
HAL Id: hal-03462171
https://inria.hal.science/hal-03462171

Preprint submitted on 1 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Node-screening tests for l0-penalized least-squares
problem with supplementary material

Théo Guyard, Cédric Herzet, Clément Elvira

To cite this version:
Théo Guyard, Cédric Herzet, Clément Elvira. Node-screening tests for l0-penalized least-squares
problem with supplementary material. 2021. �hal-03462171�

https://inria.hal.science/hal-03462171
https://hal.archives-ouvertes.fr

ar
X

iv
:2

11
0.

07
30

8v
1

 [
ee

ss
.S

P]
 1

4
O

ct
 2

02
1

NODE-SCREENING TESTS FOR L0-PENALIZED LEAST-SQUARES PROBLEM

WITH SUPPLEMENTARY MATERIAL

Théo Guyard⋆ Cédric Herzet† Clément Elvira‡

⋆ Univ Rennes, INSA Rennes, CNRS, IRMAR-UMR 6625, F-35000 Rennes, France
† INRIA Rennes-Bretagne Atlantique, Campus de Beaulieu, 35000 Rennes, France
‡ SCEE/IETR UMR CNRS 6164, CentraleSupélec, 35510 Cesson Sévigné, France

firstname.lastname@{insa-rennes,inria,centralesupelec}.fr

ABSTRACT

We present a novel screening methodology to safely discard

irrelevant nodes within a generic branch-and-bound (BnB) al-

gorithm solving the ℓ0-penalized least-squares problem. Our

contribution is a set of two simple tests to detect sets of fea-

sible vectors that cannot yield optimal solutions. This allows

to prune nodes of the BnB exploration tree, thus reducing the

overall solution time. One cornerstone of our contribution

is a nesting property between tests at different nodes that al-

lows to implement screening at low computational cost. Our

work leverages the concept of safe screening, well known

for sparsity-inducing convex problems, and some recent ad-

vances in this field for ℓ0-penalized regression problems.

Index Terms— Sparse approximation, Mixed-integer

problems, Branch and bound, Safe screening.

1. INTRODUCTION

Finding a sparse representation is a fundamental problem in

the field of statistics, machine learning and inverse problems.

It consists in decomposing some input vector y ∈ R
m as a

linear combination of a few columns (dubbed atoms) of a dic-

tionary A ∈ R
m×n. This task can be addressed by solving

min
x∈Rn

1
2‖y −Ax‖22 + λ‖x‖0 (1)

where ‖x‖0 counts the number of nonzero entries in x and

λ > 0 is a tuning parameter. Unfortunately, problem (1) has

proven to be NP-hard in the general case [1, Th. 3]. This

has led researchers to develop sub-optimal procedures to

approximate its solution and address large-scale problems.

Among the most popular, one can mention greedy algorithms

and methodologies based on convex relaxation, see e.g., [2,

Sec. 3.2 and Ch. 4].

Sub-optimal procedures are unfortunately only guaran-

teed to solve (1) under restrictive conditions that are rarely

The research presented in this paper is reproducible. Code and data are

available at https://gitlab.insa-rennes.fr/Theo.Guyard/

bnb-screening.

met when dealing with highly-correlated dictionaries. On the

other hand, there has been recently a surge of interest for

methods solving (1) exactly, see [3–7] to name a few. Many

approaches leverage the fact that finding

p⋆ = min
x∈Rn

1
2‖y −Ax‖22 + λ‖x‖0
s.t. ‖x‖∞ ≤M

(P)

is equivalent to solve (1), provided that M is chosen large

enough. Interestingly, (P) can be reformulated as a mixed-

integer program (MIP) by introducing binary variables encod-

ing the nullity of the entries of x, see e.g., [4]. Besides, (P)

has been shown to be solvable for moderate-size problems by

both commercial solvers [6] and tailored BnB algorithms [7].

In a recent paper, Atamtürk and Gómez extended the no-

tion of safe screening introduced by El Ghaoui et al. in [8]

from sparsity-promoting convex problems to non-convex ℓ0-

penalized problems. In particular, they introduced a new

methodology that allows to detect (some of) the positions

of zero and non-zero entries in the minimizers of a particu-

lar ℓ0-penalized problem [9]. Their methodology is used as a

preprocessing step of any algorithmic procedure and allows

to reduce the problem dimensionality.

In this paper, we make one step forward in the devel-

opment of numerical methods addressing large-scale ℓ0-

penalized problems by proposing node-screening rules that

can be implemented within any BnB algorithm. In contrast

to [9], we emphasize the existence of a nesting property

between screening tests at different nodes. This enables to

(potentially) prune multiple nodes at any step of the optimiza-

tion process with marginal cost.

Our exposition is organized as follows. Section 2 gathers

the main notations used in the paper. In Section 3, we describe

a BnB algorithm tailored to (P). Section 4 presents our new

node-screening tests and explains how to implement them ef-

ficiently within the BnB process. In Section 5, we assess the

performance of our method on synthetic data. All the proofs

are postponed to Appendix A.

http://arxiv.org/abs/2110.07308v1

2. NOTATIONS

We use the following notational conventions throughout the

paper. Boldface uppercase (e.g., A) and lowercase (e.g., x)

letters respectively represent matrices and vectors. 0 denotes

the all-zeros vector. Since the dimension will usually be clear

from the context, it is omitted in the notation. The ith column

of a matrix A is denoted ai. Similarly, the ith entry of a

vector x is denoted xi. Calligraphic letters (e.g., S) are used

to denote sets and the notation | · | refers to their cardinality.

If S ⊆ {1, . . . , n} and x ∈ R
n, xS denotes to the restriction

of x to its elements indexed by S. Similarly, AS corresponds

to the restriction of A ∈ R
m×n to its columns indexed by S.

3. BRANCH-AND-BOUND PROCEDURES

Branch-and-bound procedures refer to an algorithmic solution

to address MIPs, among others [10]. It consists in implicitly

enumerating all feasible solutions and applying pruning rules

to discard irrelevant candidates. When particularized to prob-

lem (P), it can be interpreted as a search tree where a new

decision regarding the nullity of an entry of the variable x is

taken at each node as illustrated in Figure 1a. Formally, we

define a node as a triplet ν = (S0,S1, S̄) where : i) S0 and S1
contain the indices of the entries of x which are forced to be

zero and non-zero, respectively; ii) S̄ gathers all the entries

of x for which no decision has been taken at this stage of the

decision tree.

The BnB algorithm reads as follows: starting from node

ν = (∅, ∅, {1, . . . , n}), the method alternates between pro-

cessing the current node (bounding step) and selecting a new

node (branching step). The algorithm identifies the global

minimum in a finite number of steps with a worst-case com-

plexity equal to an exhaustive search. In practice, its effi-

ciency depends on both the ability to process nodes quickly

and the number of nodes processed. We review below spe-

cific choices for these two steps tailored to problem (P).

3.1. Bounding step

When processing node ν = (S0,S1, S̄), we prospect if any x

with zeros on S0 and nonzero values on S1 can yield a global

minimizer of (P). To that end, we look for the smallest ob-

jective value achieved by feasible candidates with respect to

these constraints, i.e., the value of

pν = min
x∈Rn

1
2‖y −Ax‖22 + λ‖xS̄‖0 + λ|S1|

s.t. ‖x‖∞ ≤M and xS0
= 0.

(P ν)

One verifies that pν ≥ p⋆ since all minimizers of (P ν) are

also feasible for (P). Moreover, equality holds whenever the

constraints given by S0 and S1 match the configuration of one

of the minimizers of (P).

If pν > p⋆, ν can be pruned from the tree since no vec-

tor x verifying the constraints defined at this node (and there-

fore at any sub-nodes) can yield an optimal solution. Unfortu-

nately, the latter pruning rule is of poor practical interest since

p⋆ is not available. Moreover evaluating pν when S̄ 6= ∅ is

also a combinatorial problem. To circumvent these problems,

a relaxed version of the rule is devised: let pνl and pu be re-

spectively lower and upper bounds on pν and p⋆. Then, a

sufficient condition to prune node ν reads pνl > pu.

To obtain pνl , a standard approach is to consider the fol-

lowing relaxation of (P ν):

pνl = min
x∈Rn

1
2‖y−Ax‖22 + λ

M
‖xS̄‖1 + λ|S1|

s.t. ‖x‖∞ ≤M and xS0
= 0

(P ν
l)

where the ℓ0-penalty term has been replaced by an ℓ1-norm.

Interestingly, (P ν
l) is a constrained LASSO problem [11] and

can be solved (to machine precision) in polynomial time by

using one of the many methods suitable for this class of prob-

lems [12, 13].

The upper bound pu can be obtained by keeping track of

the best known objective value of (P) during the BnB process.

More precisely, we construct a feasible solution of (P ν) at

each node to obtain pνu. The best known upper bound is then

updated as pu ← min(pu, p
ν
u). During the BnB procedure, pu

converges toward p⋆ and relaxation are strengthened as new

variables are fixed, allowing to prune nodes more efficiently.

3.2. Branching step

If node ν = (S0,S1, S̄) has not been pruned during the

bounding step, the tree exploration goes on. An index i ∈ S̄
is selected according to some branching rule and two direct

sub-nodes are created below ν by imposing either “xi = 0”

or “xi 6= 0”. Finally, when all nodes have been explored or

pruned, the BnB algorithm stops and any candidate yielding

the best upper bound pu is a minimizer of (P).

4. NODE-SCREENING TESTS

In this section, we present our new node-screening tests. They

aim at identifying, with marginal cost, nodes of the search tree

that cannot yield a global minimum of (P).

4.1. Dual properties

The crux of our procedure is a connection between the

Fenchel dual problem of (P ν
l) at two consecutive nodes.

Prior to expose this result, let us define for all u ∈ R
m and

i ∈ {1, . . . , n} three families of pivot values as

γi(u) , M(|aTi u| − λ
M
)

γ
0
i (u) , M [|aTi u| − λ

M
]+

γ
1
i (u) , M [λ

M
− |aTi u|]+

(2)

ν
(0)

ν
(1)

ν
(3)

ν
(4)

ν
(2)

ν
(5)

ν
(6)

xi1
= 0

xi2
= 0 xi2

6= 0

xi1
6= 0

xi2
= 0 xi2

6= 0

(a)

ν
(0)

ν
(1)

ν
(3)

ν
(4)

ν
(2)

ν
(5)

ν
(6)

xi1
= 0

xi2
= 0 xi2

6= 0

xi1
6= 0

xi2
= 0 xi2

6= 0

Node-screening

Set xi1
= 0

Set xi2
= 0

(b)

Fig. 1: First nodes of the BnB tree. The root node ν
(0) corresponds to problem (P) and each sub-node corresponds to a sub-problem (P ν)

with different fixed variables. (a) Standard implementation of a BnB where all nodes are processed. (b) Impact of applying node-screening

tests on the BnB search tree: at node ν
(0), test (6b) is passed for entries i1 and i2; one can thus directly switch to the sub-node including

constraints “xi1
= 0” and “xi2

= 0”, namely ν
(3). The shaded nodes need not be explored.

where [z]+ , max(0, z) for all scalars z. We now express

the Fenchel dual of (P ν
l) with respect to these quantities.

Proposition 1. The Fenchel dual of (P ν
l) is given by

dνl = max
u∈Rm

Dν
l (u) ,

1
2‖y‖22 − 1

2‖y− u‖22
−∑

i∈S̄ γ
0
i (u)−

∑

i∈S1
γi(u)

(Dν
l)

and strong duality holds for (P ν
l)-(Dν

l), i.e., pνl = dνl . More-

over, if (x⋆
l ,u

⋆
l) is a couple of primal-dual solutions, one has

u⋆
l = y −Ax⋆

l . (3)

Hence, at a given node ν, the dual objective of (P ν
l) is the

sum of a term common to all nodes and some well-chosen

pivot values. Interestingly, the dual objective functions be-

tween two consecutive nodes only differ from one pivot value

as shown in the following result:

Corollary 1. Let ν = (S0,S1, S̄) and ℓ ∈ S̄ , then ∀u ∈ R
m,

D
ν∪{xℓ=0}
l (u) = Dν

l (u) + γ
0
ℓ(u) (4a)

D
ν∪{xℓ 6=0}
l (u) = Dν

l (u) + γ
1
ℓ(u) (4b)

where ν ∪ {xℓ = 0} and ν ∪ {xℓ 6= 0} denote the two direct

sub-nodes of ν where index ℓ has been swapped from S̄ to S0
or S1.

4.2. Node-screening tests

We now expose our proposed screening strategy to identify

nodes of the tree that provably cannot yield a global mini-

mizer of (P). Let ν be a node and pu an upper bound on p⋆.

We have by strong duality between (P ν
l)-(Dν

l) that

∀u ∈ R
m, Dν

l (u) ≤ dνl = pνl ≤ pν . (5)

Hence, combining (5) with Corollary 1 leads to the next re-

sult:

Proposition 2. Let ℓ ∈ S̄ be some index. Then, ∀u ∈ R
m,

Dν
l (u) + γ

0
ℓ(u) > pu =⇒ pν∪{xℓ=0} > p⋆ (6a)

Dν
l (u) + γ

1
ℓ(u) > pu =⇒ pν∪{xℓ 6=0} > p⋆. (6b)

Stated otherwise, Proposition 2 describes a simple procedure

to identify some sub-nodes of ν that cannot yield an optimal

solution of (P). In particular, if both (6a) and (6b) pass for a

given index, no feasible vector with respect to the constraints

defined at ν is a minimizer of (P) (ν can therefore be pruned).

Our proposed procedure differs from the pruning method-

ology described in Section 3 in several aspects. Performing a

test only requires the evaluation of one single inner product.

They can therefore be implemented at marginal cost com-

pared to the overall cost of the bounding step. Very impor-

tantly, they also inherit from the following nesting property:

Corollary 2. Let ν = (S0,S1, S̄) be a node. Then, if test (6a)

or (6b) passes for index ℓ ∈ S̄ , then it also passes for any sub-

node ν′ = (S ′0,S ′1, S̄ ′) ⊂ ν such that ℓ ∈ S̄ ′.
In particular, Corollary 2 has the following consequence. As-

sume that two distinct indexes ℓ and ℓ′ pass test (6a) at node

ν. Then index ℓ′ will also pass (6a) at node ν∪{xℓ 6= 0}. The

same consequence holds for test (6b) and node ν ∪ {xℓ = 0}.
In other words, if several node-screening tests pass at a given

node, one can simultaneously prune several sub-nodes of ν, as

illustrated in Figure 1b. This is in contrast with the bounding

procedure described in Section 3 which has to process each

sub-node individually before applying any potential pruning

operation.

4.3. Implementation considerations

Implementing node-screening tests described by Proposi-

tion 2 requires the knowledge of an upper bound pu of p⋆ and

a suitable u ∈ R
m, i.e., as close as possible to the maximizer

of (Dν
l). The value of pu can be obtained at no additional cost

since the standard implementation of BnB already requires

storing such valid upper bounds on p⋆. To obtain a relevant

candidate for u, we suggest the following procedure: assum-

ing the method used to solve (P ν
l) generates a sequence of

iterates {x(t)}t∈N that converges to a global minimizer, we

set

∀ t ∈ N, u(t) = y −Ax(t). (7)

This choice enjoys two desirable properties. First, the se-

quence {u(t)}t∈N converges toward a maximizer of (Dν
l) as a

consequence of the optimality condition (3). Second, both

u(t) and ATu(t) are already evaluated by most solvers as

they correspond to the residual error and the (negative) gra-

dient of the least-squares term of the objective function, re-

spectively. Thus, the computational cost of evaluating the

screening tests at all undecided entries is marginal compared

to the cost needed to address (P ν
l). The latter choice for u(t)

suggests performing node-screening tests during the bound-

ing step. Hence, when some entries passes the test at node ν,

the BnB algorithm immediately switches to some sub-node,

without solving (P ν
l) at high precision.

5. NUMERICAL RESULTS

We finally report simulation results illustrating the relevance

of the node-screening methodology on two different setups.

5.1. Experimental setups

For each trial, we generate a new realization of A ∈ R
m×n

and y ∈ R
m as follows. In the Gaussian setup, we set

(m,n) = (500, 1000) and the entries of A are i.i.d. realiza-

tions of a normal distribution. In the Tœplitz setup, we set

(m,n) = (500, 300) and the first column of A contains a

sampled sinc function. The other columns are obtained by

shifting the entries in a row-wise fashion so that A inherits

from a Tœplitz structure. In both setups, the columns of A

are normalized to one. To obtain y, we first sample a k-sparse

vector x0 ∈ R
n with uniformly distributed non-zero entries.

Each non-zero entry is set to s(1 + |a|), where s ∈ {−1,+1}
is a random sign and a is a realization of the normal distribu-

tion. In our experiment, we chose k ∈ {5, 7, 9}. Finally, the

observation is constructed as y = Ax0 + ǫ where the entries

of ǫ are i.i.d. realizations of a centered Gaussian distribution

with standard deviation σ = ‖Ax0‖2/
√
10m. Such a design

leads to a SNR of 10dB in average [14]. We tune λ statisti-

cally as in [15], i.e., by setting λ = 2σ2 log(n/k−1). Finally,

we empirically set M = 1.5‖ATy‖∞ as advised in [7].

We compare three methods that address (P): i) MIP, that

uses CPLEX [6], a state-of-the-art commercial MIP solver;

ii) BnB, the algorithm presented in [7], which is (up to our

knowledge) the fastest BnB algorithm tailored for (P); iii)

BnB+scr which corresponds to BnB enhanced with the

node-screening methodology presented in Section 4. Note

that both BnB and BnB+scr leverage an efficient imple-

mentation of the Active-Set algorithm [16, Sec. 16.5] to

solve (P ν
l) and the branching rule described in [7, Sec. 2.2].

Experiments are run on a MacOS with an i7 CPU, clocked

at 2.2 GHz and with 8Go of RAM. We restrict calculations on

a single core to avoid bias due to parallelization capabilities.

The Academic Version 20.1 of CPLEX is used and both BnB

and BnB+scr are implemented in Julia v1.5 [17]. Results

are averaged over 100 instances of problem (P).

5.2. Method comparison

Table 1 compares the average number of nodes treated (i.e.,

the number of relaxations (P ν
l) solved at machine precision)

and the solution time for the three methods and all simula-

tion setups. One observes that BnB+scr outperforms the

two other methods on all scenarii and all figures of merit. We

also note that, compared to BnB, the reduction in the solution

time is more significant than the reduction in the number of

processed nodes. A thorough examination of our results in-

dicates that the bounding step is performed all the faster as

many variables are fixed to zero in (P ν
l). Our node-screening

methodology allows to reach quickly nodes where the bound-

ing step is performed with a lower computational cost.

As a final remark, we mention that MIP relies on an effi-

cient C++ implementation while BnB and BnB+scr are im-

plemented in Julia. As C++ usually runs faster than Julia,

there is still room for improvements in the comparison of BnB

and BnB+scr with MIP.

MIP BnB BnB+scr

k Nds T F Nds T F Nds T F

5 96 25.9 0 70 1.5 0 56 0.7 0

7 292 60.8 0 180 5.1 0 152 3.0 0

G
au

ss
ia

n

9 781 102.6 10 483 15.6 0 412 9.8 0

5 1,424 10.2 0 965 6.4 0 725 4.2 0

7 17,647 106.5 0 10,461 79.3 0 7,881 52.2 0

T
œ

p
li

tz

9 80,694 353.4 50 47,828 346.4 48 41,166 267.0 40

Table 1: Number of nodes explored (Nds), solution time in seconds

(T) and number of instances not solved within 1,000 seconds (F).

6. CONCLUSION

In this paper, we presented a novel node-screening methodol-

ogy aiming at accelerating the resolution of the ℓ0-penalized

least-squares problem with a branch-and-bound solver. Our

contribution leverages a nesting property between the node-

screening tests at two consecutive nodes. Our method leads

to significant improvements in terms of number of nodes ex-

plored and resolution time on two simulated datasets.

A. PROOFS

This appendix gathers the proofs of the results derived in Sec-

tion 4. We refer to [7] for proofs regarding Section 3.

A.1. Proof of Proposition 1

Our proof of Proposition 1 leverages the Fenchel conjugate of

a function f and denoted f∗. In particular, we first state the

following technical lemma whose proof is postponed to the

end of the section

Lemma 1. Define for all z ∈ R
m and x ∈ R

n

f1(z) ,
1
2‖y− z‖22 + ε (8a)

f2(x) ,
λ
M
‖xS‖1 + η{x′ : x′

S′=0}(x) + ηB∞(M)(x) (8b)

Then, for all u ∈ R
m and v ∈ R

n

f∗
1 (u) =

1
2 (‖y + u‖22 − ‖y‖22)− ε (9a)

f∗
2 (v) =

∑

i∈S

M [|vi| − λ
M
]+ +M‖vS′′‖1. (9b)

In the latter result, ε is a scalar, (S,S ′,S ′′) is a partition

of {1, . . . , n}, B∞(M) denotes the ℓ∞-ball of Rn centered

at 0 with radius M , ηA denotes the indicator function of set

A ⊆ R
n defined for all x ∈ R

n by ηA(x) = 0 if x ∈ A and

+∞ otherwise.

We now use Lemma 1 to prove : a) the formulation of

the dual problem (Dν
l), b) the strong-duality relation link-

ing (P ν
l)-(Dν

l) and c) the relation (3). In the sequel, we let

ν = (S0,S1, S̄) be a given node.

a) Dual problem (Dν
l). Using the functions defined in

Lemma 1 with ε = λ|S1|, S = S̄ , S ′ = S0 and S ′′ = S1, the

relaxed problem (P ν
l) can be rewritten as

min
x∈Rn

f1(Ax) + f2(x). (10)

Then, the Fenchel dual of (10) is given by (see [18, Defini-

tion 15.19]1)

max
u∈Rm

−f∗
1 (−u)− f∗

2 (A
Tu). (11)

One concludes the proof by remarking that for all u ∈ R
m,

f∗
2 (A

Tu)− ε =
∑

i∈S̄

γ
0
i (u) +M

∥

∥AT
S1
u
∥

∥

1
− M

M
λ|S1|

=
∑

i∈S̄

γ
0
i (u) +

∑

i∈S1

γi(u).

1Note that, unlike [18, Definition 15.19], we use the formulation of the

dual problem that involves a maximization problem.

b) Strong duality. Strong duality holds as a consequence

of [18, Proposition 15.24]. More particularly, one easily

verifies that the condition in item vii) is fulfilled since the

functions f1 and f2 are proper and continuous.

c) Relation (3). Let (xν
l ,u

ν) be a couple of primal-dual so-

lution of (P ν
l)-(Dν

l). Since strong duality holds, we have by

item ii) of [18, Theorem 19.1] that2

−uν ∈ ∂f1(Axν
l) (12)

where ∂f1(Axν
l) denotes the sub-differential of f1 evaluated

at Axν
l . One finally obtains (1) by noticing that f1 is dif-

ferentiable at Axν
l so that the sub-differential reduces to the

singleton {∇f1(Axν
l)}.

A.2. Proof of Lemma 1.

The Fenchel conjugate of f1 evaluated at u ∈ R
m is defined

as

f∗
1 (u) = max

z∈Rm

uTz− f1(z). (13)

One easily sees that (13) is an unconstrained concave opti-

mization problem whose objective function is differentiable.

We then obtain (8a) by noticing that the maximum is attained

at z⋆ = y + u.

Let v ∈ R
n. By definition of f∗

2 and using the fact that

f2(x) = +∞ for all x ∈ R
n such that xS′ 6= 0, We have

f∗
2 (v) = max

{x∈Rn : ‖x‖∞≤M}
vTx− λ

M
‖xS‖1

=
∑

i∈S

max
{x∈R : |x|≤M}

vixi − λ
M
|xi|

+ max
{xS′′∈R|S′′| : ‖xS′′‖∞≤M}

vT
S′′xS′′ .

where the optimization problem can be split since it is linear

and S,S ′′ have non empty intersection by definition. Let i ∈
S and consider the problem

x⋆
i ∈ argmax

{x∈R : |x|≤M}

vixi − λ
M
|xi|. (14)

We let the reader check that x⋆
i defined by

x⋆
i =

{

0 if |vi| − λ
M
≤ 0

sign(vi)M otherwise
(15)

is the maximizer of (14). One finally expresses the maximum

as a sum of pivot values by injecting the value of x⋆
i in the

objective function.

2Again, we note that (12) involves the opposite of uν since the authors

consider the reformulation of the dual as a minimization problem.

Second, see that

max
{xS′′∈R|S′′| : ‖xS′′‖∞≤M}

vT
S′′xS′′

= M × max
{xS′′∈R|S′′| : ‖xS′′‖∞≤1}

vT
S′′xS′′

= M‖vS′′‖1
where the last equality holds since one recognizes the Fenchel

dual of the indicator function of the unit-ball with respect to

the ℓ∞-norm [18, item iv) in Example 13.3] in the penultimate

line.

A.3. Proof of Corollary 1

Let ν = (S0,S1, S̄) be a node and i be some element of S̄
such that ν ∪ {xi = 0} defines a child node. Using (Dν

l), we

have for all u ∈ R
m

D
ν∪{xi=0}
l (u)−Dν

l (u) =
∑

i′∈S̄

γ
0
i′(u) −

∑

i′∈S̄\{i}

γ
0
i′(u)

= γ
0
i (u).

Similar calculations lead for all u ∈ R
m to

D
ν∪{xi 6=0}
l (u)−Dν

l (u) = γ
0
i (u)− γi(u)

=γ
1
i (u)

where the last line uses the relation [u]+ − [−u]+ = u that

hold for all scalar u.

A.4. Proof of Corollary 2

Let ν = (S0,S1, S̄) be a node. We first state the following

lemma which can easily be proved by induction using (4a)

and (4b).

Lemma 2. Let ν′ = (S ′0,S ′1, S̄ ′) be a child node of ν. Then,

for all u ∈ R
m

Dν′

l (u) = Dν
l (u) +

∑

i∈S′
0
\S0

γ
0
i (u) +

∑

i∈S′
1
\S0

γ
1
i (u). (16)

We now prove Corollary 2. Let ℓ ∈ S̄ be some index such that

test (6a) or (6b) passes at node ν. To easier our exposition, we

only prove the result for test (6a) as the same rationale can be

used for test (6b).

Hence, assume that test (6a) passes for index ℓ at node ν,

i.e., that

Dν
l (u) + γ

1
ℓ (u) > pu. (17)

Let ν′ = (S ′0,S ′1, S̄ ′) be a child node of ν such that ℓ /∈ S̄ ′.
Using Lemma 2, we have

Dν′

l (u) = Dν
l (u) +

∑

i∈S′
0
\S0

γ
0
i (u) +

∑

i∈S′
1
\S0

γ
1
i (u). (18)

Since the pivots values {γ0
i (u)}ni=1 {γ1

i (u)}ni=1 are all non-

negative by construction, we necessarily have Dν′

l (u) ≥
Dν

l (u). Hence the test (6a) also passes for index ℓ at node

ν′.

References

[1] Xiaojun Chen, Dongdong Ge, Zizhuo Wang, and Yinyu

Ye, “Complexity of unconstrained ℓ2 − ℓp minimiza-

tion,” Mathematical Programming, vol. 143, no. 1-2,

pp. 371–383, November 2014.

[2] Simon Foucart and Holger Rauhut, A Mathematical In-

troduction to Compressive Sensing, Springer New York,

2013.

[3] Ryuhei Miyashiro and Yuichi Takano, “Subset selec-

tion by Mallows’ Cp: A mixed integer programming

approach,” Expert Systems with Applications, vol. 42,

no. 1, pp. 325–331, Jan. 2015.

[4] Sébastien Bourguignon, Jordan Ninin, Hervé Carfan-

tan, and Marcel Mongeau, “Exact sparse approxima-

tion problems via mixed-integer programming: Formu-

lations and computational performance,” IEEE Trans-

actions on Signal Processing, vol. 64, no. 6, pp. 1405–

1419, 2015.

[5] Dimitris Bertsimas, Angela King, and Rahul Mazumder,

“Best subset selection via a modern optimization lens,”

The Annals of Statistics, vol. 44, no. 2, Apr. 2016.

[6] CPLEX User’s Manual, “Ibm ilog cplex optimization

studio,” Version, vol. 12, pp. 1987–2018, 1987.

[7] Ramzi Ben Mhenni, Sébastien Bourguignon, Marcel

Mongeau, Jordan Ninin, and Hervé Carfantan, “Sparse

branch and bound for exact optimization of ℓ0-norm

penalized least squares,” in ICASSP. IEEE, 2020, pp.

5735–5739.

[8] Laurent El Ghaoui, Vivian Viallon, and Tarek Rabbani,

“Safe feature elimination for the lasso and sparse super-

vised learning problems,” 2010.

[9] Alper Atamturk and Andrés Gómez, “Safe screening

rules for l0-regression from perspective relaxations,” in

International conference on machine learning. PMLR,

2020, pp. 421–430.

[10] Eugene L Lawler and David E Wood, “Branch-and-

bound methods: A survey,” Operations research, vol.

14, no. 4, pp. 699–719, 1966.

[11] Brian R Gaines, Juhyun Kim, and Hua Zhou, “Algo-

rithms for fitting the constrained lasso,” Journal of Com-

putational and Graphical Statistics, vol. 27, no. 4, pp.

861–871, 2018.

[12] Neal Parikh and Stephen Boyd, “Proximal algorithms,”

Foundations and Trends in optimization, vol. 1, no. 3,

pp. 127–239, 2014.

[13] Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Y

Ng, “Efficient sparse coding algorithms,” in Advances in

neural information processing systems, 2007, pp. 801–

808.

[14] Don H Johnson, “Signal-to-noise ratio,” Scholarpedia,

vol. 1, no. 12, pp. 2088, 2006.

[15] Charles Soussen, Jérôme Idier, David Brie, and Junbo

Duan, “From Bernoulli-Gaussian deconvolution to

sparse signal restoration,” IEEE Transactions on Signal

Processing, vol. 59, no. 10, pp. 4572–4584, 2011.

[16] Stephen Wright, Jorge Nocedal, et al., “Numerical op-

timization,” Springer Science, vol. 35, no. 67-68, pp. 7,

1999.

[17] Jeff Bezanson, Stefan Karpinski, Viral B Shah, and Alan

Edelman, “Julia: A fast dynamic language for technical

computing,” 2012.

[18] Heinz H. Bauschke and Patrick L. Combettes, Con-

vex Analysis and Monotone Operator Theory in Hilbert

Spaces, Springer International Publishing, 2017.

