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Abstract6

Tensegrities form a special case of truss, wherein compression members (struts/bars) float within a network7

of tension members (cables). Tensegrities are characterized by the presence of at least one infinitesimal8

mechanism stabilized with member pre-stress to ensure equilibrium. Over prolonged usage, the cables may9

lose their pre-stress while the bars may buckle, get damaged, or corrode, affecting the structural stiffness10

leading to change in the measured dynamic properties. Upon loading, a tensegrity structure may change11

its form through altering its member pre-stress affecting its global stiffness, even in the absence of damage.12

This can potentially mask the effect of damage leading to a false impression of tensegrity health. This poses13

the major challenge in tensegrity health monitoring especially when the load is stochastic and unknown.14

Present study proposes an output-only time-domain method that makes use of tensegrity vibrational15

responses within a Bayesian filtering-based approach to monitor the tensegrity health in the presence of16

uncertainties due to ambient force, model inaccuracy, and measurement noise. For this, an interacting17

strategy combining Particle Filter (PF) and Ensemble Kalman Filter (EnKF) has been adopted (Interacting18

particle-Ensemble Kalman Filter, IP-EnKF) in which the EnKF estimates the response states as ensembles19

while running within a PF envelop that estimates a set of location-based health parameters as particles.20

Furthermore, for a cheaper damage detection procedure, strain responses are used as measurements. The21

efficiency of the proposed methodology in terms of accuracy, computational cost, and robustness against noise22

contamination has been demonstrated using numerical experiments performed on two tensegrity modules:23

a simplex tensegrity and an extended-octahedron tensegrity.24

1. Introduction25

Tensegrities form a special class of truss with dedicated tension and compression members, known as26

cables and struts, respectively, and/or bars which can take both tension and compression forces. Tensegrity27

structures derive their integrity from the pre-stress present in their members. Mention of this structure type28
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finds its origin in the works of Ioganson (1920) and Snelson (1948) [54], where Ioganson’s structure lacks29

one of the essential criteria for tensegrity, i.e., equilibrium without any external force [57]. While tensegrity30

was later formally introduced by Snelson as an architectural piece, its potential as a structure was promoted31

by Buckminster Fuller. Ever since its introduction, tensegrities have found applications in various fields:32

aerospace [68], bio-mechanics [34], robotics [44], etc. Although tensegrities demonstrate excellent utility for33

being deployable as well as aesthetically appealing [53, 64], the typical perspective of being considered as a34

light-weight structure has been debated in [26]. Nevertheless, the unique deployable attribute of tensegrities35

has found much acceptance in the field of controllable structures [62, 63, 65], aerospace application [21, 41, 61]36

and especially in robotics [6, 20, 35] wherein tension in the strings/cables are actively controlled by actuators37

to control the movement of the tensegrity robots. Accordingly, various methodologies have been developed38

to design [5, 67] and construct statically stable complex tensegrity structures [60, 72] that are easy to erect or39

deploy. The success with non-load bearing structures has quickly been adapted by the structural engineers40

as well and the tensegrity concept has been implemented for civil infrastructures in the form of roofs and41

bridges. The motivation comes from the fact that tensegrities can provide large column-free spaces allowing42

sufficient overhead clearance (advantageous for bridges to allow water vessels underneath) and unobstructed43

view (beneficial for the stadium roofs) [2, 23, 25]: Olympic Gymnastics Arena roof (Seoul, South Korea),44

Kurilpa bridge (Brisbane, Australia), etc. are some of the examples among many others.45

Tensegrities are characterized by the presence of at least one infinitesimal mechanism [39] stiffened by46

the pre-stress present in the members due to their configuration. Of course, in the absence of these member47

pre-stresses, there would be no structure, thereby delineating tensegrities from other pre-stressed structures.48

The stability of tensegrity is therefore pre-stress dependant and conditioned on a particular configuration,49

known as self-stress configuration [69]. To accommodate a certain external load, tensegrity incur changes in50

its initial stable configuration. Tensegrities can thus have multiple self-stressed stable configurations under51

different external loading conditions [49, 69]. Modification in the shape, due to pre-stress levels as well52

as external forces, eventually, changes the stiffness properties, thereby altering the frequencies even in its53

undamaged condition. Moreover, tensegrities can have same shape with different stiffness and frequencies,54

because of different pre-stress levels [3, 4]. Tensegrities thus may exhibit different stiffness, dynamical55

properties, and spatial configurations even in its healthy state, which otherwise is anticipated only under56

damaged conditions for traditional structures. It should therefore be noted that stiffness alteration due to57

modification in member stress induced by force variability does not imply damage in a tensegrity.58

As tensegrity does not belong to the category of traditional structures that are typically constructed with59

high levels of redundancy [25], the approach for monitoring its health is also not typical. Since tensegrities60

are substantially optimized [19, 56] from a design and construction point of view, a catastrophic failure may61

therefore occur if its health is not monitored rigorously. Moreover, their shape morphing attribute may lead62

to a false impression of damage when being dealt with traditional health monitoring techniques. Vibrational63
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properties of tensegrities are contrastingly less explored [21, 38, 41, 42] than their static performance.64

Accordingly, studies related to vibration-based structural health monitoring (SHM) for tensegrities are also65

insufficient [4, 66]. Assessment of health from global parameters like modal information is not an option66

for tensegrity health monitoring since modal information keeps on changing even in its normal operational67

condition, discussed later in this article. Hence, to identify/monitor possible damages in tensegrity, it is68

important to have an SHM approach specific for tensegrity that takes into account its nature [49]. Yet69

literature available in this field is of an insignificant volume.70

Three methods for tensegrity damage detection have been compared in [66], namely, frequency analysis,71

error-domain model falsification (EDMF) using node position measurement, and moving-window principal72

component analysis (MWPCA) using strain measurements. It has been observed that, for tensegrities,73

natural frequencies and mode shapes can not be considered as features sensitive only to damage (further74

demonstrated later in this article). The slacking scenario in the cables substantially impacts the first natural75

frequency, which however differs from one scenario to another. Hence to detect this reduction in tension,76

individual monitoring of damage induced frequency alterations has been suggested in [4]. Although it77

has been perceived that for tensegrities with forces unknown, modal domain SHM is no longer an option.78

Results obtained from EDMF [66] were observed to be sensitive to ambient uncertainty. Also, EDMF tends79

to become costly when tracking positions at sub-millimeter resolution. MWPCA [66] has an advantage over80

the other mentioned methods since it uses inexpensive strain gauges. It has been observed to be efficient with81

low to moderate noise levels but has been reported to perform poorly for high levels of noise contamination.82

Satisfactory performance for damage assessment using dynamic strain measurements has also been observed83

by [11]. Electro-mechanical impedance (EMI) measures are also considered as measurements for this study,84

which has been analysed for high frequency signatures (in kHz) as damage sensitive feature. The study85

further compares the performances of EMI and dynamic strain as measurements and concludes that the86

dynamic strain measurement-based approach is more cost-effective than the former.87

Evidently, most of the works on tensegrity SHM have been cast in the deterministic domain. Nevertheless,88

any typical model-based SHM approach for a real tensegrity needs to deal with uncertainties due to modeling89

error, ambient forcing, and measurement noise. Yet these sources of uncertainties are mostly left unaccounted90

for with deterministic SHM approaches. Force is an important aspect of tensegrity stiffness and should thus91

be known for the deterministic tensegrity SHM approach to alienate a force-induced change in structural92

response from a damaged induced anomaly. For tensegrities, subjected to ambient force, the problem gets93

aggravated since an explicit knowledge of ambient forces is rarely available. Real-life tensegrities, therefore,94

need a special SHM approach capable of dealing with the forcing uncertainties efficiently.95

In this context, Bayesian filters have proved their merit in SHM research dealing with the mentioned96

uncertainties. With Bayesian filter-based SHM approaches, the uncertainties due to force and modeling97

inaccuracies are dealt with a probabilistic process model while a measurement model deals with the sensor98
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noise uncertainties separately. Within the process model, the dynamics of the structure is defined in state-99

space with a set of internal unobserved variables, called states. The dynamics of the system are then100

defined in terms of system state propagation in time following a Chapman-Kolmogorov formulation. These101

unobserved variables are further observed through the measured responses (e.g. acceleration, strain, etc.)102

employing a measurement model/equation involving uncertainties due to sensor noise. Although, the system103

dynamics can be better defined in the continuous time domain, to facilitate estimation using discretely104

sampled sensor measurements, both physical models are transformed into discrete time domain.105

Depending on the nature of the formulated process and/or measurement model, several filter types have106

been proposed in the literature. For linear time invariant (LTI) systems (linear process and measurement107

model), Kalman filter (KF) can be identified as the most employed approach. On the introduction of108

non-linearity in either of the models (process and/or measurement) or time variability in the system, the109

inability of KF redirects to the usage of non-linear filter variants like Extended (EKF) [28], Unscented110

(UKF) [31, 37], Ensemble (EnKF) [22] KFs or Particle filter (PF) [24]. Non-linearity in the process model111

may also be caused due to non-linearity in the system itself; tensegrities being one such example manifesting112

geometric non-linearity. For linear/non-linear time variant (LTV/NLTV) systems, the system estimation is113

proceeded with first parameterizing the system and subsequently estimating them alongside as additional114

parameter states, θk. This, however, renders the assessed system to be non-linear due to the non-linear115

mapping of θk to the corresponding measurements.116

In the context of SHM, a set of location-based health indices (HIs) is employed for parameterizing the117

system health which are then estimated/monitored as the additional parameter states, θk. Estimation118

of the HIs can further be approached either jointly [36] or conditionally [17, 51] with respect to the real119

system states. The relative efficiency of the conditional over joint estimation approach has already been120

corroborated in several articles [13] and upon further introduction of interacting strategies by [32], the focus121

has strongly shifted to the use of individual filters for states or parameter estimation, like in Interacting122

Particle-Kalman filter (IPKF) [52, 71], Dual KF [9], Dual EKF (DEKF) [51], etc.123

Within the context of tensegrity SHM, the self-stiffening property [49] can be accounted for by considering124

geometric non-linearity in the tensegrity dynamics [33]. Eventually, with the non-linear tensegrity dynamics125

defined through this process model, the model is axiomatically non-linear. With θk as additional states to126

be observed through measurements, the measurement model is also non-linear. Hence a major challenge127

in tensegrity SHM is to handle these non-linearities simultaneously and efficiently. PF has been successful128

in dealing with highly non-linear systems [8, 12, 14], although at the expense of high computational cost.129

To overcome the cost issue, IPKF was introduced [71] in which KF deals with the linear state estimation,130

while PF is employed for non-linear parameter estimation. Nevertheless, the dynamic model pertaining to131

tensegrity SHM is non-linear, invalidating the KF. The replacement can be chosen from the available filter132

variants. Of them, EnKF has been proved to be efficient in the propagation of non-linear system states [27]133
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while allowing the entire health monitoring approach to be parallelized together with the PF. An Interacting134

Particle Ensemble Kalman Filter (IP-EnKF) has therefore been employed to estimate tensegrity health.135

The algorithm has been formulated to make use of only strain gauge response as the measured data to136

the proposed IP-EnKF, since strain gauges are cheaper than accelerometers while being reported as more137

sensitive towards the presence of damage [50]. Detailed discussion on the tensegrity modeling and simulating138

dynamic responses have been demonstrated in Section 2, with details of the state-space definition of the139

tensegrity dynamics (Section 2.2). The proposed IP-EnKF algorithm is further explained in Section 3140

followed by a numerical validation study detailed in Section 4 that demonstrates the application of the141

proposed approach on a simplex tensegrity (ST) and an expanded-octahedron tensegrity (EOT) modules.142

2. Tensegrity model and dynamic response143

While modeling a tensegrity, suitable internal force inequalities should be added to the model to account144

for the nature of the dedicated tension cables or compression struts or bars that can take up both tension and145

compression forces, if present in the structure. This makes modeling of the tensegrities different from that146

of the typical truss structures. The design and identification of self-stressed configuration for tensegrities is147

a separate and much-explored field of research, not in the scope of this article. Yet for the sake of clarity,148

this article details the form-finding algorithm (Algorithm 2) employed in this study to identify the initial149

stable form of the tensegrity. Special measures are further taken to ensure that no local failure conditions150

(bar buckling and/or cable slacking) occur while finding the initial stable configuration of the tensegrities151

through constraining the member pre-stress levels.152

To account for the large deformations of tensegrity members under external loading, geometric non-153

linearity is introduced in the model. It has been observed that tensegrity with low pre-stress levels, mani-154

fests stronger non-linearity compared to tensegrities with higher pre-stress levels [40]. Consequent to load155

application and related changes in the configuration, the current strain-displacement relationship becomes156

an implicit problem involving the ever-evolving tensegrity configuration. With the finite element modeling157

(FEM) approach to discretize the spatial domain, the aspect of geometric non-linearity can be invoked158

without much complexity. Nevertheless, the implicit nature of the problem needs substantial computation159

within a recursive estimation approach which might render the involved SHM, although accurate, slow.160

Since with the Bayesian approach, the model inaccuracy can be complemented with recursive inferencing161

from the data, in this article an explicit representation of the strain-displacement relationship is adopted162

powered by explicit Newmark-beta method [15, 43]. The modeling is detailed in the following.163

2.1. Geometric non-linear finite element model164

Modeling of tensegrity with a geometric non-linear FEM approach exists in literature [33]. Except for165

geometric non-linearity, this article does not consider any other source of non-linearity, like material or166
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boundary non-linearity. The initial form (involving coordinate position and member pre-stress levels) of the167

tensegrity is required to be identified through the form-finding approach following Algorithm 2. Algorithm168

2 presents a force-density based optimization approach for tensegrity form-finding that has been adopted169

to identify the initial coordinates and related pre-stress levels with constraints on the member pre-stress170

ensuring no tension/compression member is slacking/buckling, respectively. The resulting stable form and171

related data are presented in Figures 2 and 4 and Tables 1 and 2, respectively.172

Next, at any arbitrary time instant t, for each of the mth member/element of the self-stressed tensegrity,173

the associated global coordinates (defined in the global coordinate system (GCS), xyz), qm(t)6×1 ⊂ q(t),174

are transformed to their counterparts, qm,l(t)2×1, in the local coordinate system (LCS), x̄ȳz̄ (cf. Figure175

(1)), with the help of member-specific transformation matrix Tm(t). Here q(t) denotes the entire global176

coordinate set of all the tensegrity nodes.177

qm,l(t) = Tm(t)qm(t) (1)

where, Tm(t) =

cosθmx (t) cosθmy (t) cosθmz (t) 0 0 0

0 0 0 cosθmx (t) cosθmy (t) cosθmz (t)

,178

qm,l(t) = {ql1(t) ql2(t)}mT and qm(t) = {q1x(t) q1y(t) q1z(t) q2x(t) q2y(t) q2z(t)}mT .179

cosθmx (t) , cosθmy (t) and cosθmz (t) are time varying angular positions of the member m with respect to GCS.180

A schematic for the assumed element is demonstrated in Figure 1.181

Figure 1: LCS and GCS for bar element type

The deformation, um(r, t), at any point within the element m can further be described using shape182

functions (N1(r) and N2(r)) and local nodal displacements (qm,l(t)).183

um(r, t) = [N1(r) N2(r)] qm,l(t) (2)

where the shape functions are described in natural coordinate system, N1(r) = (1 − r)/2 and N2(r) =184
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(1 + r)/2, for the ease of integration. r being the natural variable defined within the range −1 ≤ r ≤ 1.185

To incorporate geometric non-linearity in strain, a second order relationship between Green’s strain and186

displacement fields has been considered in this study (as per [33]),187

εm(r, t) =
∂um(r, t)

∂x
+

1

2

(
∂um(r, t)

∂x

)2

(3)

with um(r, t), as defined in Equation (2), the member strain field εm(r, t) can further be expressed introduc-188

ing linear (Bm
L ) and non-linear (Bm

NL) strain-displacement matrices with Bm
NL(qm,l(t)) being a non-linear189

function of qm,l(t). The functional representation of Bm
NL to demonstrate its dependence on the qm,l(t) is190

although dropped from here on for the sake of compactness.191

εm(r, t) = Bm
L qm,l(t) + Bm

NLqm,l(t) (4)

where Bm
L =

[
∂N1(r)
∂x

∂N2(r)
∂x

]
and Bm

NL = 1
2qm,l(t)

T

∂N1(r)/∂x

∂N2(r)/∂x

[∂N1(r)
∂x

∂N2(r)
∂x

]
.192

The element tangent stiffness matrix can further be obtained by applying the principle of virtual work, i.e.,193

minimizing the difference (i.e. virtual work, δW ) between the work done by the internal forces (second194

Piola-Kirchhoff stress, σm(r, t)) undergoing incremental Green’s strain δεm(r, t) and the work done by the195

external forces undergoing virtual displacement δqm(t) integrated over the entire volume, V m [29]. The196

virtual work can therefore be defined as,197

δW =

∫
Vm

δεm(r, t)Tσm(r, t)dV − δqm(t)
T
F(t) (5)

where, σm(r, t) is obtained from the constitutive relation, σm(r, t) = Emεm(r, t) with Em being the consti-198

tutive matrix. The above equation is further expanded as follows,199

δW =

∫
Vm

δqm(t)
T
TmTBmTEmBmTmqm(t)dV − δqm(t)

T
F(t) (6)

where, Bm = Bm
L + Bm

NL, making Bm a function of qm,l(t) as well. Further, ignoring the trivial part of200

the solution (i,e, δqm(t) 6= 0), and taking derivative of the internal force with respect to qm(t), element201

tangential stiffness matrix Km(t) can be defined in compact form as,202

Km(t) =
Amlm

2

∫ 1

−1

∂(BmTσm(r, t))

∂qm(t)
dr (7)

assuming a uniform cross section Am over the entire length lm of element m. Numerical integration of

the above integral can be obtained through Gauss-Quadrature method with one Gauss-point. The tangen-

tial stiffness matrix (Km(t)) can further be splitted into material (Km
M (t)), geometric (Km

G (t)) and initial

displacement (Km
U (t)) stiffness matrices [29, 60]:

Km(t) = Km
M (t) + Km

G (t) + Km
U (t) (8)
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where, Km
M (t), Km

G (t) and Km
U (t) are given by Equations (9), (10) and (11), respectively203

Km
M (t) =

EmAmlm

2

∫ 1

−1
TmTBm

L
TBm

LTmdr (9)

Km
G (t) =

Amlm

2

∫ 1

−1

∂Bm
NL

T

∂qm(t)
σm(r, t)dr (10)

Km
U (t) =

EmAmlm

2

∫ 1

−1
TmT (Bm

L
TBm

NL + Bm
NL

TBm
L + Bm

NL
TBm

NL)Tmdr (11)

Further, global tangential stiffness matrix K(t) can be obtained by assembling the elemental stiffness matrices204

and applying natural boundary conditions. Similarly, the mass matrix M can be obtained by following the205

consistent mass matrix assumption. The global tangent stiffness matrix K(t) is determined taking basis on206

updated Lagrange formulation that defines the stiffness at current time. For that, the initial displacement207

matrix has been recursively re-calibrated taking displacements from the last step.208

2.2. State space formulation of tensegrity dynamics209

Dynamics of typical truss structures can be defined with a linear second-order governing differential equa-210

tion (gde). However, the embedded geometric non-linearity in the tensegrity model requires the dynamics211

to be defined using non-linear gde as,212

Mq̈(t) + C(t)q̇(t) + P(q(t)) = F(t) (12)

Clearly, the inelastic resisting force, P(q(t)), is non-linear and time-dependent due to the consideration of213

non-linear geometry. Specific to the tensegrity SHM problems under consideration, time dependency in214

P(q(t)) is also due to the varying health condition of the tensegrity. Suitable damping model for tensegrity215

is a well researched topic [58, 59] weighing the proportional and non-proportional damping models as op-216

tions. It has been perceived in general, that compared to non-proportional damping models, proportional217

damping models are computationally inexpensive [1], although may lack accuracy sometimes [58]. The rel-218

ative modeling inaccuracies can however be complemented with recursive Bayesian estimation approach in219

which the additional process noise can take care of this modeling uncertainty while benefiting the algorithm220

with promptness. Rayleigh damping has therefore been assumed for this tensegrity simulation. This is a221

classical viscous damping model assuming damping to be linearly proportional to mass and stiffness, as222

C(t) = a0(t)M + a1(t)K(t) where K(t) is the locally linearized tangent stiffness matrix. Although classical223

approach assumes the damping to be constant all through out, for non-linear systems with varying tangent224

stiffness matrix, updated stiffness is suggested to be employed along with varying proportionality coefficients225

(i.e. a0(t) and a1(t)) instead of initial stiffness matrix [16, 30, 45]. Further assumptions are imposed on first226

two modes being equally damped in order to estimate time varying coefficients a0(t) and a1(t). The details227
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of Rayleigh damping model can be found in [15]. Eventually, damping force being defined using Rayleigh’s228

damping model, is also time dependent. Nevertheless, any other damping model can also be used instead229

[46].230

The mass matrix is, however, considered to be time invariant. The structure is subjected to externally231

applied ambient forcing F(t) which is assumed to be not known explicitly, yet can be modeled as zero mean232

white Gaussian noise (WGN) of known stationary statistics Q, as vk ∼ N (0,Q).233

The system dynamics can further be defined with displacement (q(t)), velocity (q̇(t)) and acceleration234

(q̈(t)) as system states observed through a set of strain measurements, {εmk }, sampled in discrete time from235

the strain gauges patched on to the surface of the bars at their midpoints (r = 0.5). εmk is the discrete236

counterpart corresponding to its continuous time entity, εm(r, t), with k being the time instant at which the237

strain is sampled. To accommodate such discrete measurement, the non-linear state transition function has238

to be defined in discrete time state space formulation as,239

xk = f (xk−1,M,Kk,Ck, dt,vk) , where vk ∼ N (0,Q) (13)

Here, xk =
[
qk q̇k q̈k

]T
, i.e. the discrete definition of the system states evolving over the non-linear240

state propagation function f(•). qk, q̇k, q̈k,M,Kk,Ck are the respective discrete quantities corresponding241

to their continuous definitions. dt is the time step for discretization. vk has additionally been incorporated242

to collectively account for the uncertainties originating from the unavoidable model inaccuracies and ambient243

WGN force, Pk. This WGN model is assumed with constant covariance Q, same as the variance of the244

ambient force. Subsequently, the measurement equation can be defined as,245

εk = HB (xk) + wk , where wk ∼ N (0,R) (14)

where, B(•) denotes the global non-linear strain-displacement relationship for all members with xk being its246

argument. B(xk) is acting here as a non-linear measurement function to map the unobserved states xk to247

the measurement space. εk consists of all the recorded member strains i.e., εk = {εmk ,m ∈ mo} , where mo is248

the measured subset of m, (m = ∪{mo;mu}) that are instrumented with strain gauges at their midpoints.249

Naturally, mu denotes the unobserved subset of m. Accordingly, H stands for the selection matrix that250

isolates the measured member strains from all of the predicted set. wk ∼ N (0,R) accounts for the sensor251

noise modeled as WGN process of constant covariance R.252

For system simulation, Newmark-beta method has been employed in its explicit formulation. The method253

is proven to have acceptable accuracy with non-linear dynamic simulations [10, 15, 43]. This approach254

takes its basis on an incremental equilibrium equation corresponding to the original dynamic equation (cf.255
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Equation (12)) to solve for the discrete non-linear structural response variables, i.e., q̈k, q̇k and qk,256

M∆q̈k + Ck∆q̇k + Kk∆qk = ∆Fk (15)

Operator ∆ denotes the corresponding increment over each time step. Due to the non-linear geometry,257

the incremental equation is by nature implicit, for which iterative approach has to be adopted for accurate258

solution. Although, without compromising the accuracy by a substantial extent, Equation (15) can be solved259

using explicit formulation of Newmark-beta algorithm, detailed in Appendix B. This in turn facilitates with260

improved promptness of the damage detection by reducing computation in state propagation. Further, the261

method shows an unconditional stability for average constant acceleration assumption with γ = 0.5 and262

β = 0.25, as adopted in this article.263

2.3. Non-linearity in tensegrity dynamics264

In the following, the non-linearity of a tensegrity is investigated. For this, an EOT type tensegrity265

module has been selected (cf. Figure 2). The nodal positions, elemental connectivity and initial tension266

coefficients are presented in Table 1. For the simulation, the bars are assumed to act as compression as well267

as tension members, while cables take up only tension. The member connections are idealized as friction-less268

pin-joints. The assumptions made for the simulations are further presented here for lucid comprehension.269

1. Members are connected by friction-less pin-joints.270

2. Bars act as compression as well as tension members, while cables take up only tension.271

3. Only geometric non-linearity is considered for the modeling.272

4. In line with [70] the considered tensegrities are assumed to be constrained at certain nodes to a fixed273

base which minimizes the flexibility of bars due to Coriolis effect hence the Coriolis terms can be274

neglected in Equation (12).275

5. Newmark-beta algorithm assumes average acceleration method which is known to be unconditionally276

stable.277

6. Rayleigh’s proportional damping model is used to model damping in tensegrity.278

The tensegrity is excited with a sinusoidal force (= 750sin(4t)N) at its 3rd node in x-direction. The279

related hysteresis and phase plane diagram curves are plotted in Figure 3. The hysteresis plot proves the280

existence of the non-linear relationship between displacement (as output) and forces (as input). For the281

phase plane diagram, displacement and velocity response of third node at its x dof is plotted. It is evident282

from the figures 3a and 3b that the simulated tensegrity dynamics is demonstrating a non-linear behaviour.283

The phase plane diagram also establishes the dynamic stability of the assumed tensegrity under all assumed284

specifications of the tensegrity simulation.285
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Figure 2: Expanded-octahedron tensegrity (EOT) configuration

Table 1: Nodal coordinates, elemental connectivity and initial tension coefficients of expanded-octahedron tensegrity (EOT)
(with c:cable and b:bar)

Node 1 2 3 4 5 6 7 8 9 10 11 12

EOT
X 0 0 0.548 0.548 -1.726 2 -0.658 1.205 -0.657 1.205 -1.452 2.274
Y 1 -1 0.999 -0.999 0 0 1.999 1.999 -1.999 -1.999 0 0
Z -2 -2 0.904 0.904 -1.548 -1 -0.685 -0.411 -0.685 -0.411 -0.096 0.45

Element 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EOT

Node 1 1 5 5 2 2 6 6 1 3 7 9 4 4 10 8
Node 2 7 7 9 9 10 10 8 8 7 11 11 9 10 12 12
Type c c c c c c c c c c c c c c c

Initial tension coeff. (N/m) 0.8782
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Node 1 3 3 1 2 4 3 1 2 4 1 2 5 11 7 8
Node 2 8 11 5 5 11 12 6 6 12 3 4 6 12 9 10
Type c c c c c c c c c b b b b b b

Initial tension coeff. (N/m) 0.8782 -1.3173
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(a) Tensegrity hysteresis for EOT
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(b) Velocity - displacement plot for EOT

Figure 3: Non-linear behaviour of tensegrity system - EOT

3. Proposed approach286

The system equation and simulation approaches for tensegrity structures have been demonstrated in287

Section 2. The approach for tensegrity SHM will further be detailed in this section. An IP-EnKF approach288

has been adopted for this in which the PF approaches the non-linear health parameter estimation while the289

EnKF estimates the non-linearly evolving system states xk (as per Equation (13)). IP-EnKF can therefore290

be considered as an improvisation of IPKF [52] wherein EnKF replaces KF to extend the reach of the291
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algorithm to non-linear systems. It further facilitates with the option to parallelize the entire computation.292

The major aspect of this approach is that with IP-EnKF, compute-intensive PF handles only the severely293

non-linear parameter estimation problem while for the rest of the non-linear estimation, EnKF is employed.294

The pertinent interacting strategy between these two filter types is demonstrated later in this section.295

For quantifying the health of the tensegrity, a set of location-based health indices (HIs) are devised.296

These HIs track the health of each individual members by a value within the range of 1 and 0 with 1297

denoting healthy and 0 signifying completely damaged conditions. These time varying HIs are estimated298

with a vector θk parameterizing the process model.299

Provided that the process model of the system is known (at least as a sufficiently accurate model),300

error in the predicted output can be attributed to incorrect estimate of the model parameters θk. In the301

context of system health estimation, reduction in model parameter estimates can in turn signify a change302

in structural stiffness. Typically, structural stiffness is defined by its material (elasticity, cross-section, etc.)303

and geometric (configuration, pre-stress, etc.) stiffnesses. With the proposed algorithm, geometric stiffness304

of tensegrity is taken care of by introducing geometric non-linearity in the finite element model. Eventually,305

the prediction error can be attributed to a possible change in the material stiffness. Hence, for modeling306

purpose, damage in the members can be replicated through reduction in their initial elasticity, E0, using307

health indices, θk as:308

Sk(θk) =< S0 · θk > (16)

where, S0 = [(E1
0A

1
0), . . . , (Em

0 A
m
0 )] is the vector encompassing the initial axial stiffness of all the tensegrity309

members, [S1
0 , S

2
0 , · · ·Sm0 ]. The reduced axial stiffness Sk of all the members at time step k, is thus a function310

of the health parameters θk. θk, therefore, traces the alteration in the material stiffness of all the members311

of tensegrity, thereby detecting damage.312

At any arbitrary time step k, PF propagates a set ofNp parameter particles, Ξk = [ξ1k, ξ
2
k, · · · , ξ

Np

k ]ms×Np
,313

in time as realizations of the random variable θk. Each jth particle, ξjk, lists ms × 1 individual parame-314

ter realizations for HIs corresponding to ms members being monitored. This numerical approximation315

helps avoiding an explicit analytical integration over the entire parameter space, θk. The adopted particle316

evolution in time is basically a Gaussian perturbation around the current estimate of the particle ξjk−1 ,317

ξjk = αξjk−1 +N (δξk;σξ
k) (17)

where a Gaussian blurring is performed on ξjk−1 with a shift δξk = (1− α)ξ̄k−1 and a spread of σξ
k . α is a318

hyper-parameter that controls the turbulence in the estimation. Upon prediction for the particle estimate319

in current time, the correction is performed according to the likelihood of the particle estimates against the320

measured data, detailed next.321
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Eventually, the evolution of the parameter particles is automated and conditioned on their likelihood322

against measurement only, avoiding the requirement of any specific initial distribution for the particle space.323

To estimate the likelihood, the propagated particles are further put through the nested EnKF for state324

estimation. Within EnKF, Ne state ensembles are propagated through the system (cf. Equation (13)). For325

this, current estimate for the stiffness matrix Kk is required. As per the current tensegrity configuration,326

extracted from the current estimates for the state ensembles, xi,jk−1|k−1, the member lengths, lm, and trans-327

formation matrices, Tm, are updated. Next, with current parameter particles, ξjk, and state ensembles,328

xi,jk−1|k−1, the current estimate for stiffness matrix, Ki,j
k|k−1, is calculated. Ki,j

k|k−1 is associated to ith ensem-329

ble, xi,jk−1|k−1, and jth particle, ξjk. Thus combining Equations (7) and (16), the current estimate for Ki,j
k|k−1330

can be obtained as,331

Ki,j
k|k−1 =M(ξjk,x

i,j
k−1|k−1) (18)

where,M(•) is the stiffness calibration function that takes basis on the current tensegrity configuration. The332

prior state ensembles xi,jk−1|k−1 are further propagated to the next time step as propagated ensembles, xi,jk|k−1,333

as per Equation (13). Subsequently, these propagated ensembles are observed as measurement predictions,334

yi,jk|k−1, following Equation (14). The process and measurement equation for the system is presented in the335

following.336

xi,jk|k−1 = f(xi,jk−1|k−1,K
i,j
k|k−1,M, dt,vi,jk ) , where vi,jk ∼ N (0,Q)

yi,jk|k−1 = HB(xi,jk|k−1) + wi,j
k , where wi,j

k ∼ N (0,R) .
(19)

Next, the predicted measurement, yi,jk|k−1, is compared with the actual measurement obtained from337

the sensors. Innovation εi,jk can be obtained as the deviation of yi,jk|k−1 from the corresponding actual338

measurements yk. The innovation statistics is further quantified with an ensemble innovation mean εjk =339

1
Ne

∑Ne

i=1 ε
i,j
k . Next, the ensemble mean of propagated state estimates, xjk|k−1, and predicted measure-340

ments, yjk|k−1, are obtained as xjk|k−1 = 1
Ne

∑Ne

i=1 xi,jk|k−1 and yjk|k−1 = 1
Ne

∑Ne

i=1 yi,jk|k−1, respectively. Cross-341

covariance between state and measurement prediction, Cj,xyk , and the measurement prediction covariance,342

Cj,yyk , can further be computed as per [18].343

Cj,xy
k =

1

Ne − 1

Ne∑
i=1

(xjk|k−1 − xi,jk|k−1)(yjk|k−1 − yi,jk|k−1)T

Cj,yy
k =

1

Ne − 1

Ne∑
i=1

(yjk|k−1 − yi,jk|k−1)(yjk|k−1 − yi,jk|k−1)T

(20)

The innovation error covariance, Sjk, and EnKF gain, Gj
k, are then obtained as Sjk = Cj,yy

k + R and344
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Gj
k = Cj,xy

k (Sjk)−1. With this gain, the state ensembles are updated as,345

xi,jk|k = xi,jk|k−1 + Gj
kε
i,j
k (21)

Finally, likelihood of each particle, i.e. L(ξjk), is calculated based on the innovation mean, εjk, and346

co-variance, Sjk as,347

L(ξjk) =
1

(2π)n
√
|Sjk|

e−0.5ε
j
k

T
Sj

k

−1
εjk (22)

The normalized weight for each jth particle is further obtained using corresponding likelihood,348

w(ξjk) =
w(ξjk−1)L(ξjk)∑N
j=1 w(ξjk−1)L(ξjk)

(23)

The particle approximations for the states and parameters are then estimated as,349

xk|k =

Np∑
j=1

w(ξjk)xjk|k and θk|k =

Np∑
j=1

w(ξjk)ξjk (24)

For better understanding of the IP-EnKF algorithm used for tensegrity SHM, a pseudo code has been350

provided in Algorithm 1.351

Algorithm 1 IP-EnKF algorithm for tensegrity SHM

1: procedure IP-EnKF(yk,Q,R) . Process and measurement noise covariances
2: Initialize particles, {ξj0}, and state estimates, {xi,j0|0} . Initialization

3: for <each kth measurement yk> do
4: procedure IP-EnKF({ξjk−1}, {x

i,j
k−1|k−1})

5: for <each particle ξjk> do
6: Evolve {ξjk−1} → {ξ

j
k} . Particle evolution, as per Equation (17)

7: procedure EnKF(ξjk, {x
i,j
k−1|k−1},yk,Q

P
k ) . For jth particle

8: for <each ensemble xi,jk−1|k−1> do

9: Define external force, Pi,j
k as N (0,QP

k )
1

10: Obtain current stiffness, Ki,j
k|k−1 . see Equation (18)

11: Predict xi,jk|k−1 and yi,jk|k−1 . see Equation (19)
12: end for
13: Calculate xjk|k−1, Yj

k|k−1, εi,jk|k−1, Cj,xyk , Cj,yyk and εjk|k−1 . as per Section 2.2

14: Compute innovation error covariance (Sjk) and EnKF gain (Gj
k) . as per Section 2.2

15: Obtain corrected predicted state estimate, xi,jk|k . see Equation (21)
16: end procedure
17: end for
18: procedure Particle re-sampling({ξjk})
19: Calculate w(ξjk) for each ξjk and re-sample . see Equation (23)
20: Calculate, updated state estimate, xk|k and parameter estimate, ξ̄k . see Equation (24)
21: end procedure
22: end procedure
23: end for
24: end procedure
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4. Numerical Experiment352

Large scale tensegrity structures are typically designed or built as assemblage of several modular units353

as the basis of design and construction [47, 48]. These modular units are connected to each other by354

tension mechanism (cables). To check the efficacy of the proposed algorithm for tensegrity SHM, it has been355

numerically tested on two of the most common tensegrity modules: simplex tensegrity (ST) and expanded-356

octahedron tensegrity (EOT). These modules are first numerically simulated for strain responses under a357

WGN forcing. However, prior to the numerical simulation, their initial forms are estimated following the358

process detailed in Algorithm 2.359

In the following, a dynamic simulation is performed and strain data is collected from all the members360

that are not fixed. The responses from strain gauges are sampled at a fixed sampling frequency of 100 Hz361

[15, 55] for 5 seconds. Although average acceleration technique is unconditionally stable for all dt values, the362

study used a dt value that is also consistent with the explicit central difference scheme (ω∆t ≤ 2). To mimic363

real-life sensor data, the computed strain data is contaminated by adding (1%/2%/5%/10%) SNR WGN.364

Henceforth, the contaminated strain data is used as the actual measured data, yk, for IP-EnKF algorithm365

that has been used for tensegrity SHM.366

For both the aforementioned cases (ST and EOT), the effect of measurement noise level on damage367

detection accuracy along with the extent of damage that can be detected with precision, has been studied.368

The ability of the algorithm to detect multiple damages in a tensegrity has also been tested. The initial369

self-stressed configurations of tensegrity modules, ST (cf. Figure 4) and EOT (cf. Figure 2) have been370

obtained through force density-based form-finding algorithm (Appendix A) and are presented in Tables 2371

and 1, respectively, in terms of self-stress coordinates, member connectivity and initial tension coefficients.372

Figure 4: Simplex Tensegrity configuration

Adopted ST is a cylindrical tensegrity with 3 bars and 6 cables, whereas the EOT is a spherically373

symmetric tensegrity with 6 bars and 24 cables. The algorithm (Appendix A) to obtain initial statically374
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stable coordinates has been verified with [7]. All the members, cables and bars, of both the tensegrities are375

assumed to be made of steel (modulus of elasticity = 200GPa). The diameters of bar and cable members376

are taken as 20mm and 5mm, respectively. For dynamic analysis, each of them is connected to a fixed base377

at three nodes: (1-3) for ST (cf. Figure 4) and (1,2,6) for EOT (cf. Figure 2). The stable form of the378

tensegrities is further excited with an ambient Gaussian force (elaborated later for each case) applied to ST379

and EOT on the fourth and the third node, respectively, in x-direction.380

Table 2: Nodal coordinates, elemental connectivity and initial tension coefficients of simplex tensegrity (ST) (with c:cable and
b:bar)

Node 1 2 3 4 5 6

ST
X 0.577 -0.244 -0.266 -0.452 0.0094 0.509
Y 0 0.5 -0.461 0.301 -0.542 0.279
Z 0 0 0 0.919 0.919 0.919

Element 1 2 3 4 5 6 7 8 9 10 11 12

ST

Node 1 1 2 3 1 2 3 4 5 6 1 2 3
Node 2 2 3 1 6 4 5 5 6 4 4 5 6
Type c c c c c c c c c b b b

Initial tension coeff. (N/m) 0.6834 1.1837 0.6835 -1.1838

For both the tensegrity modules, damage is induced in their members 0.5s after the simulation starts.381

The initial distribution type for the parameter particles, θk (HIs) is set to be Gaussian, with their mean set382

as 1 assuming an undamaged condition and a standard deviation of 0.02, with α chosen as 0.90 (cf. Equation383

(17)). For consistency and understanding, the HIs of damaged members are compared to the HI (= 1) of384

undamaged member 10 for all the cases.385

4.1. Effect of external load on vibrational properties of undamaged tensegrity386

As already discussed in the article, upon load application, the vibrational properties of a tensegrity387

change due to a change in the tensegrity stiffness owing to the change in the pre-stress. This has been388

demonstrated through an example case study on the ST subjected to an external WGN load of variance389

1.25 × 104N2 . In the case study, the WGN is applied on the fourth node along its x-direction (cf. Figure390

4). No member is damaged and the system is simulated for 5 seconds. The responses are recorded at a391

sampling frequency of 100 Hz. It is observed that under varying external load, natural frequencies of ST392

change considerably even in the absence of any damage. Figure 5 demonstrates the relative change in first393

three natural frequencies (ω1, ω2 and ω3) in time under a time varying load in comparison to their values394

(ω0
1 , ω

0
2 and ω0

3) corresponding to a stable form. Clearly, this establishes that modal comparison is not an395

option for tensegrity SHM and establishes the necessity for time domain approaches. Further, since the396

tensegrity stiffness is a function of force, a tensegrity with unknown force can not evidently be estimated397

with a deterministic approach. This emphasizes the need for probabilistic approaches in which the system398

health can be estimated with a probabilistic measure and thereby justifies the employment of the proposed399

Bayesian filtering-based algorithm.400
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Figure 5: Variation in frequency (1st, 2nd & 3rd) of simplex (undamaged) under varying load

4.2. Calibration of particle and ensemble pool401

A calibration study has been performed on ST to identify the minimum number of particles and ensembles402

that can be utilized to efficiently identify the damage induced. The details of tensegrity configuration, force403

statistics as well as simulation specification have been kept the same as specified in section 4.1. Further404

a 90% damage is induced in the 11th member of the simplex. A set of numerical experiments are further405

performed targeting evaluation of the optimal number of particles and ensembles to be utilized for the rest406

of the numerical experiments based on the algorithm’s performance for accuracy and computational time.407

Firstly, the number of particles are varied as 500, 1000, 2500 and 5000 for an ensemble pool size of 50408

ensembles (cf. Figure 6a). It has been observed that, beyond a particle pool size of 2500, the accuracy is not409

improving any further while only the computational expense is increasing substantially. Thus, a pool size of410

2500 particles is chosen for PF. Next, optimal number of ensembles has been tested for EnKF with ensemble411

pool sizes of 75 and 100 (cf. Figure 6). Again it has been observed that an ensemble pool of 100 ensembles412

is sufficient to achieve desired accuracy while being within a manageable computational demand. A lower413

value of ensemble number (here, 50) decreases the overall accuracy of the algorithm for all particle sizes414

(500/1000/2500/5000). It should also be noted that increasing the particle size improves the promptness415
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in detection for the algorithm while increasing the computational cost of the algorithm as well. Thus for416

estimation of the tensegrity health with proposed IP-EnKF, 2500 filter particles are selected for the PF417

while 100 ensembles are chosen for the EnKF.418
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Figure 6: Effect of number of particles and ensembles (NEns) on accuracy and computational time of the algorithm

4.3. Simplex tensegrity (ST)419

In the following, the proposed algorithm is tested on an ST module (cf. figure 4) while keeping the420

force statistics, application node, and other simulation specifications, the same as provided in section 4.1421

for the sake of consistency. Again a damage is induced in its 11th member (bar) by numerically reducing422

its stiffness by 90%, 0.5s after the start of simulation. Strain measurements are collected from all the423

unrestricted members of ST, i.e, members {4− 12}, under various SNR levels.424

The proposed algorithm is tested for its sensitivity against measurement noise contamination. Four425

SNR levels are selected for this comparison: 1%, 2%, 5% and 10%. Damages have been detected, localized426

and quantified for all noise levels (cf. Figure 7) with acceptable accuracy; although the promptness is not427

observed with noise of 10% SNR (cf. Figure 7). Clearly, this states that the proposed algorithm is sufficiently428

accurate with practical noise contamination levels.429
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Figure 7: Measurement noise sensitivity of proposed approach - ST

To check the capability of the proposed approach to detect multiple damage in a tensegrity, a 90%430
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damage (HI = 0.1) is introduced to 8th and 11th member of the ST (cable and bar, respectively). The431

damage is induced simultaneously after 0.5s of simulation. The simulated strain data is contaminated with432

1% SNR WGN. The algorithm is capable to detect multiple damages, irrespective of the type of member433

(cable or bar), with equal promptness and precision (cf. Figure 8).434
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Figure 8: Multiple damage detection by the proposed approach - ST

Figure 9, shows the ability of the proposed approach to identify various damage levels (10%, 20%, 30%,435

40% and 90%) with corresponding HIs = {0.9, 0.8, 0.7, 0.6 and 0.1}. It has been observed that for the436

lower damage levels (10%), the algorithms output might confuse the investigator since the accuracy of the437

estimation may get masked within the estimation variation. However, for moderate or high levels of damage,438

demarcation of damaged state is quite straightforward with the proposed algorithm. It has been experienced439

that the proposed algorithm can effectively demarcate a damaged member having a damage level as small440

as 20% (HI = 0.8) without any confusion.441
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Figure 9: Detection of various damage levels by the proposed approach - ST

The minimum number of strain gauges required by the proposed approach to detect damage in ST, has442

been further investigated (cf. Figure 10). Following cases have been included, i) 9 strain gauges {4 − 12},443

ii) 6 strain gauges {4 5 7 8 10 11}, iii) 3 strain gauges {5 8 11}, and iv) 1 strain gauge {11}. A 90% damage444

is induced in the 11th member for all the above cases. It is observed that the algorithm is able to detect the445

damage with acceptable level of accuracy, even with a single strain gauge. Notably, the placement of sensor446

plays a major role in precision and promptness of the algorithm: sensors in the vicinity of the damages always447
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alleviate the effort to detect them. This has been exhibited by the proposed approach as well. Nevertheless,448

with the increasing numbers of sensors, this problem is observed to attenuate. This aspect is however very449

much system specific. Accordingly, this case study can only give an idea about minimum sensors required450

and as such can not help to interpret the efficacy of the proposed algorithm.451
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Figure 10: Performance of proposed approach under varying number of strain gauges - ST

4.4. Expanded-octahedron tensegrity (EOT)452

Further, similar numerical experiments are performed on an EOT module, three times larger in dof s453

than the ST tested before. The objective is to check the efficacy of the algorithm with larger systems.454

An external WGN load of variance 1.25 × 104N2 has been applied on the third node along its x-direction455

(cf. Figure 2). 0.5 s from the start of the simulation, a 90% damage level in the 11th member (cable) of456

EOT is simulated. The sizes of particle and ensemble pool were selected as 2500 and 100, respectively.457

Strain measurements are collected from all the unrestricted members, i.e, members {1− 21, 24− 30} of the458

EOT, under various SNR (1%, 2%, 5% and 10%). As was observed for ST, the estimation is found to be459

prompt and accurate till noise contamination level of 5% SNR WGN (cf. Figure 11), beyond which (10%460

SNR) promptness is compromised while estimation still being accurate. It has further been realized that for461

highly noisy systems, promptness can be regained by increasing the number of particles, ensembles or both,462

which however comes at a higher computational cost.463
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Figure 11: Measurement noise sensitivity of proposed approach - EOT
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To investigate the efficacy of the algorithm for multiple damage cases in EOT, two cable members464

(11 and 24) are simultaneously damaged to 90% damage level. A noise of 1% SNR level is added to the465

strain data. It has been observed (cf. Figure 12) that the algorithm is able to detect damage with equal466

precision and promptness, even if same member types (cables in this case) are damaged.467
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Figure 12: Multiple damage detection by the proposed approach - E0T

The algorithm is further tested to determine the extent of damage level that can be estimated for EOT468

(cf. Figure 13). Five different damage levels: 10%, 20%, 30%, 40% and 90%, are tested in this endeavor.469

The algorithm precisely detects a damage level of 20%, corresponding to an HI = 0.8.470
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Figure 13: Detection of various damage levels by the proposed approach - EOT

As observed for ST, the proposed algorithm is able to accurately detect damage with strain gauge471

number as low as one (cf. Figure 14). The observation has been made by applying a 90% damage in the472

11th member of EOT, for each of the following cases, i) 28 strain gauges {1 − 21, 24 − 30}, ii) 15 strain473

gauges {1 3 4 6 7 10 11 14 17 19 20 25 26 28 29}, iii) 6 strain gauges {4 11 19 24 26 28}, and iv) 1 strain474

gauge {11}. A decrease in the employed number of sensors is observed to affect the promptness of detection.475

Further, a few false positives (for damages below 40%) have also been observed for lower sensor number.476

This is although expected since compared to ST, EOT is defined with higher dof s and therefore needs more477

sensors to get monitored.478

Finally, it has been observed that for both the tensegrities, the poor detection performance of the algo-479

rithm, owing to higher noise contamination and/or weaker damage levels, can still be improved by employing480
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Figure 14: Performance of proposed approach under varying number of strain gauges - EOT

bigger particle and/or ensemble pools. Two sets of experiments are performed on ST and EOT specifically481

for those cases for which the algorithm performed poorly (i.e. cases with 10% SNR noise contamination and482

10% damage). For both ST and EOT, the loss of promptness due to high level of noise contamination is483

regained (cf. 15a and 16a) after enhancing the particle and ensemble pools to 5000 and 200 respectively.484

The enhanced pool sizes also improved the precision and stability for the estimation of weak damages (cf.485

Figures 15b and 16b). This in turn enables the algorithm to handle more complicated problems using486

compute-intensive approaches.487
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(a) Damage detection from a highly contaminated response
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(b) Weak damage level detection

Figure 15: Effect of selecting a bigger particle and/or ensemble pools - ST
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(a) Damage detection from a highly contaminated response
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(b) Weak damage level detection

Figure 16: Effect of selecting a bigger particle and/or ensemble pools - EOT
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5. Conclusion488

A novel interacting filtering based damage detection approach has been proposed for tensegrity structures.489

The approach successfully estimates the health parameters, through PF, along with the system states,490

through EnKF nested inside the PF. Proposed probabilistic approach enables monitoring the tensegrity491

health as long as a precise model of tensegrity dynamics is available and the input forcing statistics is known492

to the investigator. No explicit knowledge of input time history is required for the estimation. The method493

is found to be efficient in accurate detection and localization of the tensegrity damages and sufficiently494

robust against practical levels of measurement noise. The algorithm is observed to perform even with sparse495

instrumentation. Multiple damage cases were also detected without any confusion. Promptness and precision496

is observed to be affected for the weak damage cases and/or highly contaminated signals. Nevertheless, it497

has also been observed that the performance for such cases can be rectified by employing bigger particle498

and/or ensemble pools at a higher computational cost. The algorithm however restricts itself for tensegrities499

subjected to stationary Gaussian forcing only. Further research is required in order to develop tensegrity500

SHM approaches that are robust against input forcing.501
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Appendix A. Form-finding of statically stable tensegrity650

To find the initial statically stable configuration of tensegrity, a Force Density Method based algorithm651

is utilized that optimizes force density coefficients, p, of the member elements to obtain initial coordinates,652

Xest, of the tensegrity. Along with the optimization of force density coefficients, global stability criteria653

[72] (cf. lines 12-15, Algorithm 2) are also introduced to obtain a stable tensegrity configuration. While654

constructing a physical tensegrity it has been noticed that the bars tend to buckle under self-stress. To avoid655

such a situation, local stability criteria (cf. lines 18-19, Algorithm 2) of buckling failure (pbars < pcritical)656
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as well as cable slackening (pcables > 0) have been added to the optimization.657

Algorithm 2 Form-finding algorithm to obtain initial stable configuration of tensegrity

1: Define connectivity of members, coordinates of known fixed dofs, member type (bar/cable), material properties
2: Initialize force density coefficients, p
3: procedure Statically stable form-finding (Optimizing with stability criteria)
4: procedure Optimize force density coefficients using fmincon (in-built MATLAB function) (pest)
5: Find force density matrix, D
6: Optimise p such that atleast 4 eigen values of D = 0 and D is positive semi-definite, for a 3 dimensional

tensegrity . For details see [69]
7: end procedure
8: Calculate force density matrix, D from estimated pest
9: Calculate nodal coordinates of the unknown free dofs, Xest from the null space of D by performing eigenvalue

decomposition . For details see [69]
10: Calculate Equilibrium matrix, A and Geometric matrix G . For details see [69]
11: Global stability checks: . For details see [72]
12: 1. rank(D) ≤ n− (d+ 1); for 3-d tensegrity d = 3
13: 2. eig(D) ≥ 0
14: 3. rank(G) = d(d+ 1)/2; for 3-d tensegrity d = 3
15: 4. rank(A) < total number of members present in tensegrity

16: Calculate pcritical = π2EI
l3

(pin-pin connections) to incorporate local buckling criteria for bars
17: Local stability checks:
18: 5. pbars < pcritical
19: 6. pcables > 0
20: if All the above six criteria are met then break
21: else p = pest; GO TO STEP 3
22: end if
23: end procedure

Appendix B. Explicit Newmark-beta method: incremental formulation658

Algorithm 3 presents the pseudo-code for explicit Newmark-beta method [15] utilized in this study.659

Algorithm 3 Explicit Newmark-beta method: incremental formulation

1: Average acceleration assumptions: β = 0.25; γ = 0.5
2: for <for each time step k> do
3: procedure State propagation(M,Kk−1, dt,Q,qk−1, q̇k−1, q̈k−1)
4: Re-calibrate Kk−1 as Kk as a function of qk−1 . See Section 2.1
5: Calculate Ck as a function of Kk and M . as per Rayleigh damping model
6: Realize Pk from the noise process N (0,Q) . White Gaussian noise forcing
7: a1 = M

βdt2
+ γCk

βdt

8: a2 = M
βdt

+ ( γ
β
− 1)Ck

9: a3 = ( 1
2β
− 1)M + dtCk( γ

2β
− 1)

10: K̂k = Kk + a1
11: P̂k = Pk + a1qk−1 + a2q̇k−1 + a3q̈k−1

12: qk = K̂−1
k P̂k

13: q̇k = γ
βdt

(qk − qk−1) + (1− γ
β

)q̇k−1 + (1− γ
2β

)dtq̈k−1

14: q̈k = 1
βdt2

(qk − qk−1)− q̇k−1

βdt
+ ( 1

2β
− 1)q̈k−1

15: end procedure
16: end for
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