Low-Rank Dynamic Mode Decomposition: An Exact and Tractable Solution - Archive ouverte HAL Access content directly
Journal Articles Journal of Nonlinear Science Year : 2022

Low-Rank Dynamic Mode Decomposition: An Exact and Tractable Solution

(1, 2) , (1, 2)
1
2

Abstract

This work studies the linear approximation of high-dimensional dynamical systems using low-rank dynamic mode decomposition. Searching this approximation in a data-driven approach is formalized as attempting to solve a low-rank constrained optimization problem. This problem is non-convex, and state-of-the-art algorithms are all sub-optimal. This paper shows that there exists a closed-form solution, which is computed in polynomial time, and characterizes the ℓ2-norm of the optimal approximation error. The paper also proposes low-complexity algorithms building reduced models from this optimal solution, based on singular value decomposition or eigenvalue decomposition. The algorithms are evaluated by numerical simulations using synthetic and physical data benchmarks.

Dates and versions

hal-03468966 , version 1 (07-12-2021)

Identifiers

Cite

Patrick Héas, Cédric Herzet. Low-Rank Dynamic Mode Decomposition: An Exact and Tractable Solution. Journal of Nonlinear Science, 2022, 32 (1), pp.article n°8. ⟨10.1007/s00332-021-09770-w⟩. ⟨hal-03468966⟩
29 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More