
HAL Id: hal-03474762
https://inria.hal.science/hal-03474762

Submitted on 10 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The MPI BUGS INITIATIVE: a Framework for MPI
Verification Tools Evaluation

Mathieu Laurent, Emmanuelle Saillard, Martin Quinson

To cite this version:
Mathieu Laurent, Emmanuelle Saillard, Martin Quinson. The MPI BUGS INITIATIVE: a Framework
for MPI Verification Tools Evaluation. Correctness 2021: Fifth International Workshop on Software
Correctness for HPC Applications, Nov 2021, St. Louis, United States. pp.1-9. �hal-03474762�

https://inria.hal.science/hal-03474762
https://hal.archives-ouvertes.fr


The MPI BUGS INITIATIVE: a Framework for MPI
Verification Tools Evaluation

Mathieu Laurent
Inria Rennes

Rennes, France
mathieu.laurent@ens-rennes.fr

Emmanuelle Saillard
Inria Bordeaux Sud-Ouest

Bordeaux, France
emmanuelle.saillard@inria.fr

Martin Quinson
University of Rennes, Inria, CNRS, IRISA

Rennes, France
martin.quinson@ens-rennes.fr

Abstract—Ensuring the correctness of MPI programs becomes
as challenging and important as achieving the best performance.
Many tools have been proposed in the literature to detect
incorrect usages of MPI in a given program. However, the limited
set of code samples each tool provides and the lack of metadata
stating the intent of each test make it difficult to assess the
strengths and limitations of these tools. In this paper, we present
the MPI BUGS INITIATIVE, a complete collection of MPI codes
to assess the status of MPI verification tools. We introduce a
classification of MPI errors and provide correct and incorrect
codes covering many MPI features and our categorization of
errors. The resulting suite comprises 1,668 codes, each coming
with a well-formatted header that clarifies the intent of each code
and specifies how to execute and evaluate it. We evaluated the
completeness of the MPI BUGS INITIATIVE against eight state-
of-the-art MPI verification tools.

Index Terms—Verification, MPI, Benchmarks, Tools

I. INTRODUCTION

In the recent past, the vast majority of MPI applications
were exhibiting rigid communication patterns and determin-
istic executions, to ensure both maximal performance and
correctness. The focus of programmers was solely on the
application performance, as application correctness was simple
to test. As modern computing facilities reach tremendous
dimensions, it becomes near to impossible to ensure per-
fectly stable and homogeneous hardware conditions, even over
shorter execution time spans. Nowadays, large MPI applica-
tions must cope with variations in the environment through
dynamic and non-deterministic execution patterns. As a result,
the correctness of MPI programs of increasing complexity and
size becomes as challenging and important as achieving the
best performance [1].

MPI programs can exhibit many types of errors, that can be
either classical synchronization errors (leading to deadlocks
and data races) or more specific, such as mismatches between
the parameters of corresponding MPI calls (data type or root
of collective communications). Some MPI calls also introduce
specific restrictions. For example, collective operations must
be called in the same order by all processes, resource handlers
should be freed appropriately, and remote memory access
(RMA) fences must be correctly paired. Some potential MPI
faults are more subtle, depending on obscure conditions. For
example, two concurrent blocking sends from A to B and from
B to A may or may not result in a deadlock depending on

whether the data fits in the system buffers. MPI portability
introduces another set of challenges, where a given application
can fail only with some specific MPI implementations.

Many tools have been proposed in the literature to detect
errors in MPI programs, leveraging diverse approaches such as
static analysis [2]–[4], dynamic analysis [5]–[9], or symbolic
analysis [10]–[13]. Some of these approaches are better suited
to detect some classes of errors, and authors may further
specialize their tool to a subset of the potential errors. This
situation makes it very difficult to evaluate the proposed tools,
both for the users wanting to select the tool fitting their needs,
but also for the authors wanting their tool to meet users’ needs.
One could rely on the test suites provided by each tool, but the
lack of metadata often obfuscates the intent of each test. It is
thus hard to judge whether a given sample collection properly
covers the possible errors or is merely a set of redundant
tests for a very specific error class. In this paper, we present
the MPI BUGS INITIATIVE (MBI), a systematic and practical
methodology to assess the status of MPI verification tools.
This work makes the following contributions:

• We introduce a new classification of MPI errors depend-
ing on their root cause.

• We propose a collection of codes covering the core fea-
tures of MPI (point-to-point, collectives, etc.) and more
advanced features, such as RMA. We provide both correct
and incorrect codes to cover our error classification;

• We use our methodology to assess and compare eight
state-of-the-art verification tools from the literature.

The rest of the paper is organized as follows. Section II dis-
cusses related work on existing MPI test suites and MPI tools
comparison. Section III describes our methodology, centered
around a classification of MPI errors and features. Section IV
details the corresponding suite of MPI sample codes. Section
V uses this methodology on existing verification tools while
Section VI summarizes our findings and future work.

II. RELATED WORK

Assessing the quality of the MPI runtime implementations
is a significant concern for decades, resulting in countless
tools and benchmarks on the Internet. Most of the works
described in the scientific literature focus on the performance
of MPI implementations [14], or a subset of features [15], [16].
Thoroughly testing the correctness and standards conformance



of the MPI implementations is an engineering challenge of
its own [17]. On the application side, many tracing and
profiling tools have been proposed. Several surveys propose
a qualitative assessment of such MPI profilers and debuggers,
through an empirical evaluation of the graphical interface,
the documentation, the usefulness of the provided feedback,
etc [18]–[20]. Our work in contrast aims at constituting an
automated test suite providing a quantitative evaluation of
correctness assessment tools.

The Run-Time Error Detection suite (RTED – [21]) is very
relevant, even if dated, to our work (the code samples can
only be found from the Internet Archive project). It aims at
proposing a quantitative evaluation of the runtime feedback to
programming errors in several contexts. The authors gathered
ten thousand code samples, organized in four suites containing
serial, MPI, OpenMP, or UPC codes. The MPI suite proposes
1,942 code samples (in C, C++, or Fortran 90) falling into
10 categories: buffer out of bounds, buffer overlap, data type
errors, rank errors, other argument errors, wrong order of MPI
calls, negative message length, deadlocks, race conditions,
implementation-dependent errors (such as potential deadlocks
and race conditions). Each code contains exactly one described
error, but no correct code is provided. Surprisingly, this work
was almost never referenced in the context of MPI correctness.
To the best of our knowledge, the only references to RTED
in a context including MPI seems to be [22], a survey
misrepresenting RTED as being limited to OpenMP.

Our goals are similar but not perfectly aligned with the ones
of the RTED benchmark. First, RTED is strongly focused on
the quality of the produced error diagnosis while we are more
interested in quantifying the error detection ability of the tools.
The RTED harness does not report the tests for which the tool
fails to produce a diagnosis, hiding the fact that some tools
only support a small subset of MPI. Since RTED does not
contain any correct code, it is also unable to evaluate whether
a given tool tends to diagnose errors in correct codes. Second,
the chosen error categories also denote a differing focus. Some
of the RTED categories target the MPI runtime and check the
buffer and memory handling or enforce that no message length
is negative. Issues requiring a global view (deadlocks and
message races) constitute a common concern between RTED
and our work, as both are difficult to detect in production
settings and often require external tools. Errors resulting from
the dynamic communication patterns that become prevalent
on modern systems (such as potential synchronization issues)
are badly represented in RTED. Similarly, RTED is limited to
MPI-2 features while we propose tests of the RMA features
in MPI-3. Third, RTED exhibits a very strong bias toward dy-
namic analysis. “The tests were written so that the information
needed to detect the error is not available at compile-time” [21,
p3], deliberately defeating static and symbolic analysis. Our
work does not have such a methodological bias and was
successfully used to evaluate tools relying on static, dynamic,
or symbolic analysis.

In [23], the authors present a benchmark to evaluate the

ability of general-purpose model checkers to find deadlocks in
MPI programs. [13] is used to automatically extract models
from the considered MPI programs. Mutation techniques [24],
[25] are used to generate several thousands of models by
injecting artificial errors into the 10 considered MPI applica-
tions, and the resulting models are translated in the formalism
of the tested model checkers (PAT, FDR, Spin, PRISM, and
NuSMV). The impressive amount of models included in this
benchmark is hindered by the fact that the redundancy between
these models is not evaluated. Besides, this collection seems
to be limited to point-to-point MPI communications only.

MPI verification tools are usually evaluated separately,
without being compared to the literature. Hermes [11] is an
exception, as the authors experimentally compared their tool to
several competing solutions (ISP [6], Mopper [7], Aislinn [5],
and CIVL [10]). This study is unfortunately limited to the
detection of deadlocks in MPI programs.

MPI-CorrBench [26] is a recent MPI benchmark suite con-
taining 510 small-scale programs and 3 mini-apps with errors.
The proposed programs fall in four categories: correct code,
erroneous arguments, erroneous program flow, and mismatch-
ing arguments across communicator. This benchmarks are used
to compare four tools from the literature (MUST, ITAC, MPI-
Check and PARCOACH). The main differences with the MPI
BUGS INITIATIVE is that our error categorization contains
more kind of errors (e.g. covering message races, resource
leaks and concurrency issues), and that we evaluate eight tools,
but the MBI does not contain tests of the size of a mini-
app. As a result, the MPI-CorrBench and MBI efforts are very
complementary.

We believe that the MPI BUGS INITIATIVE will be highly
beneficial to the potential users and tool authors targetting.
This effort results from the collaboration of two unrelated
teams developing such tools, and we reported several issues
found through our work to the authors of the other tools. We
hope that others will join this effort in the future.

III. METHODOLOGY

The MBI main goal is to measure the qualitative and quan-
titative performance of MPI verification tools in a reproducible
and automatic way. With that goal in mind, we first identify
errors that can arise in MPI programs and classify them
following the errors taxonomy described in [27]. To automate
the evaluation and ensure our benchmark suite is representative
of real-world applications, we annotate all programs with the
expected error, if any, and feature labels.

For each tool, we provide the number of errors correctly
reported (TP), missed (FN), incorrectly reported (FP) and the
number of programs correctly detected as error-free (TN).
We also compute five standard metrics that define tools per-
formance [28], [29]: Recall, Specificity, Precision, Accuracy,
and F1 score. Recall is the ratio of true positives out of the
total number of correctly and incorrectly reported errors while
Specificity gives the ratio of true negatives out of the total



MPI Description Number of codes using the label
Feature Label # Incorrect codes # Correct codes

P2
P

base calls Use of blocking point-to-point communication) 132 14
nonblocking Use of nonblocking point-to-point communication 114 13
persistent Use of point-to-point persistent communications 65 10

C
O

L
L base calls Use of blocking collective communication 542 468

nonblocking Use of nonblocking collective communication 529 480
tools Use of resource function (e.g., communicators, datatypes) 102 32
RMA Use of Remote Memory Access 42 3

TABLE I: List of MPI feature labels. The two last columns give the number of correct and incorrect programs using the labels
(codes may use several labels). P2P and COLL respectively stand for point-to-point and collective.

P0 P1 P2
recv(any) send(0) send(0)
send(1) recv(0)
recv(any)

(a) Potential send-recv cycle (Message
Race)

P0 P1
window buffer X

Win_fence Win_fence
Put(buf,1,X)
buf[0]=8
Win_fence Win_fence

(b) RMA datarace (Local Concurrency)

P0 P1 P2
window buffer X

Win_lock_all Win_lock_all Win_lock_all
Put(buf1,1,X) Put(buf2,1,X)

Win_unlock_all Win_unlock_all Win_unlock_all

(c) Conflicting Put operations (Global Concurrency)

int root = 22;
MPI_Comm com = MPI_COMM_WORLD;
MPI_Reduce(&myrank,&sum,1,MPI_INT,MPI_SUM,root,com);

(d) Root not in the communicator (Invalid Parameter)

MPI_Comm com = MPI_COMM_WORLD;
MPI_Datatype conti;
...
MPI_Bcast(outbuf, 6 / (3 - rank), conti, rank, com);

(e) Root mismatch in a broadcast function (Parameter Matching)

...
MPI_Ireduce(&sum, &val, 1, MPI_INT, MPI_SUM,

root, MPI_COMM_WORLD, &req);
...
MPI_Request_free(&req);

(f) Missing wait (Request Lifecycle)

void myOP(void* in,void* inout,int* len,MPI_Datatype* dptr);
MPI_Op newop[OP_COUNT];

for (i = 0; i < OP_COUNT; i++)
MPI_Op_create(myOP, 1, &newop[i]);

(g) Missing free after an operation creation (Resource Leak)

Fig. 1: Examples of different erroneous situations.

number of true negatives and false positives. The precision
metric is the ratio of true positives out of the total number of
errors reported. Accuracy measures the tool ability to correctly
report out of all positive and false reports. Finally, the F1
score corresponds to the harmonic mean of precision and
recall. In addition to these standard metrics, we define two
new metrics to evaluate tools ability to draw a diagnostic on
codes (Conclusiveness) and to compile codes (Coverage).

A. Feature Labels

We define 7 feature labels representing the way MPI pro-
cesses exchange messages. Each label is either set to Yes: use
of the feature, or Lacking: the feature is missing. The list of
all feature labels is given in Table I (first three columns) and
a full description of each one is detailed below. Note that a
code can have multiple features.

1) Point-to-point: base calls and nonblocking: A point-
to-point communication involves two MPI processes. It can
be either blocking (i.e., the call returns when the resources
of the communication can be reused), referred as base calls,
or nonblocking (i.e., the call returns as soon as it can),
referred as nonblocking. An MPI nonblocking operation is
composed of two procedure calls: an initialization of the form
MPI_I<operation> (e.g., MPI_Isend) and a completion
(MPI_Wait or MPI_Test ). Between these two operations,
the data buffer is in a vulnerable state. A misuse of blocking

and nonblocking point-to-point communications includes un-
balanced communications (e.g., a send without a correspond-
ing receive operation) and the use of invalid arguments. When
using nonblocking point-to-point communication, an error can
also occur if a completion call is missing, the buffer involved
in the communication is modified before the operation is
completed or if requests are not correctly used.

2) Point-to-point: persistent: Persistent communication is
composed of four procedure calls. The first procedure initiates
the communication (e.g., MPI_Send_init). The second
procedure starts the communication (e.g., MPI_Start). The
third and fourth procedures respectively complete and free the
operation. A persistent communication is misused when called
with invalid arguments, if the completion operation is missing
or if the buffer involved in the communication is modified
between the start and the completion calls.

3) Collective: base calls and nonblocking: A collective is a
communication that involves all processes in a communicator.
These labels are restricted to usual collectives communication
only (e.g., MPI_Barrier, MPI_Bcast, MPI_Ireduce).
The MPI specification requires that all processes of a commu-
nicator have the same sequence of blocking and nonblocking
collectives. These operations are incorrect if communication
buffers overlap, if all processes in a communicator do not
call the same collectives in the same order, or if collectives
are called with incompatible or invalid arguments. Note that



it is not allowed to match a blocking collective with its
nonblocking counterpart; such situation is erroneous.

4) Collective: tools: This label comprises
communicator and group management operations (e.g.,
MPI_Comm_create/free), topology creation operations
like MPI_Cart_create that virtually organize processes in
a multi dimensional grid, and datatypes and operators creation
operations (e.g., MPI_Op_create to create operators for use
in reduce functions). These operations must be called by all
processes in the involved communicator otherwise a deadlock
can occur. Furthermore, these operations are incorrect in
case of improper construction and/or destruction of the MPI
resource or if they are called with invalid arguments.

5) RMA: The Remote Memory Access (RMA) allows
processes to expose a part of their memory (called win-
dow) in order to perform one-sided communications (e.g.,
MPI_Get). These communications are performed inside an
epoch to ensure synchronizations. MPI RMA defines two kind
of synchronization: active synchronization where the target
takes part in the epoch creation (e.g., with MPI_Win_fence)
and passive synchronization (e.g., with MPI_Win_lock and
MPI_Win_unlock) where the target does not take part
of the epoch creation. A misuse of RMA communication
includes wrong RMA initialization/destruction operation usage
(e.g., if MPI_Win_create is not called by all processes), a
concurrency in memory accesses inside an epoch or a one-
sided communication called with invalid arguments (e.g., if
the target memory that is not part of the window).

B. Error Labels

Many errors can occur in a MPI program. Based on what
was proposed in previous work [21], [27], we define 8 types
of errors that can occur in a MPI program depending on
the root cause: Invalid Parameter, Resource Leak, Request
Lifecycle, Local Concurrency, Message Race, Parameter
Matching, Call Ordering and Global Concurrency. These
errors are categorized according to the scope in which they
manifest: single call, single process and multi-processes.

1) Errors in single calls: These errors are only related to
local MPI functions and can be detected by only analyzing the
parameters of a given MPI function.

a) Invalid Parameters: This category contains errors
such as invalid root, communicator, operator, datatype, tag or
buffer length. The use of invalid parameters in MPI functions
is incorrect and is reported by the MPI runtime.

In Figure 1d, processes call a reduce function with process
22 as root. If the program is launched with less than 23
processes, the root would be invalid. For this code, the MPI
runtime reports the following message: MPI_ERR_ROOT:
invalid root.

2) Errors local to a process: These errors often consist of
an inconsistency between the local context of a process and
the parameters to a given MPI call in that process. Detecting
them thus requires analysis of local process information.

a) Resource Leak: Any improper destruction of MPI
resources (e.g., datatype, request, communicators) leads to a
resource leaking. As an example, the code snippet in Figure 1g
constructs OP_COUNT MPI operators without freeing them.

b) Request Lifecycle: Request lifecycle is used for a
missing wait or start function. Figure 1f shows a nonblocking
reduce function that does not have a MPI_Wait associated.

c) Local Concurrency: A local concurrency occurs
when a process accesses a memory region that is being
read or written. This type of error is easy to produce
with nonblocking and one-sided communication. For RMA
operations, we consider concurrency errors inside an epoch
and within a process. Figure 1b gives an example of a local
memory consistency error within an epoch: Two operations
are accessing variable buf, the Put operation reads buf
while a store writes on buf.

3) Multi-processes errors: The next four errors result from
multiple processes of the application, either local to a given
communicator or globally.

a) Message Race: The use of wildcard receive calls can
lead to nondeterministic matching with potential senders at
runtime. An example is presented in Figure 1a. In this code,
a deadlock arises if P0 receives from P2 first. We label these
situations as message races.

b) Parameter Matching: Parameter matching corre-
sponds to MPI calls matched with incompatible arguments.
This happens for example when each rank gives its ID as
root in a broadcast function as illustrated in Figure 1e. This
code results either in a numerical instability or a deadlock,
depending on the MPI implementation.

c) Call Ordering: Different scenarios can lead to a call
mismatch: Any pattern causing a cyclic dependency (e.g.,
send-receive cycle) and a point-to-point or collective mis-
match.

d) Global Concurrency: Global concurrency occurs
when two or more processes access the same memory region
and at least one access is a write. Such errors are produced
with RMA operations inside an epoch and between processes.
Figure 1c shows an example of two conflicting MPI_Put
operations. Processes 0 and 2 access the same window buffer
X, located on process 1.

IV. THE MPI BUGS INITIATIVE

We built the MPI BUGS INITIATIVE to cover all errors and
features categorization described in the previous section. Par-
ticular attention was paid to ensure the suite is representative
and complete.

A. Benchmark Description

All codes in MBI are automatically generated from Python
scripts to ensure a systematic coverage of the errors and
features. Our benchmark contains 1, 668 original programs.
986 programs have errors and 682 are known to be error-
free. Note that error-free programs are important for false



Point-to-point Collective

RMA Unique files

ba
se

ca
lls

no
nb

lo
ck

in
g

pe
rs

is
te

nt

ba
se

ca
lls

no
nb

lo
ck

in
g

to
ol

s

Single call Invalid Parameter 48 36 36 33 33 55 12 154

Single process
Resource Leak 0 1 2 0 0 14 0 16
Request lifecycle 0 4 5 0 12 0 0 18
Local concurrency 2 3 3 0 11 0 18 37

Multi-processes

Parameter matching 27 19 19 29 29 33 0 97
Message Race 3 3 0 0 0 0 0 4
Call ordering 52 48 0 480 444 0 0 648
Global concurrency 0 0 0 0 0 0 12 12

Correct codes 14 13 10 468 480 32 3 682
Total 146 127 75 1010 1009 134 45 1668

TABLE II: Errors classification. Numbers indicate the number of codes with the feature and the error. The last row shows the
number of correct codes with each feature (a code can have multiple features).

positives reporting. All codes are written in C and have
a formatted header providing a textual description of the
problem, the list of MPI features used, the expected errors,
and how to evaluate them. Each incorrect code produces only
one error: all codes were verified with the Valgrind tool and
we manually checked the output of all bug finding tools. We
made the suite extensible so new codes, errors and features
can easily be added. The MBI can be downloaded from
https://gitlab.com/MpiBugsInitiative.

B. Features and Errors Coverage

As mentioned in section III-B, the occurrence of an error
may depend on several parameters including the MPI im-
plementation, the number of processes, the system buffering
and the program input data. We associate each code in the
benchmark to one test. A test corresponds to an execution
command line with specific parameters including the number
of processes. Table I gives the number of correct and incorrect
programs using each feature (a program can have multiple
feature labels) and Table II shows the feature usage among all
correct and incorrect codes. The last row of table II depicts the
total number of correct programs and incorrect programs per
error. It is worth mentioning that some features are irrelevant to
some errors (e.g., RMA operations cannot produce a Request
Lifecycle error). It may be observed that all MPI features are
represented in the benchmark with a predominance of basic
collectives and point-to-point operations which correspond to
the most used features in HPC applications [30].

V. TOOLS COMPARISON

We use the MBI to evaluate Aislinn (v3.12), CIVL (v1.20),
ISP (v0.3.1), ITAC [31] (v2021.3), Mc SimGrid [9] (v3.28),
MPI-SV [13] (v1), MUST (v1.6) and PARCOACH (v1.2) as
they are active projects, available and use different techniques.

Aislinn focuses on deadlock detection caused by run-time
scheduling problem among operations. To do so, it realizes
a symbolic execution with Partial Order Techniques. Aislinn
supports both zero and infinite buffering modes. CIVL com-
bines symbolic execution and model checking to detect com-
munication deadlocks. It can detect data races and assertion

violations but does not support nonblocking operations. Like
CIVL, MPI-SV uses symbolic execution and model checking
to detect communication deadlocks in MPI programs. ISP
checks if a program satisfies a given property (e.g., live-
ness, communication determinism) by considering all possible
executions. Like all model checkers, it faces a state space
explosion problem. Mc SimGrid is a model checker integrated
to SimGrid, a framework mostly dedicated to predicting the
performance of distributed applications. It explores all the
possible execution paths of an MPI application, starting from
an initial application configuration with a fixed set of inputs.
Mc SimGrid verifies safety properties, liveness properties, and
other properties such as communication determinism. MUST
is the successor of Marmot [32] and Umpire [33]. It intercepts
all MPI operations to perform online checking. It is based on
GTI (generic tool infrastructure) and can detect multiple errors
like deadlocks, type mismatches or resource leaking. Intel
Trace Analyzer and Collector (ITAC) uses a similar approach
to MUST. It is implemented as a library that performs error
detection at runtime and records error reports for later analy-
sis. PARallel COntrol flow Anomaly CHecker (PARCOACH)
combines a static analysis with a code instrumentation to
detect misuse of MPI collectives [34] as well as nonblocking
and persistent communications [3]. Although it uses a precise
data- and control-flow interprocedural analysis to pinpoint root
cause problems, it may lead to many false positives. In this
work we only consider the PARCOACH static phase which is
implemented as a LLVM pass.

A. Experimentation Setup

The experiments were performed in a Docker image with
Ubuntu version 20.04 containing all tools dependencies, ex-
cept for Aislinn which was run with Ubuntu 18.04 due to
dependency issues in the newer Ubuntu version and MPI-SV
which was run with Ubuntu 14.04.6 (we use the docker image
provided by the authors). All tests use at most 6 processes to
produce the expected errors. The use of Docker facilitates the
benchmark modifications and the installation of the tools we
have selected. All results were obtained with MPICH v3.3.2.

https://gitlab.com/MpiBugsInitiative


Correct Invalid Resource Request Local Parameter Message Call Global
execution parameter leak lifecycle concurrency matching race ordering concurrency

B
ui

ld
er

ro
r

R
un

tim
e

er
ro

r

Fa
ls

e
Po

si
tiv

e

Tr
ue

N
eg

at
iv

e

B
ui

ld
er

ro
r

R
un

tim
e

er
ro

r

Fa
ls

e
N

eg
at

iv
e

Tr
ue

Po
si

tiv
e

B
ui

ld
er

ro
r

R
un

tim
e

er
ro

r
Fa

ls
e

N
eg

at
iv

e

Tr
ue

Po
si

tiv
e

B
ui

ld
er

ro
r

R
un

tim
e

er
ro

r
Fa

ls
e

N
eg

at
iv

e

Tr
ue

Po
si

tiv
e

B
ui

ld
er

ro
r

R
un

tim
e

er
ro

r
Fa

ls
e

N
eg

at
iv

e

Tr
ue

Po
si

tiv
e

B
ui

ld
er

ro
r

R
un

tim
e

er
ro

r
Fa

ls
e

N
eg

at
iv

e

Tr
ue

Po
si

tiv
e

B
ui

ld
er

ro
r

R
un

tim
e

er
ro

r
Fa

ls
e

N
eg

at
iv

e
Tr

ue
Po

si
tiv

e

B
ui

ld
er

ro
r

R
un

tim
e

er
ro

r
Fa

ls
e

N
eg

at
iv

e

Tr
ue

Po
si

tiv
e

B
ui

ld
er

ro
r

R
un

tim
e

er
ro

r
Fa

ls
e

N
eg

at
iv

e

Tr
ue

Po
si

tiv
e

Aislinn 385 0 0 297 42 0 0 112 0 0 16 0 6 0 0 12 24 0 5 8 24 11 22 40 0 0 4 0 367 4 0 277 12 0 0 0
CIVL 534 14 1 133 100 47 3 4 13 1 0 2 18 0 0 0 37 0 0 0 58 21 0 18 3 0 0 1 521 5 3 119 12 0 0 0
ISP 0 1 479 202 0 5 8 141 0 0 8 8 0 0 12 6 0 0 21 16 0 1 19 77 0 0 0 4 0 1 6 641 0 0 12 0
ITAC 0 0 0 682 0 0 2 152 0 0 14 2 0 0 4 14 0 0 24 13 0 0 3 94 0 0 1 3 0 0 0 648 0 0 12 0
Mc SimGrid 0 7 0 675 0 12 0 142 0 0 2 14 0 0 2 16 0 18 14 5 0 0 4 93 0 0 0 4 0 4 261 383 0 12 0 0
MPI-SV 494 3 4 181 36 16 94 8 0 0 16 0 12 0 5 1 11 18 8 0 31 0 55 11 0 0 4 0 459 4 83 102 0 12 0 0
MUST 0 0 1 681 0 4 0 150 0 0 0 16 0 0 4 14 0 0 32 5 0 0 0 97 0 0 3 1 0 5 0 643 0 0 12 0
PARCOACH 441 0 182 59 36 0 118 0 0 0 16 0 11 0 7 0 17 0 20 0 28 0 69 0 0 0 4 0 407 0 24 217 4 0 8 0
Ideal tool 0 0 0 682 0 0 0 154 0 0 0 16 0 0 0 18 0 0 0 37 0 0 0 97 0 0 0 4 0 0 0 648 0 0 0 12

TABLE III: Results of each tool per error category.

Tool Errors Results Robustness Usefulness Overall
CE TO RE TP TN FP FN Coverage Conclusiveness Specificity Recall Precision F1 Score accuracy

Aislinn 860 0 15 449 297 0 47 0.4844 0.4754 1 0.9052 1 0.7644 0.4472
CIVL 1296 0 88 144 133 1 6 0.223 0.1703 0.9925 0.96 0.9931 0.9381 0.1661
ISP 0 7 1 893 202 479 86 1 0.9952 0.2966 0.9122 0.6509 0.2535 0.6565
ITAC 0 0 0 926 682 0 60 1 1 1 0.9391 1 0.8256 0.964
Mc SimGrid 0 0 53 657 675 0 283 1 0.9682 1 0.6989 1 0.8319 0.7986
MPI-SV 1043 0 53 122 181 4 265 0.3747 0.3429 0.9784 0.3152 0.9683 0.517 0.1817
MUST 0 4 5 926 681 1 51 1 0.9946 0.9985 0.9478 0.9989 0.8277 0.9634
PARCOACH 944 0 0 217 59 182 266 0.4341 0.4341 0.2448 0.4493 0.5439 0.2225 0.1655
Ideal tool 0 0 0 986 682 0 0 1 1 1 1 1 1 1

TABLE IV: Tools Evaluation against the MPI BUGS INITIATIVE benchmark.

Result Meaning Result Meaning
True Positive (TP) Error correctly detected. Compilation Error (CE) The code uses a feature not supported by the tool.

False Negative (FN) Error missed. Timeout (TO) Timeout (limit: 300s).
False Positive (FP) Correct code reported as faulty. Runtime Error (RE) Tool failure during the evaluation of this code.
True Negative (TN) Correct code reported as such. Total Total = CE+RE+TO + TP+FP + TN+FN

Metric Definition and meaning
Coverage Ability to compile codes. Cov = 1− CE

total

Conclusiveness Ability to draw a diagnostic on codes. Cc = 1− CE+RE+TO
total

Specificity Ability to not find errors in correct codes. S = TN
TN+FP

Recall Ability to find existing errors. R = TP
TP+FN

Precision Potential confidence when a code is reported as correct. P = TP
TP+FP

F1 Score Overall bug-finding quality. F1 = 2×P×R
P+R

Overall accuracy Proportion of correct diagnostics over all tests. A = TP+TN
total

TABLE V: Results, Metrics and Abbreviations used. Metrics do not account for codes leading to a tool error.

One big challenge is to automate the evaluation and com-
parison of tools that use different techniques and outputs. To
address this issue, we analyze the output of each tool indepen-
dently and we have developed a Python script that associates
messages reported by the tools with our errors categorization
(e.g., a tool can state an error in many different ways but
still be understandable by a user). More specifically, a runner
compiles each tool except CIVL which is distributed in an
executable form. Each program in the MBI is then compiled
and executed with specific parameters as defined in programs
header. To deal with time out, we limit the execution of each

test at 5 minutes. This is a reasonable threshold as our tests do
not take much time. All outputs are registered and analyzed
by the runner: it searches for particular keywords specific
to each tool. For instance, the message "Fatal error
in PMPI_Cart_get: Invalid topology" from ISP
is labelled with Invalid Parameter and any warning emitted by
PARCOACH is considered as a Call Matching error.

B. Qualitative and Performance Evaluation

Table III shows the results of each tool on all tests per
error category. For each error, we report the number of Build
errors (i.e., number of codes that did not compile), Runtime



errors (i.e., number of codes that did not execute), the number
of False Negative (the tool did not detect the error) and the
number of True Positive (the tool detected the expected error).
For correct codes, we report the number of Build errors and
Runtime errors but also the number of False Positive (the
tool reported an error on a correct code) and True Negative
(the tool detected no error on a correct code). This allows to
pinpoint specific features not supported by tools and highlight
what errors a given tool can detect. In the table, results in
bold indicate which tool has the best results for a type of
error. The Errors columns of table IV regroup the number
of compilation errors (Build), Timeouts and runtime errors
(failure). The Results columns gather the total number of True
positive (TP), False negative (FN), False positive (FP), and
True negative (TN) per tool. The last row of the table depicts
results an ideal tool would have. Basically, an ideal tool should
have no error, false positive or false negative and detect all
correct tests as true negatives and all incorrect tests as true
positives. Table IV also gives the Coverage, Conclusiveness,
Recall, Specificity, Precision, F1 Score and Overall Accuracy
results. How to compute these metrics is detailed in Table V.

The first thing to notice is how hard it is to cover everything.
Actually, no tool is able to detect all errors in the MBI
programs and they all return false positives or negatives. Call
ordering is the most commonly detected error type, not nec-
essarily because it is the easiest, but certainly because it is the
most common result of a MPI feature misuse. ITAC is the best
performing tool with the highest overall accuracy, followed
closely by MUST. ITAC and MUST both detect a wide range
of errors and outperform on several types of errors: ITAC
has the best results for correct execution, invalid parameter
and call ordering while MUST is the best to detect resource
leak and parameter matching. Despite achieving well on some
error types, MUST appears to be bad on message races and
local and global concurrency and ITAC has difficulties to find
resource leak and global concurrency errors. Overall, table
III recognizes a lack of RMA support (responsible of global
concurrency) in all tools which could be something to improve.
Mc SimGrid and ISP seem to be a good compromise with a
few number of compilation and runtime errors and a large
detection of many kind of errors. They fail on less than 1%
of the tests. ISP does well on local concurrency detection and
Mc SimGrid is the best on request lifecycle and message race.
Aislinn reports about 46% of errors, detects 44% of correct
tests and fails on 52% of codes. Few features are supported
by CIVL, MPI-SV and PARCOACH. CIVL syntactic analysis
returns a compilation failure on 78% of the tests. As it is
focused on collective mismatch detection, PARCOACH returns
a lot of false negatives and few true negatives. It fails on 57%
and is able to detect 22% of errors. Note that recent work
from [3] on point-to-point and persistent operations are not
integrated to the latest version of the tool yet. MPI-SV detects
12% of errors and 27% of correct codes and fails on 63%
of the tests. These results are related to the use of the multi-
threaded library for MPI-1 called AzequiaMPI [35]. All results
are available on the MBI website with meta-data on the tests

and links to every test execution log. Our goal is to provide a
precise feedback to help developers improve their tools.

The tools capacity to cover many errors is strongly related to
the precision of their feedback. Indeed, Table III is built using
a precise study of the messages returned by all tools. Aislinn
and MUST both generate html outputs with execution graphs.
On the opposite, the other tools require more effort to under-
stand what is detected. We plan to work with tools developers
in order to consolidate our study. To begin, we already report
issues we found to tools developers. We also reported an error
related to asynchronous collectives in MPICH. Beyond being
able to detect errors, a tool should be capable of helping the
developer to correct programs quickly. Experience has shown
that few tools can precisely pinpoint what caused an error.

Our evaluation tends to reveal how user-friendly and easy
to use the tools are. MUST is one of the easiest tools to use: a
code is compiled with an usual compiler and launched with a
single command line (mustrun). CIVL follows a comparable
workflow, directly working on the source code. The other tools
require a specific compiling pass and a run-time execution.
Even if this isn’t an issue while performing over a single file,
it may harden the task of testing bigger projects.

VI. CONCLUSION

In this paper, we present the MPI BUGS INITIATIVE,
an MPI benchmark suite for the evaluation of MPI bug-
finding and verification tools. We propose a new classification
of MPI errors based on their root causes. Our benchmark
provides both correct and incorrect code samples to cover
this classification. Each code comes with a well-formatted
header describing its intent and specifying how to test it.
We used our benchmark on eight major state-of-the-art MPI
verification tools: Aislinn, CIVL, ISP, ITAC, Mc SimGrid,
MPI-SV, MUST, and PARCOACH. The evaluation compares
the tools in terms of error coverage. Our results show that
no tool is currently able to support all MPI features and
detect all classes of errors. In our findings, ITAC achieves
the best scores on the overall accuracy metric. The code
samples and tools evaluated in this work have been dockerized
with our test harness to improve the reproducibility of our
findings. We plan to integrate more tools in our initiative and
organize an MPI verification tools contest to stimulate tools
development. We hope that the MPI BUGS INITIATIVE will
foster the verification and bug-finding tools that the users need
to tame the application complexity induced by the large-scale
and dynamic modern platforms. The MPI BUGS INITIATIVE
is an ongoing effort to build a comprehensive correctness
benchmark suite and can be extended in many ways. First,
we will add missing MPI features such as MPI IO and extend
our errors categorization with errors depending on the buffer
mode. Then, we intent to add new codes to further improve
our coverage of features and errors. This could be achieved
by using mutants or machine learning techniques. Finally, we
plan to add larger codes to evaluate the tools scalability, either
through larger synthetic codes or through a collection of real
bugs in full-scale applications.



REFERENCES

[1] G. Gopalakrishnan, R. M. Kirby, S. Siegel, R. Thakur, W. Gropp,
E. Lusk, B. R. De Supinski, M. Schulz, and G. Bronevetsky, “Formal
Analysis of MPI-Based Parallel Programs,” Commun. ACM, 2011.

[2] H. Ma, L. Wang, and K. Krishnamoorthy, “Detecting Thread-Safety Vi-
olations in Hybrid OpenMP/MPI Programs,” in 2015 IEEE International
Conference on Cluster Computing, CLUSTER 2015, Chicago, IL, USA,
September 8-11, 2015. IEEE Computer Society, 2015, pp. 460–463.

[3] V. M. Nguyen, E. Saillard, J. Jaeger, D. Barthou, and P. Carribault,
“PARCOACH Extension for Static MPI Nonblocking and Persistent
Communication Validation,” in 2020 IEEE/ACM 4th International Work-
shop on Software Correctness for HPC Applications, 2020, pp. 31–39.

[4] S. F. Siegel and T. K. Zirkel, “Automatic Formal Verification of MPI-
Based Parallel Programs,” SIGPLAN Not., vol. 46, no. 8, 2011.

[5] S. Böhm, O. Meca, and P. Jančar, “State-space reduction of non-
deterministically synchronizing systems applicable to deadlock detection
in MPI,” in FM 2016: Formal Methods, J. Fitzgerald, C. Heitmeyer,
S. Gnesi, and A. Philippou, Eds. Cham: Springer International
Publishing, 2016, pp. 102–118.

[6] S. S. Vakkalanka, S. Sharma, G. Gopalakrishnan, and R. M. Kirby, “ISP:
a tool for model checking MPI programs,” in PPOPP, 2008.

[7] V. Forejt, S. Joshi, D. Kroening, G. Narayanaswamy, and S. Sharma,
“Precise Predictive Analysis for Discovering Communication Deadlocks
in MPI Programs,” ACM Trans. Program. Lang. Syst., vol. 39, 2017.

[8] T. Hilbrich, M. Weber, J. Protze, B. R. de Supinski, and W. E. Nagel,
“Runtime Correctness Analysis of MPI-3 Nonblocking Collectives,” in
Proceedings of the 23rd European MPI Users’ Group Meeting, ser.
EuroMPI 2016. New York, NY, USA: ACM, 2016, pp. 188–197.

[9] T. A. Pham, T. Jéron, and M. Quinson, “Verifying MPI Applications
with Mc SimGrid,” in Correctness 2017 - First International Workshop
on Software Correctness for HPC Applications, 2017.

[10] S. F. Siegel, M. Zheng, Z. Luo, T. K. Zirkel, A. V. Marianiello, J. G.
Edenhofner, M. B. Dwyer, and M. S. Rogers, “CIVL: the concurrency
intermediate verification language,” in SC, Nov 2015, pp. 1–12.

[11] D. Khanna, S. Sharma, C. Rodrı́guez, and R. Purandare, “Dynamic sym-
bolic verification of MPI programs,” in Formal Methods, K. Havelund,
J. Peleska, B. Roscoe, and E. de Vink, Eds. Cham: Springer Interna-
tional Publishing, 2018, pp. 466–484.

[12] S. F. Siegel and G. S. Avrunin, “Verification of halting properties for
MPI programs using nonblocking operations,” in Recent Advances in
Parallel Virtual Machine and Message Passing Interface, F. Cappello,
T. Herault, and J. Dongarra, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 326–334.

[13] H. Yu, Z. Chen, X. Fu, J. Wang, Z. Su, J. Sun, C. Huang, and W. Dong,
“Symbolic Verification of Message Passing Interface Programs,” in Pro-
ceedings of the ACM/IEEE 42nd International Conference on Software
Engineering, ser. ICSE ’20. New York, NY, USA: Association for
Computing Machinery, 2020.

[14] R. Reussner, P. Sanders, L. Prechelt, and M. Müller, “SKaMPI: A
detailed, accurate MPI benchmark,” in Recent Advances in Parallel
Virtual Machine and Message Passing Interface, V. Alexandrov and
J. Dongarra, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998.

[15] T. Hoefler, A. Lumsdaine, and W. Rehm, “Implementation and Perfor-
mance Analysis of Non-Blocking Collective Operations for MPI,” in
Proceedings of the 2007 ACM/IEEE Conference on Supercomputing,
ser. SC ’07. Association for Computing Machinery, 2007.

[16] M. G. F. Dosanjh, T. L. Groves, R. E. Grant, R. Brightwell, and
P. G. Bridges, “RMA-MT: A benchmark suite for assessing MPI multi-
threaded RMA performance,” in IEEE/ACM 16th International Sympo-
sium on Cluster, Cloud and Grid Computing, CCGrid 2016, Cartagena,
Colombia, May 16-19, 2016. IEEE Computer Society, 2016.

[17] J. Hursey, E. Mallove, J. M. Squyres, and A. Lumsdaine, “An Extensible
Framework for Distributed Testing of MPI Implementations,” in Recent
Advances in Parallel Virtual Machine and Message Passing Interface,
F. Cappello, T. Herault, and J. Dongarra, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 64–72.

[18] S. Moore, D. Cronk, K. London, and J. Dongarra, “Review of perfor-
mance analysis tools for MPI parallel programs,” in European Paral-
lel Virtual Machine/Message Passing Interface Users Group Meeting.
Springer, 2001, pp. 241–248.

[19] A. De Sarkar and N. Mukherjee, “A Study on Performance Analysis
Tools for Applications Running on Large Distributed Systems,” arXiv
preprint arXiv:1006.2650, 2010.

[20] G. R. Luecke, B. M. Groth, N. T. Weeks, and M. Kraeva, “Comparing
Allinea’s and Intel’s performance tools for HPC,” in Proceedings of the
25th High Performance Computing Symposium, 2017, pp. 1–12.

[21] G. R. Luecke, J. Coyle, J. Hoekstra, M. Kraeva, Y. Xu, M. Park,
E. Kleiman, O. Weiss, A. Wehe, and M. Yahya, “The Importance of
Run-Time Error Detection,” in Tools for High Performance Computing
2009 - Proceedings of the 3rd International Workshop on Parallel
Tools for High Performance Computing, September 2009, ZIH, Dresden.
Springer, 2009, pp. 145–155.

[22] A. M. Alghamdi and F. E. Eassa, “Software testing techniques for
parallel systems: A survey,” Int. J. Comput. Sci. Netw. Secur., vol. 19,
no. 4, pp. 176–186, 2019.

[23] W. Hong, Z. Chen, H. Yu, and J. Wang, “Evaluation of Model Checkers
by Verifying Message Passing Programs,” Sci. China Inf. Sci., vol. 62,
no. 200101, 2019.

[24] H. Yu, “Combining Symbolic Execution and Model Checking to Verify
MPI Programs,” in Proceedings of the 40th International Conference
on Software Engineering: Companion Proceeedings, ser. ICSE ’18.
Association for Computing Machinery, 2018, p. 527530.

[25] R. Just, M. D. Ernst, and G. Fraser, “Efficient Mutation Analysis by
Propagating and Partitioning Infected Execution States,” in Proceedings
of the 2014 International Symposium on Software Testing and Analysis,
ser. ISSTA 2014. Association for Computing Machinery, 2014.

[26] J.-P. Lehr, T. Jammer, and C. Bischof, “MPI-CorrBench: Towards
an MPI Correctness Benchmark Suite,” in Proceedings of the
30th International Symposium on High-Performance Parallel and
Distributed Computing, ser. HPDC ’21. New York, NY, USA:
Association for Computing Machinery, 2020, p. 6980. [Online].
Available: https://doi.org/10.1145/3431379.3460652

[27] J. DeSouza, B. Kuhn, B. R. de Supinski, V. Samofalov, S. Zheltov, and
S. Bratanov, “Automated, Scalable Debugging of MPI Programs with
Intel Message Checker,” in Proceedings of the Second International
Workshop on Software Engineering for High Performance Computing
System Applications, ser. SE-HPCS ’05. New York, NY, USA:
Association for Computing Machinery, 2005, p. 7882.

[28] G. Verma, Y. Shi, C. Liao, B. M. Chapman, and Y. Yan, “Enhancing
DataRaceBench for Evaluating Data Race Detection Tools,” in 4th
IEEE/ACM International Workshop on Software Correctness for HPC
Applications, Correctness@SC, Atlanta, GA, USA, November 11, 2020,
I. Laguna and C. Rubio-González, Eds. IEEE, 2020, pp. 20–30.

[29] C. Cifuentes, C. Hoermann, N. Keynes, L. Li, S. Long, E. Mealy,
M. Mounteney, and B. Scholz, “BegBunch: Benchmarking for C bug
detection tools,” in Proceedings of the 2nd Intl Workshop on Defects
in Large Software Systems: In conjunction with the ACM SIGSOFT Intl
Symposium on Soft. Testing and Analysis (ISSTA 2009), 2009, pp. 16–20.

[30] I. Laguna, R. Marshall, K. Mohror, M. Ruefenacht, A. Skjellum, and
N. Sultana, “A Large-Scale Study of MPI Usage in Open-Source
HPC Applications,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis.
Association for Computing Machinery, 2019.

[31] “Intel Trace Analyzer and Collector,” https://software.intel.com/content/
www/us/en/develop/tools/oneapi/components/trace-analyzer.html,
accessed: 2021-07-15.

[32] B. Krammer, M. S. Müller, and M. M. Resch, “Runtime checking of
MPI applications with MARMOT,” in Mini-Symposium Tools Support
for Parallel Programming, ParCo, 2005, pp. 12–16.

[33] J. S. Vetter and B. R. de Supinski, “Dynamic Software Testing of
MPI Applications with Umpire,” in Proceedings of the 2000 ACM/IEEE
Conference on Supercomputing. IEEE Computer Society, 2000.

[34] P. Huchant, E. Saillard, D. Barthou, H. Brunie, and P. Carribault, “PAR-
COACH Extension for a Full-Interprocedural Collectives Verification,”
in 2nd Intl Workshop on Soft. Correctness for HPC Applications, 2018.

[35] J. A. Rico-Gallego, J. M. Alvarez-Llorente, F. J. Perogil-Duque, P. P.
Antnez-Gmez, and J. C. Daz-Martn, “A Pthreads-Based MPI-1 Imple-
mentation for MMU-Less Machines,” in 2008 International Conference
on Reconfigurable Computing and FPGAs, 2008.

https://doi.org/10.1145/3431379.3460652
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/trace-analyzer.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/trace-analyzer.html


APPENDIX

A. Software availability and dependencies

The MPI Bugs Initiative (MBI) is available on Gitlab at
https://gitlab.com/MpiBugsInitiative. The source code of all
evaluated tools is available in the MBI repository, that is self
contained. No additional files are needed beside of the Ubuntu
online repositories that are used automatically.

Tool Version Compiler Docker image
Aislinn v3.12 GCC 7.4.0 ubuntu:18.04
CIVL v1.20 used with JDK-14 MBI (ubuntu:20.04)
ISP 0.3.1 GCC 10.2.0 MBI (ubuntu:20.04)
ITAC 2021.3 2021.3 MBI (ubuntu:20.04)
Mc SimGrid v3.28 GCC 10.2.0 MBI (ubuntu:20.04)
MPI-SV v1 GCC 4.8.4 MPI-SV (ubuntu:14.04)
MUST v1.6 GCC 10.2.0 MBI (ubuntu:20.04)
PARCOACH v1.2 LLVM 9 MBI (ubuntu:20.04)

TABLE VI: Tools information: version, compiler and Docker
image used.

B. Installation

We use Docker to facilitate our benchmark modifications
and the installation of the tools we have selected. A user
can launch all tests outside the docker image by using the
./test-all command, that runs all steps described below.

The MBI experiments were performed in a Docker image
with Ubuntu version 20.04 containing all tools dependencies,
except for Aislinn which was run with Ubuntu version 18.04
due to dependency issues in the newer Ubuntu version and
MPI-SV which was run in the docker image provided by the
authors. A user can create the MBI docker image from the
provided Dockerfile as follows:

docker build -f Dockerfile -t mbi:latest .
docker run -it mbi bash

Once inside the docker, the /MBI/MBI.py script provides a
centralized interface to all tool-specific scripts (located under
/MBI/scripts/tools/<tool>.py). It handles both the
data provenance (producing execution logs for all tools) and
the data analysis (producing figures out of the logs)

C. Data provenance

The source code of all tools are included in the Docker im-
age, and they are compiled on need. The binaries are persistent
out of the Docker environment, as a cache mechanism.

The test cases are generated using the following command:

python3 ./MBI.py -c generate

One can either run the tests for all tools, or chose a specific
tool as follows:

python3 ./MBI.py -c run
python3 ./MBI.py -c run -x <tool>

All logs are produced under /MBI/logs/<tool>, that is
persistent out of the Docker. In each directory, the following
files are produced for the data analysis:

Fig. 2: Screenshot of the MBI internal dashboard.

• test name.txt: that contains the tool output for that test
• test name.elapsed: that gives the wallclock time
In addition, a test name.md5sum file is used to detect

changes in the test codes, and cache the test results when the
code is unmodified.

D. Data analysis

Once all logs are in cache, the LaTeX tables included in
this article are regenerated as follows:

python3 ./MBI.py -c latex

This is an error-prone component, and we manually checked
the results on all generated codes, also comparing the observed
outcomes of all bug-finding tools.

A web dashboard can be generated to explore the logs in
cache as follows.

python3 ./MBI.py -c html

This is useful to debug the tool-specific scripts that parse
the textual output of that tool, i.e. the component in charge of
categorizing a given run as either as ’True Positive’, ’False
Negative’ and so on. This dashboard provides two views
presented in Figure 2. The upper part gives a quick glance
on the categorization of each tool and test code (using colored
icons), while the lower part allows to see the detail of all logs.
This tool is only described in this reproducibility section, as
it is meant as an internal tool to ensure the quality of the
tool-specific parsers.

E. Continuous Integration

We rely on GitLab Continuous Integration features to
enforce the reproducibility of the provided tooling. All re-
sults can be visualized at https://mpibugsinitiative.gitlab.io/
MpiBugsInitiative/. MPI-SV and ITAC are not included in
this dashboard, because of a technical difficulty. They fail
with a SIGILL error when executed in the docker-in-docker
settings that is mandated gitlab-ci. They must be run manually
to produce the logs.

https://gitlab.com/MpiBugsInitiative
https://mpibugsinitiative.gitlab.io/MpiBugsInitiative/
https://mpibugsinitiative.gitlab.io/MpiBugsInitiative/

	Introduction
	Related Work
	Methodology
	Feature Labels
	Point-to-point: base calls and nonblocking
	Point-to-point: persistent
	Collective: base calls and nonblocking
	Collective: tools
	RMA

	Error Labels
	Errors in single calls
	Errors local to a process
	Multi-processes errors


	The MPI Bugs Initiative
	Benchmark Description
	Features and Errors Coverage

	Tools Comparison
	Experimentation Setup
	Qualitative and Performance Evaluation

	Conclusion
	References
	Appendix
	Software availability and dependencies
	Installation
	Data provenance
	Data analysis
	Continuous Integration


