
HAL Id: hal-03449926
https://inria.hal.science/hal-03449926

Submitted on 25 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Path Filters: A Class Of True In-Line Topologies With
Transmission Zeros

Stefano Tamiazzo, Giuseppe Macchiarella, Fabien Seyfert

To cite this version:
Stefano Tamiazzo, Giuseppe Macchiarella, Fabien Seyfert. Path Filters: A Class Of True In-Line
Topologies With Transmission Zeros. IEEE Transactions on Microwave Theory and Techniques, 2022,
70 (1), pp.850 - 863. �10.1109/TMTT.2021.3126861�. �hal-03449926�

https://inria.hal.science/hal-03449926
https://hal.archives-ouvertes.fr


> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

1 

 
Abstract—In this paper we present a comprehensive discussion 

of a new class of inline microwave filters with transmission zeros 
in the response, namely the path filters. The main features of this 
filters class are highlighted, and an original (synthesis-based) 
design approach is presented, relying on the derivation of suitable 
characteristic polynomials. In addition to the classical Generalized 
Chebyshev characteristic, two new characteristics are introduced 
(namely the Bounded Chebyshev and the Reduced Chebyshev), that 
allow improving the flexibility in the requirements assignment of 
path filters. A new method for the synthesis of the lowpass 
prototype is also introduced, that overcome the limitation in the 
classical synthesis based on the manipulation of the transversal 
prototype (whose synthesis may fail in case of path filters). Finally, 
the proposed approach for designing the class of considered filters 
has been validated by several examples that include the evaluation 
of the characteristic polynomials, the prototype synthesis and the 
dimensioning of the physical structures in waveguide technology.  
 

Index Terms — Characteristic polynomials, In-line filters, 
Synthesis, Transmission zeros. 

I. INTRODUCTION 

HE development of latest generation telecommunication 
equipment is pushing towards implementing solutions 

close to the limits of current technologies. For example, filters 
used in terminals and radio units for 5G, as well as those used 
for satellite communications, are required to be more and more 
selective, with low passband losses and strictly constrained in 
terms of overall volume and weight. For this reason, in recent 
years, in addition to developing new and more performing 
materials and fabrication technologies, new conceptual 
solutions concerning the filter configurations are being studied 
[1]-[13]. As well known, the inline configuration composed by 
direct-coupled cavities is the simplest and most compact filter 
topology, widely used for decades [1]. It however suffers from 
scarce selectivity because no transmission zeros are allowed in 
the response. For this reason, many efforts have been done 
during the years to introduce transmission zeros in the response 
of inline filters without losing the advantages of this convenient 
topology. Extracted-pole configurations were among the first 
solutions adopted [2]-[6], although they do not allow for a true 
inline topology, require rejection cavities and are not easy to 
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design. More effective solutions are represented by inline filters 
with frequency-dependent couplings [7]-[13]. These filters 
feature true inline topology but requires special coupling 
structures that must provide both the required coupling in the 
passband and complete rejection at the transmission zero 
frequency. Recently, ingenious solutions for quasi-inline filters 
in coaxial technologies have been proposed, based on the even 
and odd modes of strongly coupled resonators [14]-[15]. 
Finally, in [16] a true inline waveguide filter with transmission 
zeros has been realized by introducing a cross coupling between 
non-adjacent cavities by means of a wire running through the 
cavities. 
 All the above-mentioned solutions present some drawbacks 
due to either the not true inline configuration or to the 
requirement of special components, or for the complex design 
techniques required (not within the reach of on average skilled 
designers). 
   This work is focused on a new category of true inline filters 
recently proposed, namely the path filters [17]-[18]. The main 
advantage of this type of inline filter is that its implementation 
does not require special components. Moreover, the sign of the 
couplings does not affect the magnitude of the response (as it 
happens in all-pole filters). In practice, the practical 
dimensioning of path filters is carried out exactly in the same 
manner of direct-coupled all-pole filters. On the other hand, the 
design of path filters exhibiting the Generalized Chebyshev 
characteristic with assigned transmission zeros is allowed only 
for a specific set of transmission zeros and the passband return 
loss (RL) cannot be assigned freely [18]. The first proposed 
approach to the design of path filters is based on the 
optimization of the coupling matrix [17]. More recently, a 
method for the analytical synthesis of symmetric path filters is 
presented in [18]. In the present work we introduce a general 
approach to the design of path filters, removing the symmetry 
constraint and broadening the set of assignable transmission 
zeros. The paper is organized as follows. In Section II the path 
filters topology is recalled and the constraints concerning its 
polynomial characterization are derived. Section III introduces 
the evaluation of “ad-hoc” polynomials models for path filters. 
In Section IV we discuss a suitable synthesis technique for the 
prototype network based on the derived polynomials (in fact, 
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usual synthesis techniques may fail when applied to these 
polynomials). Some examples of path filters design in 
waveguide technology are then illustrated in Section V while 
Section VI concludes the paper. 

II. DEFINITIONS AND POLYNOMIAL CHARACTERIZATION 

The basic topology of path filters (originally introduced in [18]) 
is shown in Fig. 1. It is comprised of np resonant nodes 
cascaded along a straight “path”, which also includes the input 
(source) and output (load) nodes. Source (S) and load (L) 
separate the np resonators into three blocks. The first block, 
comprised of nS nodes, can be seen as “hanging” from the 
source and will be referred to as the source dangling branch of 
order nS. The middle block, comprised of nD nodes, will be 
referred to as the mainline path filter. The third block, 
comprised of nL nodes, can be seen as “hanging” from the load 
and will be referred to as the load dangling branch of order nL. 
Either the source or the load dangling branch, but not both, 
might be missing, in which case we will set nS = 0 or nL = 0. 

 

 
Fig. 1.  General configuration of path filters. The black circles represent 

either a resonator (bandpass equivalent circuit) or a unit capacitance in parallel 
with a frequency-invariant susceptance (normalized lowpass prototype). The 
lines are the coupling inverters, and the white nodes are the source and load, 
possibly with an added frequency invariant susceptance in parallel (NRN) 

 
   A circuital representation of the generic path filter is shown 
in Fig. 2a, where YS and YL (defined in Fig. 1) represent the 
source and load dangling admittances, whereas SD is the 
scattering matrix of the mainline filter.  
 

 
Fig. 2.  a) Compact representation of path filters. b) Two-port corresponding to 
the dangling branches at Source and Load 
 
The circuit element YS is a lossless positive real (p.r.) one-port 
admittance function, whose distinct poles 

,
S
z kj , with

1, , Sk n  , are necessarily simple and purely imaginary (p.r. 

property) with positive real residues  S
kr . Thus, the 

admittance function YS admits the following representation: 

   
  1 ,

SS Sn
S S k

S S
k z k

q s r
Y s ja

m s s j

  
        (1) 

where aS is a real number; qS(s) and mS(s) are polynomials 
whose order can differ at most by one. This leads to the 
polynomial representations of the matrix SS in (2) 

characterizing the two-port built on the source dangling branch, 
as depicted in Fig. 2b. 
 

2 21 1

2 22 2

S S S
S

S S SS S S

Y q m
S

Y m qY m q

    
         

      (2) 

 
Similar considerations hold true for the admittance function YL, 
with poles  ,

L
z kj , and for the matrix SL of Fig. 2b. 

The overall scattering matrix S of a path filter can be computed 
in terms of the three 2x2 scattering matrices SS, SD and SL as 
follows: 

S D LS S S S             (3) 

where the symbol   is the cascade operator for two 2-port S 
matrices, with port 2 of the first network connected to port 1 of 
the second network.  
We assume in the following the apex T as either S or L. At the 
nT frequencies 

,
T
z kj  the corresponding dangling branch is 

shorted and thus the nT poles 
,

T
z kj  of YT are also poles of the 

input and output admittances (Yin/out) of the filter: 

   / ,      1, ,T T
in out z kY j k n                       (4’) 

These imply that: 

     11/ 22 , 12 ,1,    0,       1, ,T T T
z k z kS j S j k n            (4”)  

In conclusion, the poles of the admittances YS and YL are exactly 
the nz =nS

 + nL transmission zeros (TZs) of the path filter. Those 
from YS (

,
S
z kj ) are said to be generated at the source, while 

those from YL (
,

L
z kj ) are said to be generated at the load. The 

minimum path rule [19] assures that no other finite TZ other 
than these can exist in path filters. 
Although 

,
S
z k and 

,
L
z k are distinct for each branch, we might 

have repetition of some zeros between the two branches, i.e., 

, ,
S L
z k z h z     for some values of the indices k and h. In this 

case jz (the TZ) will be generated at both branches and 
therefore represent a double TZ of the overall response 

  12 12 0 must hold .
z

zS j S


       

 Path filters have the minimal number of coupling elements and 
do not require additional couplings for producing TZs; they are 
“true” inline configuration. Moreover, unlike other similar 
topologies (e.g., those using frequency-dependent couplings 
[7]-[13]), no special implementation for coupling elements or 
resonators is required and all couplings can be made positive if 
so desired. 
Although nS

 and nL are in principle arbitrary, dangling branches 
generating two or more transmission zeros with the same sign 
(that is, on the same side of the passband) result, for the 
alternating singularities property of YS and YL, in at least one 
zero of YS (or YL) resting in between a pair of adjacent poles, or 
TZs of the filter, often causing a significant  degradation of the 
stopband attenuation, especially when the two TZs are close to 
each other. We will then limit the maximum number of TZs per 
dangling branch to two or less, with no dangling branch 
generating a pair of zeros with the same sign, or on the same 
side of the passband. 

SD YLYS

Path Filter

YS

SS

a) b)

YL

SL
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The design of lossless path filters starts, as usual, with the 
synthesis of a prototype with a desired response. The prototype 
is defined in the normalized lowpass domain s = j, which is 
related to the bandpass domain (f) by the usual frequency 
transformation  0 0 nf f f f B   with f0 passband center 

frequency and Bn normalized bandwidth. 
The synthesis of the lowpass prototype requires first the 

evaluation of the characteristic polynomials F(s), P(s) and E(s) 
in the complex normalized frequency variable s = j, which 
define the scattering parameters of the filter: 

 
 

 
 

 
 

*

11 22 21

( 1)
,     ,     

npF s F s P s
S S S

E s E s E s


            (5) 

where (*) denotes the para-conjugate operator [20]. E(s) is a 
strictly Hurwitz polynomial and its roots are the poles of the 
filter, while the roots of F(s) and P(s) are the reflection zeros 
(RZs) and the transmission zeros (TZs) respectively.  

In addition to the usual lossless-ness constraints, path filters 
have the additional constraints (4), which, in terms of the 
characteristic polynomials in (5), are expressed as 

   
   

, ,

*

, ,

,                1, ,

( 1) ,      1, ,

S S S
z k z k

L np L L
z k z k

E j F j k n

E j F j k n

     

      
         (6) 

The characteristic polynomials E(s) and F(s) of path filters 
must then satisfy the nS+nL conditions expressed by (6). 
Conversely, if equations (6) are satisfied for each of the nz TZs 
of a filter, then this filter admits a path realization, as will be 
proved in section IV. 

A. Polynomials evaluation (Generalized Chebyshev 
characteristic) 

In this work we will consider several classes of single-band, 
non-fully canonical equiripple path filter responses, that is 
equiripple responses for which conditions (4), or equivalently 
(6), can be enforced. The first class is Generalized Chebyshev 
(GC) path filters, for which all RZs are purely imaginary, and 
relations (5) specialize as shown in (5a) (the subscript 0 
indicates reference to GC filters): 

 
 

   
 

1

0 0 0
110 220 210

0 0

,       

Dn
F s j p P s

S S S
E s E s



                  (5a) 

where E0(s) and F0(s) are monic polynomials of degree np  and 
P0(s) is also a monic polynomial of degree nz. The real constant 
p0 is related to the in-band return loss level (RL) by:  

 
2

2 100
0

0

( )
 10 1

( )
RLF j

p
P j

           (7) 

To have an idea of why conditions (4) are achievable for 
certain GC filters with a single TZ, consider the plot in Fig. 3. 
It is related to a family of GC filters of order np = 3, with one 
TZ at jz = 1.1j and various values of RL levels in the range 
from 1 to 60 dB. 

 
Fig. 3.  Unwrapped phase of S11 at the TZ=j1.1 frequency for several 3rd 

degree Chebyshev filter of various RL level. 

 
For each RL point the corresponding value of the unwrapped 
phase of S11 at s = j1.1 has been plotted. It is observed that the 
unwrapped phase is an increasing and continuous function of 
the RL. When the return loss goes to zero (S11,max=1) the phase 
goes to zero, while for larger and larger RL values the phase 
goes to a limit which is greater than π. The continuity of the 
curve assures that a RL level exists such that Arg(S11(j1.1)) = 
π, or S11(j1.1) = -1 (in Fig. 3 this RL level is equal to 20.0237 
dB). Setting the RL to this value will then guarantee that 
conditions (4) are met and that a realization in the form of a path 
filter exists. More generally, for any fixed value z of the TZ 

and any filter order np ≥ 3, we get at least one value of RL, 
called in the following the natural RL level relative to |z| and 
np, such that Arg(S11(j z )) = (2k+1) π for some integer k. For 

higher degrees it is possible that there are several solutions of 
the RL satisfying this condition, but in practice only the lowest 
one is usable in most applications. 
To compute the natural RL level relative to |z| and np of a GC 
filter with a single TZ at jz the following algorithm can be 
used: 

1. Compute P0(s) 
2. Evaluate the RZs determining the Chebyshev 

characteristic and compute F(s). Note that this step is 
independent of the RL level of the filter. 

3. Choose (if first iteration) or update RL level and compute 
p0 with (7) 

4. Evaluate the E(s) by spectral factorization: 

           * * *2
0 0 0 0 0 0 0E s E s F s F s p P s P s    

5. Check constraints (6)  
6. Not satisfied:  go back to step 3 
7. Satisfied: End of the procedure 

 
The update of RL at step 3 must be carried out so as the error 

    2

0 0z ze E j F j     is minimized. In practice, the 

procedure consists in the numerical solution of equation e = 0 
with RL as the unknown. In addition to the case of single TZ, 
this procedure can be extended to GC path filters with other 
admissible TZ patterns, with various combinations of values for 
nz, nS and nL. Four of these patterns, all characterized by a single 
real number z, are as follows: 
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1) A single arbitrary TZ:  
                    nS=1 and  S

z z   or nL=1 and  L
z z    

2) A pair of symmetric TZs:   
       nS= 2 and   ,S

z z z     or nL=2 and  ,L
z z z     

3) A pair of coincident TZs:  
                        nS = nL = 1,    ,S L

z z z z       

4)Two coincident pairs of symmetric TZs:  
           nz=4 , nS=nL=2,      , , ,S L

z z z z z z         

As an example, consider the case np = 8 and z = 1.1.  

 

Fig. 4.  Response from the computed polynomials for the four possible patterns 
of TZs. The RL value obtained in each case is also shown  

Fig. 4 shows the scattering parameters S110 and S210 computed 
from the evaluated polynomials for the four patterns of TZs 
above specified. The corresponding natural RL value, slightly 
different in each case, is also shown. In all these cases, the 
reflection zeros are imaginary so, from (5), S110=S220. Thus, the 
condition assumed in [18] for the synthesis of path filters is 
fulfilled and the same results found in [18] can be obtained with 
the procedure here introduced, which is much simpler to 
implement numerically than the one proposed in [18].       

B. Synthesis flexibility increased by NRNs at source/load 

The main drawback of the so realized path filters is the lack of 
flexibility in assigning the TZs.  To begin with, the natural RL 
may become very large when the TZs are distant from the 
passband. In fact, the natural RL is an increasing function of 
|z| for fixed np. Fig.5 shows the case of a single transmission 
zero for three values of np. In all cases, when |z| is 
approximately greater than 1.3, RL becomes excessively large, 
thus penalizing the attenuation in the stopbands. This limitation 
will be addressed in section III.   
Secondly, when nz > 1, the set of admissible TZs is required to 
exhibit certain symmetries, according to one of the four patterns 
listed above. To overcome the latter limitation, and gain more 
freedom in the polynomial modeling of path filters, it is possible 
to specialize eq. (5a) by introducing two phase terms 1 and 2 

in the scattering polynomials definition as follows: 
 

 
Fig. 5.  Natural RL vs. normalized transmission zero frequency for three values 
of filter order and single TZ. 
 

   
   
   

1

2

1 2

11 110
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/2
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,     

,     

j

j

j

S e S s

S e S s

S e S s




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





         (8) 

It can be easily verified that the scattering parameters in (8) 
satisfy the lossless requirements. Moreover, unlike S110 and S220 
which are equal with the GC characteristic, S11 and S22 can now 
be different. From the circuital realization point of view, the 
addition of a phase term in S11 and S22 requires two non-
resonating nodes (NRN) implemented with susceptances in 
parallel to the source and load, whose value is given by   
bS=-tan(1/2) and bL=-tan(2/2) [4]. We can then extend the 
class of path filters shown in Fig. 1 by assuming that a non-zero 
frequency-invariant susceptance might exist in parallel to the 
unit resistor  representing source and load.  

By introducing these phase terms, the class of equiripple 
frequency response for path filters can be extended. Consider 
first the problem of realizing a GC response with two arbitrary 

TZs  ,S L
z zj j   and an arbitrary RL level, by means of a path 

filter with nS = nL = 1. The scattering parameters in (8) are 
defined by the polynomials F0(s), E0(s) and p0P0(s), and the 
angles 1 and 2. Imposing the constraints (4”) in (8), being 
S220=S110, we get:  
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   
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1  

jS S
z z
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z z
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  

       

       
           (9) 

 

where  110
S
zj  and  110

L
zj   are the phases of S110 at the 

two TZs frequencies. From (9) the expression for 1 and 2  can 
be derived: 

 
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1 110

2 110  

S
z

L
z

j

j

  

  

   
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                   (10) 

The introduction of the phase terms in (8) therefore allows to 
implement the prescribed GC characteristic with the desired RL 
and also have the path condition satisfied.  
Observing the synthesis result in the considered case (nS = nL = 
1) it is however easy to verify that the synthesized path filter is 
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equivalent  to an extracted-pole configuration [20], for which 
there are well-known synthesis techniques [4] that allow to 
arbitrarily assign the return loss for any pair of TZs.  
A path filter configuration, not equivalent to the extracted-pole 
one, is instead obtained when the two TZs are extracted by the 
same dangling branch, for example in the case (nS=2, nL=0). If 
we call ,1

S
zj and ,2

S
zj  the two transmission zeros realized by 

the branch of order 2 at the input, then the new interpolation 
condition we get from (4) takes following form:  

   110 ,1 110 ,2
S S
z zS j S j   . 

As a consequence, the two transmission zeros should be of 
opposite signs.  Eventually the phase constants are given from 
(9) by:   

   
   

110 ,1 110 ,2

1 110 ,1 110 ,2

  

 =

S S
z z

S S
z z

j j

j j

 

    

  

      
            (11) 

The first condition in (11) can be satisfied only for a certain 
value(s) of p0, determining the admissible (natural) RL level(s), 
while with the second condition we find 1 (and then the 
susceptance bS in parallel to the source representing the NRN). 

 
Fig. 6.  (a): Phase of S11o at z1 and z2 vs. RL (E0, F0, P0 computed for 
Chebyshev response with np, RL and TZs assigned). (b): Computed 
polynomials response (np=8, S

z =[-1.4 1.1], RL=26.85 dB). 

 

Although we still cannot assign the RL arbitrarily, the inclusion 
of a NRN within a second order dangling branch allows to 
introduce a pair of asymmetric TZs of opposite sign in the 
frequency response of a path filter. 

As an example, consider np=8 and S
z =[1.4, 1.1]. Fig. 6a 

shows  110 ,1
S
zj  and  110 ,2

S
zj   vs. RL. It can be observed 

that the two angles are equal for RL=26.85 dB. Using the 
second equation in (10) we get 1=0.8521 rad (then 
bS=0.454). The response computed from E(s), F(s) and P(s) 
polynomials is shown in Fig. 6b. 

In the case of three asymmetric TZs of mixed sign, by adding 
a NRN at both source and load, we can assign two TZs at 
opposite sides of the passband to the source dangling branch 
and the remaining TZ to the load dangling branch. Consider as 
an example np=8, S

z =[1.25, 1.1], L
z =1.2. The natural RL 

solution is found by solving the first condition in (11) imposed 
at the two TZs assigned to the source dangling branch  
(110(-j1.25 )=110(j1.1)). We obtain RL=24.78 dB. Then we get 
from (9) 1=0.4838 rad and 2=0.3404 rad (the NRN 
susceptances result bS=0.247, bL=0.172). 
The response computed from the characteristic polynomials is 
shown in Fig. 7a. 

With four TZs, there is only one combination of zeros that is 

allowed: ,1 ,2,  S
z z z      , ,1 ,2,  L

z z z      . In fact, the 

conditions 110(jz,1)=110(-jz,2) and 110(-jz,1)=110(jz,2) 
can be simultaneously satisfied with a single value of RL due 
to the symmetry of the response about the zero frequency. From 
(10) 1 and 2 can then be derived. Fig. 7b shows the response 
with  z,1=1.1, z,2 = 1.225 and np=8 (for which RL=24.62 dB, 
1=2=0.483 rad and bS=bL=0.246) 

 
Fig. 7.  (a) Response of the filter with np=8, zS=[-1.5, 1.1], zL=[1.2], 
RL=24.78 dB, 2=0 rad, 1=-0.852 rad. (b). Response of the filter with np=8, 
zS=[-1.225i, 1.1i], zL=[-1.1i, 1.225i], RL=24.62 dB, 2=0.483 rad, 1=-0.483 
rad. 

 
We have seen above that the introduction of NRNs has 
increased the flexibility in assigning the transmission zeros of 
path filters; but the RL cannot yet be arbitrarily assigned. 
Furthermore, the practical implementation of a NRN in parallel 
(or series) to the source or load can increase the filter 
complexity and distort the response due to the frequency 
dependence of the real structures implementing the NRN (a 
short- or open- circuited stub). For this reason, new solutions 
have been devised to allow flexible transmission zeros and RL 
assignment without increasing the complexity in the practical 
implementation of path filters.  

Up to now we have considered only quasi-elliptic responses 
with no reflection zeros in the right half-plane: the phase of S11 
and S22 is therefore entirely determined from the knowledge of 
their modulus (up to a constant if NRNs are used). When we 
vary the RL level in search for a natural solution, we change the 
magnitude and therefore the phase variation in the stopband of 
S parameters, where specific phase values at the TZs 
frequencies are required.  But there are still limits to what can 
be achieved with this technique, even when NRNs are 
contemplated. In fact, the RL level cannot be set arbitrarily and 
symmetry constraints in the location of the TZs when nz = 4 are 
still present, as the discussion above has put in evidence.  

To remove these limits, the assumption of imaginary RZs 
needs to be removed.  

III. PATH FILTERS WITH ASSIGNABLE RETURN LOSS  

We have seen in Section II that GC path filters do not allow 
to freely assign the return loss, not even when NRNs are used. 
On the other hand, it would be desirable to adjust the RL level 
of path filters to recover at least some of the stopband 
attenuation degradation that the often-large natural RL values 
are associated to. One way to accomplish this goal is to remove 
the assumption of purely imaginary RZs while preserving the 
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equiripple property of S11. In doing so, one can follow either of 
two complementary strategies: 

- Prescribing a small but non-zero real part to all reflection 
zeros. 

- Prescribing a relatively large real part to one or two 
reflection zeros while keeping the remaining zeros on 
the imaginary axis. 

More specifically, when the desired RL level is not too far 
from a natural solution, a slight move of all RZs (that will 
become complex) might suffice to adjust the phase winding of 
S11 and/or S22 along the segments of the imaginary axis 
comprising the two stopbands as required. Conversely, when 
distant from a natural solution, one needs something like one or 
two all pass factor(s), that does not change the magnitude, but 
again accelerates the phase winding of S11 and/or S22 along the 
two stopbands. This can be obtained by deliberately moving 
one or two RZs away from the imaginary axis, depending on 
the number and location of the TZs, as will be clearer in the 
following. 

Accordingly, we have then devised two non-Chebyshev, but 
equiripple, polynomial models.  

A. Path Filters with the Bounded Chebyshev Characteristic 

The first polynomial model we propose relies on a new 
characteristic function  nC    having an equiripple response in 

the passband with maxima and minima at about the same 
frequencies as the GC characteristic function  nC  . However, 

the minima of  nC   are not zero, so that the frequencies 

where the minima occur are no longer the reflection zeros (the 
latter becoming complex frequencies). In Appendix A the 
derivation of the  nC    is described, together with the 

evaluation of the characteristic polynomials E, F and P.  
In addition to the order np and the transmission zeros jz, the 

new characteristic function (referred to as Bounded Chebyshev) 
requires two key parameters: the minimum (RLmin) and 
maximum (RLmax) return loss in the passband. There is then an 
additional degree of freedom that can be exploited when 
modeling path filters polynomials. This means that, in case of 
one TZ, we can set RLmin and look for the RLmax determining 
characteristic polynomials satisfying conditions (6) (the same 
procedure illustrated in Section IIA can be used). It is found that 
RLmin can be set to values even larger than the natural RL. In 
case of two symmetric TZs, we can assign RLmin freely whereas, 
for two asymmetric zeros, one or more fixed (not RL 
adjustable) solutions (RLmin, RLmax) may exist, depending on np 
and the assigned TZs, with RLmin and RLmax getting closer and 
closer as the asymmetry of the TZs increases. No solution exists 
for 3 and 4 TZs unless specific symmetries occur. The Bounded 
Chebyshev function has also another interesting feature: the 
signs of the real part of the reflection zeros does not affect the 
magnitude of S parameters (only the phase is modified). This 
means that there are 2np different F(s) polynomials (with fixed 
P and E), that may produce different results when conditions 
(6) are checked. For instance, in case of 1 TZ, the solution with 
RLmin smaller than the natural RL tends to have RZs with 
positive real parts whereas the opposite is true for RLmin larger 

than the natural RL. For a given level of RLmin, one may find 
several Bounded Chebyshev realizations with different 
sequences of signs of the real part of the reflection zeros and 
different RLmax levels accordingly. Among these, one should 
choose the one with higher RLmax which in turn will provide the 
greatest stopband rejection. In case of two asymmetric TZs, 
different solutions (i.e., pairs of RLmin, RLmax) can be found for 
specific sequence of signs. 

For additional flexibility, NRNs can be introduced also with 
the bounded Chebyshev characteristic. In particular, NRNs can 
deal with the TZs asymmetry whereas RLmax can be determined 
for any prescribed value of RLmin.  

Regarding the evaluation of the polynomials defining the 
path filters response when more than one TZ is assigned we 
want to point out that this consists in the solution of a non-linear 
system (derived from the constraints (6)), dependent on two or 
more unknowns. The solution of this system is generally 
achieved by optimization-based numerical methods (in the 
examples shown in this work we have used the function fsolve 
of Matlab® optimization toolbox).   

As a first example, let consider np=7 and S
z =[-1.1, 1.2]. The 

solution with the Bounded Chebyshev characteristic is found 
only for specific sequences of sign of the real part of the 
reflection zeros (zF). For instance, one of these is given by: 
zF=[-0.014-0.9911i, -0.0595-0.8624i, -0.1147-0.5262i,  
0.139-0.0263i, 0.1177+0.479i, 0.0662+0.8341i, 
0.0183+0.9879i].  

The resulting return loss bounds are RLmin=19.97 dB, RLmax= 
23.31 dB. Introducing a NRN on the source, we can assign 
RLmin=20 dB and obtain a solution with all positive signs of the 
reflection zeros, RLmax = 29.35 dB, and 1 = 0.3863 rad  
(bS=-0.1956) 

 

 
Fig. 8.  (a) Response of the filter with np=7, zS=[-1.1, 1.2]. Solid lines: no 
NRN at source. Dashed lines: NRN at source. (b) Response of the filter with 
np=8, zS=[-1.25, 1.1], zL=[-1.45, 1.225]. NRNs are used at source and load. 

 
Fig. 8a shows the S parameters in the two cases. It can be 

noticed that the addition of the NRN on the source provides a 
larger attenuation in the stopbands, for the same value of RLmin. 

The second example assumes np=8 and S
z =[-1.25, 1.1],  

L
z =[-1.45, 1.225]. In this case no solution is possible without 

NRNs, whose introduction allows several solutions for different 
sequence of signs of the real part of the reflection zeros. One of 
these sequences (zF=[-0.0194-0.995i, -0.0685-0.8855i,  
-0.1341-0.6213i, -0.1849-0.1872i, 0.178+0.3143i,  
-0.1158+0.713i, -0.05+0.9238i, 0.01225+0.997i]) gives 
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RLmin=24.63dB, RLmax=26.23dB, 1 =-0.6722 rad,2=-0.3768 
rad (bS=0.349, bL=0.191). The response obtained by the 
computed polynomials is shown in Fig. 8b.  

B. Path Filters with Reduced Chebyshev Characteristic 

Although the Bounded Chebyshev characteristic has further 
increased the degrees of freedom in assigning RL and 
transmission zeros, constraints still exists in these assignments, 
especially when a marked asymmetry exists in the desired 
response and the use of NRNs is not desired. We have then 
devised a second way to realize a non-Chebyshev equiripple 
response of degree np where the polynomial F(s) possesses nc 
complex zeros (with nc = 1 or 2) and the remaining np-nc zeros 
are purely imaginary. It can be observed that the  characteristic 
function underlying this response has np-nc  maxima and 
minima in the passband. Moreover, the attenuation it produces 
in the stopbands falls somewhere in between that obtained with 
the GC characteristics of order np-nc and np. We refer to this 
characteristic as the Reduced Chebyshev characteristic whose 
detailed evaluation is described in Appendix B. 

The Reduced Chebyshev characteristic makes available up to 
four free parameters in the synthesis of path filters, that can be 
exploited to satisfy the constraints (6) while preserving the 
equiripple response in the passband. In this way, without using 
NRNs, no constraints are required on the position of the 
assigned zeros and  also the RL can be chosen almost freely (it 
must be smaller than the natural RL relative to the TZ closest to 
the passband; it should also be not too close to the natural RL 
otherwise a solution with strongly degraded stopband 
attenuation may be found).  

The choice of the number nc of complex RZs depends on the 
assigned TZs: a complex RZ allows for two additional degrees 
of freedom, that can be exploited for the extraction of up to two 
TZs from either one of the dangling branches. In case a single 
TZ is extracted from a dangling branch, the added RZ can be 
real (one degree of freedom is enough). When both dangling 
branches extract one TZ each, two added real RZs are needed. 
Real reflection zeros can be used also for 3 or 4 TZs if specific 
symmetries exist in the TZs pattern. 

Also in this case, the evaluation of the polynomials 
determining the new characteristic function requires the 
solutions of a non-linear system expressing the constraint (6), 
with the unknows represented by the real and imaginary part of 
the nc transmission zeros. Being the solution method 
optimization-based, the initial assignment of the unknowns may 
affect both the convergence of the solution and the final result 
obtained. In any case, we always had convergence in all the 
performed tests, although we observed that the initial unknowns 
assignment affects the overall computation time to some extent 
(the computation time has however never exceeded a few 
seconds on a PC with average computing power).    

As a first synthesis example using the new characteristic, the 
first case used above with the Bounded Chebyshev 
characteristic has been considered. With two asymmetric zeros 
extracted from the source, a single complex zero is required 
(nc=1), whose value is assigned initially to zC=1+j0 (the two 
unknowns of the non-linear problem are initialized to [1, 0]). 

The imposed return loss is RL=18 dB and the assigned zeros are 
[-1.1i, 1.2i] (the natural RL relative to the zero at -1.1j is 20.3 
dB). The solution found for the complex zero is 
zCopt=0.2545+0.657i that determines the Reduced Chebycheff 
response with the following imaginary reflection zeros: 
[0.9791i, 0.73i, -0.986i, -0.846i, -0.485i, 0.0623i]. The response 
is shown in Fig. 9a, compared with the one obtained with the 
GC characteristic of order 7. As we can see, the attenuation with 
the Reduced Chebyshev characteristic is somewhat smaller, 
especially in the upper stopband (but slightly better than the one 
with the Bounded Chebycheff characteristic with no NRN).  

The following example considers the second case used for 
the Bounded Chebyshev characteristic (np=8, S

z =[-1.25, 1.1], 
L
z =[-1.45, 1.225]). Note that in this case a solution is possible 

without the use of NRNs. Moreover, we can assign the return 
loss below the natural RL of the closest TZ to the passband 
(20.3 dB), improving consequently the attenuation in the 
stopbands. We have then assigned RL=18 dB.   

 Being four transmission zeros assigned,  we need two 
complex zeros that are initialized to zC=[1+0i, -1+0i]. The 
solution of the non-linear problem gives the optimized complex 
zeros: zCopt=[0.3155-0.7327i, -1.0032-0.4646i]. The imaginary 
reflection zeros produced by the Reduced Chebyshev 
characteristic with these complex zeros result: zF=[-0.9794i,  
-0.7245i, 0.99061i, 0.8959i, 0.6086i, 0.0307i]. The overall 
computation time (including the evaluation of the characteristic 
polynomials) was a few seconds on a PC with Intel core I7 
processor. 

  

 
Fig. 9.  (a) Filter with np=7, zS=[-1.1, 1.2].  Solid lines: Reduced Chebyshev 
characteristic, one added RZ. Dashed lines: Chebyshev characteristic of order 
7. (b) Filter with np=8, zS=[-1.25, 1.1], zL=[-1.45, 1.225]. Solid lines: 
Reduced Chebyshev characteristic, two added RZs. Dashed lines: Chebyshev 
characteristic of order 8. Dotted lines: Bounded Chebyshev characteristic of 
order 8 and RLmin=18.3dB, RLmax= 18.67dB. 

The S parameters obtained with the computed characteristic 
polynomials  are shown in Fig. 9b (solid lines), compared with 
the one determined by the GC characteristic of order 8 (dashed 
lines). In this case, the reduction of attenuation caused by the 
complex RZs is still more  evident. With the Bounded 
Chebyshev characteristics (and a NRN at source), there is a 
sequence of signs of the real part of RZs that gives 
RLmin=18.3dB, RLmax= 18.67dB. The attenuation produced is 
however worse than that obtained with the Reduced Chebyshev 
characteristic (Fig. 9b, dotted lines).  

In conclusion, the Reduced Chebyshev characteristic allows 
maximum flexibility in the assignment of TZs and RL in the 
synthesis of path filters without NRNs. Compared to the GC 
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characteristic (for the same order np and passband RL) there is 
a reduction of the stopband attenuation which is the price to pay 
for a true inline realization exhibiting a response with arbitrarily 
placed TZs.   

IV. SYNTHESIS OF PATH FILTERS LOWPASS PROTOTYPE  

Once the characteristic polynomials are known, the synthesis 
of the low-pass prototype network (defining the normalized 
coupling matrix of the filter) is in general carried out by means 
of well-known methods, usually based on suitable matrix 
manipulations [20]. The most usual approach consists in the 
evaluation of the coupling matrix of the canonical transversal 
prototype, followed by a suitable sequence of matrix rotations 
that produce in the end the coupling matrix of the desired 
topology. However, in case of path filter, the synthesis of the 
transversal prototype as proposed in [20] fails because of the 
presence of matrix residues of rank 2 in the admittance matrix. 
We have then developed an alternative procedure that allows 
the direct synthesis of the path topology, without requiring the 
computation of the transversal coupling matrix. 

Suppose that we have in mind the realization of a path filter, 
with nS distinct TZs 

,
S
z kj  to be generated by the source 

dangling branch, and nL distinct TZs 
,

L
z kj  to be generated by 

the dangling branch at load. Suppose also that we have obtained 
a lossless 2 × 2 scattering response S such that  11 , 1S

z kS j    

and  22 , 1L
z kS j    (from (4)). 

With reference to the compact model of path filter shown in 
Fig. 2a (Section II), the input admittance Yin is then given by: 

 
 

11

11

1

1in

S E F
Y

S E F

 
 

 
        (12) 

It can readily see that Yin results of the parallel connection of 
YS with the input admittance of to the two-port response

D LS S , that is, by (3): 

1,1

1,1

1,1

1 ,
1,1

1

1

1
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S
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D L
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S S
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S S
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s j S S
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   
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  
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









  (13) 

The condition  11 , 1S
z kS j    ensure that Yin has simple 

poles at  ,
S
z k so that each S

kr  can be computed as the residue 

of Yin at ,
S
z ks j  and: 

    
 

11

11

1
lim

1
S

ins

S
ja Y s

S

 
 

 
     (14) 

Note that in the case S11(∞)≠1 we have aS≠0 and a frequency-
invariant susceptance (that is an NRN of value jaS) appears in 
parallel to source (or load in case S22 is considered). This 
happens when a phase term is introduced in the definition of the 
characteristic polynomials (as seen Section II).  
  Once YS is evaluated, SS can be obtained from (3) and, 
similarly, also SL can be computed from YL. Eventually SD can 
be determined by proper left and right extraction of SS and SL 

from S [13].  
 The realization of SD as a coupled resonator circuit is classical. 
The representation of YS (or YL) as a circuital branch (see Fig. 
10) follows a similar technique, remarking that (2) is associated 
to the transversal form of this branch by: 

, , ,,   S S S S
S k k k k z kM r M    k = 1, … ,nS   

 

  
Fig. 10.  (a) Dangling branch transversal form (b) Dangling branch in inline 
form 

 
In case of a branch of order 1, transversal and inline forms 

coincide. For order 2 branches (the maximum allowed in this 
work), a simple matrix rotation allows to derive the parameters 
of the inline branch from those of the transversal branch: 
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,   
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S S
S S r r

S S S S S S
S r S r S r r

S S S S S S
r r r r

M M c s

M c M s M M s c M M

M c M s M M s M c M

     

    

    

  (15) 

 
As an example of this realization procedure, we detail the 
synthesis of the GC path filter presented in ref. [18] with np=10 
and two symmetric TZs located at ±j1.1327 in the normalized 
frequency axis. Note that this filter has been actually fabricated 
in coaxial technology and was used in [18] for validating the 
Path Filter concept.  
 The natural RL relative to the assigned pair of TZs, computed 
through the procedure given in section II, is 23.44 dB. The 
characteristic polynomials P(s), F0(s), E0(s) that characterize 
the correspondent equiripple response and define the global 
scattering matrix S are reported in Table I. The polynomials 
mS(s) and qS(s) defining the input admittance  
Yin=(E0-F0)/(E0+F0)=mS(s)/qS(s) are given in Table I.  
The frequency response computed in the normalized domain is 
plotted in Fig. 11.  
Let nS=2, nL=0, S

z,1=1.1327 and S
z,2=-1.1327. It can be 

verified that both jS
z,1 and jS

z,2 are poles of Yin. The 
correspondent residues rS

1 and rS
2 of Yin are both equal to 

 
 

 1.1327 
0.2258

 1.1327 '

S

S

j

j

m

q





 and, after setting aS = 0 (no NRN at 

S node), we can compute the one-port admittance YS(s) of the 
source dangling branch using (1) and the corresponding two-
port scattering matrix SS(s) with (2).  

Finally, the polynomials defining the scattering matrix SD(s) 
of the mainline filter are obtained from left extraction of SS from 
S, using the technique in [13]. The results of this process are 
given in Table II. 
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TABLE I 

CHARACTERISTIC POLYNOMIALS OF THE DESIGNED FILTER 
degree P(s)/j F0(s) E0(s) mS(s) qS(s) 
10 0 1 1 2 0 
9 0 0 2.19016 2.19016 2.19016 
8 0 2.68044 5.07884 7.75928 2.3984 
7 0 0 6.86947 6.86947 6.86947 
6 0 2.55652 8.29684 10.85336 5.74032 
5 0 0 7.35811 7.35811 7.35811 
4 0 1.01901 5.44358 6.46259 4.42457 
3 0 0 3.04268 3.04268 3.04268 
2 0.041803  0.147345 1.29113 1.438475 1.143785 
1 0 0 0.365043 0.365043 0.365043 
0 0.053632 0.003617 0.053753 0.05737 0.050136 

 

 
Fig. 11.  Filter response in the normalized domain (from [18].) 

 
 

TABLE II 
COEFFICIENTS OF MATRIX SD AND SS POLYNOMIALS.  FD(S) REPRESENTS THE 

NUMERATOR OF SD
11 , PD(S) THE NUMERATOR OF SD

12 AND ED(S) THE 

DENOMINATOR OF SD. SIMILAR NOTATION FOR SS. 
deg. PD(s)/j FD(s) ED(s) PS(s) FS(s) ES(s) 
8 0 0.15526 0.1553 0 0 0 
7 0 -0.0698 0.2696 0 0 0 
6 0 0.29362 0.5120 0 0 0 
5 0 -0.0917 0.5372 0 0 0 
4 0 0.16226 0.4873 0 0 0 
3 0 -0.0286 0.3043 0 0 0 
2 0  0.02526 0.1430 0.609 0 0.6094 
1 0 -0.0012 0.4283 0 -0.137 0.1371 
0 -6.47e-4 4.39e-4 6.49e-3 0.781 0 0.781 

 
The dangling branch at the source is developed using (15) and 
the all-pole network characterized by SD is developed in in-line 
form using a classic synthesis approach. The computed 
elements of the coupling matrix M are reported in the following: 
Mi,i=0, Mi,i+1 =[0.67198, 1.1327, 0, 0.6036, 0.5261, 0.5247, 
0.5312, 0.5476, 0.59576, 0.862, 1.0465], M1,4=0.8022. 

V. PRACTICAL DESIGN EXAMPLES 

In this section we will show some examples of how the ideal 

synthesis of path filters seen in the previous sections can be 
implemented practically. The aim is to highlight the basic steps 
necessary to start the dimensioning of the physical filters 
structure. In practice, once the normalized coupling matrix M 
has been derived from the scattering polynomials, the de-
normalized coupling parameters of the filter can be computed 
as follows [21]: 

 
2

, ,
0 , ,

, ,2 2
, ,

1 ,     
2 2

1 1
,     

n k k n k k
k i j n i j

S i L j
n S i n L j

B M B M
f f k B M

QE QE
B M B M

           

 

   (16) 

where fk represent the resonating frequencies of the cavities,  ki,j 
are the coupling coefficients and (QES,I, QEL,j) are the external 
Q of the resonators coupled to source and load respectively.  
Using the above parameters, the dimensioning of the path filter 
in the desired technology can be carried out with the approach 
usually adopted for classical inline filters. However, special 
attention must be paid to the choice of the coupling structures 
involving source and/or load, so that unwanted couplings do not 
occur between the cavities adjacent to source and load. 

The first example concerns a channel filter for satellite 
communications in Ka band. Assuming np=6, passband 19.7-
19.94 GHz and two symmetric TZs at 19.67 GHz and 19.968 
GHz, we obtain the topology in Fig. 12 (the de-normalized 
parameters are reported in the caption). Note that no NRNs or 
complex RZs are used so the return loss cannot be assigned and 
results RL=27.64 dB. Due to the symmetry, all resonators are 
synchronous. 

 

 
Fig. 12.  Routing scheme of the synthesized path filter.  Black circles represent 
the resonators (resonant frequency fk), solid lines are the couplings (coupling 
coefficients ki,j or external Q QEi,j). (or the external Q in case of the couplings 
with source or load). The following values are obtained from the synthesis: 
fk=19.82 GHz, k12=0.0149, k34=0.0081, k45=0.0078, k56=0.0116, QES1=142.95, 
QES3=115.75, QE6L=63.96. 
 

The filter has been dimensioned in rectangular waveguide with 
a=12.95mm, b=8.5mm. The cavities operate on TE101 mode and 
the couplings are realized with inductive irises. The parameters 
of the filter equivalent circuit (Fig. 13a) can be derived by 
exploiting the definition of the coupling coefficient. Assuming 
all the series resonators characterized by the same equivalent 
reactance, the coupling inverters are derived as follows: 

, , ,1
,1

,3 ,6
,3 ,6

,    ,    

,    

eq
i j i j eq S

S

eq eq
S L

S L

X
K k X K

Q

X X
K K

Q Q

 

 

        (17) 
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(a) 

 
(b) 

Fig. 13.  (a): De-normalized equivalent circuit of the path filter (the rectangles represent impedance inverters whose value is computed by (14). (b). Scheme of the 
filter with irises replacing the impedance inverters. Due to the loading effects of the irises, the lengths of the cavities are no longer all equal. 

 

 
where the equivalent reactance (Xeq) is determined by the 
resonant mode of the cavities (whose length is g0/2) [1]: 
 

0

0 2

0

1 2

2
1

eq

f f
c

X
X f

f f

f






 

  
  
 

     (18) 

In (18) X(f) is the reactance of a short-circuited waveguide 
section, half wavelength long and fc is the cutoff frequency of 
the TE10 mode (11.58 GHz in the present case). Once the 
impedance inverters in Fig. 13a are replaced with inductive 
irises and the series resonators with cavities resonating on TE101 
mode, the circuit in Fig. 13b is obtained, where the lengths of 
the cavities have been suitably modified to account for the irises 
loading effects [1]. The series connection of the source is 
realized through an E-plane T-junction with the input 
waveguide on the broad waveguide wall (the two waveguides 
sections lineS1 and lineS3 are added on the other arms of the T-
junction to allow the connection of irises S1 and S3). 
The geometry of the dimensioned filter is shown in Fig. 14 (the 
computed dimensions are reported in the caption). Note that 
cavities 1 and 3 are decoupled by the input T-junction.  

 

 
Fig. 14.  Geometry of the waveguide path filter. Waveguide cross-section (mm): 
a=12.95, b=6.5.  Li represent lengths of waveguide sections in mm; Wi,j are the 
irises opening in mm. Irises thickness is 1mm. The dimensioning gives the 
following results: L1=8.624, L2=9.069, LS1=6.072, LS3=6.004, L3=8.636, 
L4=8.986, L5=8.943, L6=8.266; W12=2.975, WS1=3.841, WS3=4.082, 
W34=2.497, W45=2.468, W56=2.775, WL6=5.002. 
 
The filter response, computed by full wave analysis (Mician 
Microwave Wizard ®), is show in Fig. 15. 

 

 
  Fig. 15.  Computed waveguide filter response (full wave analysis). The ideal 
polynomial response of the synthesized prototype is reported for comparison. 
 
Note that no full wave optimization of the response has been 
performed (the dimensions are those obtained by the initial 
dimensioning based on the filter equivalent circuit). 
The return loss of path filters with symmetric response such as 
the one just considered cannot be freely assigned. High values 
of RL however penalize the attenuation in the filter stopbands, 
so it may be convenient to reduce RL (if the specific application 
tolerates it). As we have seen in Section III, this can be achieved 
by introducing a real reflection zero. In general, when a 
complex reflection zero replaces an imaginary one in the filter 
characteristic, the stopband attenuation decreases (for the same 
return loss). But if RL is noticeably reduced, an increase of the 
filter rejection is obtained as well. To illustrate this possibility, 
let suppose that the filter we have designed just tolerates 20 dB 
return loss. We have then re-designed the filter imposing the 
Reduced Chebyshev characteristic with one real reflection zeros 
and RL=20 dB. The new values of the parameters of the 
synthesized filter (same routing scheme of Fig. 12) result in this 
case: fk= 19.8196 GHz, k12=0.0149, k34=0.0076, k45=0.0073, 
k56=0.01, QES1=110.3, QES3=110.3, QE6L=82.99.        

The dimensioned path filter exhibits the full-wave response 
shown in Fig. 16 (the new dimensions are reported in the figure 
caption. Also in this case, no optimization has been performed). 
Comparing the new response in Fig. 16 with the previous one 
(Fig. 15), we can observe that, despite the introduction of a real 
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RZ, the attenuation in the stopbands has increased by about 4 
dB (with RL reduced from  27.6 to 20 dB). 
 

 
Fig. 16.  Full wave response of the re-dimensioned waveguide filter (solid 
lines). The polynomial response (Reduced Chebyshev characteristic) is reported 
for comparison (dashed lines). The computed dimensions (mm) are reported in 
the following. Lris1-Lris6: [8.561, 9.071, 8.627, 8.998, 8.969, 8.366], L01: 5.98, 
L03=6.045, W01: 4.053, W01: 4.129, W12=2.976, W34=2.46, W45=2.42, 
W56=2.661, W6L=4.801.  
  

Another example of waveguide path filter has been designed 
with np=7 and 3 transmission zeros, two extracted by the 
dangling branch on the source (19.67, 19.968 GHZ) and one by 
the dangling branch on the load (19.997 GHz). The synthesis of 
the prototype has been performed by using also in this case the 
Reduced Chebyshev characteristic with two complex reflection 
zeros and RL=20 dB.  

 

Fig. 17.  Routing scheme of the waveguide path filter with np=7 and 3 TZs. 
Synthesis result (frequencies in GHz): f1=19.826, f2=19.813, f3=19.816, 
f4=19.814, f5=19.802, f6=19.741, f7=19.997; k12=0.0149, k34=0.0075, 
k45=0.0071, k56=0.0097, QES1=107.0, QES3=111.89, QE6L=60.96, QE7L=107.37. 

 
The routing scheme of the de-normalized prototype obtained 
from the synthesis is shown in Fig. 17 and the dimensioned 
waveguide structure is reported in Fig. 18. The computed 
response by full wave analysis (Mician Microwave Wizard®) is 
shown in Fig.19 (also the ideal polynomial response is reported 
for comparison). The expected filter performances are 
confirmed by the simulations also in this case (again, no 
optimization has been performed after the initial dimensioning). 

In conclusion, we can observe that the implementation of 
path filters in waveguide technology is relatively easy and 
convenient. In fact, the same dimensioning procedure employed 
for classical inline filters with inductive irises can be adopted. 
Moreover, the TZs can be placed very close to the passband and 
their position is controlled with high accuracy. 

We conclude this Section by observing that also other 
technologies can be advantageously employed for the 
fabrication of path filters. For instance, we have designed and 
verified successfully (by full wave simulations) a test filter in 

microstrip technology. In [18] a path filter in coaxial 
technology has been designed and fabricated; it was used as an 
experimental validation the path filter concept. As the present 
work is an expanded version of [18] we have not repeated here 
this validation.   
 

Fig. 18.  Dimensioned waveguide path filter with np=7 and 3 transmission zeros 
(all dimensions in mm). Waveguide cross-section (mm): a=12.95, b=6.5. 
The irises thickness is 1mm. Computed values (mm): L1=8.555, L2=9.075, 
LS1=5.982, LS3=5.976, L3=8.643, L4=9.006, L5=8.986, L6=8.524, LL6=5.972, 
LL7=6.149, L7=8.702; W12=2.978, WS1=4.059, WS3=4.101, W34=2.439, 
W45=2.412, W56=2.264, WL6=4.536, WL7=3.987. 

 
Fig. 19.  Full wave response of waveguide filter with np=7 and 3 TZs (solid 
lines). The ideal polynomial response (Reduced Chebyshev characteristic) is 
reported for comparison (dashed lines). 
 

VI. CONCLUSIONS 

In this paper, we have presented a general approach to the 
synthesis and design of path filters. First the general conditions 
that the polynomial model of the path filter must satisfy have 
been derived. These conditions require one or more additional 
constraints on the equiripple characteristic function defining the 
filter response. With the GC characteristic only a degree of 
freedom is available (represented by the RL in the passband), 
then only one transmission zero can be arbitrarily assigned (also 
two or four symmetric and/or coincident zeros are possible). 
The return loss level cannot however be freely assigned. To 
increase the design flexibility, NRNs can be added to source 
and/or load. In this way two or three asymmetric zeros can be 
assigned but the return loss is still not freely assignable. A 
method has then been shown to further increase the design 
flexibility, which consists in removing the condition of purely 
imaginary reflection zeros. Two new characteristic functions 
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(namely the Bounded Chebyshev and the Reduced Chebyshev 
characteristics) have consequently been introduced, featuring 
complex reflection zeros. The first is still limited in the arbitrary 
assignment of TZs and RL (use of NRNs increases the 
flexibility but increases as well the implementation complexity 
of the filter structure). The second allows the maximum 
flexibility in the assignment of the TZs and RL, and the use of 
NRNs is not required. However, the return loss must not exceed 
a threshold determined by the assigned TZs and the stopband 
attenuation is reduced with respect the GC characteristic. In 
conclusion, the most convenient choice among the possible 
three is the GC when the TZ can be assigned with the required 
symmetry and the resulting return loss is not too large. If this is 
not possible, the best choice is the Reduced Chebyshev, 
especially when NRNs are not allowed. If a RL larger than the 
minimum allowed by the Reduced Chebyshev is required (this 
happens with TZs very close to the passband), the Bounded 
Chebyshev characteristic can be used, possibly including NRNs 
when the assigned TZs do not respect the required symmetry 
constraints. 

An ad hoc procedure for the synthesis of path filter has also 
been given, allowing to overcome the limitations that more 
general synthesis techniques might suffer from when applied to 
path filters. Finally, several simulated examples of path filters 
in waveguide technology have demonstrated how the 
dimensioning of this filters class is very similar to the one used 
for all-pole filters.  

APPENDIX A 

BOUNDED CHEBYSHEV CHARACTERISTIC FUNCTIONS 

The approximation function in the normalized frequency 
domain s = j can be expressed as follows: 

   2 2
min 2

21

1
1 nA C

S
          (A1) 

where min is related to the minimum return loss RLmin in the 

passband:   12 min 10
min 10 1RL


  . The usual form of the 

characteristic function Cn() is the so called Generalized 
Chebyshev characteristic whose mathematical definition can be 
found in [20]. Cn() oscillates between -1 and 1 in the passband 
(-1 < < 1), so that A() is equal 1 at the frequencies r,i where 
Cn(r,i)=0. At these frequencies, S11(r,i) = 0 and  2

nC  has 

minima equal to zero :  2 2
, min 0n r iC C   .  

Here we introduce a new characteristic function  nC   

(namely the Bounded Chebyshev characteristic) whose 
magnitude is assumed to be greater than 0 at r,i, so that  

 2
nC  oscillates between 1 and 2

minC   for -1 < < 1. We get 

 2
nC   by suitably scaling  2

nC  :    2
2

1
n

n

C
C




 
  


, 

with 2
min 1

C



 


. Note that  2 1 1nC   , as required. 

The new characteristic function can be expressed as: 

 
 
 

 
22 2

112 2 2
min min2 2

21
1

n
n

F jS C
C

S P j


 



  
    


    (A2) 

Imposing the value  2
min 1C      at the minima frequencies 

{r,i} of the Chebyshev characteristic we find: 
2
max

2 2
min max


 




            (A3) 

where   12 max 10
max 10 1RL


  and RLmax is the maximum 

value of the return loss obtained with the new characteristic 
function (RLmin is the value of RL defining min). 

Note that we can replace       22 2
min 0 0nC F j P j      in 

(A2), with F0 and E0 the polynomials defining the Chebyshev 
characteristic (A1). Then, applying analytic continuation, we 
obtain: 

           * * *2
min 0 0 0 0k F s F s P s P s F s F s        (A4) 

 where k is a real constant. The roots of the right-hand side of 
(A4) are in complex para-conjugate pairs. Selecting one root 
per pair with an arbitrary sign of the real part, we obtain the 
roots of F(s), which is finally defined, being a monic 
polynomial. 
 The transmission polynomial P(s) can be expressed as 
P(s)=p0P0(s), with the monic polynomial P0(s) defined by the 
transmission zeros. The constant p0 can be determined by 
imposing that 2

nC =1 for s = ±j. From (A2) we get: 

 
   

 
   

2 2

2
2 22 2 2

min min1
o

n n n

F j F j
p

C P j j P j 

 
 

    
       (A5) 

Finally, the polynomial E(s) is obtained from P(s) and F(s) 
through the Feldtkeller equation and spectral factorization [20]. 
We observe that, for assigned RLmin and RLmax, there are 2np 
possible ways to select the roots of F(s) from those of F(s)F(s)* 
(depending on the choice of the sign of their real part). All the 
resulting F(s) produce the same |S11| and |S22| (lossless condition 
imposes |S11|=|S22|). The phases of S11 and S22 are however 
different because the roots of F(s) are not imaginary so that 
F(s)≠F(s)*. We can exploit this choice and the parameter RLmax 
as an additional degree of freedom in the synthesis of path 
filters. 
 As an example, consider the following assignment: np=8; 
TZs=[-1.1i 1.3i]; RLmin=20 dB. Imposing RLmax=[25, 35, 45] 
dB we get the scattering parameters shown in Fig. A1(a). It can 
be observed that the position of maxima and minima of S11 in 
the passband are the same of the GC characteristic (to which the 
new characteristic function tends for RLmax∞). 
The attenuation in the stopband is smaller with respect the 
Chebyshev response but the difference is relatively small. 
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Fig. A1.  (a) Scattering parameters of Bounded Chebyshev characteristic for 
np=8, TZs=[-1.1i, 1.3i] and RL=[25, 35, 45] dB. (b): Group Delay of Bounded 
Chebyshev characteristic for RLmax=25 dB). The response obtained with the 
GC Characteristic is reported for reference. 

 
 
 

 
Fig.  A2. Representation of the reflection zeros and poles in the complex plane 
for RLmax=25 dB. Note that the magnitude of S11 is not affected by the sign of 
the real part of reflection zeros.  
 
 In Fig. A1(b) we have reported the computed group delay 
produced by the Bounded Chebyshev characteristic with 
RLmax=25 dB, compared with the GC characteristic. As it can 
be observed, there are no visible differences between the two 
curves. 
 To give an idea of the pole-zero distribution, Fig. A2 shows the 
pattern of F(s) and E(s) roots for the case RLmax = 25 dB. 

APPENDIX B 

REDUCED CHEBYSHEV CHARACTERISTIC FUNCTION 

 Let np be the order of the filter, nc the desired number of 
additional complex RZs {zCk} (here assigned) and {jΩz,k} the set 
of the nz prescribed TZs (all imaginary). Let FC(j) the monic 
polynomial of degree nc having the assigned complex RZs as 
roots. We then introduce the monic polynomials P0() and 
F0() with real roots {Ωz,k}   and {Ωr,k} respectively. The roots 
of P0 are defined by the nz assigned transmission zeros while 
the order of polynomial F0 is imposed equal to np-nc. We seek 
the np-nc unknown coefficients {fk} of F0() that make the 

(real) characteristic function        0 0cC F j F P       

equiripple in the passband (-1≤ ≤1). 

At this aim, a Remez-like equiripple algorithm, briefly 
discussed in this appendix, can be used. 
To initialize the iteration, let (1, … ,  np-nc-1) be the locations 
of the np-nc-1 in-band maxima of |S11| produced by the GC 
characteristic of order np-nc with {jΩz,k} as TZs. Then proceed 
as follows: 
 
Step 1) Solve the linear system of np-nc+1 equation in the  
np-nc+1 unknowns [{fk} , h] with  

 
 
 

1

( 1)      1,..., 1

1 ( 1)

k
k

np nc

C h

C h k np nc

C h

 


     
  

 

where h is a real number defining the amplitude of the in-band 
ripple of C(). 
 
Step 2) With the coefficients {fk} of F0() found at the previous 
step, update the frequencies (1, … , np-nc-1) of the np-nc-1  
extrema of the real function C(in the range -1≤  ≤1. 
 
Step 3) Using the updated frequencies found in step 2, repeat 
steps 1 and iterate until the computed frequencies  
(1, … ,np-nc-1) convergence. 
 
Step 4) The polynomials P(s), F(s), E(s) of the new 
characteristic (named Reduced Chebyshev) are computed as 
follows. P(s) is obtained by the assigned TZs {jΩz,k} and the 
scaling constant p0 determining the desired RL (see (7)). F(s) is 
defined by its roots, constituted by the roots of F0 (obtained at 
the end of the procedure) multiplied by j (i.e. {jΩr,k}) and by the 
assigned complex roots {zCk}. Finally, E(s) is obtained from 
P(s) and F(s) through the Feldtkeller equation and spectral 
factorization [20]. 
 

As an example of application of the described procedure, let 
consider the second example in Section IV where we assumed:  
np=8, nc=2, transmission zeros {jΩz,k}=[-1.25i, 1.1i, -1.45i, 
1.225i], RL=18 dB. The assigned complex reflection zeros are 
zC=[-1-0.465i, 0.315-0.733i], that determine the polynomial 
FC=[1 0.685+1.198i -0.6558+0.5865i]. From the GC 
characteristic of order np-nc=6 we get the initial roots of F0 
{Ωr,k}=[-0.9796, -0.7815, -0.263, 0.4352, 0.8597, 0.9883]. 
Applying the procedure described above, the following values 
of the unknowns are obtained: {fk}=[1 -0.8229 -1.4811 1.2053 
0.4876 -0.3996 0.012], h=0.0318. Fig. B1 shows the 
characteristic function vs.   at the beginning and at the end of 
the procedure. 
The polynomials of the Reduced Chebycheff characteristic are 
finally determined as above explained and their coefficients 
result: P(s) = [0.25i, -0.0938, 0.78i, -0.144, 0.611i]; F(s) = [1, 
0.685+0.375i, 1.811+0.0228i, 1.497+1.1087i, 0.96+0.0431i, 
1.041+0.975i, 0.147+0.0123i, 0.2262+0.2478i, 0.0078-0.007i]  
E(s) = [1, 3.106+0.375i, 6.4+0.452i, 9.491+0.776i, 
10.346+0.4843i, 8.826+0.228i, 5.4775-0.068i, 2.413-0.1285i, 
0.6071-0.0703i]. 
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Fig.  B1. Characteristic function C() vs.  at the beginning (dashed line) and 
the end (solid line) of the Remez-like procedure. 
 
The response obtained from P(s), F(s), E(s) (already reported 
in Fig. 9b, solid line, and therefore not repeated here) confirms 
the equiripple behavior in the passband.  In Fig. B2 the group 
delay response, compared with the one obtained by the GC 
characteristic of the same order (np), is reported. 
 

 
Fig.  B2. Group Delay response for the considered example. The result obtained 
with the GC characteristic of the same order (np=8) is reported for reference. 
 

It can be noticed that the Reduced Chebyshev characteristic 
allows a reduction of the group delay variation in the passband. 

The procedure above described provides equiripple pass-
band filter responses of degree np with nc assigned RZs 
(provided their real part is not too small) and can be used inside 
an optimization cycle where the locations of the nc RZs are 
optimized to meet the pertinent path realizability conditions. 
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