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Une approche polyédrique pour la promotion scalaire

Résumé : Les accès mémoires sont un goulot d’étranglement bien connu, dont l’impact peut
être limité en utilisant correctement la hiérarchie mémoire jusqu’aux registres. Dans ce rapport,
nous étudions la scalaration de tableaux, une technique pour transformer un tableau en une col-
lection de variables scalaires à allouer à des registres. Nous revisitons la scalarisation de tableau
à la lumière des avancées récentes du modèle polyédrique, un cadre général pour construire des
transformations de programme. Nous proposons un algorithme pour la scalarisation de tableaux,
directement intégrable comme passe d’un compilateur polyédrique. Notre algorithme de scalar-
isation opére sur la représentation intermédiaire polyédrique. En particulier, notre algorithme
est paramétré par un ordonnancement possiblement calculé par une passe précédente. Nous util-
isons la contraction de tableaux sous contrainte d’ordonnancemnet et nous proposons un nouvel
algorithme de tuilage de boucles pour régler l’empreinte mémoire et ainsi utiliser le bon nombre
de registres. Les résultats expérimentaux confirment l’intérêt et l’efficacité de notre approche.

Mots-clés : Compilation, promotion scalaire, parallélisation automatique, modèle polyédrique
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Abstract—Memory accesses are a well known bottleneck whose
impact might be mitigated by using properly the memory
hierarchy until registers. In this paper, we address array scalar-
ization, a technique to turn temporary arrays into a collection
of scalar variables to be allocated to registers. We revisit
array scalarization in the light of the recent advances of the
polyhedral model, a general framework to design optimizing
program transformations. We propose a general algorithm for
array scalarization, ready to be plugged in a polyhedral compiler,
among other passes. Our scalarization algorithm operates on
the polyhedral intermediate representation. In particular, our
scalarization algorithm is parametrized by the program schedule
possibly computed by a previous compilation pass. We rely on
schedule-directed array contraction and we propose a loop tiling
algorithm able to reduce the footprint down to the available
amount of registers on the target architecture. Experimental re-
sults confirm the effectiveness and the efficiency of our approach.

Index Terms—compiler optimization, polyhedral model, array
scalarization

I. INTRODUCTION

Using properly memory hierarchy until registers is of prime
importance to improve the performances of a program, es-
pecially with the increasing gap between the peak rate of
processing arithmetic units and the memory bandwidth. This
trend in computer architecture, called the memory wall, boils
down to the invention of memory hierarchy, and its counterpart
in automatic code optimization. Array scalarization, or scalar
promotion, [3], [4], [9], [14] consists in transforming an array
into a group of scalar variables, to be allocated to registers.
In addition to reduce the memory traffic, hence the overall
performances, it generally improves the precision of compiler
optimizations, as dependences resolved through a register
might be finely analyzed. In particular, register tiling [4],
[9] splits a computation into blocks where register pressure
make possible scalar promotion. Most of these approaches
are monolithic, they are designed as end-to-end optimizations
without taking account of the scheduling constraints induced
by previous compilation passes.

In this paper, we focus on the polyhedral model [5]–[8],
[12], [13], a general framework to design loop transforma-
tions and data remapping for code optimization. Polyhedral
compilers makes possible to reason about programs and their
transformations thanks to a powerful geometric abstraction.
We propose to rephrase array scalarization as a generic poly-
hedral compilation pass, parametrized by an input schedule
– the result of a previous polyhedral compilation pass. We

exploit array contraction [1], [10] to expose array-level data
reuse, and we propose an additional loop tiling algorithm to
reduce the memory footprint of temporary arrays to a tunable
constant size. At the end, we expose a minimum amount of
scalar variables ready to be assigned a register.

Specifically, we make the following contributions:
• We propose a general algorithm for array scalarization,

ready to be plugged in a polyhedral compiler. In particu-
lar, our algorithm is parametrized by the program sched-
ule which might be the result of a previous polyhedral
pass.

• Our transformation reduces as much as possible the code
size for array scalarization and exposes directly the scalar
variables to be put in distinct registers. This way, the
work of the register allocator is dramatically reduced
compared to seminal approaches for scalarization.

• We propose a loop tiling algorithm able to reduce to
footprint of some temporary arrays to a constant value.
This algorithm is used on demand, when required.

• We present a complete experimental validation showing
the effectiveness and the efficiency of our approach.

The remainder of this paper is structured as follows. Section
II presents the required notions in polyhedral compilation.
Section III presents related work Section IV describes our
scalarization algorithm Section V presents our exprimental
validation Finally, Section VI concludes this paper and draws
research perpectives.

II. PRELIMINARIES

This section outlines the concepts of polyhedral compilation
used in this paper. In particular, we define the polyhedral
intermediate representation of a program. Then, we recall the
polyhedral approaches for array contraction.

A. Polyhedral model

The polyhedral model [5]–[8], [12], [13] is a general
framework to design loop transformations, historically geared
towards source-level automatic parallelization [8] and data
locality improvement [2]. It abstracts loop iterations as a
union of convex polyhedra – hence the name – and data
accesses as affine functions. This way, precise – iteration-level
– compiler algorithms may be designed (dependence analysis
[5], scheduling [7] or loop tiling [2] to quote a few) . The
polyhedral model manipulates program fragments consisting
of nested for loops and conditionals manipulating arrays



and scalar variables, such that loop bounds, conditions, and
array access functions are affine expressions of surrounding
loops counters and structure parameters (input sizes, e.g.,
N )). Thus, the control is static and may be analysed at
compile-time. With polyhedral programs, each iteration of a
loop nest is uniquely represented by the vector of enclosing
loop counters ~i. The execution of a program statement S at
iteration ~i is denoted by 〈S,~i〉 and is called an operation
or an execution instance. The set DS of iteration vectors is
called the iteration domain of S. Figure 1.(b) provides the
iteration domains DS = {(y, x) | 0 ≤ y < 2 ∧ 0 ≤ x < N},
DT = DU = {(y, x) | 2 ≤ y < N ∧ 0 ≤ x < N} for the 2D
blur filter presented later.

B. Polyhedral transformations
a) Scheduling: A schedule θS assigns each operation

〈S,~i〉 with a timestamp θS(~i) ∈ (Zd,�). Intuitively, θS(~i) is
the iteration of 〈S,~i〉 in the transformed program. A schedule
is correct if 〈S,~i〉 → 〈T,~j〉 ⇒ θS(~i) � θT (~j), where
→ denotes the dependence relation between operations. The
lexicographic order ensures that the dependence is preserved.

b) Tiling: Tiling is a reindexing transformation which
groups iteration into tiles to be executed atomically. There
are many variants of this transformation. Rectangular tiling
reindexes any iteration ~i ∈ DS to an iteration (~iblock,~ilocal)
such that ~i = TS(~iblock,~ilocal), with TS(~iblock,~ilocal) =
(diag~s) ~iblock +~ilocal, 0 ≤ ~ilocal < ~s where ~s is a vector
collecting the tile size across each dimension of the iteration
domain.~iblock is called the outer tile iterator and~ilocal is called
the inner tile iterator. The companion schedule associated
to the tiling θS(~iblock,~ilocal) orders ~iblock first to to ensure
the execution tile by tile. Figure 1.(b) gives an example of
rectangular tiling with ~s = (4). To enforce the atomicity
(avoid cross dependences between two tiles), it is sometimes
desirable to precede the tiling by an injective affine mapping
φS . The coordinates of φS(~i), for ~i ∈ DS are usually called
tiling hyperplanes. In that case, the transformation T −1

S ◦ φS
for some statements S is called an affine tiling. Note that
rectangular tiling is a particular case of affine tiling where
φS is the identity mapping.

c) Array contraction: Arrays might be remapped with an
allocation (or contraction) function a[~i] 7→ aopt[σa(~i)], usually
with a smaller footprint. In the polyhedral model, we focus
on mappings σa :~i 7→ A~i mod ~s( ~N), where A is an integral
matrix and ~s is a vector of affine forms on program parameters
[11] (with A the identity matrix), [1].

C. Polyhedral intermediate representation (IR)
In polyhedral compilers, the intermediate representation

(IR) usually consists of a program P summarized as a set
of statements S and their iteration domains DS , a schedule θ
(typically the original sequential order), an optional tiling φ
and an optional array contraction function σ.

III. RELATED WORK

This section goes over the notions presented by other
works on register allocation, more precisely scalar promotion,

register tiling and array contraction, which all closely relate
to our paper.

a) Scalar promotion: Scalar promotion or register pro-
motion is the storage of a dependency (a value produced to
be stored for later) in registry instead of memory. As register
access is way faster than memory access, this effectively re-
moves the loading time, but register entries usually are of very
limited quantity. Callahan, Carr and Kennedy [3] show one
approach to the implementation of this optimization, but the
scope is on rectangular loop nests, with no conditionals. Their
method is to search for potential candidates to promotion by
analysing the dependencies, then promoting those candidates,
and they schedule the iterations so as to reduce the resulting
register pressure.

As the work of Jiménez et al. [9] describes, the main
problem of scalar promotion for non-rectangular loop nests
at the registry level, is that loops need to be fully unrolled for
addresses to be exposed, as registers are addressed using ab-
solute addresses. This unroll is non-trivial for non-rectangular
loop nests.

b) Register tiling: Register tiling uses the loop tiling
transformation to exploit data locality at the register level.
Loop unrolling and tiling made its debut in the domain of
parallelism, as a way to expose parallelization opportunities,
by assigning each tile to a computing unit in order to paral-
lelize their computation, assuming no dependency is broken.
The notion of tiling is a general method to circumvent the
limited number of computing resources, by cutting the iteration
domain of the program into tiles that fit into the target memory
level (register, cache, memory...). The work of Jiménez et al.
[9] present an approach to the problem of scalar promotion for
non-rectangular perfect loop nests by tiling the iteration space
appropriately. They detail a source-to-source transformation of
the program, the locality analysis, where they perform a reuse
analysis to search for the candidates for promotion with the
highest temporal reuse, and use their heuristic to determine
the tiling parameters.

Then, Renganarayana et al. [14] presented a technique to
extract an unrollable kernel from an imperfect loop nest,
allowing the optimization to work on more complex program
inputs yet again.

More recently, the work of Domagala et al. [4] presented
a novel approach to register tiling, by using innermost-loop
scheduling to expose data reuse. The scheduling is done ad-
hoc by unrolling and rescheduling the innermost-loop under
dependence constraints, and then tiling the iteration space
resulting of the statement order and innermost iteration index
dimensions. Therefore, the order of the statements within the
loop is considered as a dimension too, which brings a new
perspective to the problem. However, their method is restricted
to perfect loops and focuses only on the deepest index space
to promote from.

c) Array contraction: The problem of array contraction
consists in finding a storage function, that maps elements
of an array to their storage location, such that the resulting
storage requirement is minimized. Works such as [1], [10]



present array contraction methods that infer mappings such
that multidimensional arrays on some benchmarks are trun-
cated by a parameter factor. This problem has a strong bond
with the register allocation problem, as we seek to fit tiles
of parametrized size into a register file whose entry count is
limited.

IV. OUR APPROACH

This section presents our scalarization algorithm. First,
section IV-A outlines our running example. Then, section IV
describes our algorithm and provides a proof of correctness.

A. Running example
We illustrate our scalarization approach on the 2D blur filter

kernel depicted in Figure 1. The computation is divided into
two steps. First, an horizontal filter (statements S and T ) is
applied to the input picture in and stores the result into the
array blurx. Then, a vertical filter (statement U ) is applied to
blurx and stores the final result to the array out. The whole
might be seen as a producer/consumer through the temporary
array blurx. Since blurx is a temporary array, it might
be contracted and then scalarized, provided array contraction
leads to a constant (non-parametrized by N ) size.

We point out that the array in cannot be scalarized directly
in statement S, since it is not a temporary array. Nonethe-
less, a temporary version of in produced by a loop at the
beginning of the program could perfectly be contracted and
then scalarized, with a register pressure depending on the time
shift between the producer and S. This preprocessing is used
on some of our experimental results.

Our scalarization algorithm is intended to be used in a
polyhedral compilation chain. Hence a schedule might be
imposed by the previous compilation steps. In the following,
we consider two scheduling scenarios: the original execution
order and a loop permutation.

a) Scenario 1. Original execution order: With the orig-
inal schedule θS(y, x) = (0, y, x), θT (y, x) = (1, y, x, 0),
θU (y, x) = (1, y, x, 1), 3 iterations of x must be com-
pleted before the execution of U . Indeed, the second filter
applied by U required three vertical cells of blurx, in
particular the three first, for each x. Hence the allocation
σblurx(x, y) = (x mod N, y mod 3), with the non-constant
(parametrized) footprint 3N . In that case, blurx cannot be
directly scalarized. We propose to tile the iteration domain to
limit the conflicting cells in the x direction. With that tiling,
illustrated in Figure 1.(b), the footprint becomes 3h with h
the tile size in the x direction. On a x86-64 machine with 14
general registers, we would set the tile size to h = [14/3] = 4.
The final scalarized code is depicted in Figure 3.

b) Scenario 2. Loop permutation: We now assume that
the outcome of the previous polyhedral compilation steps is
a permutation of the loops x and y. This is described with
the schedule θS(y, x) = (0, x, y), θT (y, x) = (1, x, y, 0),
θU (y, x) = (1, x, y, 1). In that case, we directly have the
allocation σblurx(x, y) = (x mod 1, y mod 3) with a con-
stant footprint 3. Hence scalarization might be applied directly,
without the need to apply further loop tiling.

B. Our algorithm

We now present our main algorithm (Algorithm 1) and its
subroutines (Algorithms 2, 3 and 4).

We input the result of the previous polyhedral compilation
pass: a polyhedral IR of a program (P, θ) and an optional loop
tiling φ. Then, we output the polyhedral IR of the scalarized
program (Pout, θout), which might feed the next polyhedral
compilation pass until the final code generation.

First, we try to contract temporary arrays with the original
schedule and tiling, when it is provided (step 2). Input and
output arrays are ignored, since they cannot be contracted.
As mentioned in section IV-A, the only way to scalarized the
references to input and output arrays is to substitute them by
temporary arrays fed by an input loop (for input arrays), or
read by an output loop (for output arrays) with a constant time
shift. This might be addressed by a preprocessing polyhedral
pass and will not be discussed further in this paper.

When the contraction fails to produce only temporary arrays
with constant size (step 3) and no loop tiling is imposed, we
try to tile the program in such a way the footprint is reduced
to a constant, non-parametrized, size (step 5, Algorithm 2).
Then, the arrays are recontracted (step 6). At this point, the tile
size is adjusted so the product of σ modulos fits the available
amount of registers. This is simply done by iterating step 6
on tile size ~S from size (1, . . . , 1), incrementing each tile
size component at each iteration, until the temporary arrays
with constant contracted size all have a footprint (modulo
product) tightly less than the available amount of registers.
Arrays which still have a parametric size are skipped (step
8). When no array remains, meaning that the tiling failed to
restrict at least one array to a constant size, our algorithm stops
and returns the original program.

Algorithm 1: SCALARIZATION

Data: Program (P, θ), optional tiling φ
Result: Scalarized program (Pout, θout)

1 begin
2 From now, skip live-in and live-out arrays a

σ ←− ARRAY CONTRACTION(P, θ, φ)
3 if σ has parametrized modulo then
4 if no tiling is provided then
5 φ←− TILING(P, θ, σ)
6 σ ←− ARRAY CONTRACTION(P, θ, φ)
7 end
8 Skip arrays with parametrized modulo
9 if No array remains then

10 return (P, θ)
11 end
12 end
13 U ←− UNROLL FACTORS(P, θ, σ)
14 (Pout, θout)←− CODE GENERATION(P, θ, φ, σ,U)
15 return (Pout, θout)
16 end

Finally, we scalarize the arrays with constant size. First, we



f o r ( y =0; y<2; y ++){
f o r ( x =0; x<N; x ++) {

S : b l u r x [ x ] [ y ] = i n [ x ] [ y ]
+ i n [ x + 1 ] [ y ] + i n [ x + 2 ] [ y ] ;

}
}

f o r ( y =2; y<N; y ++)
f o r ( x =0; x<N; x ++) {

T : b l u r x [ x ] [ y ] = i n [ x ] [ y ]
+ i n [ x + 1 ] [ y ] + i n [ x + 2 ] [ y ] ;

U: o u t [ x ] [ y ] = b l u r x [ x ] [ y−2] +
b l u r x [ x ] [ y−1] + b l u r x [ x ] [ y ] ;

}
}
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a) Motivating example: 2D Blur filter b) Iteration Domain for 2D Blur filter

Fig. 1: Running example: 2D Blur filter

compute the unrolling factors for the loops formally described
by θ (step 13, Algorithm 3). These are the loops produced after
the final polyhedral code generation for P under the schedul-
ing constraint θ. Of course, we do not have syntactically these
loops at this point of the polyhedral compilation, and we have
to reason directly on θ. Then, we produce the polyhedral IR for
the final scalarized program (step 14). We apply the unrolling
(and our tiling φ when step 5 was required) with respect to θ
and we generate the program statements with scalar variables
to be allocated to registers.

We now describe our tiling procedure depicted in Algorithm
2. Our goal is to tile the program to bound the parametric
terms of the array allocation σ. From now, we consider
the running example, scenario 1. Recall that we obtained
σblurx(x, y) = (x mod N, y mod 3), hence the need to
tile the iteration domain on the x direction to restrict the
number of conflicting array cells to a constant value. Actually,
there is two notions of direction: a parametric direction in
the array index domain, clearly identified: x, from which
we deduce a parametric direction in the iteration domain,
which happens to be the same, here. More precisely, given
a statement S and an array reference a[u(~i)], we want to infer
a variation ~∆k in the iteration domain DS of S which incurs
a variation in the direction ~δk (vector with 1 at position k, 0
elsewhere) in the direction k of the array index domain (here
k = 1, δ1 = (1, 0)). If σa(~c) = A~c mod s( ~N), this amounts
to solve:

A ◦ u(~∆k) = ~δk

This affine equation is classically solved thanks to standard
linear algebra techniques (lines 8 to 15). Note that Q−g

denotes the generalized inverse of Q. The outcome is the set
PS of directions ~∆k of the iteration domain DS of statement
S for which at least one reference a[u(i)] makes a step in
a parametric direction ~δk according to σa. Then, a tiling is

computed (line 19) using the pluto algorithm [2]. Finally, we
keep only the hyperplanes going into a parametric direction.

We point out that our algorithm will lead to a contraction
of temporary arrays to a constant size if hyperplanes do not
cross dependences hold by those arrays. Otherwise, a copy of
sources should be kept along complete slices of the iteration
domain. Note that the pluto algorithm tends to avoid that
pitfall by pushing the resolution of dependences to innermost
hyperplanes.

Running example. We would get PS = PT = PU =
{(0, 1)}, then the tiling φS = φT = φU = (y, x) 7→ (x, y) =(

0 1
1 0

)(
y
x

)
. Finally we would keep the first hyperplane

(first line) as (0, 1) · (0, 1) = 1 6= 0, and reject the second
hyperplane (second line) as (0, 1) · (1, 0) = 0. Hence the final
tiling φS = φT = φU = (y, x) 7→ (x), as depicted on Figure
1.(b). �

Once the program is properly tiled and some temporary
arrays are reduced to a constant size thanks to array contrac-
tion, we apply our scalarization algorithm. First, we compute
unroll factors on the loops abstractly described by the input
schedule θ (Algorithm 3). Then, we apply the unrolling and
we scalarized those temporary arrays (Algorithm 4).

Consider Algorithm 3. The main challenge is to find out
the minimum unroll factors to expose constant array indices
(after contraction), so they might be subsequently substituted
by a scalar variable. We first rephrase array indices to use the
loop counters prescribed by θ (time counters ti). If σa(~c) =
A~c mod ~s, the index u(~i) for the reference a[σa(u(~i))] of
statement S is rephrased A◦u◦θ−1

S (~t) mod ~s, since θS(~i) = ~t
(definition of θS). The remainder focuses on the affine part
A ◦ u ◦ θ−1

S (~t).
The following lemma proves that the obtained unroll factors

expose constant array indices. We denote by ~u×~v the element-
wise multiplication of vectors: (u1, . . . , un)× (v1, . . . , vn) =
(u1 × v1, . . . , un × vn).



Algorithm 2: TILING

Data: Program (P, θ), allocation σ
Result: Scalarization-aware tiling φ

1 begin
2 foreach reference S : . . . a[u(~i)] . . . do
3 Write σa(~c) = A~c mod s( ~N)
4 PS ←− ∅
5 foreach k s.t. s( ~N)[k] is parametrized do
6 Add a basis of ~∆k s.t. A ◦ u(~∆k) = ~δk:
7 begin
8 if u is non-singular then
9 Add ~∆k = u−1 ◦A−1(~δk) to PS

10 continue
11 end

/* u is singular */

12 Write A ◦ u(~∆k) = Q~∆k + ~r
/* get a solution */

13 ~∆0 ←− Q−g(~δk − ~r)
/* add a solution basis */

14 〈~e1, . . . , ~ep〉 ←− kerQ

15 Add each ~ei + ~∆0 to PS
16 end
17 end
18 end
19 φ←− PLUTO TILING(P )

/* Keep hyperplanes on parametric
directions */

20 L ←− ∅
21 foreach statement S do
22 Write φS(~i) = T~i+ ~u

23 foreach line vector ~̀j of T do
24 if ~̀j · ~∆ 6= 0 for some ∆ ∈ PS then
25 Add j to L
26 end
27 end
28 end
29 Keep only output dimensions L of φ
30 return φ
31 end

Lemma 4.1: Let ~U = (U(t1), . . . ,U(tn)) and S :
. . . a[u(~i)] . . . a reference to a contracted array in P . Then,
with unroll factors U , the reference is constant (the same cell
a[~c0] at each iteration):

∃~c0 ∈ Zp : ∀~k ∈ Zn : σa ◦ u ◦ θ−1
S (~k × ~U) = ~c0

Proof. We use the notations defined in Algorithm 3. The k-th
dimension of σa◦u◦θ−1

S (~k× ~U) may be written: (αk(~k× ~U)+

βk) mod sk, which develops to: (αk(~k × ~U) mod sk + βk
mod sk) mod sk (since Z → Z/skZ is a ring morphism)
Now, each non-null Ui in the expression αk(~U) is a multiple
of sk (line 8), so is αk(~k×~U). Hence αk(~k×~U) mod sk = 0.

Algorithm 3: UNROLL FACTORS

Data: Program (P, θ)
Result: U : time dimension (θ) 7→ unroll factor

1 begin
2 U(ti)←− 1, for each time dimension ti
3 foreach reference S : . . . a[u(~i)] . . . do
4 Write σa(~c) = A~c mod ~s

/* Unroll time dimensions (θ) */
5 Write A ◦ u ◦ θ−1

S (~t) = (f1(~t), . . . , fp(~t))

6 foreach index dimension fk(~t) do
7 foreach variable ti in fk(~t) do
8 U(ti)←− lcm(U(ti), ~sk)
9 end

10 end
11 end
12 return U
13 end

Therefore, the k-th dimension of σa ◦ u ◦ θ−1
S (~k × ~U) is the

constant ~c0k = βk mod sk. �

This shows the correctness of our unroll factors. We point
out that our unroll factors are minimal, as we use an lcm (step
8).

Running example (cont’d). Recall the schedules θS(y, x) =
(0, y, x, 0), θT (y, x) = (1, y, x, 0), θU (y, x) = (1, y, x, 1).
Hence θ−1

S = θ−1
T = θ−1

U = (t1, t2, t3, t4) 7→ (t2, t3).
After tiling, we have σblurx(x, y) = (x mod 4, y mod 3)
(Algorithm 1, step 6), hence A is the rank 2 identity matrix.
The references to blurx, written as A◦u◦θ−1

S (~t) are (step 5):
blurx[x][y] 7→ blurx[t3][t2], blurx[x][y−2] 7→ blurx[t3][t2−
2], blurx[x][y − 1] 7→ blurx[t3][t2 − 1]. Finally, we obtain:
U : t1 7→ 1, t2 7→ 3, t3 7→ 4, t4 7→ 1. �

Finally, Algorithm 4 generates the polyhedral representation
of the scalarized program. For each statement S, each loop tj is
unrolled by a factor U(tj) = Uj (step 5). This is expressed
by an euclidian division: tj = θS(~i)j = kj × Uj + πj with
0 ≤ πj < Uj (euclidian division), kj being the counter of the
unrolled loop for tj and πj being the unroll offset in that loop.
The tiling constraints are [2]: ~i ∈ DS ∧ ~T = φS(~i)/~S, where
/ denotes the element-wise euclidian division and ~S is the tile
size along each hyperplane.

The following theorem proves the correctness of the sched-
ule computed at step 6.

Theorem 4.2: If θ is correct, Then: θS,~π is a correct schedule
over DS,π , for any ~π enumerated in Algorithm 4.

Proof. The tiling found by Algorithm 2, step 19 is correct
[2]. Then any subset of hyperplanes, as the result φ, is a correct
tiling, so is the schedule (~T ,~i) 7→ (~T , θS(~i)). Since θS(~i) =
~k× ~U+~π (element-wise euclidian division), the lexicographic
order of (k1, π1, . . . , kn, πn) is the same as θS(~i). Hence the
correctness of θS,~π : (~T ,~k,~i) 7→ (~T , k1, π1, . . . , kn, πn) �

The following lemma proves correctness of the register
naming at step 7.



Algorithm 4: CODE GENERATION

Data: Program (P, θ), tiling φ, allocation σ, unroll
factors U

Result: Scalarized program (Pout, θout)
1 begin
2 ~U ←− (U(t1), . . . ,U(tn))
3 foreach statement S do
4 foreach ~π ∈ J0,U(t1)J× . . .× J0,U(tn)J do
5 DS,~π ←− {(~T ,~k,~i) | θS(~i) = ~k × ~U + ~π ∧

tiling constraints(DS , φS , ~T ,~i)}
6 θS,~π(~T ,~k,~i)←− (~T , k1, π1, . . . , kn, πn)

/* final scalarization */

7 Set a new statement S~π(~T ,~k,~i) from S(~i) by
substituting each reference a[u(~i)] by
register_aσa◦u◦θ−1

S (~π)

8 end
9 end

10 Write Pout the collection domain:statement DS,~π : S~π
11 Write θout the collection of schedules θs,~π
12 return (Pout, θout)
13 end

Lemma 4.3: For any (~T ,~k,~i) ∈ DS,~π , the index function
of a, σa ◦ u ◦ θ−1

S (~t) depends only on ~π and is equal to(
~c0 + lin

(
A ◦ u ◦ θ−1

S (~π)
))

mod ~s for some constant vector
~c0 ∈ Zn, where ~t = θS(~i) = ~k × ~U + ~π (step 5).

Proof. With the notations of the algorithm,
we have: σa ◦ u ◦ θ−1

S (~k × ~U + ~π) equals to(
A ◦ u ◦ θ−1

S (~k × ~U) + lin
(
A ◦ u ◦ θ−1

S

)
(~π)

)
mod ~s

(affine decomposition).
By distributing the modulo, this is equals to(
σa ◦ u ◦ θ−1

S (~k × ~U) + lin
(
A ◦ u ◦ θ−1

S

)
(~π) mod ~s

)
mod ~s, which simplifies (Lemma 4.1) to:(
~c0 + lin

(
A ◦ u ◦ θ−1

S

)
(~π)

)
mod ~s which depends only on

~π. �

Adding a constant vector to the left hand side of(
~c0 + lin

(
A ◦ u ◦ θ−1

S

)
(~π)

)
mod ~s does not change its ex-

clusive dependence on π, hence we may safely use A ◦ u ◦
θ−1
S (~π) mod ~s = σa ◦u◦θ−1

S (~π) instead to name the register
(step 7).

Running example (cont’d). For each statement S, T, U , we
enumerate all the values of ~π ∈ {0} × J0, 2K × J0, 3K × {0}.
For instance, for S and the first combination ~π = (0, 0, 0, 0),
we generate:

• DS,(0,0,0,0) = {(T1, k1, k2, k3, k4, y, x) | θS(y, x) =
(0, y, x, 0) = (k1.1+0, k2.2+0, k3.3+0, k4.1+0)∧0 ≤
x < N ∧ 0 ≤ y < 2 ∧ 4T1 ≤ x < 4(T1 + 1)}

• θS,(0,0,0,0)(T1, k1, k2, k3, k4, y, x) =
(T1, k1, 0, k2, 0, k3, 0, k4, 0)

• S(0,0,0,0) : register blurx(0,0) = in[x][y]+in[x+1][y]+
in[x+ 2][y];

The 11 other combinations for ~π are processed in the same
way. Given to a polyhedral code generator, this produces the
desired scalarized program, as depicted in Figure 3. Note
that each register variable register blurx ∗ as been renamed
blurx ∗ instead, for the sake of clarty. �

V. EXPERIMENTAL RESULTS

This section presents our experimental results on several
polyhedral programs, ranging from linear algebra to signal
processing kernels.

A. Experimental setup

We have implemented our scalarization algorithm. The final
code was generated using the iscc polyhedral code generator
[15]. We have applied our algorithm to the following kernels:

• 2D-blur-filter. Our running example, applying a 2D blur
filter to an input picture of size N .

• fibonacci. This kernel generates the N first fibonacci
numbers, before returning the last one generated.

• pc-2d-interleaved. Producer/consumer throught a 2D ar-
ray N × N , where the consumer executes exactly 2
iterations after the producer.

• pc-1d. Producer/consumer through an array of size N .
Values are consumed 2 iterations after their production.

• pc-2d. This kernel applies a stencil pattern on a 2D array
N ×N , with dependence vectors (1, 0) and (0, 1).

• cnn. Simple CNN with a convolutive layer followed a
ReLU layer. The layers are of size N ×N .

• 2mm. Multiplication of three matrices N × N together
(A×B × C).

• gemm. BLAS kernel computing C := αA × B + βC.
On the experiments, A and B where chosen as N × N
matrices.

• poly. Multiplication of monovariate polynomials P and
Q of degree N , represented by their array of coefficients.

Kernels cnn, 2mm, gemm and poly were preprocessed to
enable the contraction of input/output arrays, along the lines
described in Section IV-A. Benchmarks were done by ex-
ecuting both the default and scalar program with different
array sizes. Executions were made on a single-x86 64 intel
CPU, with 14 registers. The CPU features 4 cores, with 64KB
of cache L1, 512 KB of cache L2 and 4MB of cache L3.
Compilation was done with GCC11 -O0 to measure exactly
the impact of our optimization.

B. Results

Figure 2 depicts our results. Every graph shows runtimes
for both default and scalar version, as well as the speed-up,
for multiple array size. For every example, similar behaviours
can be observed, such as cache effects when the memory
footprint gets large enough. Cache memory becomes saturated,
and another phase of the curve starts.

For almost every example, we managed to speed up quite a
lot the program. On 2D blur filter, it is interesting to note that
the scalarized version show a bigger growing rate compared to
the default version, which translates to a speed-up increasing



with the data size, unlike fibonacci, pc-2D-interleaved, cnn,
2mm, and gemm, which exhibits a constant speed-up. On pc-
2d, we observe instabilities on both curves with the ratio
slighty going down. On gemm and poly, the poor performances
are explained by the number of conditional branches in the
target program to handle corner-cases, that we suspect to cause
many branch misprediction. This is the main weakness of
direct polyhedral code generation.

VI. CONCLUSION

In this paper, we have proposed a complete algorithm
for array scalarization as a composable pass in a polyhedral
compiler. Our algorithms features a loop tiling to reschedule
the input kernel so the footprint of the temporary arrays may
be tuned to fit into the registers of the target architecture.
We have also provided a complete correctness proof of our
approach, completed with an experimental validation on a set
of representative polyhedral kernels used in linear algebra and
signal processing applications.

In the future, we would like to investigate how to improve
the polyhedral code generation to reduce the conditional
branches, which bound unexpectedly our speed-ups on some
kernels.
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Fig. 2: Experimental results



void b l u r k e r n e l ( double * in , double * out , i n t N) {
r e g i s t e r double b lu rx 00 , b lu rx 01 , b lu rx 02 , b lu rx 10 , b lu rx 11 , b lu rx 12 , b lu rx 20 , b lu rx 21 , b lu rx 22 , b lu rx 30 , b lu rx 31 , b l u r x 3 2 ;

f o r ( i n t c0 = 0 ; c0 <= f l o o r d (N − 1 , 4 ) ; c0 += 1) {
b l u r x 0 0 = i n [4 * c0 ] [ 0 ] + i n [4 * c0 + 1 ] [ 0 ] + i n [4 * c0 + 2 ] [ 0 ] ;
i f (N >= 4 * c0 + 2) {

b l u r x 1 0 = i n [4 * c0 + 1 ] [ 0 ] + i n [4 * c0 + 1 + 1 ] [ 0 ] + i n [4 * c0 + 1 + 2 ] [ 0 ] ;
i f (N >= 4 * c0 + 3) {

b l u r x 2 0 = i n [4 * c0 + 2 ] [ 0 ] + i n [4 * c0 + 2 + 1 ] [ 0 ] + i n [4 * c0 + 2 + 2 ] [ 0 ] ;
i f (N >= 4 * c0 + 4)

b l u r x 3 0 = i n [4 * c0 + 3 ] [ 0 ] + i n [4 * c0 + 3 + 1 ] [ 0 ] + i n [4 * c0 + 3 + 2 ] [ 0 ] ;
}

}
b l u r x 0 1 = i n [4 * c0 ] [ 1 ] + i n [4 * c0 + 1 ] [ 1 ] + i n [4 * c0 + 2 ] [ 1 ] ;
i f (N >= 4 * c0 + 2) {

b l u r x 1 1 = i n [4 * c0 + 1 ] [ 1 ] + i n [4 * c0 + 1 + 1 ] [ 1 ] + i n [4 * c0 + 1 + 2 ] [ 1 ] ;
i f (N >= 4 * c0 + 3) {

b l u r x 2 1 = i n [4 * c0 + 2 ] [ 1 ] + i n [4 * c0 + 2 + 1 ] [ 1 ] + i n [4 * c0 + 2 + 2 ] [ 1 ] ;
i f (N >= 4 * c0 + 4)

b l u r x 3 1 = i n [4 * c0 + 3 ] [ 1 ] + i n [4 * c0 + 3 + 1 ] [ 1 ] + i n [4 * c0 + 3 + 2 ] [ 1 ] ;
}

}
f o r ( i n t c1 = 0 ; c1 <= min ( (N − 1) / 3 , N − 3 ) ; c1 += 1) {

i f ( c1 >= 1) {
b l u r x 0 0 = i n [4 * c0 ] [ 3 * c1 ] + i n [4 * c0 + 1 ] [ 3 * c1 ] + i n [4 * c0 + 2 ] [ 3 * c1 ] ;
o u t [4 * c0 ] [ 3 * c1 ] = b l u r x 0 1 + b l u r x 0 2 + b l u r x 0 0 ;
i f (N >= 4 * c0 + 2) {

b l u r x 1 0 = i n [4 * c0 + 1 ] [ 3 * c1 ] + i n [4 * c0 + 1 + 1 ] [ 3 * c1 ] + i n [4 * c0 + 1 + 2 ] [ 3 * c1 ] ;
o u t [4 * c0 + 1 ] [ 3 * c1 ] = b l u r x 1 1 + b l u r x 1 2 + b l u r x 1 0 ;
i f (N >= 4 * c0 + 3) {

b l u r x 2 0 = i n [4 * c0 + 2 ] [ 3 * c1 ] + i n [4 * c0 + 2 + 1 ] [ 3 * c1 ] + i n [4 * c0 + 2 + 2 ] [ 3 * c1 ] ;
o u t [4 * c0 + 2 ] [ 3 * c1 ] = b l u r x 2 1 + b l u r x 2 2 + b l u r x 2 0 ;
i f (N >= 4 * c0 + 4) {

b l u r x 3 0 = i n [4 * c0 + 3 ] [ 3 * c1 ] + i n [4 * c0 + 3 + 1 ] [ 3 * c1 ] + i n [4 * c0 + 3 + 2 ] [ 3 * c1 ] ;
o u t [4 * c0 + 3 ] [ 3 * c1 ] = b l u r x 3 1 + b l u r x 3 2 + b l u r x 3 0 ;

}
}

}
i f (N >= 3 * c1 + 2) {

b l u r x 0 1 = i n [4 * c0 ] [ 3 * c1 + 1] + i n [4 * c0 + 1 ] [ 3 * c1 + 1] + i n [4 * c0 + 2 ] [ 3 * c1 + 1 ] ;
o u t [4 * c0 ] [ 3 * c1 + 1] = b l u r x 0 2 + b l u r x 0 0 + b l u r x 0 1 ;
i f (N >= 4 * c0 + 2) {

b l u r x 1 1 = i n [4 * c0 + 1 ] [ 3 * c1 + 1] + i n [4 * c0 + 1 + 1 ] [ 3 * c1 + 1] + i n [4 * c0 + 1 + 2 ] [ 3 * c1 + 1 ] ;
o u t [4 * c0 + 1 ] [ 3 * c1 + 1] = b l u r x 1 2 + b l u r x 1 0 + b l u r x 1 1 ;
i f (N >= 4 * c0 + 3) {

b l u r x 2 1 = i n [4 * c0 + 2 ] [ 3 * c1 + 1] + i n [4 * c0 + 2 + 1 ] [ 3 * c1 + 1] + i n [4 * c0 + 2 + 2 ] [ 3 * c1 + 1 ] ;
o u t [4 * c0 + 2 ] [ 3 * c1 + 1] = b l u r x 2 2 + b l u r x 2 0 + b l u r x 2 1 ;
i f (N >= 4 * c0 + 4) {

b l u r x 3 1 = i n [4 * c0 + 3 ] [ 3 * c1 + 1] + i n [4 * c0 + 3 + 1 ] [ 3 * c1 + 1] + i n [4 * c0 + 3 + 2 ] [ 3 * c1 + 1 ] ;
o u t [4 * c0 + 3 ] [ 3 * c1 + 1] = b l u r x 3 2 + b l u r x 3 0 + b l u r x 3 1 ;

}
}

}
}

}
i f (N >= 3 * c1 + 3) {

b l u r x 0 2 = i n [4 * c0 ] [ 3 * c1 + 2] + i n [4 * c0 + 1 ] [ 3 * c1 + 2] + i n [4 * c0 + 2 ] [ 3 * c1 + 2 ] ;
o u t [4 * c0 ] [ 3 * c1 + 2] = b l u r x 0 0 + b l u r x 0 1 + b l u r x 0 2 ;
i f (N >= 4 * c0 + 2) {

b l u r x 1 2 = i n [4 * c0 + 1 ] [ 3 * c1 + 2] + i n [4 * c0 + 1 + 1 ] [ 3 * c1 + 2] + i n [4 * c0 + 1 + 2 ] [ 3 * c1 + 2 ] ;
o u t [4 * c0 + 1 ] [ 3 * c1 + 2] = b l u r x 1 0 + b l u r x 1 1 + b l u r x 1 2 ;
i f (N >= 4 * c0 + 3) {

b l u r x 2 2 = i n [4 * c0 + 2 ] [ 3 * c1 + 2] + i n [4 * c0 + 2 + 1 ] [ 3 * c1 + 2] + i n [4 * c0 + 2 + 2 ] [ 3 * c1 + 2 ] ;
o u t [4 * c0 + 2 ] [ 3 * c1 + 2] = b l u r x 2 0 + b l u r x 2 1 + b l u r x 2 2 ;
i f (N >= 4 * c0 + 4) {

b l u r x 3 2 = i n [4 * c0 + 3 ] [ 3 * c1 + 2] + i n [4 * c0 + 3 + 1 ] [ 3 * c1 + 2] + i n [4 * c0 + 3 + 2 ] [ 3 * c1 + 2 ] ;
o u t [4 * c0 + 3 ] [ 3 * c1 + 2] = b l u r x 3 0 + b l u r x 3 1 + b l u r x 3 2 ;

}
}

}
}

}
}

}

Fig. 3: 2D blur filter, scenario 1, code generated
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