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Abstract— The lung vital function of providing oxygen to the body heavily relies on its mechanical
behavior, and the interaction with its complex environment. In particular, the large compliance
and the porosity of the pulmonary tissue are critical for lung inflation and air inhalation, and
the diaphragm, the pleura, the rib cage and intercostal muscles all play a role in delivering and
controlling the breathing driving forces. In this paper, we introduce a novel poromechanical model of
the lungs. The constitutive law is derived within a general poromechanics theory via the formulation
of lung-specific assumptions, leading to a hyperelastic potential reproducing the volume response of
the pulmonary mixture to a change of pressure. Moreover, physiological boundary conditions are
formulated to account for the interaction of the lungs with their surroundings, including a following
pressure and bilateral frictionless contact. A strategy is established to estimate the unloaded
configuration from a given loaded state, with a particular focus on ensuring a positive porosity.
Finally, we illustrate through several realistic examples the relevance of our model and its potential
clinical applications.
Keywords — Pulmonary Mechanics, Modeling, Poromechanics, Inverse Poromechanics, Finite
Element Method.

1 Introduction
Context and motivations Pulmonary diseases are among the main causes of death in the world
[OMS, 2016] and represent an important health burden. Among them, interstitial lung diseases
(ILD) affect the pulmonary tissue and the organ structure, and consequently alter the pulmonary
function. Indeed, the main lung function, consisting in providing oxygen to the whole body, relies
on the alveoli structure of the lungs. The large compliance of the lungs throughout the breathing
cycle also plays a role, letting air enter the bronchial tree all the way to the alveoli. The lung
structure, mechanics and function are thus tightly linked. Moreover, mechanics is also assumed
to be a key factor in the development of some diseases like pulmonary fibrosis, in which a vicious
circle, where fibrosis leads to large stresses which in turn induce fibrosis spread, may occur [Hinz
and Suki, 2016].

Understanding lung physiology allows to propose mathematical model equations for the phe-
nomena at hand, and develop associated computational approaches. Computational medicine is a
rapidly growing field benefitting from the progress in mathematical modeling and computational
tools. Computational modeling is well developed in some medical disciplines like cardiology where
actual clinical applications have already been addressed [Winslow et al., 2012; Lee et al., 2014;
Chabiniok et al., 2016], whereas numerical pulmonology is still an emergent area [Tawhai et al.,
2009; Kaul, 2019; Patte et al., 2020]. Early works in lung computational modeling have been mainly
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motivated by image registration for radiotherapy purposes [Eom et al., 2010], and by airflow study
in asthma or chronic obstructive pulmonary disease (COPD) [Bordas et al., 2015]. High hopes are
placed in these new computational tools designed for clinical applications. They pave the way for
improvements of diagnosis and prognosis, and can be used to test various therapeutic strategies in
silico, thereby enabling the reduction of risks for patients and healthcare costs, as well as improved
personalized care for each patient.

Lung mechanical modeling Lung modeling, and especially pulmonary mechanical modeling, is
a great challenge given the high level of complexity of the organ and its environment [Clark et al.,
2017]. A major difficulty lies in the many scales involved in pulmonary physiology and pathology,
from the organ to the alveoli, through the lobe, segment, lobule and acinus scales [Burrowes et al.,
2019].

A number of lung mechanical models have been proposed directly at the organ scale, with
varying complexity depending on their objectives. Radiotherapy applications mainly require the
modeling of displacements, that can be acquired in part with image registration [Sundaram and Gee,
2005; Hurtado et al., 2017]. More advanced mechanical models integrate more complex modeling
ingredients for boundary conditions and material constitutive behavior. Some models apply a given
displacement field on the lung boundary – or an orthogonal projection thereof – obtained by image
registration [Brock et al., 2005; Al-Mayah et al., 2011]. Tawhai et al. [2009] define the so-called
pleural cavity surface, along which the lung surface undergoes frictionless sliding. Other models
apply a negative pressure representing the pleural pressure on the lung surface [Baudet et al., 2003;
Zhang et al., 2004; Werner et al., 2009; Han et al., 2017], while still prescribing the final shape by
means of a contact surface.

As for material constitutive behavior, lung parenchyma is often modeled with a linear isotropic
stress-strain law, either within a totally linear formulation [Baudet et al., 2003; Zhang et al., 2004;
Brock et al., 2005; Werner et al., 2009; Fuerst et al., 2015], or with a neo-Hookean hyperelastic
law [Berger et al., 2016; Han et al., 2017]. In order to take into account the non-linearity of the
lung behavior, West and Matthews [1972] use a strain-dependent value of Young’s modulus. Zeng
et al. [1987] propose a more complex hyperelastic potential based on experimental mechanical tests
to capture the non-linear behavior, and this hyperelastic potential was subsequently used by [Eom
et al., 2010; Al-Mayah et al., 2011]. However, as it has been formulated based on biaxial tension
tests, this constitutive law cannot adequately reproduce the pressure-volume behavior measured in
inflation tests such as those of Richardson et al. [2019]. By contrast, Tawhai et al. [2009] use a
hyperelastic potential able to reproduce the pressure-volume relationship.

Another key modeling aspect concerns the treatment of the unloaded configuration in the me-
chanical formulation, as the lung tissue is a pre-stressed system that operates under varying tensile
stresses – balancing the negative pleural pressure – over the whole breathing cycle. Most studies
using a non-linear behavior either neglect the fact that the initial configuration extracted from
images is not stress-free [Eom et al., 2010; Al-Mayah et al., 2011], or use a direct scaling to get the
supposedly unloaded configuration from the initial one [Tawhai et al., 2009; Berger et al., 2016].

Other modeling approaches have been considering the lung microstructure, in order to investi-
gate structure-properties relationships. Models of the alveoli microstructure have been developed
using given geometrical shapes [Dale et al., 1980; Budiansky and Kimmel, 1987; Denny and Schroter,
2006], or image segmentation [Sarabia-Vallejos et al., 2019; Álvarez-Barrientos et al., 2021]. The
link between organ scale and alveolar scale can then be performed by homogenization techniques
[Wiechert and Wall, 2010; Cazeaux and Grandmont, 2015], but this is a computationally costly
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approach especially when non-linear behavior is considered.
An alternative approach to take into account the coupling of air flows and parenchyma with-

out explicitly modeling the microstructure is provided by poromechanics. General poromechanics
theories [Biot and Temple, 1972; Coussy, 2004; Dormieux et al., 2006] have been widely used in geo-
physics, and have then been adapted for the needs of biomechanics by Chapelle and Moireau [2014]
with a theory compatible with large strains and rapid flows. Such a poromechanical framework has
been successfully applied in biomechanics for cardiac perfusion [Chapelle et al., 2010; Reeve et al.,
2014; Burtschell, 2016] or bones [Scheiner et al., 2013]. For lungs, beyond the preliminary work
of Kowalczyk [1993], poromechanics approaches are quite scarce, and mainly focused on air flows
[Seyfi et al., 2016; Berger et al., 2016].

Our work In this work, we propose to model lung mechanical behavior using poromechanics. We
use the general poromechanics theory of Chapelle and Moireau [2014], which is compatible with
large deformations, and we adapt it to the pulmonary case with the incorporation of lung-specific
assumptions. Our model includes physiological boundary conditions and a hyperelastic potential
adequately reproducing the volume response of the pulmonary mixture to a change of pressure. Our
ultimate objective is to perform patient-specific modeling, and therefore our complete modeling
framework is designed to be amenable to that purpose. A strategy is presented to estimate the
unloaded configuration with a particular focus on ensuring a positive porosity, since this is an actual
issue when large displacements are considered. Finally, we provide several illustrations of the ability
of our model to represent various types of physiological or pathological conditions, paving the way
for future clinical applications.

2 Lung model

2.1 Poromechanical framework
With the motivations given in the introduction, we propose in this paper a model of lung biome-
chanics at the organ space scale and the breathing time scale. The model is written in the general
framework of Biot’s macroscopic theory of poromechanics [Biot, 1941; Biot and Temple, 1972;
Coussy, 2004; Chapelle and Moireau, 2014]. Thus, the lung constituents (i.e. the parenchymal
tissue, air and blood) are not represented explicitly and separately, but via the so-called mixture
theory with two phases in which “solid” (the associated quantities of which being denoted with
the subscript “s”) and “fluid” (subscript “f”) are distinct distributed phases present everywhere in
varying fractions and interacting with each other. We choose to consider the air in the airways and
alveoli as the so-called fluid phase, and the rest, i.e. tissue and blood, as the solid phase.

2.1.1 Basic assumptions for the pulmonary setting

Beside standard considerations in continuum poromechanics [Coussy, 2004], the proposed model is
based on the following specific assumptions:

• The mixture temperature is constant and uniform, i.e. body temperature. This is a natural
hypothesis for biological tissues.

• The fluid is incompressible, as the Reynolds number of the airflows inside the lungs is low
[Baffico et al., 2010].
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• The breathing stages considered are associated with static equilibrium, which is consistent
with clinical data that can be obtained with patients, see [Gibson and Pride, 1976]. Inertia
and viscous terms are then neglected, both for the fluid and the solid phases.

• The fluid pressure is homogeneous throughout the lungs, as a consequence of the previous
assumption. Its actual value depends on the breathing configuration considered: in the case
of free-breathing the fluid pressure is equal to the atmospheric pressure, whereas in the case
of ventilated breathing it is prescribed by the ventilator.

The first two assumptions have already been used in [Chapelle and Moireau, 2014] and are also valid
in the case of cardiac perfusion modeling for example [Burtschell, 2016]. The last two are specific to
our setting of pulmonary modeling. Their validity depends on the actual breathing conditions, and
they are all the more valid as the breathing is slowly-varying. As a consequence, our model applies
to breath-holding as well as slowly-varying phases such as end-exhalation and end-inhalation in
normal breathing, but not to fast breathing.

2.1.2 Continuum poromechanics

Kinematics We consider a mixture deforming under some loading, and occupying the domain
ω with boundary γ. Following the total Lagrangian approach, we denote by Ω0 a supposedly
known reference configuration (which is not necessarily unloaded or stress-free, or even equal to
ωt=0) with boundary Γ0, on which we will formulate the problem, so that all quantities must be
defined or transported onto Ω0. Quantities defined over the reference configuration will be written
in uppercase, while quantities defined over the deformed configuration will be written in lowercase.
Furthermore, to distinguish quantities characterizing the reference and the current configurations,
we will write the former with a subscript “0”. The deformation, i.e. the mapping from Ω0 to ω, is
denoted by χ, and the displacement is given by

U (X) := χ (X)−X = x (X)−X. (1)

The deformation gradient is then
F := ∇ χ = 1+∇ U, (2)

so that the relative volume change of the mixture is

J := detF . (3)

We also introduce the right Cauchy-Green deformation tensor

C := FT · F , (4)

as well as the Green-Lagrange strain tensor

E :=
1

2

(
C − 1

)
. (5)
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Figure 1: Schematic of the reference and deformed configurations with associated local quantities, volumes
and porosity. dΩ0, dω, dΩf0, dωf, dΩs0 dωs are the infinitesimal volumes of the mixture, the fluid and
solid phases, in the reference and deformed configurations, respectively. Φf0 and φf are the porosities in
the reference and deformed configurations, respectively. ρf+ is the added fluid mass density defined in the
reference configuration. J , Φs, Φf are the local volume ratios.
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Specific poromechanics variables To formally define poromechanics variables, we consider the
infinitesimal domains of matter surrounding X and x, denoted by dΩ0 and dω, respectively. Both
can be decomposed into solid and fluid parts, i.e. dΩ0 = dΩf0 ∪ dΩs0 and dω = dωf ∪ dωs. It is
important to note that dω is the image of dΩ0 through the mapping χ, so that it contains the same
solid matter; the fluid, however, can flow in and out of dω and is not necessarily conserved locally.

The key quantity of poromechanics is the porosity, defined as the volume fraction of fluid in the
mixture. We will denote

Φf0 :=
|dΩf0|
|dΩ0|

and φf :=
|dωf|
|dω|

(6)

the porosity in the reference and the current configurations, respectively.
We also introduce

Φs := J
(

1− φf ◦χ
)

=
|dωs|
|dΩ0|

(7)

the current volume fraction of solid pulled back on the reference configuration, and we denote by

Φf := J φf ◦χ =
|dωf|
|dΩ0|

(8)

the current volume fraction of fluid pulled back on the reference configuration, such that Φf = J−Φs.
We now introduce mass densities, distinguishing between constituent (fluid or solid) actual

densities, which are defined as mass per unit constituent volume, from apparent densities, which
are defined as mass per unit mixture volume and written with a bar. Thus, the reference fluid and
solid mass densities are denoted by ρf0 and ρs0, respectively. The mixture reference mass density
is decomposed into a fluid and a solid part

ρ0 = ρf0 + ρs0, (9)

with ρf0 := ρf0Φf0 and ρs0 := ρs0 (1− Φf0) the fluid and solid mass per unit volume of the mixture
in the reference configuration, i.e. the reference apparent densities.

In the current configuration we denote the fluid and solid mass densities by %f and %s, respec-
tively, and we also introduce the associated quantities pulled back to the reference configuration,
i.e. ρf := %fJφf ◦ χ and ρs := %sJ

(
1− φf ◦ χ

)
, leading to the total pulled back apparent density

ρ = ρf + ρs. (10)

Note that ρf, ρs and ρ represent current mass per unit reference mixture volume, and that solid
mass conservation entails

ρs = ρs0. (11)

We can now define the “added” fluid mass per unit reference mixture volume as

ρf+ := ρf − ρf0 = ρ− ρ0. (12)

Using the fluid incompressibility assumption whereby %f = ρf0, we get

ρf+ = ρf0 (Φf − Φf0) . (13)

This added fluid mass quantity can be positive (inflation) or negative (deflation). However, one
cannot remove more fluid than there initially was, so that ρf+ ≥ −ρf0.
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Force balance At any time the mixture is in equilibrium with external loadings, such as boundary
tractions or gravity. The stress tensor is denoted by σ in ω (Cauchy stress tensor) and Σ :=

JF−1 · σ ◦ χ · F−T in Ω0 (second Piola-Kirchhoff stress tensor). Mechanical equilibrium of the
mixture can be expressed in weak form through the static principle of virtual work written in the
reference configuration as

∀U∗, Wint (U,U∗) = Wext (U,U∗) , (14)

where Wint is the virtual work – associated with the virtual displacement field U∗ – of internal
forces of the mixture and Wext is the virtual work of external forces applied to the mixture. The
virtual work of internal forces can be expressed as

Wint (U,U∗) =

∫
Ω0

Σ : dU E · U∗ dΩ0 , (15)

where dU E · U∗ =
(
FT · ∇U∗)

sym
is the differential of the Green-Lagrange strain tensor. The

virtual work of internal forces Wint will be detailed in Section 2.1.3 through the choice of a free
energy function, while the virtual work of external forces Wext will be detailed in Section 2.3
through the definition of loading conditions. General poromechanics formulations usually require
other balance equations for the fluid flow and fluid mass conservation [Chapelle and Moireau, 2014].
In our specific setting, the static assumption makes the fluid flow equation trivial, and the fluid mass
conservation is not designed to be exploited in a static configuration, but it is made superfluous by
the assumption of prescribed fluid pressure that allows to close the system, as will be seen in the
next section.

2.1.3 Constitutive behavior

Mixture free energy The mixture constitutive behavior is characterized through its Helmholtz
free energy density potential denoted by ψ, which is a function of the Green-Lagrange strain tensor
E and added fluid mass ρf+ [Coussy, 2004; Dormieux et al., 2006; Chapelle and Moireau, 2014].
The fundamental principle of mixture theories states that it is additively decomposed into solid and
fluid parts as

ψ = ψs + ψf, (16)

where ψs and ψf are the solid and fluid free energies per unit mixture volume in the reference
configuration.

It is convenient to express the solid free energy density ψs as a function of E and of the pulled
back solid volume fraction Φs. Indeed, we will see that the energy conjugate of Φs is directly in-
volved in the fundamental poromechanical equilibrium principle between fluid and solid hydrostatic
stresses, making it a very natural variable, and this choice is possible since Φs can be expressed
from the state variables E and ρf+, as seen from Eq. (13) and Φs = J − Φf.

Regarding the fluid, since it is assumed to be incompressible and in isothermal conditions, its
free energy density can be expressed as a function of Φf only, i.e.

ψf (Φf) = −pf0 Φf, (17)

where pf0 is a reference pressure, see [Chapelle and Moireau, 2014] for more detail. Note that Φf
depends only on the state variable ρf+, recall Eq. (13).
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Finally, we consider a mixture free energy density in the form:

ψ
(
E, ρf+

)
= ψs

(
E,Φs

)
+ ψf (Φf) , (18)

with the identities Φs = J
(
E
)
− Φf

Φf = Φf0 +
ρf+

ρf0

(19)

Since all dissipative processes have been neglected, the second principle of thermodynamics
entails that the second Piola-Kirchhoff stress tensor simply derives from the free energy potential.
We then have

Σ =
∂ψ
(
E, ρf+

)
∂E

∣∣∣∣∣
ρf+

=
∂ψs

(
E,Φs

)
∂E

∣∣∣∣∣
ρf+

+
∂ψf (Φf)

∂E

∣∣∣∣∣
ρf+

=
∂ψs

(
E,Φs

)
∂E

∣∣∣∣∣
Φs

+
∂ψs

(
E,Φs

)
∂Φs

∣∣∣∣∣
E

∂Φs

∂E

∣∣∣∣∣
ρf+

=
∂ψs

(
E,Φs

)
∂E

− psJC
−1, (20)

where ps := −
∂ψs

(
E,Φs

)
∂Φs

is the solid hydrostatic stress induced by volume fraction changes.

Internal equilibrium of the mixture requires that [Coussy, 2004; Chapelle and Moireau, 2014]

ps = pf, (21)

leading to

Σ =
∂ψs

(
E,Φs

)
∂E

− pfJC
−1, (22)

together with

pf = −
∂ψs

(
E,Φs

)
∂Φs

. (23)

We will now define a specific solid free energy density for the parenchyma.

Solid free energy Following [Chapelle and Moireau, 2014], we choose an additive form of the
solid free energy density potential split into skeleton and bulk parts, i.e.

ψs
(
E,Φs

)
= W skel

(
E
)

+W bulk (Φs) , (24)

where W skel represents the mechanical behavior of the porous solid, or skeleton, as a structure
subjected to deformation, and W bulk its mechanical behavior with regard to solid volume frac-
tion changes. Such a decomposition leads to the following expressions for the stress and internal
hydrostatic equilibrium

Σ =
∂W skel

(
E
)

∂E
− pfJC

−1 and pf = −∂W bulk (Φs)

∂Φs
. (25)
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It is possible to define these potentials directly, assuming a given solid volume fraction, in which
case we will call them effective potentials, representing an energy density per unit volume of the
mixture in the reference configuration. Alternatively, we can scale these energy densities by the
solid volume fraction, i.e. introducing ψ̃s, W̃skel and W̃bulk such that

ψs = (1− Φf0) ψ̃s

W skel = (1− Φf0) W̃skel

W bulk = (1− Φf0) W̃bulk

(26)

These rescaled quantities ψ̃s, W̃skel and W̃bulk are now energy densities per unit solid volume in
the reference configuration, and we will call them rescaled potentials. Note that we do not expect
these rescaled potentials to be independent of the porosity, since structure effects – associated with
the microstructure – intervene in a manner that is not directly proportional to mass. Nevertheless,
mass effects should be dominant in the bulk energy, so we expect W̃bulk to have a weak dependence
on porosity.

The pulmonary parenchyma is assumed to behave as an isotropic, non-linear, hyperelastic mate-
rial. Even though it is assumed to be quasi-incompressible as a material, its response as a structure
is not at all incompressible, since fluid can flow in and out of each local volume. The modeling
of the quasi-incompressibility of the solid material will be dealt with in the definition of the bulk
potential below, whereas we use the following compressible potential for the skeleton free energy

W̃skel
(
E
)

= β̃1 (I1 − 3− 2 lnJ) + β̃2 (I2 − 3− 4 lnJ) + α̃
(

eδ(J
2−1−2 ln J)−1

)
, (27)

where I1 := trC and I2 := 1
2 (tr

(
C
)2 − tr

(
C2
)
) are the first two invariants of C, and β̃1, β̃2, α̃ and

δ are four material parameters. This potential contains standard neo-Hookean and Mooney-Rivlin
terms [Rivlin, 1948; Ogden, 1972], and an exponential of the Ciarlet-Geymonat bulk term [Ciarlet
and Geymonat, 1982]. The use of an exponential term, initiated by Demiray [1972] and popularized
by Fung [1981], is common in soft tissues modeling [Weiss et al., 1996; Caruel et al., 2014; Genet
et al., 2015a]. Here it was motivated by the shape of the clinical data representing the lung volume
with respect to the pleural pressure [Gibson and Pride, 1976].

The effective hyperelastic potential W skel then depends on the four material constants α, β1,
β2, δ, with the first three defined as

α = (1− Φf0) α̃

β1 = (1− Φf0) β̃1

β2 = (1− Φf0) β̃2

(28)

the typical values of which can be determined by calibration or identification based on clinical
or experimental data. The volume macroscopic behavior of the pulmonary mixture is usually
characterized by P-V curves, with P the pleural pressure and V the lung volume, that are used by
clinicians to assess lung compliance [Gibson and Pride, 1976]. These data then allow to characterize
the mixture volume changes with the pressure and to determine the dependency of the skeleton
deformation energy W skel with J . We determined a set of the four effective parameters of the
skeleton hyperelastic potential compatible with the data from [Gibson and Pride, 1976] over a
range of physiological volumes, see Figure 2. As regards the well-posedness of the corresponding
identification problem, it would clearly deserve further investigation. In our case, however, the
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role of the neo-Hookean and Mooney-Rivlin terms is essentially to regularize the behavior near
the reference configuration since the exponential term itself gives a very soft behavior for small
deformations, and therefore we did not attempt to fine-tune the parameters β̃1 and β̃2. Typical
values for a healthy case were obtained as α = 0.08 kPa, β1 = 0.1 kPa, β2 = 0.2 kPa, δ = 0.5.

For the bulk termW bulk, we use the following expression, as proposed in [Chapelle and Moireau,
2014]:

W̃bulk (Φs) = κ̃

(
Φs

(1− Φf0)
− 1− ln

(
Φs

(1− Φf0)

))
, (29)

where κ̃ is the bulk modulus of the solid material, here assumed to be large to represent quasi-
incompressibility of the solid. This potential is an extension of the Ciarlet-Geymonat bulk potential
[Ciarlet and Geymonat, 1982] to poromechanics; however, other penalization terms with similar
properties could have been used. Note also that – as is usual in solid mechanics – we prefer to
consider quasi-incompressibility rather than exact incompressibility because this is more realistic
and does not induce any serious difficulty [Le Tallec, 1994].

2.1.4 Methods to ensure positive porosity

The above poromechanical model, with the choices made on the energies in Section 2.1.3, does
not ensure by itself a positive porosity [Chapelle et al., 2010; Chapelle and Moireau, 2014], which
may be an issue with large strains during mixture compression or, in the pulmonary case, drastic
deflation such as that associated with pneumothorax. We now discuss two methods to address this
issue.

Use of an additional energy Chapelle and Moireau [2014] proposed adding a penalization term
to the solid energy ψs in order to keep the porosity positive. The additional energy tends to infinity
when the porosity φf tends to 0, which means that it would require an infinite amount of energy
– or equivalently an infinitely negative fluid pressure – to close a pore completely, as is natural from
a physical standpoint.

Denoting this additional term by W por(Φf; Φf0) – where Φf0 appears as a parameter – the
following specifications should be enforced:

• W por(Φf; Φf0) tends to infinity when Φf tends to zero (for any Φf0), to serve the above-
described purpose;

• W por(Φf; Φf0) = 0 for Φf/Φf0 in a wide range [rinf, rsup] with rinf � 1 and rsup � 1, so that
the corresponding contribution vanishes for a standard regime of behavior;

• W por(Φf; Φf0) tends to infinity when Φf0 tends to zero for Φf fixed, which will be useful
for the inverse problem of seeking the unloaded configuration with unknown porosity, see
Section 2.5.4;

• W por(Φf; Φf0) of regularity C1, and preferably convex for minimization purposes.

Note that the above specifications can be easily fulfilled by constructing W por(Φf; Φf0) based on a
function of rΦ = Φf/Φf0, for instance

W por(Φf; Φf0) :=


η
(
rinf
rΦ
− 1
)n+1 if rΦ < rinf

0 if rinf ≤ rΦ < rsup

η
(
rΦ
rsup
− 1
)n+1 if rsup ≤ rΦ

(30)

10



0 1 2 3
pressure (kPa)

0.50

0.75

1.00

1.25

1.50

1.75

2.00

J n
or

m

0 1 2 3
pressure (kPa)

0.5

0.6

0.7

0.8

0.9

f

0 1 2 3
pressure (kPa)

0.2

0.3

0.4

0.5

s

0 10 20 30
pressure (cmH2O)

0 10 20 30
pressure (cmH2O)

0 10 20 30
pressure (cmH2O)

data [Gibson and Pride, 1976]
external pressure loading
internal pressure loading, = 10 1 kPa

internal pressure loading, = 10+0 kPa
internal pressure loading, = 10+1 kPa
internal pressure loading, = 10+2 kPa

Figure 2: Mechanical response of the mixture resulting from our choice of W̃skel in Eq. (27) & W̃bulk in
Eq. (29) for various values of bulk modulus κ̃ (while other parameters are fixed at Φf0 = 0.5, α̃ = 0.16 kPa,
β̃1 = 0.2 kPa, β̃2 = 0.4 kPa & δ = 0.5) and applied pressure – positive when internal or negative when
external, here considered in absolute value in the plots. The solid black curve corresponds to an external
negative pressure loading (i.e., by imposing Σ > 0 and pf = 0, in which case the response only depends
on W̃skel, not W̃bulk, hence not on κ̃), while the colored curves correspond to a positive internal pressure
loading (i.e., by imposing pf > 0 and Σ = 0, in which case the response depends on κ̃, so various values
are considered). All curves are obtained by imposing a level of pressure and solving the nonlinear behavior
law at one single material point – i.e., a Rivlin cube – through a Newton-Raphson procedure, in order
to compute the associated mixture deformation & volumes fractions changes. (Left) Volumetric response
of a mixture to a pressure loading, compared to experimental data [Gibson and Pride, 1976]. Jnorm is
the mixture volume change J normalized by its value at 0.5 kPa (which roughly corresponds to the end-
exhalation state in the lung model), leading to Jnorm = J/J0.5 = 1 for an applied pressure of 0.5 kPa. The
colored curves are superimposed with the black curve because the mixture volume deformation is identical
for internal vs. external applied pressure. (Center & Right) Evolution of the volume fraction of fluid (i.e.,
the porosity) and solid with the pressure loading. When the mixture is subjected to internal pressure, the
solid phase is compressed according to its bulk modulus; the lower the bulk modulus, the more compressible
the solid, the higher the volume fraction of fluid and the lower the volume fraction of solid. For the value
of the bulk modulus used in the rest of the paper (κ̃ = 102 kPa) the change in solid volume is very limited.
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(a) Influence of the solid bulk modulus κ̃ when using the pore energy W̃por. As long as the porosity is away from
zero, the solid bulk modulus has little impact, since the volume decrease is mainly due to air ejection and less to
solid compression. Then, when the porosity comes close to zero, the solid starts to be compressed according to the
solid bulk modulus.
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(b) Influence of η̃ when using W̃por. When η̃ decreases, the change of behavior when the porosity comes close to zero
becomes sharper.
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(c) Influence of the solid bulk modulus κ̃ when using the contact-like formulation. The same behavior as in Figure 3a
is observed but the curves are sharper using the contact-like formulation.

Figure 3: Behavior of a mixture under compression using either the pore energy formulation (here with
n = 4 and rinf = rsup = 1) or the contact-like formulation. The mixture is in free-breathing condition
(pf = 0), and such that Φf0 = 0.5. In each case, the evolution of the mixture volume change J and of the
porosity Φf with respect to the pressure loading are shown. The black solid line illustrates the weakness
of the model regarding negative porosity when neither the pore energy nor the contact-like formulation is
used. The black dotted line represents Φf = 0.
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with n > 1 to ensure continuous differentiability. The material response induced by this potential
is illustrated in Figure 3.

We thus consider

ψs
(
E,Φs

)
= W skel

(
E
)

+W bulk (Φs) +W por(Φf), (31)

with Φf = J − Φs, and (23) now yields

pf = −∂W bulk (Φs)

∂Φs
+
∂W por (Φf)

∂Φf
, (32)

which provides a new relationship between pf, Φf and J , by which we see that Φf cannot tend to
zero unless pf tends to minus infinity. Note also that the additional energy term is only a function
of ρf+ (via Φf) and not of E, and therefore this does not change the expression of the stress tensor
with respect to the energy densities, i.e.

Σ =
∂ψ
(
E, ρf+

)
∂E

∣∣∣∣∣
ρf+

=
∂W skel

(
E
)

∂E
+
∂W bulk (Φs)

∂Φs
J C−1. (33)

However, the relationship between Σ and pf is no longer as in (25) since the expression of pf itself
has been modified.

Contact-like formulation When scaling the above penalization energy with a multiplicative
coefficient η, the asymptotic case (η → 0) is a contact-like problem, which can be formulated
with two quantities, i.e. the porosity φf and the solid self-contact pressure pc, using the following
conditions 

φf · pc = 0

φf ≥ 0

pc ≥ 0

(34)

This expresses that there are two possible regimes for the porous material at every point: either it
contains some fluid and the porosity is non-zero while the self-contact pressure is zero, or the pores
are collapsed and the self-contact pressure is strictly positive while the porosity is zero. We will use
the classical Heaviside step function H (φf) such that

H (φf) :=

{
1 if φf > 0

0 otherwise
(35)

When H (φf) = 1, some fluid is present and the fluid pressure pf is well-defined, whereas H (φf) = 0
means that there is no fluid left so that fluid pressure is not a relevant quantity anymore. In the
absence of fluid, the contact pressure pc is then a substitute of the fluid pressure and acts against
the solid compression. We can define the aggregated pressure quantity p as

p := pfH (φf) + pc (1−H (φf)) , (36)

which is equal to pf or pc depending on the state of the mixture. By extension of the internal
equilibrium principle of Eq. (21) to the case φf = 0, we have

p = −∂ψs

∂Φs
. (37)
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Initially, the porosity φf is non zero and the contact pressure pc is zero. When the mixture is
compressed, the porosity decreases as fluid is expelled. Then, the porosity reaches 0, which means
that the entire initial fluid has been expelled. If the mixture keeps being compressed, the solid
part is compressed according to the solid bulk modulus κ, and the resulting contact pressure pc
increases. This behavior is illustrated in Figure 3.

Remark As pointed out in [Chapelle and Moireau, 2014], the other constraint φf < 1 is naturally
satisfied with the proposed expression of the bulk energy W bulk in Eq. (29). Indeed, when the
porosity φf tends to 1, Φs tends to zero, and the bulk energy W bulk tends to infinity.

2.2 Geometric model
Our lung model requires the definition of several geometric entities as illustrated in Figure 4, all
described by finite element meshes in practice. In addition to the lungs themselves, which are
volume meshes, two surface meshes are used, i.e. the rib cage surface and the inner surface. The
rib cage surface is in contact with the lung where the lung is surrounded by hard tissue (i.e. ribs
and spine). It corresponds to the costal pleura. The inner surface is in contact with the lung where
the lung is surrounded by soft tissues. It corresponds to the diaphragmatic pleura and mediastinal
pleura, i.e. the soft surroundings of lungs. Both rib cage and inner surfaces are surface meshes.
The interactions between lungs and these surfaces are discussed in Section 2.3, and a method to
produce these surfaces is presented in Section 2.6.

Typically, realistic geometric models can be obtained from biomedical images through segmen-
tation. However, it is important to notice that no image of the unloaded configuration can be
acquired in vivo as this would correspond to a pneumothorax, in which air enters the pleural space
and pleural pressure becomes equal to atmospheric pressure. Consequently, the unloaded configu-
ration associated with image-based geometries must be computed, as described in Section 2.4.

2.3 Loading and boundary conditions
Elements of pulmonary physiology A complex environment is involved during breathing. The
lungs are surrounded by the pleura, composed of two membranes and applying a negative pressure,
called pleural pressure, on the lungs surface. The pleural pressure keeps the lungs inflated and main-
tains the contact with their close environment (thorax and diaphragm mainly). Two mechanisms
of breathing should be distinguished, spontaneous breathing and mechanical ventilation, differing
by the driving force for lung inflation. During spontaneous breathing, the diaphragm contracts and
pulls on the external layer of the pleura, causing a decrease in the pleural pressure, which induces
lungs inflation and air filling. Intercostal muscles also play a role in the thorax inflation during in-
halation. By contrast, during mechanical ventilation the diaphragm and intercostal muscles do not
contract. The driving force is then provided by the ventilator, which induces a positive air pressure
inside the lungs to make them inflate. This pressure is also present near the lung surface, where
it pushes against the rib cage and the diaphragm, which themselves tend to resist lung inflation,
contrary to spontaneous breathing.

Spontaneous breathing As shown in Figure 4, several choices are made to model the complex
loading and boundary conditions for spontaneous breathing.
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(i) The air pressure is homogeneous and equal to the atmospheric pressure according to the
assumptions of Section 2.1.1, i.e. pf = 0.

(ii) The pleural pressure ppl is modeled by a negative pressure ppl applied on the lungs sur-
face. This pressure varies under the action of the diaphragm from −5 cmH2O (i.e. −0.5 kPa)
at end-exhalation to −8 cmH2O (i.e. −0.8 kPa) at standard end-inhalation, and can reach
−30 cmH2O (i.e. −3 kPa) at full inhalation. The associated boundary traction on γ is
t = −ppl n, where n denotes the outward unit normal vector. It corresponds to the pulled
back boundary traction T = −pplJF

−T ·N0 on Γ0, with N0 denoting the unit outward normal
vector on Γ0.

(iii) Interactions between the rib cage and the lungs are modeled by a bilateral contact between
the lungs external surface and the rib cage surface. This contact is assumed to be frictionless,
taking into account the lubrication by the pleural liquid. As the contact is bilateral, it is
permanent, which means that surface points that are in contact initially remain so throughout
breathing. These interactions are represented by a boundary traction, denoted by T c,rb,
applied on the lung surface in contact with the rib cage Γ0,c,rb. Since contact is frictionless,
this traction is also associated with a pressure, i.e. T c,rb = −pc,rbJF

−T ·N0.

(iv) Rib cage displacements induced by intercostal muscles during breathing are different for ev-
eryone. They are imposed in the model through a prescribed motion of the rib cage surface.
Patient-specific motion can be extracted from biomedical images, or generic motion (including
no motion, i.e. fixed rib cage surface) can be used.

(v) Gravity loading, denoted g, can be applied considering any position, e.g. supine, prone or
standing/seated position.

The virtual work of external forces is then

Wext (U,U∗) =−
∫

Γ0,c,in

pplJ
(
F−T ·N0

)
· U∗ dΓ0

−
∫

Γ0,c,rb

pc,rbJ
(
F−T ·N0

)
· U∗ dΓ0 +

∫
Ω0

ρ g · U∗ dΩ0 .

(38)

Note that since we are imposing the thorax displacements the pressure quantity pc,rb will not be
prescribed, but has the nature of a reaction force associated with frictionless contact. Nevertheless
it is meaningful to include it in the external virtual work expression, as in practice this type of
contact will often be modeled by means of penalization or mixed formulation, in which the Lagrange
multiplier would be this pressure itself.

Mechanical ventilation In the case of mechanical ventilation, the driving force is now internal,
i.e. given by the ventilator pressure, and we need to model boundary conditions representing the
fact that the surrounding structures resist lung inflation.

(i) Air pressure is controlled by the ventilator. We again assume that air pressure is homogeneous,
i.e. pf = pvent with pvent the ventilated pressure. The associated stresses appear in Eq. (22) as
a part of the mixture stresses. Using the homogeneous pressure assumption, the corresponding
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volume integral can be transformed into a surface expression by Green’s formula, as follows∫
Ω0

pfJ C
−1 :

(
dU E · U∗) dΩ0 =

∫
γ

pf n · U∗ dγ =

∫
Γ0

pfJ
(
F−T ·N0

)
· U∗ dΓ0 . (39)

It means that the fluid pressure, acting on the whole lung volume, can be equivalently con-
sidered – under the homogeneous pressure assumption – as a following pressure applied on
the lung surface γ.

(ii) Similarly to the interaction with the rib cage, interaction between the internal organs and
the lungs involve a bilateral contact between the lungs external surface and the inner surface.
This contact is frictionless, as the pleural liquid acts as a lubricant, hence has an associated
reaction pressure applied on the lung external surface in contact with the inner surface Γ0,c,in,
which we denote by pc,in.

The virtual work of external forces is then

Wext (U,U∗) =−
∫

Γ0,c,in

pc,inJ
(
F−T ·N0

)
· U∗ dΓ0

−
∫

Γ0,c,rb

pc,rbJ
(
F−T ·N0

)
· U∗ dΓ0 +

∫
Ω0

ρ g · U∗ dΩ0 ,

(40)

where pc,in should be modeled by Robin-type boundary conditions to represent surrounding organs
that oppose lung inflation, with a stiffness coefficient to be adjusted according to the stiffness of
each structure considered. Note that in this case pc,rb can be modeled in a similar manner with a
large stiffness coefficient associated with the rib cage, since the rib cage motion is now in reaction
to lung inflation, unlike for spontaneous breathing where it is a driving factor thereof. The driving
factor is now, again, the internal fluid pressure, which is not included in Wext as it is already part
of the mixture stress tensor Σ, hence of the virtual work of internal forces Wint.

Remarks on pleural pressure Several studies have shown that pleural pressure is not homoge-
neous in the whole pleural space. For instance, in [Kallet, 2015] a pleural pressure gradient of about
7.5 cmH2O has been reported between the apex and the base in upright position i.e. the pleural
pressure is 7.5 cmH2O more negative at the apex than the base.

The main explanation generally given for this gradient is gravity [Agostoni, 1972; Millar and
Denison, 1989], which induces a smaller pressure, i.e. more negative, at the apex (which is at the
top) than at the base (which is at the bottom) in standing position. If the pleural liquid was in an
hydrostatic equilibrium, the gradient of pleural pressure would be 1 cmH2O/cm [Agostoni, 1972;
Lai-Fook, 2004], i.e. a gradient of 20 cmH2O for a 20 cm high lung between the apex and the base.

The difference between the observed gradient and the hydrostatic gradient implies the existence
of an intrinsic gradient that reduces the gravity effect. It can possibly be explained by the existence
of contact areas between pleural membranes due to the presence of fatty tissue layers on the ribs,
between ribs and the parietal pleura. These fatty tissue layers, 1 or 2 mm thick [Im et al., 1989],
induce a tighter contact between parietal and visceral pleura, which may disrupt the hydrostatic
equilibrium where barriers are formed in the pleural space [Lai-Fook, 2004]. This explanation is
consistent with the fact that the gradient of pleural pressure between apex and base is also present
in supine position. Since the main driver of lung inflation lies in the traction of the diaphragm,
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it directly dictates the negative pleural pressure in the basal area, but this pressure is only partly
propagated to the other parts of the lung surface.

The role of the pleural liquid circulation in the pleural pressure gradient has also been been
raised. Indeed, the pleural liquid is highly viscous and is always circulating in the pleural space,
in particular as part of a renewal mechanism. The pleural liquid is produced by capillary filtering
in the upper parietal pleura and is resorbed by lymphangions in the basal, posterior costal parietal
pleura and the diaphragmatic and mediastinal parietal pleura, inducing a downward pleural liquid
flow that could be associated with a pressure drop along the flow [Wang, 1975; Miserocchi, 1997;
Zocchi, 2002]. However, the complete turnover of pleural liquid is performed only twice a day, since
about 15 mL are produced each day and the volume of pleural liquid is about 8 mL [Noppen et al.,
2000], and therefore the pleural cavity can be reasonably considered as closed at the time scale of
the breathing cycle, and therefore this explanation appears to be very unlikely.

In our modeling, the pleural pressure will be first assumed to be homogeneous on the whole
lung surface. Gradients of pleural pressure will also be considered to take into account the non-
homogeneity of the pleural pressure: from apex to base in standing position, from back to stomach
in supine or prone position.

2.4 End-exhalation stress field and unloaded configuration
Since in general the initial geometry of the lungs (which may be obtained from biomedical images
or from a generic model) is not unloaded as was already mentioned in Section 2.2, the unloaded
configuration needs to be computed in order to take into account the initial stress field present in the
initial configuration. This is a classical problem in biomechanics, since many living tissue contain
prestresses due to a loaded physiological configuration [Gee et al., 2010; Sellier, 2011; Rausch et al.,
2017] or inherent residual stresses [Fung, 1981; Genet et al., 2015b; Genet, 2019].

Let us consider that a pleural pressure ppl,I is applied on the configuration ωI constructed
from an image I. We aim to find the unloaded configuration Ω0 so that Ω0 is transformed into
ωI when ppl,I is applied on it. For the sake of simplicity, this unloaded configuration will serve
as reference configuration for all subsequent computations. The boundary conditions to describe
the transformation from the unloaded configuration Ω0 to a real configuration ωI are simplified
compared to the boundary conditions used to describe breathing, since only a negative pressure
applied on the whole lung surface, which stands for the pleural pressure, is considered (see Figure 4).
In addition to the negative pleural pressure, the rigid body degrees of freedom are blocked through
the following procedure: the four nodes (one origin node & three directional nodes) defining the
most orthogonal trihedron are found within the mesh, the origin is blocked in all three directions,
the first directional node is blocked in the second & third directions, and the second directional
node is blocked in the third direction.

In this problem, a configuration ωI is given and the unknowns are the transformation χ−1 (x)
(or equivalently the displacement u (x)) from ωI to the unloaded configuration Ω0, as well as the
reference porosity on the deformed configuration φf0 (x) = dVf0

dv . The boundary conditions applied
from Ω0 to ωI are given. The problem is formulated following [Govindjee and Mihalic, 1998], where
a change of variable is performed from X to x, which is extended to poromechanics for the first
time in this paper. We denote with small letters the quantities defined on the known deformed
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(end-exhalation)
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Figure 4: Boundary conditions used to compute the unloaded configuration Ω0, then the deformed configu-
ration ωi from the initial configuration ωe. In addition to preventing rigid body motion, only pleural pressure
ppl,e is considered for the transformation χ

0
between the unloaded and the end-exhalation configurations.

However, the breathing transformation χ
b
between the end-exhalation to the end-inhalation configurations

uses more complex boundary conditions, which depend on the type of breathing. In the case of spontaneous
breathing, we consider the rib cage displacements U thorax, the pleural pressure at end-inhalation ppl,i, a
frictionless bilateral contact between the rib cage surface and lungs surface and the gravity volume loading.
In the case of mechanical ventilation, an inner surface subjected to Robin’s conditions is also in contact
with the inner lung surface.
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configuration ωI (see Figure 4), such as:

u := −U ◦χ−1

f := F−1 ◦χ−1

j := J−1 ◦χ−1

φf0 :=
(
J−1 ◦χ−1

)(
Φf0 ◦χ−1

) (41)

We now use the principle of virtual work written in the deformed configuration, i.e.

∀u∗,
∫
ωI

σ(u) : ε (u∗) dω = −
∫
γI

ppl,I n · u∗ dγ , (42)

where the Cauchy stress tensor σ is written after changing variables as

σ (u (x)) =
1

J
(
χ−1 (x)

)F (χ−1 (x)
)
· Σ
(
χ−1 (x)

)
· FT

(
χ−1 (x)

)
= jf−1 (x) · Σ

(
χ−1 (x)

)
· f−T (x)

(43)

and the linearized strain tensor ε is

ε (u) :=
(
∇u
)

sym
=

1

2

(
∇u+∇uT

)
. (44)

Note that it is convenient here to write the principle of work in the deformed configuration since it
is known, instead of the reference configuration as in (14). This is why it is the Cauchy stress tensor
and the linearized strain tensor that appear, instead of the second Piola-Kirchhoff stress tensor and
Green-Lagrange strain tensor. The expressions of the second Piola-Kirchhoff stress tensor and the
fluid pressure can then be derived by introducing the same change of variables into the general
expressions (22) & (23).

In this paper, we choose to estimate the unloaded configuration from the end-exhalation con-
figuration, as shown in Figure 4.

2.5 Summary of main equations
2.5.1 General poromechanics formulation for lung modeling

The problem to be solved to determine the deformation of lungs in our poromechanical framework
is described by the following system

Find (U,Φf) /


∀U∗,

∫
Ω0

∂ψ

∂E
:
(
dU E · U∗)dΩ0 = Wext (U,U∗)

pf = −∂ψs

∂Φs

(45)

In this system, the two equations are coupled with the two unknowns U (i.e. the mixture displace-
ment) and Φf (i.e. the deformed porosity by unit reference mixture volume). The first equation
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governs the global mechanical equilibrium, and the second one expresses the local hydrostatic pres-
sure equilibrium.

Using the decomposition of
∂ψ

∂E
given in Eq. (22) as well as the transformation of the fluid

pressure term with the homogeneous fluid pressure assumption, the first equation of the system
gives

Find (U,Φf) /
∀U∗,

∫
Ω0

∂ψs

∂E
:
(
dU E · U∗)dΩ0 = Wext (U,U∗) +

∫
Γ0

pfJ
(
F−T · n

)
· U∗ dΓ0

pf = −∂ψs

∂Φs

(46)

It is interesting to notice that the internal fluid pressure has the same effect as a following pressure
applied on the boundary of the mixture.

With the choice of ψs that was made in Eq. (24), we have

Find (U,Φf) /
∀U∗,

∫
Ω0

∂W skel
(
E
)

∂E
:
(
dU E · U∗) dΩ0 = Wext (U,U∗) +

∫
Γ0

pfJ
(
F−T · n

)
· U∗ dΓ0

pf = −∂W bulk

∂Φs

(47)

and we see that the coupling is weak, since the first equation – similar to that of a hyperelastic
solid – is independent of the porosity Φf, which can be computed in a post-processing step using
the second equation.

With the particular choice made in Eq. (29) for W bulk, we even have a closed form expression
for the porosity

Φf = J − Φs with Φs =
1

pf

κ
+

1

Φs0

, (48)

with Φs0 := 1−Φf0. In the case of free breathing where pf = 0 – or when we tend to an incompressible
behavior for the solid material, i.e. κ is very large – the quantity Φs is constant and equal to Φs0,
which leads to the geometric identity

1− Φf0 = J
(

1− φf ◦χ
)
. (49)

2.5.2 Formulation with the additional energy Wpor

When using an additional energy W por, recalling (32)–(33) the formulation is then

Find (U,Φf) /
∀U∗,

∫
Ω0

(
∂W skel

(
E
)

∂E
+
∂W bulk (Φs)

∂Φs
J C−1

)
:
(
dU E · U∗) dΩ0 = Wext (U,U∗)

pf = −∂W bulk (Φs)

∂Φs
+
∂W por (Φf)

∂Φf

(50)
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The coupling is strong here, since the first equation depends on the current porosity Φf = J − Φs.
However, this coupling is only local since the second equation – where pf is known – provides a
relationship between J and Φf.

2.5.3 Contact-like formulation

Recalling Eqs. (34)–(37), the contact-like formulation to ensure a positive porosity – formulated
using the contact pressure pc as an extra unknown – can be summarized as follows

Find (U,Φf, pc) /

∀U∗,

∫
Ω0

(
∂ψs

∂E
− pJ C−1

)
:
(
dU E · U∗)dΩ0 = Wext (U,U∗)

p = pfH (Φf) + pc (1−H (Φf)) = −∂ψs

∂Φs

Φf · pc = 0

Φf ≥ 0

pc ≥ 0

(51)

A more compact form can be found by introducing the auxiliary unknown Φ̂f such that

pf = −∂ψs

∂Φs

(
E,Φs = J − Φ̂f

)
.

This quantity coincides with Φf when Φ̂f ≥ 0, hence

Φf = Φ̂fH
(
Φ̂f
)
, (52)

and therefore we have the following equivalent formulation

Find
(
U, Φ̂f

)
/

∀U∗,

∫
Ω0

(
∂ψs

∂E
+
∂ψs

∂Φs

(
E, J − Φ̂fH

(
Φ̂f
))
J C−1

)
:
(
dU E · U∗) dΩ0 = Wext (U,U∗)

pf = −∂ψs

∂Φs

(
E, J − Φ̂f

)
(53)

This problem has a similar structure to that of (50), i.e. J and Φ̂f are locally coupled by the second
equation. However, here Φ̂f is only used in the first equation when it is positive, i.e. when Φf = Φ̂f.

As is well-known with contact formulations, in practice the convergence of associated numerical
procedures can be difficult to achieve. Typically here, difficulties might arise due to the very
different stiffness levels between parts where the internal contact is activated or not, especially
when the solid material is rather incompressible.

2.5.4 Inverse problem

In the case of the inverse problem to estimate the unloaded configuration, a loaded configuration
ωI – which can be taken from an image - is given, as well as the associated deformed porosity φf.
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The two unknowns are the inverse displacement on the deformed configuration u and the reference
porosity on the deformed configuration φf0.

In the case of the penalized strategy presented in Section 2.1.4, we have the following formulation:

Find (u, φf0) /

∀u∗,
∫
ωI

σ (u, φf0) : ε (u∗) dω = −
∫
γI

ppl n · u∗ dγ

σ (u, φf0) = jf−1 · Σ (u, φf0) ◦χ−1 · f−T

Σ (u, φf0) =
∂ψs

∂E

(
E,Φs = (1− φf) ◦χ · J ; Φf0 = φf0 ◦χ · J

)
+
∂ψs

∂Φs

(
E,Φs = (1− φf) ◦χ · J ; Φf0 = φf0 ◦χ · J

)
JC−1

pf = −∂ψs

∂Φs

(
E,Φs = (1− φf) ◦χ · J ; Φf0 = φf0 ◦χ · J

)

(54)

Note that the Φf0 dependency of ψs was not explicitly written before, since in the direct problem
Φf0 is a given parameter, not a variable as in the inverse problem. Nevertheless, positive porosity
in the unloaded configuration will be automatically enforced due to the specifications prescribed on
the penalization term.

In order to ensure a positive reference porosity using the contact-like formulation introduced in
Section 2.1.4, we introduce the auxiliary unknown φ̂f0 such that

pf = −∂ψs

∂Φs

(
E,Φs = (1− φf) ◦χ · J ; Φf0 = φ̂f0 ◦χ · J

)
. (55)

Note that as for the previous formulation, the Φf0 dependency is made explicit as for inverse
problems it is a variable, not a parameter, of the problem. This auxiliary variable can be negative;
however, it coincides with the actual reference porosity φf0 when it is positive, i.e.

φf0 = φ̂f0H
(
φ̂f0

)
. (56)

However, the fluid pressure should satisfy (23) with the actual value of Φf0 = φf0 ◦ χ · J , which is
in contradiction with (55). Therefore we need to correct the solid free energy, which we propose to
do by considering the modified solid free energy

ψ
c

s = ψs − Cp(Φs − J), (57)

with

Cp = −∂ψs

∂Φs

(
E, (1− φf) ◦χ · J ; φ̂f0 ◦χ · J

)
+
∂ψs

∂Φs

(
E, (1− φf) ◦χ · J ;φf0 ◦χ · J

)
,

a pressure correction designed so that

pf = −∂ψ
c

s

∂Φs

(
E, (1− φf) ◦χ · J ;φf0 ◦χ · J

)
= −∂ψs

∂Φs

(
E, (1− φf) ◦χ · J ;φf0 ◦χ · J

)
+ Cp

= −∂ψs

∂Φs

(
E, (1− φf) ◦χ · J ; φ̂f0 ◦χ · J

)
.
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Note that we expect −∂ψs

∂Φs

(
E,Φs; Φf0

)
to be increasing when Φf0 decreases, by construction of

the pressure law (23). In other words, it should require more fluid pressure to compress the solid
material to a given fraction Φs in the deformed configuration when the solid fraction in the reference
configuration is larger – or equivalently when the fluid fraction Φf0 is smaller. Therefore the pressure
correction Cp should be positive when it is activated, since this occurs when Φf0 = 0 and φ̂f0 < 0.
Furthermore, the correction applied in (57) is designed to have no incidence on the stress tensor,
and we therefore have the following formulation

Find
(
u, φ̂f0

)
/

∀u∗,
∫
ωI

σ
(
u, φ̂f0

)
: ε (u∗) dω = −

∫
γI

ppl n · u∗ dγ

σ
(
u, φ̂f0

)
= jf−1 · Σ

(
u, φ̂f0

)
◦χ−1 · f−T

Σ
(
u, φ̂f0

)
=
∂ψs

∂E

(
E,Φs = (1− φf) ◦χ · J ; Φf0 = φ̂f0H

(
φ̂f0

)
◦χ · J

)
+
∂ψs

∂Φs

(
E,Φs = (1− φf) ◦χ · J ; Φf0 = φ̂f0H

(
φ̂f0

)
◦χ · J

)
JC−1

pf = −∂ψs

∂Φs

(
E,Φs = (1− φf) ◦χ · J ; Φf0 = φ̂f0 ◦χ · J

)

(58)

This problem is strongly coupled since φ̂f0 – which is determined by the last equation – is also
present in the first equation. However, as for the direct problem, this coupling is only local. In
addition, note that the above correction in the solid free energy is rather ad hoc – since it depends
on the solution of the inverse problem itself – albeit in practice, in the pulmonary setting, the extent
of the regions in which the correction is activated is expected to be extremely restricted, as even in
the unloaded state the porosity is not expected to be close to zero in significantly large regions.

2.6 Implementation aspects
2.6.1 Geometric model and unloaded configuration

The rib cage and inner surfaces generation uses the lung geometries. First, the lung surface is used
to compute a binary image. Then, for each surface, a second binary image is performed by drawing
contours manually with the software MeVisLab in order to get an extension of the lungs. Finally,
surfaces are extracted from each of the binary images and meshed with the software Gmsh to get
the rib cage surface and the inner surface.

In order to compute the unloaded configuration, the material model and method described in
Section 2.4 have been implemented in Python using the FEniCS library [Alnæs et al., 2015; Logg
et al., 2012], and the resulting code is freely available1. A custom Newton-Raphson procedure is
used to solve the nonlinear problem.

1https://gitlab.inria.fr/mgenet/dolfin_mech
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2.6.2 Finite element solution for deformed configuration

The deformed configuration is computed with the Abaqus software. We now present the details of
the model implementation.

Specific finite elements The lungs are meshed with linear tetrahedral volume elements, whereas
both the rib cage surface and the inner surface are meshed with linear triangle surface elements.
The corresponding finite elements are respectively called C3D4 and S3 in Abaqus.

Mechanical properties The skeleton energyW skel is written in an Abaqus subroutine UHYPER.
The local equilibrium of the mixture depending on the bulk energy W bulk is also implemented in
the subroutine in order to compute the deformed porosity as a state variable. The inner surface is
defined with a Neo-Hookean material, with shear modulus 2 · 103 kPa and bulk modulus 6.67 kPa.

Contact boundary conditions Concerning the contact with the thorax, a master-slave, finite-
sliding, node-to-surface contact pair formulation is used, with the rib cage as master and the lung
surface as slave. The surfaces are adjusted at the start of the simulation in order to remove gaps
and overlaps. The contact is defined as a frictionless, hard bilateral contact which does not allow
any separation of surfaces once it is established. In the case of the mechanical ventilation, the
contact with the inner surface has the same properties as the contact with the thorax except that
separation between surfaces is allowed.

Robin boundary conditions Robin boundary conditions are implemented on the inner surface
using spring elements. Each node of the inner surface is linked to three linear spring elements – one
for each displacement component – of type SPRING1, attaching the node to the end-exhalation
position of that node. The spring stiffness kspring is different for each node in order to take into
account the size of the surface elements connected to this node. The spring stiffness is then kspring =
λnodeK, where λnode is the coefficient of the lumped mass matrix associated with the node, and K
is a reference stiffness coefficient.

Solution process The deformed configuration is computed in two steps. First, the stresses and
the strains in the initial configuration are computed using the reference nodes coordinates and the
reference porosity of the unloaded configuration as computed before. It uses the same model as
for the estimation of the unloaded configuration. It is checked that the nodes coordinates are the
same as in the initial configuration from which the unloaded configuration was estimated. Then,
the deformed configuration is computed with the more complex boundary conditions, including
contact. Both problems are solved using the Newton-Raphson procedure built into Abaqus.

3 Illustrative results
We now present some illustrative results using our pulmonary poromechanical model, with test
cases motivated by clinical applications and patient-specific modeling. The end-exhalation pleural
pressure ppl,e and the end-inhalation pleural pressure ppl,i are chosen in the physiological range, and
the mechanical parameters are chosen in order to reproduce the volumetric response to a change
of pressure as observed in experimental data [Gibson and Pride, 1976] (see Figure 2). In all cases,
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the thorax is fixed, and gravity is neglected. For each illustrative case, the parameters used are
reported in the corresponding table.

3.1 Geometries
All the computations in this section use a generic right lung mesh obtained based on the Zygote
geometric model2 in the end-exhalation configuration, and a thorax mesh generated from the lung
mesh in order to have the thorax surface and the lung surface in contact in the initial configuration.
The thorax corresponds to the hard structures surrounding lungs, mainly composed of the ribs and
the spine. The lung mesh contains 4052 tetrahedral elements, whereas the thorax and the inner
surface comprise 2678 and 2260 triangular elements respectively. Both lung and thorax meshes are
shown in Figure 5.

Figure 5: Lung and thorax meshes in the initial configuration, i.e. end-exhalation. (Left) Lung mesh
obtained based on Zygote model2. (Middle) Two views of the thorax mesh, lateral view (top) and top view
(bottom). (Right) Both meshes together in a coronal view. The lung surface is in contact with the thorax
surface.

2http://www.zygote.com

25

http://www.zygote.com


3.2 Influence of the positive porosity constraint on the unloaded config-
uration

Name Symbol Unit Value

Air pressure pf [kPa] 0
End-exhalation pleural pressure ppl,e [kPa] -0.5

Skeleton energy parameters α̃ [kPa] 1.6 · 10−1

δ [-] 0.5
β̃1 [kPa] 0.2
β̃2 [kPa] 0.4

Solid bulk modulus κ [kPa] -

Table 1: Parameters used for the breathing simulations when studying the influence of the porosity con-
straint on the unloaded configuration. Top rows correspond to the loading parameters, i.e. fluid pressure
and pleural pressures, whereas bottom rows give the coefficients of the constitutive behavior of the pul-
monary mixture. The solid bulk modulus is not needed here since pf = 0.

The first step to simulate breathing is to estimate the unloaded configuration. As explained
in Sections 2.1.4 and 2.4, the estimation of the unloaded configuration is associated with a prob-
lem concerning the porosity to be kept positive. We study in this paragraph the effect of using
the contact-like formulation in a realistic case, which is the asymptotic limit of the pore energy
formulation.

An initial end-exhalation porosity distribution φf, e was generated according to a Gaussian
distribution (mean: 0.5, std: 0.13) as shown in grey in Figure 6. The porosity values are randomly
distributed in space over the lung volume. The pressure loading and material parameters used in
the simulations are given in Table 1.

Two simulations are presented: one without any constraint on the porosity using the model
of Equation (24), the other using the contact-like formulation proposed in Equation (34). The
resulting reference porosity Φf in both cases is then computed as displayed in Figure 6, in blue and
red, respectively.

3.3 Influence of the stiffness
We present here an illustration of the model in the free breathing case, and the fluid pressure is
then zero. The unloaded configuration is first computed from the initial configuration using the
inverse problem described in Section 2.4. Then, the deformed configuration is computed using the
complex boundary conditions described in Section 2.3: a pleural pressure is applied on the lung
surface and makes the lung inflate and slide against the thorax surface; the thorax displacement
is prescribed (here it is null). The loading and material parameters used for the computations are
provided in Table 2. The same material parameters are used for both the estimation of the unloaded
configuration and the computation of the deformed configuration.

The impact of the stiffness parameter α, which is part of the skeleton energy presented in
Equation (27), is studied using three different values : 8 · 10−1 kPa, 8 · 10−2 kPa, 8 · 10−3 kPa. The
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Figure 6: Comparison of the reference porosity field computed without or with the contact-like formulation.
(Left) Given end-exhalation porosity shown on the end-exhalation mesh. (Right) Distribution of the given
end-exhalation porosity plotted in grey in the histogram. The red and blue distributions are the computed
reference porosity with and without the contact-like formulation, respectively. When not using any strategy
to ensure a positive porosity, the computed reference porosity of some cells is negative, whereas the computed
reference porosity remains positive or zero when using the contact-like formulation.

Name Symbol Unit Value

Air pressure pf [kPa] 0
End-exhalation pleural pressure ppl,e [kPa] -0.5
End-inhalation pleural pressure ppl,i [kPa] -2

Skeleton energy parameters α [kPa]
[
8 · 10−3, 8 · 10−2, 8 · 10−1

]
δ [-] 0.5
β1 [kPa] 0.1
β2 [kPa] 0.2

Solid bulk modulus κ [kPa] -

Table 2: Parameters used for the breathing simulations when studying the stiffness impact Top rows
correspond to the loading parameters, fluid pressure and pleural pressures, whereas bottom rows feature
the coefficients of the constitutive behavior of the pulmonary mixture. The solid bulk modulus is not needed
since pf = 0.
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results are shown in Figure 7.
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(Reference configuration) P = 0.0 kPa
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(Initial configuration) P = 0.5 kPa
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(Deformed configuration) P = 2.0 kPa

α = 8 · 10−3 α = 8 · 10−2 α = 8 · 10−1

(b)

Figure 7: Volume response of lung to a change of pleural pressure in the free breathing case for different
values of the stiffness parameter α in kPa. (a) Lung volume change J normalized by its value at end-
exhalation, i.e. at the pressure 0.5 kPa, with respect to the pleural pressure loading. (b) The unloaded
configurations (top row), are computed from the initial configurations (middle row) with simplified boundary
conditions using the inverse problem presented in Section 2.4. Then, the deformed configurations (bottom
row) are computed considering contact between the lungs and the thorax as described in Section 2.3.
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3.4 Comparison between free breathing and ventilated breathing
Mechanical ventilation can produce an injury called Ventilator-Induced Lung Injury (VILI) at the
alveolar scale as a consequence of excessive pressure, which can induce over-expansion and large
stresses in the alveoli. Clinicians are interested in improving mechanical ventilation to reduce such
risks. To that aim they can tune several parameters like the Positive End-Expiratory Pressure
(PEEP), the plateau pressure or the breathing rate. Lung models could be used to optimize these
parameters, by allowing to quantify their impact on the parenchyma. For instance, our model
allows to study the impact of fluid pressure induced by the ventilator on stresses, which we will
now illustrate.

From Equation (25), we can decompose the mixture stress as follows:

Σ = Σ
skel

+ Σ
p

with


Σ

skel
:=

∂W skel

∂E

Σ
p

:= −pfJC
−1

(59)

where Σ represents the total stress in the mixture (which equilibrates the boundary loadings on the
mixture as shown by Equation (14)), Σ

skel
represents the skeleton stress (a function of the global

deformation of the mixture that equilibrates the total pressure acting on the system, i.e. ptot =
ppl−pf, as shown by Equation (47)), and Σ

p
is the total hydrostatic stress. This mixture hydrostatic

stress can be decomposed into solid and fluid parts, based on the porosity:

Σ
p

= Σ
p,s

+ Σ
p,f

with

{
Σ

p,s
:= (1− Φf) Σ

p

Σ
p,f

:= ΦfΣp

(60)

Thus, the mixture stress can be decomposed into solid and fluid parts:

Σ = Σ
s

+ Σ
f

with

{
Σ

s
:= Σ

skel
+ (1− Φf) Σ

p

Σ
f

:= ΦfΣp

(61)

since Σ
skel

is a solid stress by definition.

Spontaneous
breathing

Mechanical
ventilation

∆ppl [kPa] +0.3 -
∆pf [kPa] - +3
∆Vair [L] +0.5 +0.3

Table 3: Typical range for the variations of pressure and fluid volume during a normal inhalation in both
types of breathing [Goligher et al., 2016].

Both types of breathing – spontaneous breathing and mechanical ventilation – result in different
stresses. Indeed, in the case of spontaneous breathing, the driving force of breathing is the variation
of pleural pressure, whereas in the case of ventilated breathing it is the fluid pressure produced by
the ventilator that acts to inflate both the lungs and the surrounding structures, including the rib
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cage. The typical ranges of the pressure variation as well as the volume variation for both types
of breathing are reported in Table 3. The variation of ventilation pressure is much larger than the
variation of pleural pressure while the deformation is smaller, since the ventilation pressure must
inflate the rib cage in addition to lungs, which also means that the pleural pressure will become
positive, hence counterproductive. In the case of spontaneous breathing, we have

pf
sb = 0, (62)

which entails {
Σ

f
sb = Σ

p
sb = 0

Σ
s
sb = Σsb = Σ

skel
sb,

(63)

whereas in the case of ventilated breathing we have

pf
vb = pvent, (64)

and therefore {
Σ

f
vb = −Φf pventJC

−1

Σ
s
vb = Σ

skel
vb − (1− Φf) pventJC

−1.
(65)

The main difference lies in the contribution of the fluid pressure in the solid stress. Whereas it is
zero in the case of spontaneous breathing, the fluid pressure is large in ventilated breathing. The
skeleton stress Σ

skel
itself is slightly different as the deformation is somewhat larger in spontaneous

breathing than in ventilated breathing.

Name Symbol Unit Spontaneous
breathing

Mechanical
ventilation

End-inhalation air pressure pf [kPa] 0 3
End-exhalation pleural pressure ppl,e [kPa] -0.5 -0.5
End-inhalation pleural pressure ppl,i [kPa] -0.8 -

Skeleton energy parameters α [kPa] 8 · 10−2 8 · 10−2

δ [-] 0.5 0.5
β1 [kPa] 0.1 0.1
β1 [kPa] 0.2 0.2

Solid bulk modulus κ [kPa] - 102

Table 4: Parameters used for the comparison between spontaneous breathing and ventilated breathing.
Top rows correspond to the loading parameters, fluid pressure and pleural pressures, whereas bottom rows
feature the coefficients of the constitutive behavior of the pulmonary mixture. The solid bulk modulus is
not needed since pf = 0.

The solid stress difference between the two types of breathing is illustrated in Figure 8. Two
simulations were performed using typical ranges of pressure and volume changes for each type of
breathing, see [West and Nadeau, 2003]. To do so, the reference stiffness K of the inner surface
is tuned to 0.2 kPa. All the parameters used for each simulation are given in Table 4. Note that
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under mechanical ventilation the pleural pressure has the nature of a reaction force, hence it is not
prescribed. The total stress in the solid part Σ

s
has then two components: the first one is linked to

the skeleton energy and describes the traction coming from the total loading, whereas the second
one comes from the fluid pressure which leads to the solid part compression. These two components
are presented separately in the figure.

3.5 Pulmonary symphysis

Name Symbol Unit Healthy case Symphysis case

Air pressure pf [kPa] 0 0
End-exhalation pleural pressure ppl,e [kPa] -0.5 -0.5
End-inhalation pleural pressure ppl,i [kPa] -2 -2
Sliding type Frictionless Tied

Skeleton energy parameters α [kPa] 8 · 10−1 8 · 10−1

δ [-] 0.5 0.5
β1 [kPa] 0.1 0.1
β2 [kPa] 0.2 0.2

Solid bulk modulus κ [kPa] - -

Table 5: Parameters used for the comparison between a normal case and a pathological case with pleural
symphysis. Top rows correspond to the loading parameters, fluid pressure and pleural pressures, whereas
bottom rows feature the coefficients of the constitutive behavior of the pulmonary mixture. The solid bulk
modulus is not needed since pf = 0.

The proposed model also allows to study pathological lung conditions, for instance after a
pleural symphysis. A pleural symphysis, where the two pleural membranes are joined together, can
be performed to prevent pneumothorax from occurring or liquid from accumulating into the pleural
space. Consequently, any sliding between the lungs and the thorax is prevented.

The modeling of a lung with pleural symphysis can be achieved using another type of contact
– a tied contact – instead of the frictionless contact as previously used. A comparison between a
normal case and this pathological case is now performed. The thorax is fixed, and the same amount
of pressure as well as the same constitutive behavior are applied in both cases. The parameters
used are given in Table 5.

The results are presented in Figure 9.

4 Discussion
We now discuss some specific points pertaining to the above results.

Methods to enforce positive porosity We considered two possible methods to enforce positive
porosity, both in the direct and inverse problems. The first method, based on an additional pore
energy was proposed by Chapelle and Moireau [2014], and is used here with a form of the pore
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σH
p,s

Spontaneous
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Mechanical
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Figure 8: Solid stress components for both types of breathing, spontaneous and ventilated breathing. The
quantities represented are the hydrostatic pressure of the solid Cauchy stress tensor, defined as−σH = 1

3
trσ,

associated with Σ
skel

and Σ
p,s

. In the case of spontaneous breathing, the skeleton stress is in equilibrium
with the mixture loading, here the pleural pressure of −0.8 kPa, and is negative reflecting the traction
induced by the pleural pressure. In the case of ventilated breathing, the skeleton stress is smaller since
the deformation is smaller, and σH

p,s
is positive, reflecting the compression induced by the fluid pressure

imposed by the ventilator.
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energy that does not introduce residual stresses, and also enforces positive porosity in the inverse
poroelastic problem. The second method, based on a contact-like constraint, was introduced here.
In Figure 3 we showed the equivalence between the two methods in the limit where the pore energy
tends to zero.

Positive porosity constraint In the results presented in Fig. 6, we see that the estimation of
the unloaded configuration induces a shift to the left of the porosity distribution – compared with
the loaded configuration – because the porosity decreases when the lung deflates. When using no
constraint, the left part of the distribution is negative, which is not physiological. However, the use
of the contact-like formulation allows to keep the porosity positive everywhere. We can notice that
the cells with vanishing porosity do not significantly impact the rest of the global distribution.

Influence of the stiffness We see in Fig. 7 how the stiffness parameter α impacts the lung
compliance. When α increases, the volume change is lower for a given pressure, which means that
the lung compliance decreases. Pathological cases could be represented in the model by adjusting
the stiffness parameter. Indeed, the green curve (α = 8 · 10−1 kPa) could represent a fibrosis case,
in which the lung becomes stiffer, the orange curve (α = 8 · 10−2 kPa) could stand for an healthy
case, and the blue curve (α = 8 · 10−3 kPa) could be attributed to an emphysema case, where the
lung is more compliant.

Free vs. ventilated breathing As the two components of the solid stress tensor do not represent
the same physical effects, the total stress tensor Σ

s
is not the relevant quantity to look at in order to

study ventilation-induced injuries, which is why we represented the two components separately in
Fig. 8. We see that the tensile stress component associated with skeleton deformation is somewhat

Frictionless contact Tied contact

Figure 9: Comparison between two types of contact: the normal case with frictionless contact (left) and
the case with pleural symphysis modeled with a tied contact (right). Both cases are shown in a coronal
plane. The color scale represents the hydrostatic pressure of the solid Cauchy stress tensor (as defined in
Section 3.3). The black line is the surface of the initial configuration.
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smaller in the ventilated case, indeed, whereas in this case we have a strong compressive component
due to internal fluid pressure, and therefore it it the latter component that is likely to be the cause
of VILI.

Pleural symphysis As seen in Fig. 9 the normal lung deforms mostly in the longitudinal direction
since sliding is allowed against the thorax while the diaphragm pulls on the bottom part of the lung.
By contrast, the lung with pleural symphysis cannot deform in the longitudinal direction to the
same extent as the healthy lung because of symphysis. However, the pathological lung deforms
more in the transverse direction. This behavior can explain the clinical observation that the rib
cage diameter is larger for patients with pleural symphysis. Indeed, transverse deformation is
then a compensation mechanism that allows to maintain an adequate amount of ventilation. Note
that hydrostatic pressure in this case represents a scalar measure of the solid stress tensor – since
porous pressure is zero – hence of the deformation tensor. We thus see in Fig.9 that deformations
are globally larger in the physiological case than in the pathological one, except near the internal
surface, which was expected since boundary conditions associated with pulmonary symphysis are
more constrained and the same loading is considered in both cases.

Influence of gravity Gravity has been included in our model equations for the sake of generality,
but neglected in all our illustrations for practical purposes. It would require specific care, indeed,
especially in the treatment of the boundary conditions associated with the unloaded configuration
problem. Nevertheless, whereas taking gravity into account would make the model more physiolog-
ical, it is expected that the resulting impact on pulmonary stresses and strains is of second order
compared to breathing or ventilation pressure.

5 Conclusions
We have proposed a modeling framework based on large strain poromechanics to represent the
behavior of lungs, and shown how the model can be personalized to individual cases when actual
data – imaging, and possibly pleural pressure – are available. We have also illustrated the use of
this model in a number of configurations motivated by clinical applications, including ventilated
breathing.

In contrast to many pulmonary models focusing on air flows, this poromechanical model allows
to study the parenchymal stress and strain with the use of a hyperelastic potential describing the
skeleton behavior. The non-linear volume response of lungs to a pressure change as well as the solid
quasi-incompressibility is well reproduced by the constitutive behavior.

Both effective and rescaled mechanical parameters can be used to parametrize the constitutive
behavior, depending on whether or not porosity data are incorporated into the model. Unlike
the effective parameters characterizing the mixture with the effect of the porosity, the rescaled
parameters characterize the stiffness of the solid tissue. The effective parameters give the same
type of porosity-dependent information as the clinical compliance, whereas the rescaled parameters
bring an additional information which cannot be measured.

Since the constitutive behavior used in the model is nonlinear and the geometry comes from an in
vivo, loaded configuration, the unloaded configuration needs to be retrieved. A special attention is
paid to ensure positive porosity in the estimated unloaded configuration. We proposed two different
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methods for this, including a novel contact-like material constraint that is the asymptotic limit of
the existing approach based on pore energy, and illustrated its response under various conditions.

We provided some preliminary illustrations of the effects of ventilated breathing, which actually
emphasizes the benefits of a poromechanical model compared with standard hyperelasticity, since
we can distinguish the very different effects induced in the solid stresses by the skeleton deformation
and by the fluid pressure. Based on this, some criteria could be proposed combining norms of both
quantities Σ

skel
and Σ

p,s
to quantify the risk of VILI. Moreover, as part of a poromechanical model,

stresses are macroscopic and homogenize the microscopic stresses, which are not available directly.
To access microscopic stress in the solid part, an alveolar geometry could be assumed and such
stresses could then be computed using the macroscopic deformation. Such microscopic informa-
tion would provide the most relevant quantities for clinicians to study the impact of mechanical
ventilation on the pulmonary tissue.

One noteworthy limitation of the model is that it does not represent the dynamics of breath-
ing, nor does it take into account the hysteresis behavior of the lung mechanical behavior that is
commonly attributed to the pulmonary surfactant present on the alveoli surface [Wiechert, 2011].
However, these are not fundamental limitations, in the sense that the model could be extended to
dynamics. Similarly, an energy describing the surfactant behavior could be incorporated into the
solid free energy, in order to improve the model and make it more physiological.

In the future, this general pulmonary model should be validated against in vivo data and
could be applied in more complex and pathological cases involving mechanics – emphysema or
fibrosis for example – in which regional values of mechanical parameters could be defined instead
of homogeneous properties. Applied with a diseased patient, the personalized model could then
be used for diagnosis or classification purposes. Another question that such a model could help
investigate is the impact of drugs on the evolution of various diseases – by monitoring the model
parameters over the course of the disease evolution and treatments, in a patient specific approach
– in order to assist clinicians in deciding on the most appropriate medical treatment.
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