N
N

N

HAL

open science

Users trust assessment based on their past behavior in
large scale collaboration

Claudia-Lavinia Ignat, Quang-Vinh Dang

» To cite this version:

Claudia-Lavinia Ignat, Quang-Vinh Dang. Users trust assessment based on their past behavior in
large scale collaboration. ICCP 2021 - IEEE 17th International Conference on Intelligent Computer

Communication and Processing, Oct 2021, Cluj-Napoca/Online, Romania. hal-03469344

HAL Id: hal-03469344
https://inria.hal.science/hal-03469344
Submitted on 7 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-03469344
https://hal.archives-ouvertes.fr

Users trust assessment based on their past behavior
in large scale collaboration

Claudia-Lavinia Ignat
Université de Lorraine, CNRS, Inria
LORIA F-54000 Nancy, France
claudia.ignat@inria.fr

Abstract—In a large scale peer-to-peer collaboration where
control over data is given to users who can decide with whom
to share their data, a main challenge is how to compute trust in
the collaborators. In this paper we show how to automatically
compute users trust according to their past behavior during the
collaboration in order to be able to predict their future behavior.
We focus on two use cases: contract-based multi-synchronous
collaboration and trust game from game theory. We show that
computing trust from a single interaction between two users de-
pends on the application domain, but that a general methodology
for aggregating trust during the successive interactions between
two users can be applied for both use cases.

Index Terms—Ilarge scale peer-to-peer collaboration, trust,
contracts, trust game

I. INTRODUCTION

Most commonly used collaborative systems are those pro-
vided by large service providers such as Facebook and Google.
While these collaborative services offer very interesting func-
tionalities, they feature certain limitations. Most of the plat-
forms hosting these collaboration services rely on a central
authority and place personal information in the hands of a
single large corporation which is a perceived privacy threat.
Users must provide and store their data to vendors of these
services and have to trust that they will preserve privacy of
their data, but they have little control over the usage of their
data after sharing it with other users. These systems do not
scale well in terms of the number of users. Furthermore, user
communities cannot deploy these kind of service applications
since they generally rely on costly infrastructures rather than
allowing sharing infrastructure and administration costs.

Our vision is to move away from centralized authority-
based collaboration towards a large scale peer-to-peer (P2P)
collaboration where control over data is given to users who
can decide with whom to share their data. The risk of privacy
breaches is decreased in this P2P collaboration as only part of
the protected data is exposed at any time. The main strengths
of P2P systems [24] are their independence of a centralized
control and of a dedicated infrastructure. Participating nodes
are owned and operated by independent individuals and there-
fore administration costs of the system are shared. Distinctive
characteristics of P2P systems are high scalability, resilience
to faults and attacks and a low deployment barrier for new
services.

Quang-Vinh Dang
Industrial University of Ho Chi Minh City
Ho Chi Minh City, Vietnam
dangquangvinh@iuh.edu.vn

In this large scale peer-to-peer collaboration a main question
is how to choose your collaborators that you can trust in order
to share them your data. A rational decision would be based
on the evaluation of previous collaborative behavior of your
collaborators. In a large scale collaboration we cannot remem-
ber the interactions of all users with whom we collaborated
and sometimes we have a false impression on the contribution
of our collaborators. Some of them are modest and do not
know to put themselves forward, while some others know to
exaggerate their contribution. A trust value that is computed
automatically based on previous collaboration behavior would
be of great help to users. A main challenge in this task is how
to compute this trust value according to past collaboration in
order to be able to predict future user behavior.

In this paper we show how to assess users trust according
to their behavior during collaboration in a large scale envi-
ronment. We focus on two use cases: contract-based multi-
synchronous collaboration and trust game from game theory.
In what follows we explain our choice for these two use cases.

The multi-synchronous mode of collaboration [12] is the
most general collaboration model, allowing to maintain mul-
tiple, simultaneous streams corresponding to multi-user activ-
ities, and then looking to manage divergence between these
streams. In this collaboration mode users can work indepen-
dently with different streams of activity on the shared data.
These streams can diverge and hence users have different
views of the shared data. Divergence can arise due to delays in
the propagation of operations on the shared data or execution
of conflicting operations. These divergent streams synchronise
at a later time and hence re-establish a common view of
the shared data. In a contract-based multi-synchronous model,
contracts are specified by data owners when they share the data
and the adherence to or violation of contracts can be checked
after users gained access to data.

As an example of the contract-based multi-synchronous
collaboration we can consider implicit contracts in distributed
version control systems (DVCS) widely used for source code
development. In open source projects, usage restrictions are
expressed in the license of the code, while in closed source
code projects, these restrictions are expressed in the contracts
developers sign when accepting their job. In both cases, usage
restrictions are checked a posteriori outside the collaborative
environment with social control or plagiarism detection.

Audit of user compliance to the given contracts in the
contract-based multi-synchronous collaboration would allow
the computation of trust scores associated to users. This trust
scores would help users collaborate with other users they trust.
In the example of DVCS systems, as a result of observations
concerning usage violation, trustworthiness on the users who
misbehaved is implicitly decreased and collaboration with
those users risks to be ceased.

Our second use case is the trust game [4]], a money exchange
game that has been widely used in behavioral economics for
studying trust and collaboration between humans. In this game,
exchange of money is entirely attributable to the existence of
trust between users. In the context of the trust game we are
interested in evaluating user trust that reflects user behavior
during the game in terms of the sum of money exchanged.

In [28]-[31] we presented the model underlying a contract-
based multi-synchronous collaboration and an auditing mech-
anism that can check user compliance to the given contracts.
In this paper we propose a trust metric for the contract-based
mult-synchronous collaboration that computes user trust levels
according to the auditing results. In [[10] we proposed a trust
metric that computes user trust levels according to their past
behavior in trust game. In this paper we study the similarities
and differences in computing user trust in the two use cases,
i.e. contract-based multi-synchronous collaboration and trust
game. We show that computing trust from a single interaction
between two users depends on the application domain, but
that a general methodology for aggregating trust during the
successive interactions between two users can be applied for
both use cases.

The paper is organised as follows. In sections [lI| and
we present our solution for assessing trust in a contract-based
multi-synchronous collaboration and trust game respectively.
Section discusses the general methodology for trust as-
sessement in a collaboration involving a sequence of interac-
tions among users and presents some principles for designing a
trust function describing a single interaction among two users.
Section [V] presents an overview of existing approaches for trust
assessment in multi-synchronous collaboration and trust game.
Finally, section [VI| presents some concluding remarks.

II. TRUST ASSESSMENT IN CONTRACT-BASED
MULTI-SYNCHRONOUS COLLABORATION

In a contract-based model each user maintains a local
workspace that contains shared data and contracts for the usage
restriction of that data as well as changes on data. Changes
done locally on the data together with specified contracts are
shared with other users.

Modifications that users do on the different parts of shared
documents and contracts specified by users while they ex-
change different versions of the document with other users
are kept in logs of operations maintaining information about
who did the operation and when the operation was performed.
These logs are updated at user sites when operations are
generated locally or when they are received from other users.

A replica log therefore contains all operations that have been
generated locally or received from other users.

Events and log structures are defined as follows:

Definition 2.1 (Event): Let P be a set of operations {insert,
delete, update, share} that users can generate; and let T be
a set of event types {write, communication, contract}. An
event e is defined as a triplet of (evt € T, op € P, attr), in
which attr includes attributes which are in form of {attr_name,
attr_value} to present additional information for each event.

Definition 2.2 (Log): A document log L is defined as an
append-only ordered list of events in the form [eq, ea, ..., e,].

Events of type write can be operations of insert, delete and
update on the document. The event corresponding to a share
operation of type communication is issued when a user pushes
his changes and it is logged at the site of receiver when this
one performs a pull. This share event can be followed in the
log by an event of type contract representing usage policies
for the shared data.

A contract is a special type of log event being composed
of a set of contract primitives. In what follows we provide the
definition of contract primitive and of contract.

Definition 2.3 (Contract primitive): A contract primitive
is composed of a deontic operator (P - the permitted, O -
the obligatory, F' - the forbidden) followed by a write or a
communication operation in P = {op1,0pa, ..., op, }. If op is
an operation in PP then the contract primitive c,;, based on op
is denoted as: F,, (doing op is forbidden), O, (doing op is
obligatory), and F,, (doing op is permitted).

Definition 2.4 (Contract): A contract C is a set of contract
primitives which are built on these operations of P. It is
denoted as Cp = {Cop,; Copss - - - ; Cop,, - Alternatively, we can
use the notation C' = {Cop, , Copy, - - - s Cop,, } fOr a contract.

Through a mechanism of log auditing we check whether
user actions comply with contracts. Log auditing is an ap-
proach that adopts a posteriori enforcement of controlling
compliance of users after the fact. The main principles of our
auditing mechanism for the multi-synchronous collaboration
are:

1) Users can automatically audit the log in order to make
misbehaving users accountable for their actions without
the need of any central authority. In this way the depen-
dence on an online entity that provides auditing logs is
overcome. However, the disadvantage of the mechanism
is that users have no knowledge about global actions
done by all other users in order to completely assess
if a particular user behaved well or not. Our auditing
mechanism is therefore based on incompleteness evi-
dence. However, this assumption is suitable to human
society where a person is assessed only based on some
of her noticed behavior.

2) Logs that reflect actions done by users and that are input
to the auditing mechanism must be maintained correctly.
A solution based on authenticators for detecting log
tampering can be adopted, log tampering being detected
at time of synchronization before the log is accepted by
receivers [32].

3) By means of an automatic log auditing users can dis-
cover other users that misbehaved. Their trust levels can
be accordingly automatically updated.

We identified three types of attacks that might lead to

contract violation.

« Malicious users tamper logs to eliminate or modify con-
tracts or other events in the log. We consider that a user
u is malicious if she re-orders, inserts or deletes events
in the log. For instance, u removes some obligations that
she does not want to fulfill. This kind of attack can be
detected by a log authentication mechanism.

o Malicious users perform actions that are forbidden by
the specified contracts. These action events are labelled
as bad.

« Users neglect obligations that need to be fulfilled. For in-
stance, a user receives an obligation “insert is obligatory”
but she never fulfills this obligation. If at a given moment
a log auditing mechanism is performed and no event that
fulfills the obligation is found, we cannot claim that the
user misbehaved. The user might fulfill the obligation at
a later time. The given obligation is labelled as unknown
meaning that the obligation has not yet been fulfilled.
Once the obligation is fulfilled, the unknown label is
removed.

Users are expected to respect given contracts. If a user
respects all given contracts, then she will get a good trust
value assessed by others. Ideally, if a user misbehaves in one
of the three ways mentioned above, his misbehavior should
be detected by other users. The auditing mechanism returns a
trust value that is computed from the number of events labelled
with good, unknown and bad.

Our auditing mechanism aims at finding contract violations
and making users accountable for their irresponsible actions by
adjusting their trust levels following a trust metric. The general
idea of the auditing algorithm (Algorithm [I) automatically
executed locally by each user is to browse their log and
check each event appearing in the log whether it conforms
to the given contracts. For each violation of a particular user
found, we increase the number of bad events counted for the
user. Similarly for each obligation that is not yet fulfilled,
we increase the number of unknown events. The number of
contract violations of user v over all the total audited events
done by v is used to compute the trust level of v.

Algorithm (1| audit takes as input the local log L of user u
and the position in the log lastCheckedPos identifying the last
event checked by the auditing mechanism. L is browsed to
check whether log events respect or not the given contracts.
This corresponds to the case where the user v audits actions
of all other users v who performed events in the log. Trust
values of all audited users v in V' are recomputed based on
auditing results.

contracts[v] and obligations|v] are used to keep a set
of contracts and a set of obligations which user v holds,
respectively (obligations[v] € contracts[v]).

For each event e in the log L, we check its event type,
contract or write event. If e is a contract given to user v then

Algorithm 1: audit(L, lastCheckedPos)
1 for i = lastCheckedPos + 1 to length(L) do

2 e « ith event in L;

3 if (e.evt =’ contract’) then

4 v+ e.to;

5 if (v € contracts) then

6 contracts[v] « contracts[v] U {e};

7 else

8 contractsv] « {e};

9 if e overrides c in contracts[v] then

10 contracts[v] < contracts[v] \ {c};

11 if (e.attr.modal =" O’) then

12 if (v € obligations) then

13 obligations[v] < obligations[v] U {e};

14 else

15 obligations[v] < {e};

16 if (v € numberO fUnknownFEvents) then

17 numberO fUnknownEvents[v] <
numberO fUnknownEvents[v] + 1;

18 else

19 numberO fUnknownEvents[v] < 1,

20 else

21 v 4 e.by;

2 if e violates contracts|v] then

23 if (v € numberO f BadEvents) then

24 numberO f Bad Events[v] +
numberO f BadEvents[v] + 1;

25 else

26 numberO f BadEvents[v] + 1;

27 if e fulfills c in obligations[v] then

28 obligations[v] < obligations[v] \ {c};

29 numberO fUnknownEvents[v] — —;

30 V+«Vu{vkh
31 if (v € numberO f Audited Events) then

32 numberO f Audited Events[v] +
numberO f Audited Events[v] + 1;

33 else

34 numberO f Audited Events[v] + 1;

35 foreach v in V do
36 current_trust[v] <
exp(—A x (numberO fUnknownEvents[v] +
k x numberO f BadEvents[v])/((1 + k) x
numberO f Audited Events[v]);
37 if (v € trust) then
38 trustv]
a X current_trust[v] + (1 — a) x trust[v];
39 else
40 trust[v] < current_trust|v];

it is added to contracts[v]. Moreover, if e is an obligation, it

is counted as unknown event until an event that fulfills it will
be found. If e is a write or a communication event performed
by user v, it is checked if it complies with or violates contracts
in contracts[v]. For each user v, numberOfBadEvents[v] and
numberOfUnknownEvents[v] are used to count the number
of bad and unknown events that are audited, respectively
(remaining events are considered good). audited Events[v] is
used to count the total number of audited events. All users v
audited by u are inserted in set V.

Before the auditing mechanism is applied, several variables
are initialised as shown in the procedure [initialization] The set
of audited users V' is initialised to the empty set. contracts
and obligations are represented as a map between users and
a set containing log events (contracts and obligations re-
spectively). numberOfUnknownEvents, numberOfBadEvents,
numberOfAuditedEvents, current_trust, trust are represented
as a map between users and integers.

Procedure initialization

1V < new set();
contracts < new map();
obligations < new map();
numberO fUnknownEvents < new map();

numberO f Audited Events < new map();

2
3
4
5 numberO f BadEvents + new map();
6
7 current_trust < new map();

8

trust < new map();

A user u can perform log auditing at any time at local site.
As a result of log auditing, user u updates the trust values
of users in the system. Log analysis has a time complexity
O(n) where n is the number of events that are audited. In
case auditing creates significant overhead, users might skip
auditing some parts of log with events performed by highly
trusted users. However, in case these users behave badly, they
are discovered only in a next auditing phase.

In order to manage trust levels, we need a decentralized
trust model. The trust level of a user assessed by one another
could be aggregated from log-based trust, reputation trust
and recommendation trust. We propose an example of a trust
metric, where the trust value is computed directly by users
based on auditing of their local log and not from an indirect
source such as a recommendation.

The current trust value for a user is computed based on
auditing results consisting of the number of writing events that
violate contracts defined as bad, the number of contract events
that are not fulfilled defined as unknown since it is unknown
whether they will be fulfilled in the future and the number of
remaining events that are neither bad nor unknown, defined as
good.

We consider trust values range in the interval [0..1]. If
all audited events are good, then the trust value equals 1.
Otherwise, the unknown and bad events decrease the trust
value. We denote by x1, xo and x3 the number of good,

unknown and bad events, respectively and by y = 1 +x2+x3
the total number of audited events. We assume the number
of bad events, x3, is k times stronger than x5 in decreasing
trust. Applying weighted mean of x5 and x3 to compute the
decrement they cause on trust values over y audited events,
we have:

ZTo + k x T3
malicious_rate = 1+k _ + kX3
Y y+kxy
We wanted to define a trust function that varies according
to the number of malicious events. In a system where viola-
tions are assumed happening rarely trust should be decreased
quickly if violations are found, while in a system where
violations are assumed easily happening trust should not be
decreased strongly. In the multi-synchronous collaboration
model based on contracts we assume that users perform actions
mostly according to their given contracts, so violations will
occur rarely. We considered that when bad events occur, trust
value should decrease quickly. This assumption is realistic as
in social life where one bad action might strongly decrease the
reputation of a trusted person. Derived from this hypothesis,
we designed the following trust function that decreases expo-
nentially with the amount of bad events or unknown events
found, A being the decreasing coefficient, u being the auditor
user and v the auditee user:

“ax zot+kXxg

current_trust(u,v) =e Ry

Fig.[I] depicts an example of trust values computed from the
following parameters. The total number of events is y = 100.
The bad events are three times more dangerous than unknown
event, k = 3. The decreasing rate for trust in case of malicious
events is A\ = 5. The graph plots function e ~°* =555 . We can
see that trust has the highest value 1 when no malicious events
(bad and unknown) are found. Otherwise, trust decreases expo-
nentially, however, it decreases more slowly on the dimension
of unknown than the dimension of bad.

Trust value in user v assessed by user u is updated at each
step n when an auditing is performed by u. Given the last
trust value in user v assessed by user u, trust,_1(u,v), the
new trust value in user v is computed by u as an aggregation
between the current trust current_trust(u,v) and the last
trust value trust,_1(u,v) where n > 2.

trust, (u,v) =a X current_trust(u,v)
+ (1 —) X trust,—1(u,v)

« stands for the importance of the current trust against the
old trust value computed from the last auditing phase, where
0 < a < 1. trusty (u,v) = current_trust(u,v) is the trust
between v and v computed after the first auditing phase.

ITI. TRUST ASSESSMENT IN TRUST GAME

We reviewed game theory literature in the fields of cognitive
science, psychology and economics and investigated whether

exp (-5* (x+3*y) /400)

cocoococoocoo
CRNWEUOJ®OF

coococooooo o
FRWe oo a®o

60

unknown

Fig. 1. Current trust computed from the variations of number of bad and
unknown events that are found after auditing, 0 < zo < 100, 0 < z3 < 100.

there is a game theory model that could reflect collaborative
document sharing and that deals with user reputation and
trust. The most appropriate game theory model is the trust
game, also known as the investment game developed by Berg
in 1995 [4], a money exchange game that is widely used
in economics to study trust between users [20], [22]. In
the traditional trust game, an investor (also called “sender”
or “trustor”) can invest a fraction of his money, and the
broker (also called “receiver” or “trustee”) can return only
part of his gains. If both players follow their economics-based
best interest, the investor should never invest and the broker
should never re-pay anything. The observed money exchange
is entirely attributable to the existence of trust. We illustrate
next an example of the exchanges between the “sender” and
the “receiver”. Initially the sender sends an integer amount
between 0 and 10 units to the receiver. The receiver gains three
times the amount sent. For instance, if the sender sent 7 money
units, the receiver will gain 3 x 7 = 21 units. Subsequently,
the receiver can select an amount between 0 and the gained
amount (in this case, 21) to return to the sender. However, the
returned amount is not further multiplied. Suppose the receiver
returned 11. The final payoff to the sender is 11 units, and the
payoff to the receiver is 21 — 11 = 10 units.

The trust game can be one-shot, i.e. the game ends after
one round of money exchange, or repeated, i.e. it lasts several
rounds [2], [7], [14]. The pairs of users could be fixed [9]
or re-assigned before each round [13|]. These games provide
different kinds of partner information to players, such as their
gender, age and income [26]], or their past interaction history
(51, [13].

We aimed to design a trust metric that computes partner
trust as a basis for the prediction of partner behavior in the
repeated trust game. Game theory predicts that, in trust game,
sender will send 0 and receiver will send back O [8]]. However,
in experimental game theory we usually do not observe this
user behavior as there is a trust built between the sender and
receiver and if the sender sends some money, the receiver will

return accordingly and so on.
The trust score function needs to satisfy the following
requirements:
1) The trust value is higher if the sending amount is higher.
2) The trust value can distinguish between different types
of users: honest and malicious ones.
3) The trust value considers user behavior over time.
4) The trust value encourages a stable behavior rather than
a fluctuating one.
5) The trust value is robust against attacks.

A. Current trust

Separate trust scores are calculated for each player for each
round, i.e. for each interaction between two players. The round
number is denoted as ¢.

In each round, two users interact by sending a non-negative
amount. For senders, the maximum amount they can send is
set to 10, and for receivers, the maximum amount they can
send is the amount they received from the sender (i.e. three
times of what the sender sent). For both roles, we normalize
the sending amount of both roles to send_proportion, as the
sending proportion of a user at round ¢, with ¢t > 1:

sending_amount;

send_proportion; = - -
mazximum_sending_amount;

It is obvious that Vt,0 < send_proportion; < 1.

We defined the trust metric for a single interaction be-
tween users as current_trust. current_trust; is a function
of send_proportion;, meaning that the trustworthiness of a
user in a single interaction depends on how much she sends
to her partner in round ¢. current_trust; should have a value
between 0 and 1 inclusive. This function should satisfy the
following properties (for convenience, we use the notation
f(z), f : [0,1] — [0,1] for the function of current_trust:,
with = being send_proportion;):

e f(z) is continuous in [0, 1].

e f(0) = 0, meaning that current_trust is O if the user

sends nothing.

e f(1) = 1, meaning that current_trust is 1 if the user
sends the maximum possible amount.

o f'(z) > 0 with z € [0, 1], meaning that current_trust is
strictly increasing when send_proportion increases from
0 to 1. f/(z) denotes the derivative of function f(x).

o f’(z) <0 with z € [0,1] meaning that the function is
concave, i.e. the closer to 1 the value of current_trust
is, the harder is to increment it.

o f'(z7) = f'(zT),Vx € [0,1], meaning that the function
is smooth, i.e. there is no reason that at some point the
current trust increases roughly less than previously.

We proposed the following function that satisfies the above

mentioned conditions:

current_trust; = log(send_proportion; x (e — 1) + 1)

where current_trust; is the current_trust function at round
t and send_proportion; is the value of send_proportion at
round ¢.

B. Aggregated trust

We needed to calculate the aggregate trust score, which
is the cumulative trust score over multiple rounds. Similar
to trust computation in contract-based multi-synchronous col-
laboration, we defined the aggregate trust score function as
an exponential averaging update function over the previous
interactions between the two users that gives more weighting
to the current computed trust than the simple average does.

aggregate_trust; = oy X current_trust;

+ (1 — a4) X aggregate_trust,_;

The requirement for our aggregate function was that it
has to encourage a stable behavior rather than a fluctuating
one. Our aggregate function was inspired by the trust model
SecuredTrust [11]] for computing trust and reputation of inter-
acting agents in a multi-agent system in the presence of highly
oscillating malicious behavior. The weight o in the aggregate
trust score function has to change based on the accumulated
deviation [3;.

c X 515

1+ B
0p = |current_trust, — current_trust,_ |
B =cxd+(1—c)x B

oy = threshold +

The J; is the change of current trust value by two se-
quential interactions ¢ and ¢ — 1 between two users, where
current_trusty = 0. We calculated §; to see how much a
person changes her behavior since her last interaction.

Bo = 0. c is a constant that controls to what extent we react
to the recent change of the current trust. A higher value of ¢
gives more significance to the recent change of the current trust
(0;) than to the accumulated deviation 3;_1. We set ¢ = 0.9.

It is easy to prove that v is bigger if d; is bigger, and vice
versa. It means that, if the trust computed from the current
interaction is much different from accumulated trust of all
previous interactions, the current interaction will play a more
important role in the final trust value.

The threshold is used to prevent cy from saturating to a
fixed value. threshold was set to 0.25.

We showed that our trust metric can predict the future
behavior of users by analyzing its performance on several data
sets including [[13[], [6] and [[19] where the data is provided
under the form of a behavior log of participants. The total
data set comprised behavior of 174 participants in repeated
trust games. Based on the behavior log we applied our trust
metric on users behavior at a certain round, then used the
output trust score as the independent variable to predict the
users behavior in the next round. For all rounds starting with
round five, we found a high correlation between the output
trust scores and user behavior in the next round. The results
of the linear regression between our trust metric and future
users behavior at rounds five and ten are presented in Table
For the dataset in [6], because of the design of the experiment,

TABLE 1
REGRESSION BETWEEN TRUST METRIC AND FUTURE USERS BEHAVIOR.

Intercept Slope Adj.R?
Dataset [19] (round 5) 0.071 0.701%*%* 0.319
Dataset [19] (round 10) -0.022 0.913%** 0.542
Dataset [6] (round 5) -0.006 0.715%%* 0.362
Dataset [13]] (round 5) 0.072 0.848*** 0.356
Dataset [13]] (round 10) 0.027 0.855%** 0.357

We denote “***’ as significant level of 99.9%.

we could only test the relationship between our trust metric
and user behavior at round five. We considered the independent
variable as being the trust value our metric assigned to each
user before a particular round, and the dependent variable as
the behavior of this user in this round. We can notice that the
slopes of all regressions are significant, meaning that our trust
metric predicts well users behavior.

IV. DISCUSSION

A collaborative system can automatically assess trust of a
user u in another user v according to the past behavior of v
during its interactions with u. We proposed a general method
on how to assess the trust in user v according to his/her be-
havior during n successive collaborations with u. We proposed
that the trust value in user v assessed by user v is updated after
each interaction between the two users according to the current
interaction, but also taking into account previous interactions
between the two users. The values of trust computed during
previous interactions between two users are aggregated with
the trust value of the current interaction as an exponential
averaging update function as follows:

trust, (u,v) = a X current_trust(u,v)
+ (1 —) X trust,—1(u,v)

a (0 < a < 1) is the parameter standing for the importance
of the current trust against the old trust value computed from
the previous interactions. v can be a fixed constant or can be
further refined in order to deal with fluctuations of behavior
of user v during his/her successive interactions with user u as
we proposed for the trust game collaboration use case.

The trust value current_trust(u,v) from the current in-
teraction between v and v has to be defined according to
the specific application domain. In our first use case, the
contract-based multi-synchronous collaboration, the assump-
tion was that the majority of people behaves correctly so that
the trust value decreases each time a user misbehaves, i.e.
when unknown or bad events are audited. The trust function
current_trust is therefore a decreasing function in terms
of the number of malicious events. In our second use case,
the trust-based game, we wanted that the trust value in a
user should depend on the amount that user sends to the
game partner. The trust function current_trust is therefore
depending on send_proportion, i.e. the ratio over the amount

a user sends to the partner and the maximum amount that user
could have sent to the partner.

V. RELATED WORK

In this section we provide a short overview of trust man-
agement in the fields of multi-synchronous collaboration and
trust game.

In a distributed collaboration model where access is given
first to data without control but with restrictions that are
verified a posteriori, trust management is an important aspect.
The concept of trust in different communities varies according
to how it is computed and used. We rely on the concept of
trust which is based on past user behaviors [23]]. Trust is not
immutable and it changes over time. Thus trust should be man-
aged by using a trust model. A trust model includes three basic
components [25] that are gathering behavioral information,
scoring and ranking peers and rewarding or punishing peers.
Most of existing P2P trust models (e.g. EigenTrust model [21]])
propose mechanisms to update trust values based on direct
interactions between peers. In a collaboration model where
restrictions are verified a posteriori, log auditing helps one user
evaluate others either through direct or indirect interactions.
No existing trust model considers log auditing result for trust
assessment.

Several approaches on predicting behavior of participants in
one-shot trust game were proposed using additional informa-
tion related to players, such as their personal information (e.g.
age, gender, income) [[16], [34]] or evaluation collected through
some tests or questionnaires users needed to fill in before the
experiment [3]], [15[, [18], [33]. Sociometric information of
users is usually not available [27] and when available it is not
always reliable as users can declare false personal information.
Our method to model and predict users’ behavior does not
require any additional personal data and relies uniquely on
past user behavior during the game.

User trust in repeated trust game was measured as an
average value of previous sending amount [1f], [13]], [17], [20].
However, this average trust metric can not deal with malicious
user fluctuating behavior where users may strategically oscil-
late between collaboration periods when they aim gaining the
trust of the other users and sudden betrayal. Our metric for
repeated trust game punishes user fluctuating behavior.

VI. CONCLUSIONS

In this paper we showed how to automatically assess trust in
users according to their interactions during the collaboration.
We showed how trust can be computed in: (1) a contract-
based multi-synchronous collaboration where contracts are
specified by data owners when they share the data and the
adherence to or violation of contracts can be checked after
users gained access to data and (2) trust game where trust
between users can be computed according to the exchange
of money. A general methodology was proposed for both use
cases for aggregating trust during the successive interactions
between two users. However, computing trust from a single
interaction between two users depends on the application

domain and the associated semantics and we proposed trust
functions for each of the use cases. In future work we plan to
apply the same methodology for assessing trust in Wikipedia
contributors according to the quality of their contributions to
various articles.

VII. ACKNOWLEDGEMENTS

We thank Hien Thi Thu Truong for her preliminary work
on the trust metric in contract-based multi-synchronous col-
laboration.

REFERENCES

[1] Steffen Altmann, Thomas Dohmen, and Matthias Wibral. Do the

reciprocal trust less? Economics Letters, 99(3):454—457, 2008.

Vital Anderhub, Dirk Engelmann, and Werner Giith. An experimental

study of the repeated trust game with incomplete information. Journal

of Economic Behavior & Organization, 48(2):197-216, 2002.

Nava Ashraf, Iris Bohnet, and Nikita Piankov. Decomposing trust and

trustworthiness. Experimental Economics, 9(3):193-208, 2006.

Joyce Berg, John Dickhaut, and Kevin McCabe. Trust, reciprocity, and

social history. Games and economic behavior, 10(1):122-142, 1995.

[5] Gary E. Bolton, Elena Katok, and Axel Ockenfels. Cooperation among

strangers with limited information about reputation. Journal of Public

Economics, 89(8):1457-1468, 2005.

Giangiacomo Bravo, Flaminio Squazzoni, and Riccardo Boero. Trust

and partner selection in social networks: An experimentally grounded

model. Social Networks, 34(4):481-492, 2012.

Stephen V Burks, Jeffrey P Carpenter, and Eric Verhoogen. Playing both

roles in the trust game. Journal of Economic Behavior & Organization,

51(2):195-216, 2003.

[8] Colin Camerer. Behavioral game theory: Experiments in strategic

interaction. Princeton University Press, 2003.

Francois Cochard, Phu Nguyen Van, and Marc Willinger. Trusting

behavior in a repeated investment game. Journal of Economic Behavior

& Organization, 55(1):31-44, 2004.

[10] Quang Vinh Dang and Claudia-Lavinia Ignat. Computational Trust
Model for Repeated Trust Games. In Proceedings of the 15th IEEE
International Conference on Trust, Security and Privacy in Computing
and Communications - TrustCom 2016, pages 34-41, Tianjin, China,
August 2016.

[11] Anupam Das and Mohammad Mahfuzul Islam. SecuredTrust: A dy-
namic trust computation model for secured communication in multiagent
systems. [EEE Transactions on Dependable and Secure Computing,
9(2):261-274, 2012.

[12] Paul Dourish. The parting of the ways: divergence, data management
and collaborative work. In Proceedings of the fourth conference on
European Conference on Computer-Supported Cooperative Work, EC-
SCW’95, pages 215-230, Norwell, MA, USA, 1995. Kluwer Academic
Publishers.

[13] Dimitri Dubois, Marc Willinger, and Thierry Blayac. Does players’
identification affect trust and reciprocity in the lab? Journal of Economic
Psychology, 33(1):303-317, 2012.

[14] Jim Engle-Warnick and Robert L. Slonim. Learning to trust in indefi-
nitely repeated games. Games and Economic Behavior, 54(1):95-114,
2006.

[15] Anthony M Evans and William Revelle. Survey and behavioral mea-
surements of interpersonal trust. Journal of Research in Personality,
42(6):1585-1593, 2008.

[16] Armin Falk, Stephan Meier, and Christian Zehnder. Did we overestimate
the role of social preferences? The case of self-selected student samples.
CESifo Working Paper No. 3177, 2010.

[17] Edward L. Glaeser, David I. Laibson, Jose A. Scheinkman, and Chris-
tine L. Soutter. Measuring trust. Quarterly Journal of Economics, pages
811-846, 2000.

[18] Anna Gunnthorsdottir, Kevin McCabe, and Vernon Smith. Using the
machiavellianism instrument to predict trustworthiness in a bargaining
game. Journal of Economic Psychology, 23(1):49-66, 2002.

[19] Claudia-Lavinia Ignat, Quang-Vinh Dang, and Valerie L. Shalin. The
influence of trust score on cooperative behavior. ACM Transactions on
Internet Technology, 19(4):46:1-46:22, September 2019.

[2

—

3

—

[4

[inar)

[6

i}

[7

—

[9

—

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(271

[28]

Noel D Johnson and Alexandra A Mislin. Trust games: A meta-analysis.
Journal of Economic Psychology, 32(5):865-889, 2011.

Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina.
The Eigentrust algorithm for reputation management in P2P networks.
In Proceedings of the 12th International Conference on World Wide Web,
WWW 2003, pages 640-651, Budapest, Hungary, May 2003. ACM Press.
Roy J. Lewicki and Chad Brinsfield. Trust research: measuring trust
beliefs and behaviours. In Handbook of research methods on trust,
pages 46—64. Edward Elgar Publishing, 2015.

Mui Lik, Mohtashemi Mojdeh, and Ari Halberstadt. A Computational
Model of Trust and Reputation. In Proceedings of the 35th Annual
Hawaii International Conference on System Sciences, HICSS 2002,
pages 2431-2439, Waikoloa, Big Island, Hawaii, January 2002. IEEE
Computer Society.

Rodrigo Rodrigues and Peter Druschel. Peer-to-peer systems. Commu-
nications of the ACM, 53(10):72-82, October 2010.

Marti Sergio and Garcia-Molina Hector. Taxonomy of Trust: Categoriz-
ing P2P Reputation Systems. Computer Networks, 50:472-484, March
2006.

Robert Slonim and Ellen Garbarino. Increases in trust and altruism from
partner selection: Experimental evidence. Experimental Economics,
11(2):134-153, 2008.

Jiliang Tang, Huiji Gao, Huan Liu, and Atish Das Sarma. eTrust:
understanding trust evolution in an online world. In Proceedings of the
18th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 253-261. ACM, 2012.

Hien Thi Thu Truong. A Contract-based and Trust-aware Collabora-

[29]

[30]

(311

[32]

[33]

[34]

tion Model. (Un modele de collaboration basé sur les contrats et la
confiance). PhD thesis, University of Lorraine, Nancy, France, 2012.
Hien Thi Thu Truong and Claudia-Lavinia Ignat. Log Auditing for
Trust Assessment in Peer-to-Peer Collaboration. In Proceedings of the
10th International Symposium on Parallel and Distributed Computing
(ISPDC 2011), pages 207-214, Cluj-Napoca, Romania, July 2011.
Hien Thi Thu Truong, Claudia-Lavinia Ignat, Mohamed-Rafik
Bouguelia, and Pascal Molli. A contract-extended push-pull-clone
model. In Proceedings of the International Conference on Collaborative
Computing: Networking, Applications and Worksharing (Collaborate-
Com 2011), pages 211-220, Orlando, Florida, USA, October 2011.
Hien Thi Thu Truong, Claudia-Lavinia Ignat, and Pascal Molli. A
contract-extended push-pull-clone model for multi-synchronous collab-
oration. Journal of Cooperative Information Systems, 21(03):221-262,
September 2012.

Hien Thi Thu Truong, Claudia-Lavinia Ignat, and Pascal Molli. Au-
thenticating Operation-based History in Collaborative Systems. In
Proceedings of the ACM International Conference on Supporting Group
Work (Group 2012), pages 131-140, Sanibel Island, Florida, USA,
October 2012. ACM.

Toshio Yamagishi, Satoshi Akutsu, Kisuk Cho, Yumi Inoue, Yang
Li, and Yoshie Matsumoto. Two-component model of general trust:
Predicting behavioral trust from attitudinal trust. Social Cognition,
33(5):436, 2015.

Steven T Yen. An econometric analysis of household donations in the
USA. Applied Economics Letters, 9(13):837-841, 2002.

	Introduction
	Trust Assessment in contract-based multi-synchronous collaboration
	Trust Assessment in trust game
	Current trust
	Aggregated trust

	Discussion
	Related Work
	Conclusions
	Acknowledgements
	References

