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Abstract

A search engine maintains local copies of di erent web pages to provide quick search results. This
local cache is kept up-to-date by a web crawler that frequently visits these di erent pages to track changes
in them. Ideally, the local copy should be updated as soon as a page changes on the web. However, nite
bandwidth availability and server restrictions limit how frequently di erent pages can be crawled. This
brings forth the following optimization problem: maximize the freshness of the local cache subject to the
crawling frequencies being within prescribed bounds. While tractable algorithms do exist to solve this
problem, these either assume the knowledge of exact page change rates or use ine cient methods such
as MLE for estimating the same. We address this issue here.

We provide three novel schemes for online estimation of page change rates, all of which have extremely
low running times per iteration. The rst is based on the law of large numbers and the second on
stochastic approximation. The third is an extension of the second and includes a heavy-ball momentum
term. All these schemes only need partial information about the page change process, i.e., they only
need to know if the page has changed or not since the last crawled instance. Our main theoretical results
concern asymptotic convergence and convergence rates of these three schemes. In fact, our work is the
rst to show convergence of the original stochastic heavy-ball method when neither the gradient nor the
noise variance is uniformly bounded. We also provide some numerical experiments (based on real and
synthetic data) to demonstrate the superiority of our proposed estimators over existing ones such as
MLE. We emphasize that our algorithms are also readily applicable to the synchronization of databases
and network inventory management.

1 Introduction

The worldwide web is a highly complex entity: it has a lot of interlinked information, and both the infor-
mation and the links keep evolving. Nevertheless, even in this challenging setup, one still expects a search
engine to provide accurate and up-to-date search results instantaneously. To ful Il this expectation, a search
engine maintains a local cache of important web pages, that it updates frequently by using a crawler (also
referred to as a web spider or a web robot). Speci cally, the job of a crawler [2, 3, 4, 5, 6] is (&) to access
various pages on the web at specic frequencies so as to determine if any changes have happened to the
content since the last crawled instance; and (b) to update the local cache whenever there is a chaigdhere

A shorter version [1] of this paper appeared in the proceedings of VALUETOOLS 2020 conference. The novel contributions
here include i.) an additional change rate estimation scheme (this is a stochastic approximation scheme with momentum) and
its analysis and ii.) additional experiments including one that compares the performance of all our estimators based on real
data (Wikitraces).

YThis is the author version of the paper accepted to the International Journal of Performance Evaluation , Elsevier.
1A web crawler is also supposed to discover new pages, but we don't focus on this task in this work.



are, however, two key constraints on the di erent crawling frequencies. The rst is due to limitations on

the available bandwidth. The second one, known as the politeness constraint, arises because of the bounds
placed by servers on the number of pages that can be accessed in a short amount of time. The search engine
thus needs to solve the following optimization problem: maximize the freshness of the local database subject
to the crawling frequencies satisfying the above constraints.

In the early 2000s, the web crawling problem used to be formulated as follows [7, 8, 9]. The whole web
consists ofn pages, all have equal importance, and there are no politeness constraints. Further, the times
at which di erent pages change are independent Poisson point processes with di erent rates [7, 10]. On the
search engine side, the local cache consists of a copy of each of thespages. Each copy is updated at
regular intervals of time by crawling the original page at a certain (known) frequency. Finally, the freshness
of the local cache attimet 0O is de nedto ber 2 [0;1] if r fraction of the local elements matches the actual
versions on the web. The goal then is to nd an update policy that maximizes the time-averaged freshness
of the local cache and, also, satis es the bandwidth constraint.

Finding an exact solution to this problem is hard. Hence, numerical solutions were obtained in [7, 8]
for small values of n: These showed that the optimal crawling policy could be very di erent to both the
uniform as well as the proportional policy, i.e., crawling each page at the same frequency or at one that is
proportional to its change rate. In fact, somewhat surprisingly, it was also found that the optimal policy
may often include ignoring pages that change too frequently, i.e., not crawling them at all.

In 2003, the freshness de nition was modi ed to include di erent weights for di erent pages depending
on their importance, e.g., represented as the frequency of requests for di erent pages [11]. This was done
in line with the view that only a nite number of pages can be crawled in any given time frame; hence, to
improve the utility of the local database, the freshness criteria should be biased more towards important
pages. Numerical solutions, again for smalin; con rm that page weights do substantially in uence the
optimal crawling policy.

While the generaln case is still unsolved, a recent breakthrough work [12] showed how an optimal random-
ized crawling policy can, nonetheless, be found very e ciently (in just O(nlogn) operations). In particular,
this solution pertains to the case where, for each web page, even the set of access times forms a Poisson
point process. An approach to derandomize this policy to handle the original setup with periodic crawling
is also discussed there. In synthetic experiments, this resultant policy is claimed to show performances very
similar to the one obtained via numerical solutions. This work was recently extended to cover the case with
politeness constraints as well [13].

There is also a separate study [14, 15] which provides a Whittle index based dynamic programming
approach to optimize the schedule of a web crawler. In that approach, the page/catalog freshness estimate
also in uences the optimal crawling policy.

As can be seen, several algorithms do exist to determine the optimal crawling policy. However, they either
presume prior knowledge of the exact page change rates, which is unrealistic in practice, or, alternatively,
use ine cient ideas for estimating the same. We now provide a brief overview of such approaches and the
issues that plague them.

To the best of our knowledge, three other estimators exist in the literature: the naive estimator [16, 17, 18],
the Maximum Likelihood Estimator (MLE) [19], and the Moment Matching (MM) estimator [20]. The naive
estimator is simply the ratio of the observed number of changes to the total monitoring time period. This
is clearly biased since the crawler only has access to partial information about the page change process
(remember, it only gets to see if a page has changed or not since the last crawled instance). To overcome
this bias issue, MLE instead estimates the rate of change by identifying the parameter value that maximizes
the likelihood of the page change observations. This idea performs quite well in experiments; in fact, it also
works when access to a page is only possible at irregular intervals of time. However, MLE lacks a closed
form expression and su ers from two issues: (@) instability, i.e., the estimator value equalsl as long as a
page change is detected in every access; and (b) computational intractability, i.e., the estimate needs to be
recomputed from scratch each time a new observation is made. The latter makes MLE impractical to use
when the data set of observations is quite large. Finally, in the MM estimator, one looks at the fraction of
times no changes were detected during page accesses and then, using a moment matching method, estimates



the change rate. Unfortunately, like MLE, the MM estimator also su ers from instability and computational
issues.

Our exact problem statement and the main contributions can now be summarized as follows. We consider
a single page and, as in [12], presume that the page change times and page access times are independent
homogeneous Poisson point processes. Thus, each of these processes can be characterized by a single pa-
rameter, which we denote here by and p; respectively. Importantly, we assume that only p is known. We
then develop three approaches for online estimation of ; which only need to know if this page has changed
or not between two successive accesses. The key word here is “online'. This means, unlike MLE and the
MM estimator, our estimates can be incrementally updated using extremely simple, low cost formulas as
and when a new observation becomes available. Thus, our estimators do not face computational issues of
the kind mentioned above. Also, they do not face any instability issues.

Our rst estimator uses the Law of Large Numbers (LLN), while the second and third estimators are
based on Stochastic Approximation (SA) principles. Speci cally, the update rule for the rst estimator is
derived using a formula for the probability that there is a page change between two successive accesses. In
contrast, the second estimator is constructed via a standard trick in SA. A key ingredient there is a function
that is carefully chosen so that it satis es two properties: (a) noisy estimates of its value for any given input
can be easily obtained; and (b) its expected value is linear and, importantly, is its unique zero. The
update rule for the third estimator is similar to that of the second one, except that it has an additional
momentum term (in the heavy-ball sense). As we show in Section 3.5, it is also possible to view our second
and third estimators as a Stochastic Gradient Descent (SGD) method and as an SGD method with heavy-
ball momentum, respectively. We emphasize that even though we present our results in the context of web
crawling, our algorithms are equally applicable to the synchronization of databases [8] and the problem of
network inventory management [21].

Our main theoretical result is that all our estimators almost surely (a.s.) converge to ; thus, they all
are asymptotically consistent. As far as we know, our result concerning the third estimator is the rst to
show convergence of an SGD method with heavy-ball momentum when neither the gradient nor the noise
variance is a priori assumed to be uniformly bounded. While similar settings have also been dealt with in
[22], the analysis there concerns the stochastic analogue of a modi ed heavy-ball method and not the original
one that was proposed in [23]. Separately, we also derive the convergence rates of the rst two estimators in
the expected error sense. Based on the existing literature, we also provide a loose guess on the convergence
rate of the third estimator.

We also provide numerical simulations to compare the performance of our online schemes to each other
and also to that of the (o ine) MLE estimator. From these experiments, it can be explicitly seen that our
estimators give performances comparable to that of MLE. This was a bit surprise to us since our estimators,
compared to MLE, have extremely low running times per iteration. Also, unlike MLE, they ignore the
actual lengths of intervals between two page accesses. Among our three estimators, LLN and SAM show
similar performances and both typically outperform our SA estimator. In particular, the momentum in the
third estimator helps in accelerating the estimation wheneverp (the rate at which the page is accessed
is much smaller than the rate at which it changes). Our experiments are based on both real (Wikipedia
traces) as well as synthetic data sets. In the experiment using Wikipedia traces, we also verify our modeling
assumption that the page change process is a Poisson point process.

The rest of this paper is organized as follows. The next section provides a formal summary of this work
in terms of the setup, goals, and key contributions. It also gives explicit update rules for all of our online
schemes. In Section 3, we formally analyse their convergence and the rates of convergence. The numerical
experiments discussed above are given in Section 4. Then, in Section 5, we provide some motivation on how
one can use our estimates to nd the optimal crawling rates. Finally, we conclude in Section 6 with some
future directions.

2 Setup, Goal, and Key Contributions

The three topics are individually described below.



Setup : Without loss of generality, we work with a single web page. We presume that the actual times
at which this page changes is a time-homogeneous Poisson point process in10 with a constant but
unknown rate : Independently of everything else, this page is crawled (accessed) at the random instances
ftkoak o [0;1); wherety = 0 and the inter-arrival times, i.e., fty tx 10« 1; are lID exponential random
variables with a known rate p: Thus, the times at which this page is crawled is also a time-homogeneous
Poisson point process but with ratep: At time instance ty; we get to know if the page got modi ed or not

in the interval (tx 1;tk]; i.e., we can access the value of the indicator

1; if the page got modied in (tx 1;tk];
0; otherwise.

I =

The above assumptions are standard in the crawling literature. Nevertheless, we now provide a short
justi cation for the same. Our assumption that the page change process is a Poisson point process is based
on the experimental evidence collected in [10, 24, 7]. An additional validation is provided by us in this work.
Speci cally, we selected an arbitrary page from the list of frequently edited Wikipedia pages. We extracted
the complete history of this web page (exact dates and times of di erent changes) for a period of ve months
(April 01, 2020 to August 31, 2020). Thereafter, we calculated the time between successive changes and
then used this data to produce a Q-Q plot. This plot con rms that the set of quantiles for the actual data
indeed matches linearly with the quantiles of exponential distribution, as predicted. Further details about
this experiment can be found in Section 4. Some generalized models for the page change process have also
been considered in the literature [9, 25]; however, we do not pursue them here.

Our assumption onflxg is based on the fact that a crawler can only access incomplete knowledge about
the page change process. In particular, a crawler does not know when and how many times a page has
changed between two crawling instances. Instead, all it can track is the status of a page at each crawling
instance and know if it has changed or not with respect to the previous access. Sometimes, it is possible to
also know the time at which the page was last modi ed [3, 19], but we do not consider this case here.

Goal : Develop online algorithms for estimating in the above setup. The motivation for doing this is that
such estimates can then be used to estimate the optimal crawling rates [12, 26]; see Section 5 for more details
on this.

Key Contributions : We provide three online methods for estimating the page change rate : The rstis
based on the law of large nhumbers, while the second and third are based on stochastic approximation theory,
with the third one having an additional momentum component. If fxxg; fyxg; and f z,g; denote the iterates
of these three methods, respectively, then their update rules are as shown below.

LLN Estimator : Its k-th estimate is given by
xi = phetk+ « f); k1L @

P
Here, [} = jkzl li; hence,lx = I 1+ ly: Furtber, f kg is any positive sequence satisfying the con-
ditions in Theorem 1; e.g.,  could be logk; = k; or identically 1:

SA Estimator: Given some initial value yo; the update rule for the SA estimator is

Yek+1 = Yk + kllkaa(yk+P) I, k O (2

Here, f (g is any stepsize sequence that satis es the conditions in Theorem 2. For exampley could
be 1=(k + 1) for some constant 2 (0;1]:

SAM Estimator (SA Estimator with Momentum): Given some initial valueszy;z 1;the SAM estimator
satis es

Zisr = Zk+ kllksr (e +p) zw]+ k(z z 1), kO 3)



Here, f g and f g are any stepsize sequences that satisfy the conditions given in Theorem 3. For
example, one could picka 2 (1=2;1]andlet y = 1=(k+1) :Then,f ygandf ygcould befl=(k+1) g
andf( « ! «)=( « 1)0; respectively, where! > 0 is some constant and +1=2< 2: While we
do not show it, we conjecture that one can also pick 2 (0; 1=2] and then choose so that < 2:
Finally, note thatif = and! =1; then the asymptotic behaviour of (3) will resemble that of (2);
this is because 0 then.

We call these methods online because the estimates can be updated on the y as and when a new obser-
vation | becomes available. This contrasts the MLE estimator in which one needs to start the calculation
from scratch each time a new data point arrives. Also, unlike MLE, our estimators are never unstable; see
Section 3.4 for the details.

Our main results include the following. We show that all our three estimators, i.e., Xg;Yk; and z;
converge to a.s. Further, we show that

1. Ejxg j= 0 max k ¥2; =k ;and
2. Ejyx  j=0O(k =?2)if (=(k+1) with 2 (0;1):

Separately, based on existing literature [27, 28, 29], we conjecture thaEjzy j= O(k ~2); whereO hides
logarithmic terms. We also provide several numerical experiments based on real as well as synthetic data for
judging the strength of our three proposed estimators.

3 Analysis of the Proposed Online Estimators

Here, we formally discuss the convergence and convergence rates of our three estimators. Thereafter, we
compare their behaviors with those that already exist in the literature|the Naive estimator, MLE, and

the MM estimator. We end with a summary of existing results on stochastic momentum methods and a
discussion on how our convergence result for the SAM estimator extends our current understanding of such
methods.

3.1 LLN Estimator

Our rst aim here is to obtain a formula for E[l1]: We shall use this later to motivate the form of our LLN
estimator.

Let ;1 = t; tp = t1; where the second equality holds sincég = 0: Then, as per our assumptions in
Section 2, ; is an exponential random variable with rate p: Also, E[l1j 1 = ]1=1 exp( ): Hence,

Ely = =+ p) (4)

This gives the desired formula forE[l 1]:
From this latter calculation, we have

= PE[J=1  E[l1]): ®)

Separately, becausd I[!,g is an IID sequence andEjl;j 1, it follows from the strong law of large numbers

that E 1, =Ilimyn jk:l lj=k a.s. Thus,
. P
lim K11 !(:1 |j =k
= p - P a.s.
1 |Imk!1 j=1 |] =k

Consequently, a natural estimator for is

Py
Xe= PP =P

j=1 |j:k k (\k; (6)

5



where [} is as de ned below (1).

x this, one can add a non-zero term in the denominator. The di erent choices then gives rise to the LLN
estimator de ned in (1).
The following result discusses the convergence and convergence rate of this estimator.

Theorem 1. Consider the estimator given in (1) for some positive sequencé g:
1. If limgn «=k=0; thenlimy; Xxx= a.s.

2. Additionally, if limey log(k= )=k = 0; then
n )
EjXk j= O max k 2, =k

Proof. Let = E[l1]; Tx = (k=k; and —x = =k: Then, observe that (1) can be rewritten asx, =

ply=(1+ —« Tk): Now, limy; 1y = as. andlimg; —x =0; the rst claim holds due to the strong law

of large numbers, while the second one is true due to our assumption. Statement 1. is now easy to see.
We now derive Statement 2. From (5), we have

JXk j= Xk P — p(Ak + Bk);
where B
Ik
Ay = — d Bg=
k «+1 I K+l an k K+1 1
Since ¢ > 0 and, hence, ¢ > 0; it follows that
Bk = "« — Tk :
1 Hx+@ ) @ )2
Similarly,
.- — .
A 1+ 7% L l
1 I R

It is now easy to see thatE[By] = O("«): The rest of our arguments concern how fas€[A] decays to O
Let f g be a deterministic sequence that is both non-negative and decays to. @e will describe how to
pick this later. Let k be such that (1+ ) < 1: Then,

il
E — — E[C«]+ E[DyI;
- 1 T [Ck] + E[D«]
where B
i =
k = +1 T, k k
and _
e ] =
D= ———11
k Tk +1 |k k k
On the one hand, p
Eilk | S varfis]

E[Ck] x+1 (1+ k) HE(7k+1 (1+ k) )

On the other hand, sincejl j 2and1 1x O it follows by applying the Cherno bound that
2 - 2
E[Dy] —Prfly (1+ ) g —exp kg=3:
k k

Now, pick f g so that 2 = 6log(1=")=(k ) _ 0 for all k  1: Notice that this choice is both non-
negative and decaygto 0 due to our assumptions ofh g; thus, this is a valid choice. It is now easy to see
that E[C«] = O(1= k) and E[Dy] = O("%):

The desired result now follows. O



3.2 SA Estimator

Let | denote a random variable with the same distribution asl: Also, fory 2 R;let H(y;1)= I(y+ p) V:

Next, dene h:R! R usingh(y) := E[H (y;!)]: Clearly, h(y) = p( y)=( + p); further, is its unique

zero. The theory of stochastic approximation then suggests using the update rule given in (2) for estimating
: For later use, also de ne

Misr =l (Y + D) Y] h(yk)
(Yk + p): (7)

= |
k+1 T

We now discuss the convergence and convergence rate of (2).
Theorem 2. Consider the estimator given in (2) for some positive stepsize sequende xg:
P P
1. Suppose that ., k=1 and ., Z2<1:Then limy Y= as.

2. Suppose that « =1=(k +1) for some constant 2 (0;1): Then,
Ejy« j=0 k 7?2

Proof. For k  O; consider the  eld Fx := (yj;lj;j K): Then, from (4) and the fact that fl,gis an
IID sequence, we get

Ellkss (Yk + P)  Y&JFk] = (Y + P Yk = h(y):

tp
Hence, one can rewrite (2) as
Ye+1 = Yk ¥ k[h(yk) + Mgs1 ]; (8)

where My, is as in (7).
SinceE[My+1 jFk] =0 for all k 0; fMgg is a martingale di erence sequence. Consequently, (8) is a
classical SA algorithm whose limiting ODE is

y(t) = h(y(1)): ©)

We now make use of Theorem 9 given in the Appendix to establish Statement 1. Accordingly, we verify
the four conditions listed there. The stepsize Condition i.) directly holds due to our assumptions orf g:
With regards to Condition ii.), recall we have already established above thatf Mg is a martingale di erence
sequence with respect tdfF g. The square-integrability condition holds sincejMg+1] | Ykj + p which, in
turn, implies that E[jMy.1j%jFk]  2(p® _ 1)(1 + jykj?); as desired. Next, due to linearity, h is trivially
Lipschitz continuous. Further, h(y) =0 if and only if y = : This shows that is the unique equilibrium
point of (9). Now, because the coe cient of y in h(y) is negative, it also follows that is the unique globally
asymptotically stable equilibrium of (9). This veri es Condition iii.). We nally consider Condition iv.) Let
hy (y):= ypH + p): Then, clearly, h ! h; uniformly on compacts asc! 1 : Furthermore, since the
coe cient of y is negative in the de nition of h; ; it is easy to see that the origin is the unique globally
asymptotically stable equilibrium of the ODE y(t) = hy (y(t)); as required. Statement 1. now follows.

We now sketch a proof for Statement 2. First, note that

Yk+1 =(1 ag)yw )+ kMk+1;
wherea= p + p): Now, sinceE[M+;1 jFk] =0; we have
Ellykss ) BFkI=( a )’y ) ?+ KEMZ, iRl

Recall that E[M2,; jFk] C(1+ y?) for some constantC  0: By substituting this above and then repeating
all the steps from the proof of [30, Theorem 3.1], it is not di cult to see that Statement 2 holds as well. [



3.3 SA Estimator with Momentum

As stated before, our SAM estimator is the SA estimator discussed above with an additional heavy-ball
momentum term. Simulations in Section 4 show that this simple modi cation results in a drastic improvement
in performance.
We now discuss the convergence of the SAM estimator under the assumption that, fdt  0;
I
k 'k
k= ——) (10)

where! > 0 is some constant andf g is some positive real sequence. By substituting (10) and letting
Uk =(zx 2k 1)= k 1, observe that the update rule in (3) can be rewritten as

Uert = Uk + k[lksr (Zk + pi)  z] ! kU

where = = k:

Fork O;let My, be asin (7). Also, letFyg denote the -eld (zo;up;l1;:::;1k): Clearly, ux;zx 2 Fy
and E[M .1 jFk] = 0: Hence,f Mg is again a martingale di erence sequence with respect to the ltration
fF «g: Furthermore, sincejMy+1j j zj + p; we have

EiMia1 i%iF k] 2(0° _ 1)1 + jzif?): (11)

As before, leta= p= + p): Also,letb= p= + p)and g = uk+1 U for k O: It is then easy to
see that one can write down (3) in terms of the following two update rules:

Uk+1 = Uk + k[h(uk;z¢) + My ] (12)
ze + lo(ue;z) + ks (13)

Zx+1
whereh: R?! Randg:R?! R are the linear functions given by
h(u;z)=b v az and g(u;z)= u

Theorem 3. Consider the SAM estimator given in (3) with ¢ of the form given in (10). Then z !
a.s., if one of the following conditions holds true.

P
1. One-timescale: |, , k=1; , o 2<1; and =

. P , K
2. Two-timescale | o k= o k=1 ko e+ 2 <1; and limgy; —=0:
k

In both these cases, recall thaty = = :

We state a few remarks concerning this result before discussing its proof.

Remark 4. Examples off yg and f xg sequences such that the above conditions are satis ed include the
following.

One-timescale y =1=(k+1) with 2 (1=2;1]and x =1=(k+1) with =2:
Two-timescales  =1=(k+1) with 2 (1=2;1]and ¢ =1=k+1) with %+ < < 2:

In either case, note that limy;, ¢ =1:

Remark 5. The justi cation for the names given above for the two sets of conditions is as follows. Under
the rst set of conditions, the update rules in (12) and (13) indeed behave like a one-timescale stochastic
approximation algorithm, i.e., both ux and zz move on the same timescale. On the other hand, under the
second set of conditions, (12) and (13), it behaves like a two-timescale stochastic approximation algorithm.
This is because ¢ decays to 0 at a much faster rate than ; in turn implying that the changes in fzg; i.e.,
fzg+1  zxg are of a smaller magnitude than that in fuyg:



Remark 6. In the spirit of the above remark, a natural question to consider is the following. Can one pick
f xgandf ygsothat (= 2! O or, equivalently, = ! 0? Thatis, can one pick the stepsizes so that
ux how becomes the slowly moving update relative tazy ? The answer to this question seems to be no. This
is because a couple of su cient conditions needed to guarantee convergence (e.g., Condition iii.) and iv.) in
Theorem 11) would no longer hold true in this new setup. Furthermore, simulations seem to suggest that
the iterates, in fact, race to in nity.

Remark 7. Another question to consider is the following. Can one pick!; f ¢g; andf xgsothat ! ;
where is a constant in (0; 1)? In particular, can one choose = (1 ); k=1=(k+1) with 2 (1=2;1]
and then pick  =1=(k+1) (i.e., = )sothat (! ? The answer to this second question does not
seem to be clear. This is because lign ¢ would then equal I Consequently, again, one of the su cient
conditions to guarantee convergence (e.g., condition i.) of Theorem 11) would no longer hold. However,
simulations in this case do show some promise.

Remark 8. Based on the existing literature on convergence rates for one-timescale and two-timescale linear
stochastic approximation [30, 27, 28, 29], one can conjecture thaEjz, j= Ok “2)whenf ygand

f kg gre chosen as described in Remark 4. This implies the optimal convergence rate would then again be
O(1= k); which matches the bound we have obtained in Theorem 2 for the SA estimator. However, it is
possible that this bound may not be tight in the case of the SAM estimator. The is because (13) lacks the
martingale di erence term and, typically, these are the kind of terms that dictate the convergence rates.
Furthermore, simulations in Section 4 suggest that the SAM estimator always converges much faster than
the SA estimator.

Proof of Theorem 3. We discuss the two cases one by one.
One-timescale Setup In this case, the update rules given in (12) and (13) together form a one-timescale

Uk

stochastic approximation algorithm. More speci cally, if we let v, = ; then it follows that

Mi+1

0
Vk+1 = Wk + « H(Vk)+ ) + (14)

whereH : R?! R? is the function de ned by

_ b ! .
H(v) = 0 1 0v.

We now verify the four conditions listed in Theorem 9 and then make use of Proposition 10 (both given
in the appendix) to show that v ! 0 =: v a.s. This automatically implies z !  a.s., which is what

we need to prove.

Notice that the stepsize in (14) is : Condition i.), therefore, trivially holds due to the assumptions
made in Statement 1. Next, observe that the martingale di erence term in (14) is the vector M'é” : This,
along with (11) and the statements above it, shows that Condition ii.) is true as well.

With regards to Condition iii.), rst note that H is trivially Lipschitz continuous due to the linearity
of both its component functions. Next, since = b=a;we have that H(v) = 0 if and only if v = v :
Furthermore, since a and ! are strictly positive, the real parts of the eigenvalues of the matrix in the
de nition of H are also positive. This can be seen from the following set of observations. To begin with, the
associated characteristic equation of this matrix is

2 1 +a=0:
Hence, the roots are = (! P 2 4a)=2:If | 2 < 4a; then the roots are complex valued; therefore, the real
part of both these roots is!= 2 which is clearly positive. gn the other hand, if! 2 4a; then both the roots

are real; further, the smallest of the two roots, i.e., ( 12 4a)=2; is strictly positive since a > 0: This




shows that the negative of the matrix given in the de nition of H is Hurwitz. Together, these observations
show that v is the unique globally asymptotically stable equilibrium of the ODE v(t) = H(v(t)): This
veri es Condition iii.).
Finally, let
I a

Hi (v)= '1 0v:

Then, it is easy to see thatH¢(v) ! Hj (v) uniformly on compact sets asc! 1 : Also, H; (v) = 0 if
and only if v = 0: Furthermore, as shown before, the negative of the matrix in the de nition of H; is
Hurwitz. This implies that the origin is the unique globally asymptotically stable equilibrium of the ODE
v(t) = Hy (v): This veri es condition iv.).

It now remains to check if f (g has the decaying behaviour described in Proposition 10. Towards this,
sincejMy+1j  (p+ jzj); we have

O CO@+jud*img) C @+ kvuk)

for some constantsC; C° 0: Now, because , decaysto 0 ask ! 1  due to the assumption in Statement
1., it follows that f g indeed has the desired behaviour.

This completes the proof in the one-timescale setup.

Two-timescale Setup Since = ¢ ! 0; one can perceival, to be changing on a faster timescale relative
to yk: Hence, the update rules in (12) and (13) can be viewed as a two-timescale stochastic approximation.
We now verify the conditions listed in Theorem 11 and then use Proposition 12 (both given in the appendix)
to concludez,! a.s.

Conditions i.) and ii.) trivially hold. Hence, we only focus on verifying Conditions iii.) and iv.) Because
of linearity, h and g are trivially Lipschitz continuous. Next, let (z) = (b az)=! for z 2 R: Clearly,
is linear in z and, hence, Lipschitz continuous. Also,h( (z);z) = 0: This, along with the fact that the
sign in front of u in h(u; z) is negative, shows that (z) is indeed the unique globally asymptotically stable
equilibrium of the ODE u(t) = h(u(t);z): Next, observe that the ODE z(t) = g( (z(t));z(t)) has the form
z(t) = (b az(t))=!: Clearly, this ODE has as its unique globally asymptotically stable equilibrium. This
completes the veri cation of Condition iii.).

With regards to Condition iv.), rst let h; be the function dened by h; (u;z) = lu  az: Also,
forz2 R;let 1 (z) = az=!: This function is linear in z and, hence, Lipschitz; also, ; (0) = 0: Then,
on the one hand,h. ! h; uniformly on compacts asc! 1 and, on the other hand, the ODE u(t) =
hy (u(t);2)) = 'u(t) az indeed has ; (z) as its unique globally asymptotically stable equilibrium.
Finally, for z 2 R; let g; (z) = az=!: Then, trivially, g: ! g uniformly on compacts, asc ! 1
Further, z(t) = g1 (z(t)) = az(t)=! which indeed has the origin as its unique globally asymptotically
stable equilibrium. With this, we nish with verifying Condition iv.).

Now, as per Proposition 12, we need to show thaf yg is asymptotically negligible. However, this is
indeed true sincejMy+1j  (z« + p) which implies j xj C (1 + jugj+ jz«j) for some constantC  0; and
since ! O:

This shows that (ux;z«)! ( () ;)=(0 ;) a.s., as desired. O

3.4 Comparison with Existing Estimators

As far as we know, there are three other approaches in the literature for estimating page change rates|the
Naive estimator, MLE, and the MM estimator. The details about the rst two estimators can be found in
[19] while, for the third one, one can look at [20]. We now do a comparison, within the context of our setup,
between these estimators and the ones that we have proposed.

The Naive estimator simply uses the average number of changes detected to approximate the rate at
which a page changes. That is, iff g denotes the iterates of the Naive estimator then, in our setup,
o = pli=k; where [} is as de ned below (1). The intuition behind this is the following. If ; is as de ned
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at the beginning of Section 3.1, then
EINC2l=  =p: (15)

Thus, the Naive estimator tries to approximate E[N ( 1)] with [=k then use (15) to determine the change
rate.

Clearly, E[q]= p =( + p)6 : Also, from the strong law of large numbers,qc > p =( + p) 6
Thus, this estimator is not consistent and is also biased. This is to be expected since this estimator does
not account for all the changes that occur between two consecutive accesses.

Next, we look at the MLE estimator. Informally, this estimator identi es the parameter value that has
the highest probability of producing the observed set of observations. In our setup, the value of the MLE
estimator is obtained by solving the following equation for

X X
pi=exp( ) D= @ 1) ; (16)
j=1 j=1

where ¢ = tx tx 1 and ftyg is as de ned in Section 2. The derivation of this relation is given in [19,
Appendix C]. As mentioned in [19, Section 4], the above estimator is consistent.

Note that the MLE estimator makes actual use of the inter-arrival crawl times f g unlike our two
estimators and also the Naive estimator. In this sense, it fully accounts for the information available from
the crawling process. Due to this, as we shall see in the experiments section, the quality of the estimate
obtained via MLE improves rapidly in comparison to the Naive estimator as the sample size increases.

However, MLE su ers in two aspects: computational tractability and mathematical instability. Speci -
cally, note that the MLE estimator lacks a closed form expression. Therefore, one has to solve (16) by using
numerical methods such as the Newton{Raphson method, Fisher's Scoring Method, etc. Unfortunately,
using these ideas to solve (16) takes more and more time as the number of samples grow. Also note that,
under the above solution ideas, the MLE estimator works in an o ine fashion. In that, each time we get a
new observation, (16) needs to be solved afresh. This is because there is no easy way to e ciently reuse the
calculations from one iteration into the next (note that the de ning equation (16) changes in a signi cant
and nontrivial way from one iteration to the other).

Besides the complexity, the MLE estimator is also unstable in two situations. One, when no changes
have been detected I[j = 0; 8k 2 f 1;:::;kg), and the other, when all the accesses detect a change,(—
1,8k 2 f1;:::;kg). In the rst settmg, no solution exists; in the second setting, the solution is 1 : One
simple strategy to avoid these instability issues is to clip the estimate to some pre-de ned range whenever
one of bad observation instances occur.

Finally, let us discuss the MM estimator. Here, one looks at the fraction of times no changes were detected
during page accesses and then, using a moment matching method, trlesrgo approximate tpe actual page change
rate. In our context, the value of this estimator is obtained by solving i=1 @a 1= -1 € for
The details of this equation are given in [20, Section 4]. While the MM Iidea is mdeed simpler than MLE,
the associated estimation process continues to su er from similar instability and computational issues like
the ones discussed above.

We emphasise that none of our estimators su er from any of the issues mentioned above. In particular,
all of our estimators are online and have a signi cantly simple update rule; thus, improving the estimate
whenever a new data point arrives is extremely easy. Moreover, all of them are stable, i.e., the estimated
values will almost surely be nite. More importantly, the performance of our estimators is comparable to
that of MLE. This can be seen from the numerical experiments in Section 4.

3.5 Comparison of Theorem 3 with the Literature on Stochastic Momentum
Methods

We rst provide an alternative characterization of (3). Let f(z) = %(az b)?; where a and b are as de ned
below (11), and leth be as de ned in Section 3.2. Then, clearlyh(z) = r f(2): Thus, (3) can be rewritten
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as
Zuer = Z+ k[r F(z)+ M l+ k(e z 1);

where M+ is as de ned in (7). Consequently, it follows that (3) can also be viewed as an SGD method with
a heavy-ball momentum term (similarly, (2) is also an SGD method, but we will not focus on that here).
The above viewpoint now brings forth an interesting question \How does Theorem 3 compare with the
existing results on stochastic heavy-ball method and the stochastic variant of Nesterov's accelerated gradient
method?"
While there are numerous results on stochastic momentum methods, surprisingly, most of them hold only
under extremely restrictive assumptions: they either need

1. that the gradient of the objective function be uniformly bounded [31, 32], or

2. that the noise sequence, i.efM,.1 g; be independent of the iterates [33] or, alternatively, its variance
be uniformly bounded [31, 32, 33, 34, 35, 36, 37, 38].

In our setup, in contrast, the objective function f is quadratic; hence, the magnitude of its gradient

grows to innity as jzj ! 1 : Also, E[My+1j%jFk] = (zx + P)°E[lk+1 =( + p)]?; which implies that
EiMy+1j2 = ﬁE(zk + p)?: One can thus see that the above assumptions do not directly hold in our case.

To the best of our knowledge, [39] and [22] are the only other works that similarly do not need the above
assumptions. The results in [39], however, only apply to the setup with constant stepsizes. In that case, it
is shown there that the iterates converge to a neighborhood of the desired solution but not to the solution
itself. On the other hand, [22] does discuss results on convergence and convergence rates of the stochastic
heavy-ball method. The analysis there, though, does not apply to the stochastic variant of the original
heavy-ball method, i.e., the one proposed in [23, (9)]; instead, it applies to a di erent variant.

The paper [40] is one other work on stochastic momentum methods that has recently generated signi cant
attention. However, the results there concern a setup where the objective function is of a di erent nature
to the one we consider here. In particular, instead of the gradient, it is assumed there that the objective
function itself is de ned via an expectation.

In this sense, our work is the rst to analyze the stochastic heavy-ball method (in its original form)
without a priori presuming that the above two conditions hold. As a matter of fact, it is proved in [22]
that the variant which is considered there cannot be analyzed using the standard ODE based stochastic
approximation techniques such as the one proposed in [41, Chapter 6]. Our analysis, in contrast, is able to
directly make use of the standard approach.

4 Numerical Results

We now demonstrate the strength of our estimators using three di erent experiments. The rst one involves
real data based on Wikipedia traces. It serves two of our goals. First, we use this experiment to validate our
model assumption that the page change process is a stationary Poisson point process. Second, we use it to
demonstrate that the estimation quality of our online estimators is comparable to that of the o ine MLE
estimator. In the second experiment, using synthetic data, we study the impact of and p on our three
estimators. In the third experiment, we similarly study how the choices off g; f «g and f «g inuence

the performance. Finally, based on the outcomes of these experiments, we provide some guidelines on which
estimator to use in practice.

4.1 Performance on Real Data (Expt. 1)

As mentioned before, our goal here is provide a validation for our model as well as to compare the performance
of the di erent estimators on real data.

To generate the data set, we used Wikipedia traces which are openly available on the web. In particular,
we selected an arbitrary page from the list of frequently edited pages on Wikipedia. The title of the page we
chose was "Template talk: Did you know". Next, we extracted the timestamps at which this page was edited
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over a period of ve months (April 01; 2020 to August 31, 2020). We found that this page had changed 4043
times during this period. From the available history, we then calculated the inter-update times of the page
change process. The average of these values turned out to be =1098

Using a Q-Q plot, we then compared the distribution (speci cally quantiles) of the collected data to that
of an exponential distribution with this rate. The result is given in Fig. 1(a). Notice that the points
roughly fall on a straight line. Importantly, this line is very close to the 45 diagonal. This implies that both
the sets of quantiles come from the same distribution, thereby con rming that the collected inter-update
times indeed follow an exponential distribution whose rate is close to : Equivalently, this implies that the
update times come from a Poisson point process with rate close to :

Having veri ed our assumption, we now compare ve di erent page rate estimators: Naive, MLE, LLN,
SA, and SAM. Their performances are given in Fig 1(b) and Fig 1(c).

The procedure we adopted to obtain these plots was as follows. (Unless speci ed, we follow the notations
from Section 2). Recall that we had access to the actual timestamps at which this Wikipedia page was
changed. Keeping this in mind, we arti cially generated the crawl instances of this page. These times were
sampled from a Poisson point process with ratep = 0:5 for Fig 1(b) and with p = 0:1 for Fig 1(c). We
then checked if the page had changed or not between each of the successive crawling instances. This then
generated the values of the indicator sequenckl xg: For p = 0:5; the length of this sequence was 1723 while,
for p=0:1; this length turned out to be 340: Using thesel; p; and inter-update time lengths, we then used
the ve di erent estimators mentioned above to nd  : This gave rise to the trajectories shown in Fig 1(b)
and Fig 1(c). Note that the depicted trajectories correspond to exactly one run of each estimator. The
trajectory of the estimates obtained by the SA estimator is labeled SA; etc. The stepsizes chosen for our
di erent estimators are as follows. For our LLN estimator, we had set 1 and, for the SA estimator,
we had used  =(k+1) with =0:75. In case of the SAM estimator, we had sety = (k+1) with

=0:6and x =(k+1) with =1:2. (Recall that, in the SAM estimator, the main stepsize is  while
the stepsize multiplying the momentum term has the form  =( x ! ¥)=«k 1)

We now summarise our ndings. In Fig 1(b), we observe that performances of the MLE, LLN, SA and
SAM estimators are comparable to each other and all of them outperform the Naive estimator. This last
observation is not at all surprising since the Naive estimator completely ignores the changes missed between
two successive crawling instances. In contrast to this, we observe that the estimators behave somewhat
di erently in Fig 1(c). Recall that the crawling frequency here is 0:1; which is quite small compared with
the value G5 that was chosen before. We notice that SAM and MLE estimators perform better than SA and
LLN estimators in this scenario.

4.2 Comparison of Estimation Quality using Synthetic Data (Expt. 2)

Throughout this experiment, we work with synthetic data.

4.2.1 Sample Variance and Root Mean Squared Error

Our goal here is to study the sample variance and root mean squared error of the estimates obtained from
multiple runs of the di erent estimators. The output is given in Fig. 2.

The data for this experiment is generated as follows. We sample points from two di erent stationary
Poisson point processes, one with parameter = 5 and the other with parameter p = 3: We treat the
samples from the rst process as the times at which an imaginary page changes, and the samples from the
second process as the times at which this page is crawled. We then check if the page has changed or not
between two successive page accesses. This information is then used to generate the values of the indicator
sequence | Q:

We now giveflg; p; as well as the inter-access lengths as input to the ve di erent estimators mentioned
before. The stepsizes we use are as follows. For our LLN estimator, we sef  1; for the SA estimator,
we use ¢ =(k+1) with =0:75; and, for the SAM estimator, we choosey =( « ! k)= k 1; Where

k =(k+1) with =1:3,! =1;and =(k+1) with =0:75. Fig. 2(a) depicts one single run of
each of the ve estimators.
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In Fig. 2(b) and Fig. 2(c), the parameter values are exactly the same as in Fig. 2(a). However, we now
run the simulation 100 times; the page change times and the page access times are generated afresh in each
run. Fig. 2(b) depicts the 95% con dence interval of the obtained estimates, whereas Fig. 2(c) shows the
root mean squared value of the di erence between the estimated value and actual change rate of the page.

We now summarize our ndings. Clearly, in each case, we observe that performances of the MLE, LLN,
SA and SAM estimators are comparable to each other and all of them outperform the Naive estimator.
The fact that the estimates from our approaches are close to that of the MLE estimator was indeed quite
surprising to us. This is because, unlike MLE, our estimators completely ignore the actual lengths of the
intervals between two accesses. Instead, they uge which only accounts for the mean interval length. Note
that the root mean square error of the rst few samples for MLE is very high (hence, it is not depicted in
Fig. 2(c)). This is due to the instability that MLE faces; see Section 3.4. Fig. 2(c) shows that the error in
the MLE estimate decays faster as compared to others. We believe this is because the MLE also uses the
actual interval lengths in its computation; thus, it uses more information about the crawling process than
the other estimators.

While the plots do not show this, we once again draw attention to the fact that the time taken by each
iteration in MLE rapidly grows as k increases. In contrast, our estimators take roughly the same amount of
time for each iteration.

4.2.2 Impact of and p on Performance

In the previous experiments, recall that our di erent estimators more or less behaved similarly. Our goal now
is to vary the values of and p and see if there are any major di erences that crop up in their performances.
Alongside, we also wish to see the usefulness of the momentum term used in the SAM estimator. The
performances in two such interesting scenarios are shown in Fig. 3 and Fig. 4. Note that we no longer
consider MLE on account of their impractical run times when the f | g sequence lengths are large.

In Fig. 3, =500 and p = 3; which means the crawling frequency is quite low compared to the frequency
at which the page is updated. On the other hand, in Fig. 4, =500 and p = 50; thus, the crawling frequency
now is relatively higher. The stepsizes for our di erent estimators are as follows. For the LLN estimator,
we chose ¢ 1; for the SA estimator, we chose x = (k+1) with =0:8; and, for the SAM estimator,
we chose i as before,! =1and ¢ =(k+1) with =0:5(note that our stepsize choice for the SAM
estimator violates the conditions of Theorem 3, but it satis es the one we made in the conjecture below (3)).

Fig. 3(a) and Fig. 4(a) show one single trajectory of our estimators in the two scenarios. We observe that
the LLN and SAM estimators perform quite well as compared to the SA estimator in both the scenarios;
however, the latter catches up when thep value becomes higher. The impact of the momentum term can
also be clearly seen in the low frequency crawling case. In this scenario, note that the crawler will more or
less always detects a change. That is, thél g sequence will mostly consists of all 1s. In turn, this means
that the SA estimator's update rule will almost always have the form yx+1 = yk + «p:

We then ran the simulation 100 times and obtained a plot of the 95% con dence interval and the root
mean squared error of our di erent estimators in the two scenarios. This is shown in Fig. 3(b), 3(c), 4(b),
and 4(c). We observe that variance for SA is relatively very low. This is because the SA estimator does not
deviate too much from the update rule mentioned in the previous paragraph. The disadvantage, however, is
that its estimates typically are quite far away from the actual change rate. Furthermore, this error decreases
quite slowly. Another interesting observation from Fig. 3(b) and 3(c) is that the variance of LLN estimator
is larger than that of SAM estimator, however, its error decays at much faster rate than that of the SAM
estimator.

Compared to Fig. 3, notice that in Fig. 4 that performance of all our estimators improve . However,
as shown in Fig. 4(b), the SAM estimator is quite volatile now. Separately, the zoomed-in plot in 4(c)
shows that the average error for the SAM estimator drops quite rapidly compared to others in the initial
few iterations. However, this advantage disappears after 400 iterations; then on the LLN estimator performs
much better.
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4.3 Impact of Step Size Choices (Expt.3)

The theoretical results presented in Section 3 show that the convergence rates of LLN, SA, and SAM
estimators are a ected by the choice off yg f «g; and f ¢g; respectively. Figure 5 provides a numerical
veri cation of the same. The details are as follows. We chose =500 andp = 10: Notice that the page
change rate is again very high, whereas the crawling frequency is relatively very low value. We then use
the LLN estimator with three di erent choices of f g; these choices are shown in the Fig 5(a) itself. The
LLN estimator with , = k%7° has the worst performance. This behavior matches the prediction made by
Theorem 1. In Fig. 5(b), we again consider the same setup as above. However, this time we run the SA
estimator with three di erent choices of f ¢g; the choices are given in the gure itself. We see that the
performance for = 0:5 is better than the other cases.
We now analyze the impact of varyingf g andf xg on the performance of the SAM estimator. Let g

be of form given in (10). Based on our conjecture below (3), pickx =(k+1) and x =(k+1) with

2 (0;1]and < < 2: InFig. 5(c), we x =0:8 and vary ; these choices are shown in the gure
itself. The SAM estimator with = 0:4 reaches the limit very quickly, however, it is very noisy and keeps
uctuating around actual change rate. The uctuations reduce as the value of increases; however, larger
values of also slow down the rate at which the error decreases. We observe that the SAM estimator with

= 0:6 has the best performance. In Fig. 5(d), we x =0:6 and vary . The gure seems to suggest that
a larger increases the convergence rate but, simultaneously, also increases the uctuations.

4.4 Practical Recommendations

Here, we provide some recommendations on which estimator to use in practice. Our conclusions are based on
what we have observed in the numerical experiments discussed in Section 4. We summarise them as follows.

High frequency crawling: If the crawling frequency p is comparable to , all estimators (LLN, SA,
SAM and MLE) perform well except the Naive estimator. However, we do not recommend MLE as
it is oine and very time-consuming. The examples that correspond to this scenario are depicted in
Fig. 1(b) and Fig. 2.

Low frequency crawling: There are two sub-cases depending on the value gfas compared to .

{ Relatively very low p: The Naive estimator is very bad for this scenario as there will several
missed changes which will be unaccounted for. We recommend LLN or SAM estimator as they
both outperform SA estimator; the example that corresponds to this scenario is depicted in Fig. 3.
For similar reasons as in the previous case, we do not recommend the MLE estimator.

{ Relatively moderate p: The Naive estimator is again a bad choice here. Amongst the rest, we
recommend the LLN estimator when several ¢ values are available. Otherwise, one can use SAM
or the MLE estimator; the o ine nature of the MLE will be of concern here as well. The examples
that corresponds to this scenario are depicted in Fig. 1(c) and Fig. 4.

5 Estimating Optimal Crawling Rates

In this section, we discuss how our estimators can be used to identify the optimal crawling rates. Formally,
we suppose that a search engine's local cache consistsMfpages. Letp, denote the rate at which pagei
is crawled. The goal then is to nd the optimal crawling rates such that the overall freshness of the local
cache, i.e.,
1 z
TI‘i{'n E T w; 1f Fresh(i;t)g dt ; (17)
‘ o =l

is maximized subject to the constraint P i":l pi B. Here, T > O is the time horizon, w; denotes the
importance of the i-th page, B 0 is a bound on the overall crawling frequency,1f Fresh(i;t)g is the
indicator that page i is fresh at time t; i.e., the local copy matches the actual page.
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(a) LLN estimator for dierent f g choices (b) SA estimator with ¢ =(k+1) for dierent choices

(c) SAM estimator with |, = k 08 for dierent f | g choicegd) SAM estimator with |, = k 96 for dierent f g choices

Figure 5: Impact of f g, f g andf g choices on Performance; =500 and p =10.

In [12], it was shownF;hat maximizing (17) under a bandwidth constraint for large enoughT corresponds
to maximizing F(p) = iNzl wipi=(pi + i) ; wherep (pg;:::;pn)- Importantly, it was shown there

that this latter optimization problem can be solved e ciently (in  O(N logN) iterations) and provided an
algorithm for the same. However, that algorithm requires that the ;'s be known in advance. Our goal here
is to combine their algorithm with our estimators and try and determine the optimal crawling rates.

Taking inspiration from [21], we gonsider the following hypothetical setup. We considerN = 50 pages,
in which we presume that there are’ 50 7 pages that change very frequently, i.e., they account for (say)
90% of the total changes in the system. Accordingly, we suppose that the change rate; for each frequently
changing page is %&=7; while for the others it is 0:5=43: We further assume that the bound on the overall
bandwidth is B = 5: We further assume that the frequently changing pages are more important and assign
uniform weight of 2. On the other hand every other page presumed to have uniform weight of:1

We then use the following strategy. We arbitrarily initialize p; = B=N =0:1 for all i, i.e., B is uniformly
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(a) Frequently changing page (b) Slowly changing page

Figure 6: Adaptive estimation of the optimal crawling rate

divided across all theN pages. Since thesg; values are arbitrarily chosen, these need not be the optimal
crawling rates. Thereafter, we run each of our estimators for (say) 50 iterations. We then use the estimates
of ; at the 50" iteration as input to [12, Algorithm 2] and obtain the associated possibly sub-optimal
crawling rates. Denoting these new rates ag; again, we now repeat the above procedure. That is, we use
pi's for 50 iterations to estimate the ;'s and, in turn, use the later to obtain estimates for the newp;'s.

Fig. 6 compares the estimated crawling rates obtained using our three estimators with the optimal ones
obtained by using the actual ; values in [12, Algorithm 2] for the two kinds of pages. In this experiment,
the two SA-based estimators appear to perform better than the LLN estimator, at least initially. Note that
ps denotes the optimal crawling rate for the 5-th page, whilepE” denotes the estimate obtained by using
the SA estimator, etc. Pio; p35'; etc. have similar meanings in relation to the 10-th page. The parameters
we chose for our di erent estimators are as follows. For the LLN estimator, we chosey 1. For the SA
estimator, we chose y =(k+1) with =0:75. For the SAM estimator, we choose \ = (k+1)  with

=1:3and y=( k ! k)= 1with! =1;and (=(k+1) for =0:75.

6 Conclusion and Future Work

We propose three new online approaches for estimating the rate of change of web pages. We provide theoret-
ical guarantees for their convergence and also provide numerical simulations to compare their performances.
From experiments, one can verify that the proposed estimators perform signi cantly better than the Naive
estimator. Also, they have extremely simple update rules which make them computationally attractive when
compared to MLE. We also provide important insights on which estimator one should use in practice.

The performance of both our estimators currently depend on the choice of g, f kg; and f g respec-
tively. One aspect to analyze in the future would be to ask what would be the ideal choice for these sequences
that would help attain the fastest convergence rate. Another interesting research direction to pursue is to
combine the online estimation with dynamic optimization.
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A Convergence of Stochastic Approximation Algorithms

In this section, we discuss results from literature that provide su cient conditions for convergence of both
one-timescale and two-timescale stochastic approximation algorithms.

We begin by discussing the convergence of a generic one-timescale stochastic approximation algorithm.
This result is obtained by combining [41, Chapter 2, Corollary 4,] and [41, Chapter 3, Theorem 7].

Theorem 9 (Convergence of One-timescale Stochastic Approximation [41]) Consider the update rule

Yirr = Y+ k[h(yk) + My ];

where | is a positive scalar; yx;Mx 2 RY;, and h : RY 1 RY is a deterministic function. Suppose the
following conditions hold:

i) PLO k=1 anolpliz0 2<1:
ii.) fMggis a martingale di erence sequence with respect to the increasing family of elds
Fk= (vi:Mji) k) kO
That is, E[My+1jFk] =0 a.s., k  0: Further, there is a constant C 0 such that E[kM x+1 k?jF ]
C(1+ kyxk?) a.s. forallk O:
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iii.) his a globally Lipschitz continuous function. Further, the ODE y(t) = h(y(t)) has an unique globally
asymptotically stable equilibriumy :

iv.) There exists a continuous function hy : R4 ! RY such that the functionshe(x) := h(cx)=c; ¢ 1;
satisfy h¢ ! h; uniformly on compact sets asc ! 1 : Further, the ODE y(t) = h; (y(t)) has the
origin as its unique globally asymptotically stable equilibrium.

Then, yy ! y a.s.

Often, stochastic approximation algorithms contain an additional perturbation term that is asymptoti-
cally negligible. The next result discusses convergence of such algorithms.

Proposition 10 (Convergence of Perturbed One-timescale Stochastic Approximation) Consider the update
rule
Yeer = Ykt k[h(Y) + k + Misa ];

where  is an additional perturbation term while the other terms have the same meaning as in Theorem 9.
Suppose that the four conditions listed in Theorem 9 hold true. Further, supposk «<k C (1 + kykk) a.s.
for k 0; whereC is a positive constant andf g is a sequence of positive scalars such théitny; k =0:
Then, yx ! y a.s.

Proof. We only give a sketch of the proof since the arguments are more or less similar to the ones used
to derive Theorem 9. As mentioned before, this latter result follows from [41, Chapter 2, Corollary 4] and
[41, Chapter3, Theorem 7]. We now brie y discuss how, even in the presence of the additional perturbation
term, these two results continue to hold.

[41, Chapter 2, Corollary 4]: This result follows from [41, Chapter 2, Theorem 2] which, in turn, follows
from [41, Chapter 2, Lemma 1]. However, as shown in extension 3 in [41, pg. 17], this latter result
goes through even in the presence of the perturbation terni g: This is because « is asymptotically
negligible a.s. More speci cally, observe that the sequencéyyg is a.s. bounded under assumption
(A4) given on [41, pg. 17]. This implies thatf yg is a random bounded sequence which is(1) a.s.;
the latter is true since ¢! O:

[41, Chapter3, Theorem 7]: The proof of this result is based on Lemmas 1 to 6 in [41, Chapter 3].
The rst three of these lemmas concerns the behaviour of the solution trajectories of the limiting ODE
y(t) = hy (y(t)): Since the perturbation term does not a ect the de nition of this limiting ODE in any
way whatsoever, these three results continue to hold as before. Similarly, emma 5 in ibid is unchanged
since it only concerns the convergence of the sum of martingale di erences kM1 (recall that the
stepsize sequence in our update rule is¢). With regards to the proof of Lemma 4 in ibid, observe that
our update rule satis es

Ptk +1) = YEK)+ k(e @EEN+"k+ Miaa); mn)  k m(n+1);

where x = =r(n) while the other notations are analogous to the ones de ned in [41, Chapter 3].
Becausek yk C y(1+ kykk); «! 0;andr(n) 1, it follows that

Kk Ci(1+ kg(t(k))k?)

for some positive constantC;: Note that this is in similar spirit to (3.2.5) in ibid. It is then easy to see
that the rest of the proof goes through as before. This shows that [41, Chapter 3,Lemma 4] continues
to be true even in the presence of the the perturbation term. Using exactly the same bound fok’ k
obtained above, one can see that the arguments in the proof of Lemma 6 in ibid hold as well. Thus,
[41, Chapter 3, Theorem 7] continues to hold, which is exactly what we wanted to establish.

The desired result now follows. O
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We next state a result that discusses the convergence of a generic two-timescale stochastic approximation
algorithm. The proof of this result is based on [41, Chapter 6, Theorem 2] and [42, Theorem 10].

Theorem 11 (Convergence of Two-timescale Stochastic Approximation [41, 42]) Consider the update rules

ue + klh(uz)+ M, T;

2
Zuer = Zk + k[O(uk; zk) + Mé.,_)ll;

Uk+1

where , and | are positive scalars;uk;zk;Mél);Méz) 2 R% and h;g : R? | RY are two deterministic
functions. Suppose the following conditions hold:
P = P

; — — . 2 2 . H K _~.
I.) K o k= kok—l, ko kT k<1,andl|mk!1 7—0.

ii.) fM,El) g and fleZ) g are martingale di erence sequences with respect to the increasing elds
Fei= (U:z ;Mj(l);Mj(z) b k) kO

Further, there exists a constantC 0 such that E[kM (), K2jF ]  C(1 + kugk? + kzck?) for i = 1;2
andk O

iii.) h and g are globally Lipschitz continuous functions. For each xedz; the ODE u(t) = h(u(t);z) has
a unique globally asymptotically stable equilibrium (z); where : RY! RY is Lipschitz continuous.
Further, the ODE z(t) = g( (z(t));z(t)) has an unique globally asymptotically stable equilibriura :

iv.) The functions h¢(u;z) := h(cu;c2)=c; ¢ 1;satisfyhc! h; asc!1 ; uniformly on compacts for h; :
Also, for each xed z 2 RY; the limiting ODE u(t) = hy (u(t);z) has a unique globally asymptotically
stable equilibrium ; (z); where 1 :RY! RYis a Lipschitz map. Further, ; (0) = 0: Separately, the
functions g.(z) := g(c 1 (2);c2)=c; ¢ 1; satisfyg.! g asc!l ; uniformly on compacts for some
0: : Also, the limiting ODE z(t) = g1 (z(t)) has the origin as its unique globally asymptotically stable
equilibrium.

Then, (ux;zk)! ( (z);z) a.s.

The last and nal result of this section concerns the convergence of two-timescale stochastic approximation
with perturbation terms that are asymptotically negligible.

Proposition 12 (Convergence of Perturbed Two-timescale Stochastic Approximation) Consider the update
rules

1 1
u+ klh(uczd+ O+ M3,

2 2
2o+ wlouz)+ @+ M@ ;

Uk+1

Zg+1

where l(f); ff) are additional perturbation terms while the other terms have the same meaning as in The-
orem 11. Suppose that the four conditions listed in Theorem 11 hold true. Further, supposk (ki)k

C (ki)(l + kugk + kzgk) a.s. fork Oandi = 1;2; where C is a positive constant andf (ki)g; i=1;2
are sequences of positive scalars such théiny; (ki) =0: Then, (ux;zx)! ( (z);z) as.

Proof. As stated before, this result follows from [41, Chapter 6, Theorem 2] and [42, Theorem 10]. We now

brie y discuss how these results continue to hold even in the presence of the perturbation terms(kl) and

@) .
Ko
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[41, Chapter 6, Theorem 2]: This result, as well as [4IChapter 6; Lemma 1] on which it relies, are es-
sentially proved by de ning suitable one-timescale stochastic approximation algorithms and then using
convergence results concerning the latter. In our situation, both these will have additional perturbation
terms that are asymptotically negligible. Consequently, by arguing as in the third extension given in
[41, pg. 27], it can be shown that the asymptotic behaviour of these two algorithms remains unchanged
even in the perturbed setup. Therefore, it follows that the conclusions of [41, Chapter 6, Theorem 2]
continue to hold as before.

[42, Theorem 10]: This result is based on Lemmas 2 to 7 and Lemma 9 as well as Theorems 6 and 7
in ibid. Lemmas 2 to 5 in ibid concern the limiting ODEs described in condition iv.) of Theorem 11
above. The de nitions of these ODEs do not depend on the presence or absence of the perturbation
terms. Therefore, the aforementioned four lemmas continue to hold as before. On the other hand,
Lemmas 6 and 9 in ibid rely on the results in Chapter 3 and Chapter 6 of [41]. As argued before, these
results continue to hold even in the presence of perturbation terms and, consequently, so do Lemmas 6
and 9 in ibid. Finally, Theorems 8 and 10 in ibid build upon these seven Lemmas. Therefore, they
hold as well in the perturbed setup.

The desired result now follows. O
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