_;(w), then
fn_o(chain f,_;) with f,_,(w), and so on. The n-th CHAIN-UPDATE will update f,
to fo(w). At this point, assuming w is not a future, a getf, statement will only need a
single GET-FUTURE to reach a GET-DATA transition.

3:13

An Optimised Flow for Futures: From Theory to Practice

FORWARD-ASYNC FORWARD-SYNC
[[V]]a+€ = f/ [[V]]a—i-e =w
ayF f({¢|forward=v;s}) ayF f({€|forwards v ;s}#q#q)
—a) F f(chain f') —a)F f({{|return w;s}#q#q)
FORWARD-DATA
[[V]]a+€ —=b CHAIN-UPDATE
a)F f({{|forward+v;s}) —a)F f(b) a) F f(chain f') f'(w)
—a)F f(w) f'(w)

B Figure2 Additional rules for the semantics of DeF+F.

The forward* construct proposes similar behaviour to return in DeF, but with opera-
tions occurring in a different order: in the case of forward*ed futures, future values
are propagated as soon as possible, from the inner future to the outer one, and the
resolution is performed only once per future, no matter how many delegated invoca-
tions there are. If return is used instead, several successive future retrieval operations
occur until the inner future is reached.

Example We show here how a configuration evolves differently when forward* is
used instead of return. For that purpose, as in section 3.2 we consider a configuration
resulting from the execution of the Encore program in listing 1.b, slightly modified so
that foo uses a forward* to return its result.

When the execution reaches line 9, if we are in a similar state as the example in
the previous section we can apply the FORWARD-AsSYNC rule:

@) fo{lx = 11y =getsx}) f({[x — Ly — f'] | forward= y}) f'(4)
— @) fo{[x — f]|y = get= x}) f (chain f') f(4)
Since f' is a resolved future, CHAIN-UPDATE can be applied immediately:
@) fo{lx — f]|y = getx x}) f(chain f') f'(4)
= @) fol{lx — f]|y = get= x}) f(4) f'(4)

Then, the y = get* x statement can be reduced, fetching the future value with
only one GET-FUTURE and one GET-DATA.

@) fol{lx = flly =getsx}) f(4) f(4) — @) fol{[x— f]|y = get= 4}) f(4) f'(4)
= @) fol{lx = fl1y =4}) f(4) f'(4)

Somehow, the CHAIN-UPDATE transition replaces one of the GET-FUTURE appli-
cations of the example in section 3.2. Section 4 will show that despite this difference,
return and forward* have in fact equivalent semantics in DeF+F.

3.4 The Type Systems of DeF and DeF+F

Figure 3 gives a type system for DeF, and figure 4 introduces an additional typing rule
for DeF+F. There are four kinds of type judgements: I' -z : T types any expression z;

3114

Nicolas Chappe, Ludovic Henrio, Amaury Maillé, Matthieu Moy, and Hadrien Renaud

Type judgements for expressions:

(T-SUBTYPE) (T-EXPRESSION)
(T-VAR) I'z:B THv:T THV:T @:TxT —>T"
T x:T(x) T'+z:Flow[B] THv@v :T”
(T-INVK-ASYNC) (T-GET) (T-INVK-SYNC)
Im)=T—>T TrV:T I'+v:Flow[B] I(m)=T—>T T+v:T
I'—m(v) :|Flow[T’] [+ get+v:B F-w'(v): T

Type judgements for statements:

(T-AsSSIGN) (T-SEQ) (T-RETURN) -
I'(x)=T Tre:T Thps Thnps’ Tre:T' T@m=T-T1 (TSP
Thpx=e Thps;s [',returne T b, skip

Type judgements for programs and functions:

(T-METHOD) (T-PROGRAM)
I'=T[x— T][x'— T’] Ibps I=[x—T] [[x —>T]+s VMeM.T-M
TT"m(T x){T"x' s} T-TxM {T'x' s}

B Figure3 Type system; each operator @ has a predefined signature, the rule for if is omitted.

(T-FORWARD)
THe:Flow[T'] I'(m) =T — Flow|[T’]

', forwardxe

M Figure 4 Type system addition for DeF+F.

T |-, s types a statement s that belongs to the function m; T'— T” m (T x){T’ x’ s}
checks that a function definition is well-typed; and T' - T x M {T’ x’ s} checks the
correct typing of a program. Due to the fact that a flow already encodes an arbitrary
number of asynchronous delegations of a computation, flows of flows are forbidden
at the type system levels. The notation | represents the collapsing of a flow type:
|Flow[Flow[T]] reduces to |Flow|T]. The interested reader should refer to [12] for
a complete specification of collapse in a type system that supports parametric types.
In our simplified context, the description can be summarised by the following rules:

|Flow[Flow[T]] =|Flow[T] |Flow[T] =Flow[| T]if T # Flow[T’] |B=B

In figure 3, rule T-SUBTYPE allows any basic type to be considered as a flow type.
T-INvK-AsyNc states that the type resulting of an asynchronous function invocation
is flow containing the type returned by the function; the collapse operator prevents
nested flow types. Symmetrically, T-GET states that the result of the synchronisation
on a flow is necessarily a basic type. Indeed as flows on flows do not exist and basic
types can be lifted to flow types, a get* operation can always be typed and always
returns a basic type. Other type-checking rules are standard.

3:15

An Optimised Flow for Futures: From Theory to Practice

Concerning the rule T-FORwWARD shown in figure 4, it types the forward* statement.
It checks that the function’s return type is Flow[T’] and that the returned type is
compatible with this signature. This ensures that a synchronous call to a function
that performs a forward* must consider the result of type Flow[T]. Our solution
contrasts with what was adopted in Encore, where synchronously calling a function
that contains a forward performs an implicit synchronisation on the future returned
by the function; see Appendix B for more details. Because of the subtyping rule, e
could be of basic type B but T’ cannot be of the form Flow[T"].

Properties of the Type System The type system is not particularly original compared
to the one of the Godot system [12] except the rule T-FORWARD that elegantly solves
the typing of synchronous calls with forward, as explained above. It shares the classical
properties: progress and preservation (reduction doesn’t break typing). Both properties
are expressed on DeF+F, and also valid on DeF which is a subset of DeF+F.

For stating and proving preservation one needs to extend the type system in order
to type configurations. The extension raises no particular difficulty: each thread is
type-checked separately, we check that the type of values in the store fits with the
type of the declared variables, and that for each future f of type Flow[T], T is the
type of the value stored in the future f (or computed by the thread that computes f),
and a get f operation returns a value of type T. To type a runtime configuration, we
need an extended typing environment of the form:

Q=T f—»TIm f—T

The first T is the type of the global store, then for each not yet resolved future, the
future identifier is mapped to a stack of I', m where each T is the typing environment
that types the function body and m is the function name that provides the returned
type, and the type of the future for the last m of the stack; finally we have a second
mapping for resolved futures that maps each future identifier to the type of the future
value. The initial configuration of a well-typed program is well-typed. Then we can
state the preservation theorem:

Theorem 1 (Preservation). A well-typed configuration remains well-typed during reduc-
tion.

QFa)F A a)F—d))F = 3.9 +d) F

Q and Q' are additionally constrained: the global T is the same in Q and Q', and each
future defined in Q is also defined in Q' with the same type.

Like Encore and most of the languages with futures, our language has imperative
features. Thus, contrarily to the Godot system, it is possible to create cycles of processes
where each process references the future that is to be resolved by the next process in
the cycle. In imperative languages with futures, and therefore in DeF and DeF+F, it is
possible to have deadlocks in such situations. We only ensure progress in the absence
of such deadlocks. This restriction of the progress property is in fact an advantage of
our model: it shows that DeF and DeF+F model faithfully the deadlocks that exist in
mainstream languages with futures.

3:16

Nicolas Chappe, Ludovic Henrio, Amaury Maillé, Matthieu Moy, and Hadrien Renaud

We introduce the Unresolved predicate that checks whether a future is unresolved. It
is defined by: Unresolved(f,F) = #w. f (w) € F. We use it to state a progress property:

Theorem 2 (Progress). In a runtime configuration, each element that is an unresolved
future can progress except if it tries to perform a get on an unresolved future.

Qt-a)f(@QF = (@d' F.a)f(@F—d)F rf(q¢F)
v (@,4,y,5,q.9=1{{ |y =getxv;s}#q A Unresolved([[v]qs¢,F))

This theorem ensures that any chosen task can progress unless it is trying to access
an unresolved future. Consequently, a configuration that cannot progress only consists
of tasks blocked on a future access, which implies that there is a cycle of futures.
More generally, any chosen task is able to terminate except if it depends (indirectly)
on itself or on a task that contains a non-terminating computation (e.g. an infinite
recursive call).

Forward: A Safe Optimisation in DeF

The previous section showed the different runtime semantics for return in DeF/DeF+F
and forward* in DeF+F. This section proves that despite this difference, they can be used
interchangeably in DeF+F, by showing formally that the use of forward* instead of return
does not alter the semantics of a DeF+F program. This positions the choice between
return and forward* in DeF+F as an optimisation matter rather than a semantics matter.
To prove this, we provide a simple translation from a DeF+F program to a DeF
program that replaces forward* by return statements. We then show using a branching
bisimulation that the translation does not modify the behaviour of the program.

Note on Bisimulations. Bisimulations allow to compare the semantics of asynchronous
programs [22]. Given a relation £, two transition systems are said to be strongly
bisimilar if for two states related by %, a series of transitions on either side can
be associated to the same series of transitions on the other side, with each pair of
intermediate states linked by 2. Most of the time a strong bisimulation is too strict to
compare programs and one needs to consider that some of the transitions do not need
to be simulated. A weak bisimulation relaxes the definition of strong bisimulation by
allowing a subset of transitions to take place at any time even without an equivalent
in the other transition system. These transitions are called non-observable, or 7-
transitions, and are useful to encode updates of internal state.

This relaxation has a cost: two weakly similar programs might have some different
properties, e.g. concerning the presence of deadlocks. Branching bisimulation is a
compromise between strong and weak bisimulation that guarantees more properties
but allows the presence of non-observable transitions. With a branching bisimula-
tion a program that performs a 7-transition must remain in relation with the same
states, guaranteeing that t-transitions have almost no effect on the program state.
A divergence-branching simulation is another compromise that further requires an

3:17

An Optimised Flow for Futures: From Theory to Practice

Z -ID-RESOLVED Z -FORWARD-ASYNC
7% -ID-STORE cn. # cn, cng & cn,,
aZ a cng f(w) & cny f(w) cn, f(chain f') & cn, f(f')
R -FORWARDELIM R -CHAIN-UPDATE
cng % cny, cn, f(chainf’) f'(w) % cn,
cng f({€ | s}#q) Z cny, f({€ | [s]pwarim }# (9] wdetim) cng f(w) f'(w) Z cny,
R -GET-FUTURE-F R -GET-FUTURE-D

CNg f(f/) f”({eF ‘ y=getx f;s.}#q) & cn, g X cny f(f/) f”({eD| y=getx f§5D}#C_1)
Mg f(fl) f”({eF | y=getx f,;SF}#C_I)‘% ny, e # cny f(f/) f”({ZD | y=getx f,;SD}#(_I)

B Figure5 Relation between DeF+F configurations and DeF configurations.

infinite sequence of t-transitions on either side to correspond to an infinite sequence
of T-transitions on the other side.

Below, we prove a branching bisimulation. Our semantics are too different to ensure
divergence-branching simulation because of the different synchronisation strategies
between return and forward*: getting the value of a future that is in a cycle will block
on the DeF+F side, but enter an infinite sequence of t-transitions on the DeF side.

4 Translation from DeF+F to DeF and Program Equivalence

A DeF+F program can be translated into a plain DeF program using the semantics-
preserving transformation [[4,qgiim defined as follows:

[forward* v]s,deiim = return v

Terms other than forward* are unchanged. To prove that [] 4,4z actually preserves
the semantics of a DeF+F program, we define in figure 5 a relation £ . It associates a
DeF+F configuration cn, and a DeF configuration cn, that represents a similar state
of execution. We prove that two configurations related by % are bisimilar. More
precisely, the equivalence we prove is a branching bisimulation that does not observe
the update of intermediate futures in a sequence of chained futures (i.e. considers
GeT-FuTurE and CHAIN-UPDATE as T-transitions) as the precise resolution status of a
future is internal state that does not matter for the observable state of a program.

The trivial rules # -ID-STORE and £ -ID-RESOLVED state that two identical
configurations are similar. Z -FORWARDELIM deals with syntactic equality modulo
forward* elimination, simply replacing forward* by return.

These rules are not sufficient, as CHAIN-UPDATES can happen at any time on the
DeF+F side, making the executions of a DeF+F program and its DeF counterpart slightly
diverge. We still want these configurations to be related by £, which will in fact be
needed by the first item of theorem 3, as CHAIN-UPDATE is a t-transition.

2 -FORWARD-AsYNC and # -CHAIN-UPDATE deal with the fact that some futures
are chained and others are not. The rule Z -FORWARD-ASYNC states that chaining a
future to another one, as the semantic rule FORWARD-AsyNc does, is semantically

3:18

Nicolas Chappe, Ludovic Henrio, Amaury Maillé, Matthieu Moy, and Hadrien Renaud

equivalent to fulfilling it with this same future, as RETURN-AsyNc does. Rule £ -
CHAIN-UPDATE can be used to undo the future chaining operation.

As the resolution of futures is done in a different order, and possibly at a different
time, when forward* is used instead of return, the rule & -CHAIN-UPDATE and both
2 -GET-FUTURE rules are needed to associate configurations in which some futures
are at different stages of resolution. This different ordering only occurs upon resolution
of the get* statement, and is handled by the two GET-FUTURE rules.

This different ordering of future resolution also implies that there isn’t a one-to-one
mapping between CHAIN-UPDATE transitions in a DeF+F execution and GET-FUTURE
transitions in the context of that same program after forward* elimination. All these
facts are formalised by theorem 3.

4.2 Branching Bisimulation between DeF+F and DeF

Theorem 3 (Correctness of the translation from DeF+F to DeF). 2 is a branching bisim-
ulation between the operational semantics of the DeF+F program P and the operational
semantics of the DeF program [P]ydgiim-

Let R range over observable transitions. If cn, Z cn,, then:

5Fen! ' % 5% en! % cn!
cn, = cnl, =R> cnl & cn, . chD ! = cn, & cn)
/ / T / / /
cng = cn), = Jen).cn, ~ cnl A cnl R cnl)
T
cn, —cnl — 3denl.cn, — —cnl, A cnl Zcn)

The transitions GET-Future and CHAIN-UPDATE are non-observable, both of them are
labelled 7. The observable transitions FORWARD-ASYNC and FORWARD-DATA are labelled
RETURN-AsyNc, and FORWARD-SYNC is labelled RETURN-SyYNc. All the other transitions
are labelled with their original rule name.

As the use of forward* does not change when futures are created but only how they
are resolved, if cn, & cn, then the identifiers of the futures of cn, are exactly those of
cn,, e.g. we have f e cn, < f €cn,. However, the value of f in cn, and the value
of f in cn, may differ. In the following, we will denote that some futures f € cn, and
f’ € cny actually share the same identifier by f = f' or f = f'.

First, we introduce the notion of sequence of futures, and define a few lemmas
on properties implied by cn. £ cn,,. This will help to prove that £ is a branching
bisimulation.

Definition 1 (Sequence of futures). In a DeF or DeF+F configuration cn, (f,...f,) such
that Vi, f;(f;+1) ecn v f;(chain f; 1) € cn is called a sequence of futures.

Given a future resolved or chained to another one in a DeF+F configuration, lemmas
1 and 2 state the possible forms of the corresponding future in an associated DeF
configuration. Conversely, given a future resolved to another one in a DeF configuration,
lemma 3 states the possible forms of the corresponding future in the associated DeF+F
configuration. Lemma 5 generalises lemmas 1 and 2: given a sequence of futures in a
DeF+F configuration, it states the possible forms of the corresponding sequence in DeF,
while lemma 6 generalises lemma 3 in a similar manner. As for lemma 4, it formalizes

3:19

An Optimised Flow for Futures: From Theory to Practice

that the local store and statements of a task are not altered by []s,qgiim, apart from
get* statements that can express a different stage of future resolution.

Lemma 1 (Matching a chained future). If cn, % cn, and f(chain f’) € cn,, then

f(f7) e cnp.

The case of a future resolved on the DeF+F side is more complicated, as such a
future can not only come from a return statement, but also from a CHAIN-UPDATE.
The following lemma illustrates that the chain construct can flatten chains of futures.

Lemma 2 (Resolved future in DeF+F). If cn, % cn, and f (w) € cn,, then there exists
folf1) - Fa () € cny stch that fo = f, f,(w) € cn,, and Vi, f;(w) € cn,.

The previous two lemmas dealt with futures resolved on the DeF+F side, the next
one deals with futures resolved on the DeF side.

Lemma 3 (Resolved future in DeF). If cn, Z cn,, and f (w) € cn,, then:
= Either w is a future and f (chain w) € cn,.

= Or there exists w' such that f (W) € cn, and there exists fo(f1) ... fa_1(fy) € cn, such
that f = fo, fu(W) € cn,, and Vi, f;(W') € cn,.

Given a resolved or chained future in a DeF or DeF+F configuration, the previous
lemmas gave the form of the corresponding future on the other side. The next lemma
deals with the last case: futures not yet resolved, that still have a task attached to them.
As the [|fydriim transformation is fairly simple, the local store and most statements
will be identical on both sides, but get* statements may differ. Indeed, following a
sequence of futures by the rule GET-FUTURE being non-observable, #Z has to relate
get= statements at different stages of update. In this case, walking back the chain of
GET-FUTURE leads to the same initial future.

Lemma 4 (Matching tasks). If cn, % cn,, then 3s.f ({l | s}#q) € cn, if and only if
3s". £ ({1 | 8"} #[a] fwdgtim) € cnp,. In this case:

= Either s" = [s]puagiim-

= Ors is of the form y = getx w;sy, and s’ of the form y = gets w'; [s1]fwqgiim> With

Vi<nw;(wiq)ecn,
Vi<mwi(w,)e€cn,

/ / — 1/
Wg... Wy ECng. Jwy ... W ECn, 4 wo =W,
W, =w
/

_ /
LWm—W

The two last lemmas are generalisations of the three first ones. They answer the
question: given a sequence of futures, on the DeF side or on the DeF+F side, what can
we say about the other side? Lemma 5 is about the DeF to DeF+F case, while lemma 6
handles the other direction.

3:20

Nicolas Chappe, Ludovic Henrio, Amaury Maillé, Matthieu Moy, and Hadrien Renaud

Lemma 5 (Sequence of futures: DeF to DeF+F).

If cn, Z cn, and fo(f1) ... fao1(fn) fo(w) € cn, with 3f ecn,.w = f, then there exists
ko < -+ < k; such that for all i <1 either fi (fkm) €cn; or fi,(chain fy) € cn, with
ko =0 and k; = n.

Lemma 6 (Sequence of futures: DeF+F to DeF).

Ifan% mnp and fO(fl) .. -fn—l(fn) fn(W) € (N,
then there exists f(f})...f/ ,(f]) € cn, such that fj = fo and f/(w) € cn,,.

The proof of theorem 3 is done by induction and a classical case analysis on the
reduction rule applied, proving that the bisimulation relation is maintained. Details of
the proofs are provided in appendix A. The most interesting cases are the GET-DATA
rules, where a future is about to be resolved on one side, but there may still be multiple
T-transitions needed to get to the resolution on the other side.

In this section we have shown that, with data-flow explicit futures, the behaviour of
the forward* primitive is the same as the behaviour of a standard return. This highlights
the fact that forward provides a form of data-flow synchronisation for control-flow
explicit futures. More interestingly this shows that if necessary any return statement
that returns a data-flow future could be compiled similarly to a forward* statement,
which should in general improve performances. In the next section, we will first
present our implementation, in Encore of DeF and how DeF can be used to encode
classical futures. We will also evaluate the performance of different future constructs
and different ways to use them. Our objective is both to evaluate the effectiveness of
data-flow future synchronisation and the opportunities for automatic optimisation of
future flows.

H DeF in Practice

This section has four purposes:

1. Describe an implementation of data-flow explicit futures in the Encore language.
This is considered as a basis for the implementation of DeF in another language.

2. Explain the choice we made in the implementation of forward* in our extension to
the Encore language3

3. Describe our implementation of explicit futures based on data-flow explicit futures,
following the approach proposed in [12]. This is crucial in order to provide to the
programmer the choice between control-flow and data-flow synchronisation (cf.
fulfilment observation problem above).

4. Evaluate the performance of different implementation and synchronisation strate-
gies for futures on programs that express various communication patterns.

3 https://gitlab.inria.fr/lhenrio/encorewithdatafuts, visited on 2021-05-23.

321

https://gitlab.inria.fr/lhenrio/encorewithdatafuts

An Optimised Flow for Futures: From Theory to Practice

54 Implementation of Flow

To implement data-flow synchronisation for explicit futures in a language, three steps
are necessary: 1) adapt the type system, 2) deal with the creation of data-flow explicit
futures at runtime, and 3) provide manipulation primitives for data-flow futures.

544 Typing

There are two aspects related to the typing of Flow[T] that require special care: the
subtyping rule (T-SuBTYPE) and the collapsing rules (operator | in T-INVK-ASYNC).
The subtyping occurs when the programmer tries to substitute a value of type T (T
Flow) where a value of type Flow[T] is expected: such a substitution is correct. As
for the collapsing rules, when the typechecker encounters the type Flow[T], it must
collapse it as per the collapsing rules established in [12], and summarised in 3.4. This
ensures that nested flow types do not appear and that lifting of non flow values into
flows is possible.

5.1.2 Creation of Flow

In DeF flows are created when a value of type T is substituted to a value of type
Flow[T] (lifting) and when a function is called in an asynchronous way using the !!
operator in DeF. In our extension to Encore, additionally to lifting and the !! operator,
we provide an async* operator that allows asynchronously executing arbitrary code.
Asynchronous invocation of methods and asynchronous execution of arbitrary code do
not need special care compared to control-flow explicit futures: one should create an
instance of Flow and set it to be resolved with the result of the asynchronous execution.
Lifting requires to create an instance of Flow and immediately resolve it with the lifted
value (no process creation nor context-switching is needed). Lifting the value into a
Flow allows programmers to write functions that may return results of asynchronous
invocations as well as values lifted to an instance of Flow, unified under a single type.

54.3 Flow Synchronisation with get*

In figure 2, rules GET-FUTURE and GET-DATA are used to recursively traverse a chain
of flows until a value is reached. GET-DATA is only applicable on non-flow values.
An implementation typically calls get* recursively (GET-FUTURE) until a non-flow
value is found and returns this value (GET-DATA), but deciding whether to perform a
recursive call requires that the information of whether a value is a flow be available at
runtime. In the absence of parametric types, the information is even available statically
as part of typing, making the implementation straightforward. In the presence of
parametric types, in a compilation scheme using type erasure, the compiler cannot
know statically whether a parametric type P[T] is instantiated with T being a flow or a
non-flow type. The decision to make a recursive call or not then requires introspection
facilities built into the runtime. In languages where no such introspection features are
available, implementing flows requires compiler designers to add runtime information
to flows to determine whether an instance is resolved with another flow or with a
value. In Encore, the Pony runtime [26] adds introspection facilities that we use to
check whether a Flow is resolved with a flow or with a non-flow value.

3:22

Nicolas Chappe, Ludovic Henrio, Amaury Maillé, Matthieu Moy, and Hadrien Renaud

5.2 Implementation of forward* in Encore

The forward primitive is easy to type and understand when it is in the body of a
function that is run asynchronously. However, defining a good semantics and type
system in the context of Encore where methods can be called either synchronously
or asynchronously needs more attention. For example e symbol was used in [11] “to
prevent the use of forward in contexts where the expected task type is not clear”. In
our case, similar difficulties arise with the conjunction of synchronous invocation and
forward* statement.

The rule in figure 4 provides an elegant and safe solution to this problem. However,
the existing implementation of forward in the Encore language is more permissive. Our
theoretical results of section 4 are based on the rule of figure 4 because it is the safest
solution but our implementation is a bit more permissive concerning the typing of
functions that perform a forward*: the return type of such functions does not need to
be Flow[T]. This changes nothing when the function is called asynchronously. Instead,
this choice entails an additional synchronisation (get*) performed before the forward
statement when a function that performs a forward* is called synchronously. This
changes a bit the semantics and thus our result on equivalence between return and
forward is only valid in the Encore implementation if the method is called asynchronously.
However as asynchronous invocations are identified syntactically, it would be easy to
use forward* only in the asynchronously called functions. These aspects are further
discussed in appendix B.

Because the more permissive semantics introduces an implicit synchronisation on an
explicit future, in a freshly designed language we would advise to use data-flow futures
with the typing of forward* taken from figure 4. In our implementation we chose a
more permissive and less safe version to be consistent with the Encore ecosystem.

5.3 Encoding Fut[| from Flow]]

In this section, we build control-flow explicit futures on top of DeF, to assert its
backward compatibility with existing systems. We show that a language implementing
only Flow[] can build Fut|[] as a library. In Encore, a library has no possibility to extend
the syntax or introspect the rest of the code, we are thus limited to simple encodings.
In practice, we provide an implementation of Fut[] that relies on our Flow[] construct
of Encore and on our implementation of get=, ~~>* (the natural extension to data-flow
explicit futures of the ~~> operator for future chaining), and async*.

Definition Godot [12] suggests a construction for such control-flow explicit futures:
Fut|7] ::=[JFlow|1]

[is called the “box” operator. It encapsulates its argument in a structure of a different
type, whose only available operation is unbox, where unbox([] x) = x. Intuitively,
the] operator stops type collapsing: | Flow|[Flow[T]] reduces to | Flow[T], but
|Flow[[JFlow|[T]] is not collapsed (it reduces to Flow[[JFlow|[T]]).
The corresponding operations follow:
get e ::=get* (unboxe) then(e, f) ::=[Jthen = (unboxe, f)

3:23

An Optimised Flow for Futures: From Theory to Practice

Implementation We define the class Future[t] and the get_* function as shown in
listing 2.

M Listing2 Future[t] and get_ based on Flow and get*

read class Future[t]
val content: Flow([t]
def init(x: Flow[t]): unit
this.content = x
end
end

fun get_(y: Future[t]): t
return get*(y.content)
end

A restriction of our approach is that, in an Encore library, we cannot overload existing
operators or functions. As such, we provide functions with the right behaviour, but not
the desired name: get_, call_, await_, or async_. For the call operator (!) the problem
is slightly more complex as functions are not sufficient and the syntax should be
extended. In the current state, programmers should use call_(this!foo(...)) when they
mean this!foo(...). A similar adaptation is needed for forward. This restriction is only a
matter of syntactic sugar.

Summary With this implementation of control-flow explicit futures on top of data-
flow explicit futures, we showed that control-flow explicit futures can be provided
as an extension of DeF, and as a simple library. It is interesting to note that Godot
provides an implementation in Scala of data-flow synchronisation on top of control-
flow explicit futures (the opposite of what we did here), but that implementation does
not fully support parametric types and its extension to parametric types would be
challenging. Consequently, we believe that implementing DeF directly in the compiler
is more flexible, and thus we advise, in the design of future programming languages
with explicit futures, to first implement a data-flow synchronisation, and then extend
it with control-flow explicit futures.

5.4 Benchmarks

In this section, we provide a performance analysis of different implementations of
futuress: the builtin control-flow explicit futures Fut of Encore, the data-flow explicit
futures DeF that we introduced earlier, denoted as Flow, and the control-flow explicit
futures that were built in the previous subsection, denoted as Fut on Flow. We analyse
several programs, using chains of futures of different length, or different memory
management patterns. Our focus is to analyse the performance of futures, not the
efficiency of the parallelisation in Encore or the number of actors that can be created in
the Encore system. This is why we do not compare ourself with other frameworks and

4 Underscore appended to avoid name collision with the get reserved keyword.
5 All the code for those benchmarks is available at: https://gitlab.inria.fr/datafut/fut-on-flow,
visisted on 2021-05-23.

3:24

https://gitlab.inria.fr/datafut/fut-on-flow

Nicolas Chappe, Ludovic Henrio, Amaury Maillé, Matthieu Moy, and Hadrien Renaud

our programs are mostly sequential or with little parallelism. Reducing parallelism
allow us to avoid the complex interactions that exist between additional objects,
concurrent garbage collection, memory contention: we only analyse the direct impact
of different forms of futures.

All the benchmark results provided here are done on the same Dell XPS 13 9370,
with a 8-core Intel Core i7-8550U and 16GiB of memory, running Ubuntu 20.04 and
clang vio.o. Encore at version eas5736869d2ac3scfbeee2besa2988c819a215af is run using
the release configuration and the -03 flag.

5.41 Test Programs

We evaluate performance on four examples, the first using non-nested futures, the
next two stressing the implementation with long chains of futures, and the last one
being closer to real-world workloads.

Word Counter example. The Encore compiler is shipped with tests, one is a word
counter, from which we adapted this example. The WordCounter test dispatches asyn-
chronous hash table insertions to 32 actors. We re-implemented the standard library
module Big.HashTable.Supervisorh with Flow, with Fut on flow and with sequential
execution (referred to as fun). There is no need here to use any forward, because
there is no chain of futures. The original example used an optimisation that removed
the use of futures: send one-way messages when the caller does not need the result.
As this does not use futures, we disabled it in the Fut example, but still displayed its
performance as OneWay.

Recursive calls on a single actor: Ackermann. We implemented the Ackermann
function with recursive calls on a single actor. This program performs successive
asynchronous invocations on the same entity (no parallelism, long delegation chains).
In this benchmark, the chains of futures are of various lengths, because each call
makes two recursive call, one which is forwarded and one for which it waits. Because
we only have one actor, this wait cannot be a synchronisation, otherwise it would
block the execution. We use here a cooperative yield (await) on the future before
calling get. This problem does not arise with forward.

Recursive calls on many actors without actor creation: recursive list summation.
We compute the sum of the numbers from 1 to n by creating a linked list of actors with
those numbers and then traversing the list with successive asynchronous tail recursive
invocations. The measured time does not take into account list creation. There is here
one long chain of futures of length n. When forward is used, as one future is delegated
along the chain of futures, this sum is done in constant space.

K-Means This benchmark runs a fixed number of iterations of the k-means clustering
algorithm. Every compute intensive step is delegated to a large number of actors, then
synchronised. This does not use forward since there are no chained futures. However,
the benchmark is interesting because it allows us to compare the performance of
Encore’s native control-flow explicit futures and our re-implementation of it on top of
data-flow explicit ones, on a realistic workload.

5.4.2 Results and Discussion
The performance of each of the four benchmarks are shown in tables 4, 5, 6, and 7.

3:25

An Optimised Flow for Futures: From Theory to Practice

B Table4 Running time of WordCounter (100 runs). The OneWay line corresponds to the
version futures are optimised out by the compiler.

Future used Average running time (ms) Std deviation

OneWay 103.4 ms 4.6 ms 4.4%
Fut 185.5 ms 6.5ms 3.5%
Flow 184.6 ms 6.7ms 3.6%
Fut on Flow 190.4 ms 7.6 ms 4.0%
fun 119.3 mS 2.4ms 2.0%

B Tables Running time of the Ackermann benchmark (arguments: 3, 4 — 100 iterations)

Future used Average running time Std deviation

Fut with forward 27.86 ms 1.2ms 4.3%
Fut on Flow with forward 28.10 ms 1.oms 3.5%
Flow with forward* 31.49 ms o7ms 2.2%
Flow 39.I3 MS .oms 2.4%
Fut 44.63 ms o7ms I1.7%
Fut on Flow 46.71 ms 0.8ms 1.6%

B Table 6 Average running time of the recursive list summation (10000 actors, 100 iterations)

Future used Average running time Std deviation

Fut with forward 16.03 ms .oms 6.4%
Fut on Flow with forward 16.30 ms 1.oms 6.3%
Flow with forward* 16.14 ms o.9ms 5.8%
Flow 26.02 mS 1.3ms 5.1%
Fut 46.87 ms 3.90ms 8.4%
Fut on Flow 47.64 ms 3.8ms 8.0%

B Table7 Running time of 10 k-means steps (100 clusters, 10000 observations, 100 iterations)

Future used Average running time Std deviation

Flow 468.8 ms 114.7ms 24.5%
Fut on Flow 494.9 ms 125.8 ms 25.4%
Fut 500.7 mS 66.8 ms 13.3%

The ackermann example has lower standard deviation than the other benchmarks,
this might be caused by smaller future chains than the list summation example, or
the absence of parallelism, unlike the WordCounter example.

The OneWay version of the WordCounter example is unsurprisingly far faster than
the others. It allows evaluating the overhead of the future synchronisation over a plain
one-way message. The sequential version is the slowest, showing that other versions
do exploit parallelism even with a fine granularity of synchronisation.

3:26

Nicolas Chappe, Ludovic Henrio, Amaury Maillé, Matthieu Moy, and Hadrien Renaud

The Ackermann and recursive list summation examples show the performance
benefit of using forward or forward* over the plain Fut or Flow equivalent when there
are delegated computations.

On all examples, Fut and Fut on Flow perform similarly, showing that a library-based
implementation of Fut based on data-flow explicit futures reaches performance similar
to a dedicated implementation within the compiler. We can notice a small overhead
that can be explained by the additional “box” objects introduced by Fut on Flow.

Both Ackerman and the recursive list summation show the performance benefit
of using Flow over Fut, since less synchronisation is needed (for Ackermann, using
Flow allowed us to directly return a Flow without the need for a costly await). This
difference disappears when using forward on both versions since no synchronisation
is needed whatever the type of future.

The k-means benchmark models real-world workloads and has a larger standard
deviation than the others. However the observed performances still show that adding
data-flow explicit futures does not affect significantly the performance of futures.

In the Fut version of the benchmarks, forward explicitly changes the semantics
to relax synchronisation. As shown in section 4, in the Flow version, it becomes an
optimisation that does not change semantics. A clever compiler could have compiled
the Flow version to Flow with forward* with the same semantics, and these benchmarks
show that this is an interesting optimisation. An implementation with DeF and im-
plicit optimisation of return into forwards (for long chains) would ally both the
performance improvements of forward and the improved type handling of DeF.

I3 Conclusion

We presented both theoretical and practical results showing that data-flow explicit
futures form a relevant programming abstraction for parallel programming. Other
constructs such as classical control-flow explicit futures can be implemented on top of
them, and they allow optimisations that used to require ad-hoc keywords.

Our forward* construct has a safe static semantics that constrains functions per-
forming a forward* to return a Flow type. As a consequence, even if the function is
called synchronously, the semantics stays the same as return. On the contrary, the
original Encore language has a specific semantics for synchronously called functions:
they are forbidden in the formalisation but in practice, they are implemented with an
additional synchronisation that may lead to deadlocks.

One of the advantages of data-flow synchronisation is the possibility to optimise
the order of transmission of futures to the processes that use it, this had been partially
studied in a distributed setting in [18] but the current article opens new opportunities,
allowing the compiler and the runtime to explore compromises between pulling
the results with recursive get*, pushing it based on forward*, or using the optimised
compilation into promises provided by Encore [11].

About Failures Dealing with failures in concurrent and distributed systems is difficult.
While futures can be safely integrated inside recovery protocols [6], it is more difficult

3:27

An Optimised Flow for Futures: From Theory to Practice

to deal asynchronously with failures or timeouts inside the application code because
the point of usage of a future can be far from the point of invocation of the computation
and thus traditional exception handling mechanisms are often not adapted. Like for
asynchronous reaction to fulfilment (section 2.3), mechanisms similar to what exists
for control-flow futures can be adapted for handling exceptions or failures with futures.
In the current state of our study it does not seem that data-flow synchronisation helps
with the difficulty of handling failures in an asynchronous manner. However, the
data-flow synchronisation offers a different point of reaction to failure, closer to the
use of the computation result, which can help the programmer handle the failure
from a computational point of view.

References

[1] Erika Abrahdm, Immo Grabe, Andreas Griiner, and Martin Steffen. “Behavioral
interface description of an object-oriented language with futures and promises”.
In: The Journal of Logic and Algebraic Programming 78.7 (2009). The 19th Nordic
Workshop on Programming Theory (NWPT 2007), pages 491-518. ISSN: I1567-
8326. DOI: 10.1016/j.jlap.2009.01.001. URL: http://www.sciencedirect.com/
science/article/pii/$1567832609000022.

[2] Gul Agha. Actors: a model of concurrent computation in distributed systems. MIT
Press, 1986. ISBN: 0-262-01092-5.

[3] Laurent Baduel, Francoise Baude, Denis Caromel, Arnaud Contes, Fabrice Huet,
Matthieu Morel, and Romain Quilici. “Programming, Composing, Deploying
for the Grid”. In: Grid Computing: Software Environments and Tools. Edited by
José C. Cunha and Omer F. Rana. London: Springer London, 2006, pages 205—
229. ISBN: 978-1-84628-339-0. DOI: 10.1007/1-84628-339-6_9.

[4] Henry. G. Baker Jr. and Carl Hewitt. “The Incremental Garbage Collection of
Processes”. In: Proc. Symp. on Artificial Intelligence and Programming Languages.
New York, NY, USA: ACM Press, 1977, pages 55-59. DOI: 10.1145/872734.806932.

[s] Francoise Baude, Denis Caromel, Cédric Dalmasso, Marco Danelutto, Vladimir
Getov, Ludovic Henrio, and Christian Pérez. “GCM: a grid extension to Fractal
for autonomous distributed components”. In: Annals of Telecommunications
64.1-2 (2009), pages 5—24. DOI: 10.1007/512243-008-0068-8.

[6] Frangoise Baude, Denis Caromel, Christian Delbé, and Ludovic Henrio.
“Promised Messages: Recovering from Inconsistent Global States”. In: ACM
SIGOPS conference Principles and Practice of Parallel Programming (PPoPP).
Poster. New York, NY, USA: Association for Computing Machinery, 2007. 1SBN:
9781595936028. DOI: 10.1145/1229428.1229463.

[71 Frank De Boer, Vlad Serbanescu, Reiner Hahnle, Ludovic Henrio, Justine Rochas,
Crystal Chang Din, Einar Broch Johnsen, Marjan Sirjani, Ehsan Khamespanabh,
Kiko Fernandez-Reyes, and Albert Mingkun Yang. “A Survey of Active Object

3:28

https://doi.org/10.1016/j.jlap.2009.01.001
http://www.sciencedirect.com/science/article/pii/S1567832609000022
http://www.sciencedirect.com/science/article/pii/S1567832609000022
https://doi.org/10.1007/1-84628-339-6_9
https://doi.org/10.1145/872734.806932
https://doi.org/10.1007/s12243-008-0068-8
https://doi.org/10.1145/1229428.1229463

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Nicolas Chappe, Ludovic Henrio, Amaury Maillé, Matthieu Moy, and Hadrien Renaud

Languages”. In: ACM Comput. Surv. 50.5 (Oct. 2017), 76:1-76:39. ISSN: 0360-
0300. DOI: 10.1145/3122848.

Frank S. de Boer, Dave Clarke, and Einar Broch Johnsen. “A complete guide
to the future”. In: Proc. 16th European Symposium on Programming (ESOP’07).
Volume 4421. Lecture Notes in Computer Science. Springer, 2007, pages 316—
330. ISBN: 978-3-540-7I314-2. DOI: 10.1007/978-3-540-71316-6_22.

Stephan Brandauer, Elias Castegren, Dave Clarke, Kiko Fernandez-Reyes, Einar
Broch Johnsen, Ka L. Pun, S. Lizeth Tapia Tarifa, Tobias Wrigstad, and Albert
Mingkun Yang. “Parallel Objects for Multicores: A Glimpse at the Parallel
Language Encore”. English. In: Formal Methods for Multicore Programming.
Edited by Marco Bernardo and Einar Broch Johnsen. Volume 9104. Lecture
Notes in Computer Science. Springer, 2015, pages I-56. ISBN: 978-3-319-18940-
6. DOI: 10.1007/978-3-319-18941-3_1.

Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Theo D’Hondt, and Wolf-
gang De Meuter. “Ambient-Oriented Programming in Ambienttalk”. In: Pro-
ceedings of the 2oth European Conference on Object-Oriented Programming.
ECOOP’06. Nantes, France: Springer-Verlag, 2006, pages 230-254. ISBN: 978-3-
540-35726-1. DOI: 10.1007/11785477_16.

Kiko Fernandez-Reyes, Dave Clarke, Elias Castegren, and Huu-Phuc Vo. “For-
ward to a Promising Future”. In: Coordination Models and Languages. Edited
by Giovanna Di Marzo Serugendo and Michele Loreti. Cham: Springer In-
ternational Publishing, 2018, pages 162-180. I1SBN: 978-3-319-92408-3. DOI:
10.1007/978-3-319-92408-3_7.

Kiko Fernandez-Reyes, Dave Clarke, Ludovic Henrio, Einar Broch Johnsen,
and Tobias Wrigstad. “Godot: All the Benefits of Implicit and Explicit Futures”.
In: 33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Edited by Alastair F. Donaldson. Volume 134. Leibniz International Proceedings
in Informatics (LIPIcs). Distinguished artefact. Dagstuhl, Germany: Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019, 2:1-2:28. 1SBN: 978-3-95977-
III-5. DOI: 10.4230/LIPlcs.ECOOP.2019.2. URL: http://drops.dagstuhl.de/opus/
volltexte/2019/10794.

Cormac Flanagan and Matthias Felleisen. “The Semantics of Future and an
Application”. In: Journal of Functional Programming 9.1 (Jan. 1999), pages 1-31I.
ISSN: 0956-7968. DOI: 10.1017/50956796899003329.

Cormac Flanagan and Matthias Felleisen. “The Semantics of Future and Its
Use in Program Optimizations”. In: Conference Record of POPL’95: 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San
Francisco, California, USA, January 23-25, 1995. Edited by Ron K. Cytron and
Peter Lee. ACM Press, 1995, pages 209—220. DOI: 10.1145/199448.199484.

Elena Giachino, Ludovic Henrio, Cosimo Laneve, and Vincenzo Mastandrea.
“Actors may synchronize, safely!” In: PPDP 2016 18th International Symposium on
Principles and Practice of Declarative Programming. Edinburgh, United Kingdom,

3:29

https://doi.org/10.1145/3122848
https://doi.org/10.1007/978-3-540-71316-6_22
https://doi.org/10.1007/978-3-319-18941-3_1
https://doi.org/10.1007/11785477_16
https://doi.org/10.1007/978-3-319-92408-3_7
https://doi.org/10.4230/LIPIcs.ECOOP.2019.2
http://drops.dagstuhl.de/opus/volltexte/2019/10794
http://drops.dagstuhl.de/opus/volltexte/2019/10794
https://doi.org/10.1017/S0956796899003329
https://doi.org/10.1145/199448.199484

An Optimised Flow for Futures: From Theory to Practice

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Sept. 2016. ISBN: 9781450341486. DOI: 10.1145/2967973.2968599. URL: https:
//hal.inria.fr/hal-01345315.

Robert H. Halstead, Jr. “MULTILISP: A language for concurrent symbolic compu-
tation”. In: ACM Transactions on Programming Languages and Systems (TOPLAS)
7.4 (1985), pages 501-538. ISSN: 0164-0925. DOI: 10.1145/ 4472.4478.

Ludovic Henrio. Data-flow Explicit Futures. Research Report. 13S, Université
Cote d’Azur, Apr. 2018. URL: https://hal.archives-ouvertes.fr/hal-01758734.

Ludovic Henrio, Muhammad Uzair Khan, Nadia Ranaldo, and Eugenio Zimeo.
“First Class Futures: Specification and implementation of Update Strategies”. In:
Selected Papers Coregrid Workshop On Grids, Clouds and P2P Computing. Edited
by Mario R. Guarracino, Frédéric Vivien, Jesper Larsson Traff, Mario Cannataro,
Marco Danelutto, Anders Hast, Francesca Perla, Andreas Kniipfer, Beniamino
Di Martino, and Michael Alexander. Volume 6586. Lecture Notes in Computer
Science. Springer, Aug. 2010, pages 295-303. DOI: 10.1007/978-3-642-21878-1_37.

Ludovic Henrio and Justine Rochas. “Multiactive objects and their applications”.
In: Logical Methods in Computer Science Volume 13, Issue 4 (Nov. 2017). DOTI:
10.23638/LMCS-13(4:12)2017. URL: http://Imcs.episciences.org/4079.

Einar Broch Johnsen, Reiner Hédhnle, Jan Schéfer, Rudolf Schlatte, and Martin
Steffen. “ABS: A Core Language for Abstract Behavioral Specification”. In:
Proc. oth Intl. Symp. on Formal Methods for Components and Objects (FMCO).
Edited by Bernhard Aichernig, Frank S. de Boer, and Marcello M. Bonsangue.
Volume 6957. Lecture Notes in Computer Science. Springer, 2011, pages 142-164.
ISBN: 978-3-642-25271-6. DOI: 10.1007/978-3-642-25271-6_8.

Einar Broch Johnsen and Olaf Owe. “An Asynchronous Communication Model
for Distributed Concurrent Objects”. In: Software and System Modeling 6.1 (Mar.
2007), pages 35-58. DOI: 10.1007/510270-006-0011-2.

Frédéric Lang, Radu Mateescu, and Franco Mazzanti. “Compositional Verifica-
tion of Concurrent Systems by Combining Bisimulations”. In: FM 2019 - 23rd
International Conference on Formal Methods. Volume 11800. Lecture Notes in
Computer Science. Porto, Portugal: Springer Verlag, Oct. 2019, pages 196—213.
DOI: 10.1007/978-3-030-30942-8_13. URL: https://hal.inria.fr/hal-02295459.

Joachim Niehren, David Sabel, Manfred Schmidt-Schaul3, and Jan Schwing-
hammer. “Observational Semantics for a Concurrent Lambda Calculus with
Reference Cells and Futures”. In: 23rd Conference on Mathematical Foundations
of Programming Semantics. ENTCS. New Orleans, Apr. 2007. DOI: 10.1016/j.
entcs.2007.02.041.

Joachim Niehren, Jan Schwinghammer, and Gert Smolka. “A Concurrent
Lambda Calculus with Futures”. In: Theor. Comput. Sci. 364.3 (Nov. 2006),
pages 338-356. ISSN: 0304-3975. DOI: 10.1016/).tc5.2006.08.016.

Laurent Pellegrino, Francoise Baude, and Iyad Alshabani. “Towards a Scalable
Cloud-based RDF Storage Offering a Pub/Sub Query Service”. In: CLOUD
COMPUTING 2012. 1SBN: 978-1-61208-216-5. DOI: 10.1007/978-3-642-40053-7_4.

3:30

https://doi.org/10.1145/2967973.2968599
https://hal.inria.fr/hal-01345315
https://hal.inria.fr/hal-01345315
https://doi.org/10.1145/4472.4478
https://hal.archives-ouvertes.fr/hal-01758734
https://doi.org/10.1007/978-3-642-21878-1_37
https://doi.org/10.23638/LMCS-13(4:12)2017
http://lmcs.episciences.org/4079
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/s10270-006-0011-2
https://doi.org/10.1007/978-3-030-30942-8_13
https://hal.inria.fr/hal-02295459
https://doi.org/10.1016/j.entcs.2007.02.041
https://doi.org/10.1016/j.entcs.2007.02.041
https://doi.org/10.1016/j.tcs.2006.08.016
https://doi.org/10.1007/978-3-642-40053-7_4

Nicolas Chappe, Ludovic Henrio, Amaury Maillé, Matthieu Moy, and Hadrien Renaud

[26] Pony Developers, editor. Pony, an open-source, object-oriented, actor-model,
capabilities-secure, high-performance programming language. 2021. URL: https:
//www.ponylang.io (visited on 2021-05-01).

[27] Kenjiro Taura, Satoshi Matsuoka, and Akinori Yonezawa. “ABCL/f: A Future-
Based Polymorphic Typed Concurrent Object-Oriented Language - Its Design
and Implementation”. In: Proceedings of the DIMACS workshop on Specification
of Parallel Algorithms. American Mathematical Society, 1994, pages 275-292.
DOI: 10.1090/dimacs/018.

[28] Futures and promises. 2021. URL: https://en.wikipedia.org/wiki/index.php?title=
Futures_and_promises&oldid=1024620691 (visited on 2021-05-23).

[20] Derek Wyatt. Akka Concurrency. Artima, 2013. ISBN: 978-0-9815316-6-3.

3:31

https://www.ponylang.io
https://www.ponylang.io
https://doi.org/10.1090/dimacs/018
https://en.wikipedia.org/wiki/index.php?title=Futures_and_promises&oldid=1024620691
https://en.wikipedia.org/wiki/index.php?title=Futures_and_promises&oldid=1024620691

An Optimised Flow for Futures: From Theory to Practice

FN Proofs

This section gathers the lemmas used to prove the bisimulation theorem, their proof,
and the proof of the theorem itself.

A1 Proofs of Lemmas

Lemma 1 (Matching a chained future). If cn, % cn, and f(chain f’) € cn,, then

f(f7) e cnp.

Proof. This property can be proved by induction on £ : the only relevant rules are
Z -1D-RESOLVED and # -FORWARD-AsYNC, both trivial. Note that by construction
there is no chain on the right hand side of £ . O

Lemma 2 (Resolved future in DeF+F). If cn, % cn, and f (w) € cn,, then there exists
folf1) - Fa () € cny stch that fo = f, f,(w) € cn,, and Vi, f;(w) € cn,.

Proof. Induction on £ . Apart from the trivial case of % -ID-RESOLVED, the only rule
that adds a f (w) to the forward configuration is % -CHAIN-UPDATE.

Assume the property holds between cny = cn/, f(chain f’) f'(w) and cn,,. We now
consider cn), f (w) f'(w) Z cny,.

From lemma 1 applied in cng, f (f’) € cn,. And from the induction hypothesis, there
exists fo(f])...f,_,(f1) € cny, such that f' = f,, f/(w) € cny, and Vi, f/(w) € cn.

The sequence (fi) with fo = f, and f; = f/ | for 1 < i < n+ 1, is such that
fo=1, fa(w) € cny, and Vi, f;(w) € cn,. Thus the induction hypothesis still holds for
cnl, f(w) f'(w) Z cny,. O

Lemma 3 (Resolved future in DeF). If cn, % cn,, and f (w) € cn,, then:
= Either w is a future and f (chain w) € cn,.

= Or there exists w' such that f (W) € cn, and there exists fo(f1) ... fa_1(fy) € cn, such
that f = f,, f,(W') € cn,, and Vi, f;(W') € cn,.

Proof. By definition of # and case analysis on the possible configurations, there exists
w’ such that either f (chain w') € cn, or f (w') € cn,. Then we conclude using lemmas
I and 2. O

Lemma 4 (Matching tasks). If cn, % cn,, then 3s.f ({l | s}#q) € cn, if and only if
3s". f ({1 | "} #[a] pwdrim) € cnp. In this case:

= Either s" = [s])fwdgiim-

= Ors is of the form y = gets w;sy, and s’ of the form y = gets W'; [s1]pudgiim, With

r .

Vi <nw;(wiy,)€cn,
. / /
Vi<mw(w,)ecn,
/ / — /

dwg ... Wy €cCng. dwy ... w ECny, § wo =wy

W, =w
/

_ /
Wm—W

3:32

Nicolas Chappe, Ludovic Henrio, Amaury Maillé, Matthieu Moy, and Hadrien Renaud

Proof. An induction on % proves this property. Essentially, the rule # -GET-FUTURE-
F adds one more w;, the rule # -GET-FUTURE-D adds one more w/, and the other
cases are trivial.
We detail the case of # -GET-FUTURE-D. Suppose the lemma holds for
e, F({E | s}#3) & cny £(F) £({€ | ¥ = getx £35'}#[Tpvarim)> and consider
cng fU({C]s}#q) R cny £(f') f'({€ |y = getx f'5s"}# [q] pwdptim) -
Two cases appear from the induction hypothesis.
= If (y = gets f ; s') = [s]pwdriim> then s is of the form y = get« f ;s; with s; such
that s = [s1]wqerim- In this case our new pair of configurations will verify the second
case of the lemma with the sequence (w;) reduced to (f) and (w}) = (f, f').

= Otherwise, s is of the form y = get* w; 51, and there exist wy...w, and w,...w
such that

/
m

Vi <nwi(wiq)ecn, f"({€|s}#q)
Vi <mwi(w),) ecn, f(f') F'({€ |y = gets £} #[qpwazim)

< Wofwz)
W, =w
/o

ka—f

The sequences wy...w, and wj,...w/ satisfy the lemma for
ceng fU({€]s}#q) # cny f(f7) ({0 |y = get= f'ss"}#[a] pwartim) O

Lemma 5 (Sequence of futures: DeF to DeF+F).

If cn Z cny, and fo(fy) ... fac1(fa) fa(w) € cny, with 3f ecny.w = f, then there exists
ko <+ <k such that for all i <1 either f (fx,,,) € cn or fi,(chain fi)€ cn, with
ko =0 and k; = n.

Proof. We build a strictly increasing sequence of indices (k;) bounded by n.
Suppose we have kg < -+~ < k; such that Vi < j either fi (fi,,,) € cng or
fi(chain f,) € cng, and ko = 0, k; < n. Two cases arise from lemma 3 applied to
%
= Either fkj(chain fkjﬂ) € cng, in which case we can take k; ., = k; + 1.
= Or there exists w' such that fi (w') € cne and f(f)) ... f,,_,(f,,) € cn,, such that

*/m—1
fo = fx, and fm(W') € cny,. It is clear that f/ = f yi- As 1f.w = f, this implies that
kj +m < n, thus we can take k;, = k; + m > k;.
The resulting integer sequence is strictly increasing and bounded by n, which proves

the lemma. O

Lemma 6 (Sequence of futures: DeF+F to DeF).

Ifan%) and fO(fl) .. -fnfl(fn) fn(W) €Ny,
then there exists f(f})...f/ ,(f]) € cn, such that f; = fo and f/(w) € cn,,.

Proof. For eachi (0 <i < n), lemma 2 proves that there exists a sequence of futures
from f; to f; ;. We choose the sequence (f’) as the concatenation of these sequences.
O

3:33

An Optimised Flow for Futures: From Theory to Practice

A.2 Main Bisimulation Theorem

Theorem 1 (Correctness of the translation from DeF+F to DeF). & is a branching bisim-
ulation between the operational semantics of the DeF+F program P and the operational
semantics of the DeF program [P, dgiim-

Let R range over observable transitions. If cn, & cn,, then:

5" en! ' R 5 en! R cn
cn, — cn;, :R> cn), % cn,, . chD =l = R cn)
! l T ! ! !
cn, —R> cnl, — 3enl.cn, —>*—R> cnl A cnl R cn)
T
cn, —cn = 3denl.cn, — —cnl, A cnl Zcn)

The transitions GeT-Future and CHAIN-UppATE are non-observable, both of them are
labelled t. The observable transitions FORWARD-ASYNC and FORWARD-DATA are labelled
RETURN-AsyNc, and FORWARD-SYNc is labelled RETURN-SYNc. All the other transitions
are labelled with their original rule name.

Proof of theorem 3. From the form of the theorem, we have to prove one implication
per rule of the operational semantics of DeF + F, and one implication per rule of the
operational semantics of DeF. We start with the only 7-rule of DeF: GET-FUTURE.

Case of R = GET-FUTURE. We suppose cn, °°" 5" cn’_ and cn, % cn,,. We have to
prove cn, Z cn’,. The definition of GET-FUTURE implies that

f{L]y =gets w; [s]avdgim } #[9] fwdriim) € cnp, w(w') € cny,, and
f{ely =getx w'; [s]avartim} #[q] fwdriim) € cn'p-
The rule # -GET-FUTURE-D of # immediately gives cn, Z cn’,.
We now suppose cn, A en’ » and cn, Z cn,,, with R an observable rule of DeF, and
we aim to prove that there exists a cn’, such that cn, > > cn’ and cn'; Z cn’;,. We

will detail the simple case of Skip, then move on to the two interesting non-trivial
cases: RETURN-AsYNc and GET-DATA.

Case of R = SKIP. The form of the rule Skip implies that
cny = cn”y, f ({€ | skip ; [s]avartim } #[9] fwdrim) and
Cn/D = Cn//D f({f | [[SﬂdeElim}#[[q]]deElim)~

From lemma 4, cn, = cn”, f ({€ | skip ; s}#q). Take cn, SKiP f({€|s}#q) cn”, and
cn'y # cn’, remains to be proven.

This can be done by induction on 2 . Indeed we can build a proof tree for cn’, % cn’,
with the same shape as the one of cn, % cn,, the only difference being that the
application of the rule Z -ForwaRDELIM that introduces f ({€ | skip; s}#q) is replaced
by an application of the same rule but for f ({{ | s}#q) instead.

Case of R = RETURN-ASYNC. a) F f({€ | return v}) "*"VSANC g S B £(w). If cny is
of the form cn”, f({¢ | return v}), then we can take cn, ="V en” L £ (w).
Otherwise, cn, is of the form cn”, f({¢ | forward+ v}), in which case we can
FORWARD-AsYNC ”
take cn, = cn’s f(

cn'y Ben' .

chain v) and the rule %#-FORWARD-ASYNC gives

3:34

Nicolas Chappe, Ludovic Henrio, Amaury Maillé, Matthieu Moy, and Hadrien Renaud

GET-D R .
Case of R = GET-DATA. We suppose cn,, — — " cn’,. This implies that cn,, contains a

term of the form f ({¢ | y = get* w'; [s]pwdrtim } #[q] fwdriim)> and cn’;, contains a term

of the form f ({€ | y =W’ ; [s]pwdgtim } #[q]fwagtim) Such that Af € cny,.w’ = f.
From lemma 4, f ({{ | y = get= w; s}#q) € cn, and

Vi<nw;(wiq)eEcn,
Vi<mwi(wi,,)€ecn,

/ / — /
Iwg.. Wy Ecng. Wy ... w Ecng Wy =W,
w, =Ww
/

_ /
Wm—W

Then, lemma 5 applied to (wy,...w!) gives us kg < --- < k; such that
Vi<l either) (W;qH) € cng or w) (chain W?{M) € cny

with ko =0 and k; = m.

(w;<0 . ..w;(l) and (wg...w,) are both sequences of futures in cn., and they start
from the same future w,. Since a future can be defined only once in a configuration,
these sequences coincide. As by definition the sequence (w?{0 .. w;q) cannot be further
extended at its right, necessarily n < [. This results in: (w?{0 e W;{n) = (wg...w,). Also,
w=w, = W?{n.

This meansthata) F f ({{ |y = get=w;s}#q) ' YEf({l]y =get=w;s}#q),
with the 7-transitions a series of GET-FUTURE and CHAIN-UPDATE. This proves
thata Y F f({€ |y = gets w: s}#7) "> O™ 4 N F F({€ | y = w' ; s}#7), which
concludes this case.

We now consider the simulation of a transition on the DeF+F side. We first consider
the T case: suppose cn, — cn’, and cn, % cn,,. This side has two 7-transitions.

Case of R = CHAIN-UPDATE. a) F f(chain f') f'(w) S™ ™A 0 S F £ (w) £/ (w).
The rule # -CHAIN-UPDATE allows to conclude immediately.

Case of R = GET-FUTURE. Similar to the case of GET-FUTURE on the DeF side, but
with Z -GET-FUTURE-F instead of #Z -GET-FUTURE-D.

We now suppose cn A oen r and cn; Z cn,, with R an observable rule of DeF+F, and
we aim to prove that there exists a cn’,, such that cn, > > cn’ and cn’, # cn’. Once
again, most cases are trivial. We thus only detail the non-trivial cases: FORWARD-
AsyNc and GET-DATA.

Case of R = FORWARD-AsYNC. We have [[v],,, = f" and

a)F f({t|forwards v ;s'}) ORWAERASNC o S B £(chain f). From lemma 4,
f({f | returnv;s}) e cn, with (forwards v ;s') = [return v ; s s,qgim- This allows
to apply RETURN-AsyYNc on the DeF side:

af({f ‘ return v ;5}) _’af(f/)

Then the rule # -ForwaRD-AsyNc allows to conclude.

3:35

An Optimised Flow for Futures: From Theory to Practice

GET-D e .
Case of R = GET-DATA. We suppose cn,, ~~ — " cn'5. This implies that cn, contains

a term of the form f ({¢ | y = get* w; s}#q), and cn’; contains a term of the form
FHEly =w; sh#q).
From lemma 4, f({¢ |y = gets w'; [s]pwariim} #[dlpwarim) € cnp and

Vi<nw;(wiq)€cn;
Vi<mwi(w,,)ecn,

/ / _ /
dwg ... wy Ecng. Fwy ... w Ecny, { wo =W,
W, =Ww

/

o
\Wm_W

Then, lemma 6 gives us f/(f")...f" . (f) € cny such that ' = w, and £ (w) € cn,.
& o U1 1—1U; D 0 0 ! D
From their definition, it is clear that (f;'...f ;) = (wy...w!), and m <I. Also,
A Y
w=w_=f"
This means that

l—m

a)F f({t|y=getsw; [s]pwdgrim} #[q] fwarim) —
a)F f({€ |y =gets w; [s]pwdriim} #[q] fvdriim)

with the t-transitions a series of GET-FUTURE. This proves that

tl=MGET-DATA

a)F f({t|y=gets w'; [slavantim} #[qpwapim) — ~ —
a)F f({t]y =w; [slavazim} #[] fwazim)

which concludes this case. O

I} Typing and Implementing forward*

In this subsection, we present how an implementation of forwards can be typed.
As a mean of comparison, we will consider the forward construct in the Encore
programming language, which is similar to ours.

The formal typing rule T-FORWARD given in figure 4 imposes that a function
containing forward* x must be typed as t;..t, — Flow([t] .

If we look at the Encore language, a function containing forward x, with x :: Fut|t],
is typed t;..t,, — t. Calling the function asynchronously actually returns a Fut[]. This
is in effect an alternate way to type forward. To add the notion of Flow[] from DeF+F
to the Encore language, one should consider a forwards operator, akin to the existing
forwards= but operating on Flow]].

There are now two possible ways to type forwards, the DeF+F way called strict
mode in the paper, and the flexible mode actually used for the implementation of
forwardx in the Encore compiler. We will now discuss those two typing solutions.

3:36

Nicolas Chappe, Ludovic Henrio, Amaury Maillé, Matthieu Moy, and Hadrien Renaud

Ba Flexible vs Strict Typing of Future

The Strict Way The first possibility is what we have introduced previously in DeF+F
(figure 4). Coding a method with strict typing would look like:
def work(arg: s): Flow[t]

forward*(worker!compute(arg))
end

Notice the presence of Flow in the type of the result of the method. If the return
type was int, the user could trigger an implicit synchronisation on a synchronous call
to the function, for example by this.work(arg). Returning a future forces the user to
trigger explicitly synchronisations, without being burdensome for the user as only one
data-flow synchronisation is needed.

Typing forwards in Encore this way doesn’t require more typing or semantic rules
than what we have already established.

The Flexible Way This way is used in the Encore compiler to type its own forward
construct. In Encore, forward works on a Fut|[t]. The return type of a function using
Encore’s forward is then t, as seen in the following code:

def work(arg: s): t

forward worker!lcompute(arg)
end

Notice the absence of Fut[] in the function return type. If work is called asynchronously
there no problem, but if work is called synchronously, this may hide the fact that the
result of work is still an asynchronous computation. In the type system of DeF+F, this
would correspond to the rule:

T-CEF-FORWARD

I'e:Flow[T'] T@m=T-T

I, forwardxe

Then the problem is to give a semantics to the use of forward* inside a synchronous call.
In principle, a function that performs a forward* is made to be invoked asynchronously
but it is always possible to invoke it synchronously. Figure 6 describes the semantic
rule that should replace the FORWARD-SyYNCc rule of DeF+F (figure 2) in the flexible
solution. Consider a synchronous invocation to a function that finishes with a forward*.
As the invoker of the function cannot know that the result should be Flow[T], it is
necessary to synchronise the returned value before returning it (with the typing of
figure 2 the invoker is aware that the result is a Flow[T]) and ensure the returned value
is not a Flow anymore.

CEF-FORWARD-SYNC
[Vlase =w y fresh variable

a)F f({{'|forwards v ;s}#q#q) >a) F f({{' | y = get= w; return y ; s}#q#q)

B Figure 6 Semantic rule of a synchronous forward*.

3:37

An Optimised Flow for Futures: From Theory to Practice

B.2 Benefits and Drawbacks

Synchronous Calls The main argument against flexible typing is that it induces an
implicit get synchronisation when a method using forward* is called in a synchronous
way, as shown in the semantic rule in figure 6. This drawback only applies to methods,
as forward cannot be used inside functions. Consider the following example that uses
forward with the flexible typing of Encore.
active class A
def print_job_result(arg: s): t
val result = this.work(arg)
println("Result: {}", result)
return result
end
def work(arg: s): t
forward worker!lcompute(arg)
end
end

Here a call to print_job_result will implicitly block the actor on line val result =
this.work(arg). This behaviour is similar to the way implicit futures work: method work,
written with futures in mind since it uses forward*, can be called transparently like a
method of a non-active class.

With the strict typing, the user will have to write an explicit get to resolve the result
of the synchronous call. This is expected from a language with explicit futures.

An example of misleading behaviour induced by the flexible typing is illustrated in
listing 3, while listing 4 shows how strict typing can make such behavior avoidable.
In listing 3, bar uses forward hence it is naturally called asynchronously. However,
Encore allows the programmer to use the synchronous call syntax this.bar() as a
shortcut for get(this!bar()), which triggers a deadlock since the instance of Foo is
still processing the message that triggered the invocation of foo. In order for the
message bar to be processed, foo needs to finish, and foo can only finish once the
bar message is processed. While the shortcut may make the code more concise and
allow synchronous-like syntax, it also makes the get synchronisation implicit, which
is misleading when using explicit futures. On the other hand, in listing 4, because
the typing of forward* is strict, bar explicitly returns a Flow, and the synchronous call
syntax induces an effectively synchronous call that returns a Flow on which the caller
needs to explicitly call get to get the actual value. The potential deadlock is explicit in
this version, and can be avoided by adding an await* statement that waits until the
future is resolved, allowing baz to execute in the meantime. Thanks to the collapse
rule, calling a method returning a Flow asynchronously doesn’t create any nested flow
(unlike what would happen with a method returning Fut), hence returning a Flow
explicitly isn’t a problem.

3:38

Nicolas Chappe, Ludovic Henrio, Amaury Maillé, Matthieu Moy, and Hadrien Renaud

B Listing3 Forward with futures in clas-

sic Encore

active class Foo
def foo(): int
this.bar() -- Types in classic Encore, but
< deadlocks
end

def bar(): int
forward(this!baz())
end

def baz(): int

42
end
end

active class Main

B Listing4 Forward with flows in ex-

tended Encore

active class Foo
def foo(): int
var x = this.bar()
-- get*(x) -- Deadlock as there is
— already a message being
< processed
await*(x) -- Wait until forward* is
< completed
get*(x) -- Now it doesn't deadlock
end

def bar(): Flow[int]
forward*(this!'baz())
end

def baz(): int

def main(): unit 42
var f = new Foo() end
print(get*(fifoo())) end
end
end active class Main

def main(): unit
var f = new Foo()
print(get*(fifoo()))
end
end

Backward Compatibility The main advantage for using flexible typing is that code
can seamlessly be translated from control-flow explicit futures Fut[] to data-flow
explicit futures Flow][]. Let us consider the following example with control-flow explicit
futures:

active class LinkedListNode
val state: int
val next: Maybe[Node]

def sum(acc: int = 0): int
match this.next with
case Just(next) => forward(next!sum(this.state + acc))
case _ => this.state + acc
end
end
end

To port this code to DeF+F, one can just change the asynchronous operators: forward
into forwards= and ! (asynchronous call returning a Fut[]) into !! (asynchronous call
returning a Flow|]). This operation is very easy and does not require any major change
in the code. In particular, the type system of Encore with DeF includes the previously
control-flow explicit futures type system.

On the other hand, if we use strict typing, porting this code to Encore with DeF
can be burdensome, as the return types of functions may change. This would require

3:39

An Optimised Flow for Futures: From Theory to Practice

programmers to manually change the signature of all functions using forward and
then track calls to these functions to change the code.

B.3 Decision

We chose to implement the flexible version into our Encore extension, to provide
backward compatibility between the DeF and the original Encore compiler. That being
said, it is recommended to type the methods using forward* in a strict way, as to
emphasise their asynchronous nature, and prevent synchronous calls to asynchronous
methods. In the context of a fresh language developed with data-flow explicit futures,
we would advise to use the strict rule.

The bisimulation proven in our paper still holds in this setting as long as forward* is
only used in asynchronously called functions. The additional flexibility introduced with
our implementation does not allow us to have the equivalence between forwards v
and return v (translation [[syqgiim) in synchronous calls. Indeed the additional syn-
chronisation introduced by the semantics of forward might block a program that
would otherwise terminate, for example. Note that potentially problematic cases
(synchronous calls to asynchronous methods) can easily be forbidden statically, hence
this is not a limitation of our choice.

3:40

Nicolas Chappe, Ludovic Henrio, Amaury Maillé, Matthieu Moy, and Hadrien Renaud

About the authors

Nicolas Chappe Nicolas Chappe is an internship student from
Ecole Normale Supérieure de Lyon. email: nicolas.chappe@ens-
lyon.fr.

Ludovic Henrio Ludovic Henrio is a researcher in the Cash team
at LIP laboratory in Lyon. email: ludovic.henrio@cnrs.fr.

Amaury Maillé Amaury Maillé is a PhD student in the Cash team
at LIP laboratory in Lyon. email: amaury.maille@ens-lyon.fr.

Matthieu Moy Matthieu Moy is assistant professor in the Cash
team at LIP laboratory in Lyon. email: matthieu.moy@univ-lyon1.fr.

Hadrien Renaud Hadrien Renaud is an internship student from
Ecole Polytechnique. email: hadrien.renaud@polytechnique.edu.

341

mailto:nicolas.chappe@ens-lyon.fr
mailto:nicolas.chappe@ens-lyon.fr
mailto:ludovic.henrio@cnrs.fr
mailto:amaury.maille@ens-lyon.fr
mailto:matthieu.moy@univ-lyon1.fr
mailto:hadrien.renaud@polytechnique.edu

	1 Introduction
	2 Context and Related Work
	2.1 A Brief History of Futures
	2.2 Motivational Examples
	2.3 The Limitations of Existing Future and Promise Constructs
	2.4 Positioning and Discussion

	3 Data-Flow Explicit Futures: Principles and Semantics
	3.1 Syntax of DeF
	3.2 Semantics of DeF
	3.3 Syntax and Semantics of DeF+F
	3.4 The Type Systems of DeF and DeF+F

	4 Forward: A Safe Optimisation in DeF
	4.1 Translation from DeF+F to DeF and Program Equivalence
	4.2 Branching Bisimulation between DeF+F and DeF

	5 DeF in Practice
	5.1 Implementation of Flow
	5.1.1 Typing
	5.1.2 Creation of Flow
	5.1.3 Flow Synchronisation with get*

	5.2 Implementation of forward* in Encore
	5.3 Encoding Fut[] from Flow[]
	5.4 Benchmarks
	5.4.1 Test Programs
	5.4.2 Results and Discussion

	6 Conclusion
	References
	A Proofs
	A.1 Proofs of Lemmas
	A.2 Main Bisimulation Theorem

	B Typing and Implementing forward*
	B.1 Flexible vs Strict Typing of Future
	B.2 Benefits and Drawbacks
	B.3 Decision

	About the authors

