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Abstract Widely used software systems such as video encoders are by ne-
cessity highly configurable, with hundreds or even thousands of options to
choose from. Their users often have a hard time finding suitable values for
these options (i.e., finding a proper configuration of the software system) to
meet their goals for the tasks at hand, e.g., compress a video down to a certain
size. One dimension of the problem is of course that performance depends on
the input data: e.g., a video as input to an encoder like x264 or a file system
fed to a tool like xz . To achieve good performance, users should therefore take
into account both dimensions of (1) software variability and (2) input data. In
this problem-statement paper, we conduct a large study over 8 configurable
systems that quantifies the existing interactions between input data and con-
figurations of software systems. The results exhibit that (1) inputs fed to
software systems interact with their configuration options in non
monotonous ways, significantly impacting their performance properties (2)
tuning a software system for its input data makes it possible to multiply its
performance by up to ten (3) input variability can jeopardize the relevance of
performance predictive models for a field deployment.

Keywords Input Sensitivity, Software variability, Performance prediction

1 Introduction 1

Widely used software systems are by necessity highly configurable, with hun- 2

dreds or even thousands of options to choose from. For example, a tool like xz 3

offers multiple options such as –threads or –format for compressing a file. The 4

same applies to Linux kernels or video encoders such as x264 : they all pro- 5

vide configuration options through compilation options, feature toggles, and 6

command-line parameters. Software engineers often have a hard time find- 7

ing suitable values for those options (i.e., finding a proper configuration of the 8

Address(es) of author(s) should be given



software system) to meet their goals for the tasks at hand, e.g., compile a high-9

performance binary or compress a video down to a certain size while keeping10

its perceived quality. Since the number of possible configurations grows expo-11

nentially with the number of options, even experts may end up recommending12

sub-optimal configurations for such complex software [38].13

However, there exist cases where inputs (e.g., files fed to an archiver like14

xz or SAT formulae provided as input to a solver like lingeling) can also15

impact software variability [52, 98]. The x264 encoder typifies this problem.16

For example, Kate, an engineer working for a VOD company, wants x264 to17

compress input videos to the smallest possible size. As illustrated in Figure 1,18

she executes x264 with two configurations C (with options –no-mbtree –ref 1)19

and C’ (with options –no-cabac –ref 16) on the input video I1 and states that20

C is more appropriate than C’ in this case. But when trying it on a second21

input video I2, she draws opposite conclusions; for I2, C’ leads to a smaller22

output size than C. Now, Kate wonders what configuration to choose for other23

inputs, C or C’? More generally, do configuration options have the same effect24

on the output size despite a different input? Do options interact in the same25

way no matter the inputs? These are crucial practical issues: the diversity of26

existing inputs can alter her knowledge of x264 ’s variability. If it does, Kate27

would have to configure x264 as many times as there are inputs, making her28

work really tedious and difficult to automate for a field deployment.29

Fig. 1: This paper explores and quantifies how inputs fed to software systems
interact with their configuration options.

In this work we conduct, to our best knowledge, the first in-depth empirical30

study that measures how inputs individually interacts with software variabil-31

ity. To do so, we systematically explore the impact of inputs and configuration32

options on the performance properties of 8 software systems. This study re-33

veals that inputs fed to software systems can indeed interact with their options34

in non monotonous ways, thus significantly impacting their performance prop-35
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erties. This observation questions the applicability of performance predictive 36

models trained on only one input: are they still useful for other inputs? We 37

then survey state-of-the-art papers on configurable systems to assess whether 38

they address this kind of input sensitivity issue. 39

In summary, the contributions of this paper are as follows: 40

– To our best knowledge, the first in-depth empirical study that investigates 41

the interactions between input data and configurations of 8 software sys- 42

tems; 43

– We show that inputs fed to software systems interact with their 44

configuration options in non monotonous ways, thus changing per- 45

formance of configurable systems and making their predictions difficult to 46

automate; 47

– An analysis of how 64 state-of-the-art research papers on configurable sys- 48

tems address this problem in practice; 49

– Open science: a replication bundle that contains docker images, produced 50

datasets of measurements and code.1 51

The remainder of this paper is organized as follows: Section 2 explains the 52

problem of input sensitivity and the research questions addressed in this paper. 53

Section 3 presents the experimental protocol. Section 4 details the results. 54

Section 5 shows how researchers address input sensitivity. Section 6 discusses 55

the implications of our work. Section 7 details threats to validity. Section 8 56

presents related work. Section 9 summarizes key insights of our paper. 57

Typographic Convention. For this paper, we adopt the following typo- 58

graphic convention: emphasized will be relative to a software system, slanted 59

to its configuration options and underlined to its performance properties. 60

2 Problem Statement 61

2.1 Sensitivity to Inputs of Configurable Systems 62

Configuration options of software systems can have different effects on perfor- 63

mance (e.g., runtime), but so can the input data. For example, a configurable 64

video encoder like x264 can process many kinds of inputs (videos) in addition 65

to offering options on how to encode. Our hypothesis is that there is an in- 66

terplay between configuration options and input data: some (combinations of) 67

options may have different effects on performance depending on input. 68

This sensitivity to inputs may have a strong impact on engineering and 69

research work. Developers of configurable systems that process input data 70

should be aware of this phenomenon and test their systems on a wide variety 71

of inputs [74]. Similarly, researchers who develop learning algorithms or opti- 72

mization techniques may want to benchmark them on a realistic set of inputs 73

1 Available on Github:
https://anonymous.4open.science/r/df319578-8767-47b0-919d-a8e57eb67d25/
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to draw conclusions as general as possible on configuration spaces [13]. This74

notably concerns learning models that predict performance.75

Researchers observed input sensitivity in multiple fields, such as SAT solvers76

[21,98], compilation [16,69], video encoding [57], data compression [46]. How-77

ever, existing studies either consider a limited set of configurations (e.g., only78

default configurations), a limited set of performance properties, or a limited79

set of inputs [1,11,22,26,51,71,82]. It limits some key insights about the input80

sensitivity of configurable systems.81

This work details, to the best of our knowledge, the first systematic empir-82

ical study that analyzes the interactions between input data and configuration83

options for different configurable systems. Through three research questions84

introduced in the next section, we characterise the input sensitivity problem85

and explore how this can alter our understanding of software variability.86

2.2 Research Questions87

When a developer provides a default configuration for its software system,88

one should ensure it will perform at best for a large panel of inputs. That is,89

this configuration will be near-optimal whatever the input. Hence, an hidden90

assumption is that two performance distributions over two different inputs91

are somehow related and close. In its simplest form, there could be a linear92

relationship between these two distributions: they simply increase or decrease93

with each other.94

RQ1 - Do software performance stay consistent across inputs?
Are the performance distributions stable from one input to another? Are
the rankings of performance the same for all inputs?

95

But software performance are influenced by the configuration options e.g.,96

the energy consumption [12]. An option is called influential for a performance97

when its values have a strong effect on this performance [17, 40]. For exam-98

ple, developers might wonder whether the option they add to a configurable99

software has an influence on its performance. However, is an option identified100

as influential for some inputs still influential for other inputs? If not, it would101

become both tedious and time-consuming to find influential options on a per-102

input basis. Besides, it is unclear whether activating an option is always worth103

it in terms of performance; an option could improve the overall performance104

while reducing it for few inputs. If so, users may wonder which options to105

enable to improve software performance based on their input data.106

RQ2 - Do configuration option’s effects change with input data?
Do the configuration options have the same effects for all inputs? Is an
influential option influential for all inputs? Do the effects of configuration
options vary with input data?

107

RQ1 and RQ2 study how inputs affect (1) performance distributions and108

(2) the effects of different configuration options. However, the performance109
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distributions could change in a negligible way, without affecting the software 110

user’s experience. Before concluding on the real impact of the input sensitivity, 111

it is necessary to quantify how much this performance changes from one input 112

to another. 113

RQ3 - Can we ignore input sensitivity? If we do, what is the loss
in performance considering that all input data is the same and does not
affect the software that processes it? Or, to put it more positively, what
is the potential gain to tune a software system for its input data?

114

3 Experimental protocol 115

To answer these research questions, we have designed the following experimen- 116

tal protocol. 117

3.1 Data Collection 118

We first collect performance data of configurable systems that process inputs. 119

Protocol. Figure 2 depicts the step-by-step protocol we respect to measure 120

performance of software systems. Each line of Table 1 should be read following 121

Figure 2: System and Domain with Step 1; Commit with Step 2; Configs #C 122

with Step 3; Inputs I and #I with Step 4; #M with Step 5; Performance(s) 123

P with Step 6; Docker links a container for executing all the steps; Dataset 124

links the results of the protocol i.e., the datasets containing the performance 125

measurements. Figure 2 shows in beige an example with the x264 encoder. 126

Hereafter, we provide details for each step of the protocol. 127

Steps 1 & 2 - Software Systems. We consider 8 software systems, open- 128

source and well-known in various fields, that the literature already studied: 129

gcc [69], ImageMagick [83], lingeling [34], nodeJS [36], poppler [55], SQLite 130

[85], x264 [39] and xz [91]. We choose these systems because they handle 131

different types of input data, allowing us to draw as general conclusions as 132

possible. For each software system, we use a unique private server with the 133

same configuration running over the same operating system.2 We download 134

and compile a unique version of the system, related to the git Commit in 135

Table 1. All performance are measured with this version of the software. 136

Step 3 - Configuration options C. To select the configuration options, 137

we read the documentation of each system. We manually extracted the options 138

affecting the performance of the system according to the documentation. We 139

then sampled #C configurations by using random sampling [68]. We checked 140

the uniformity of the different option values with a Kolmogorov-Smirnov test 141

[56] applied to each configuration option.3 142

2 The configurations of the running environments are available at: https://anonymous.
4open.science/r/df319578-8767-47b0-919d-a8e57eb67d25/replication/Environments.md

3 Options and tests results are available at : https://anonymous.4open.science/r/
df319578-8767-47b0-919d-a8e57eb67d25/results/others/configs/sampling.md
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Table 1: Subject Systems. Domain the area of expertise using the system.
Commit the git commit (i.e., the version) of the system. Configs #C the
number of configurations tested per system. Inputs I the type of input fed
to the system. #I the number of inputs per system. #M the total number of
measurements, #M = #I*#C. Performance(s) P the performance proper-
ties measured per system. Docker the links to the containers to replicate the
measurements. Dataset the links to the measurements.

System Domain Commit Configs #C Inputs I #I

gcc Compilation ccb4e07 80 .c programs 30

ImageMagick Image processing 5ee49d6 100 images 1000

lingeling SAT solver 7d5db72 100 SAT formulae 351

nodeJS JS runtime env. 78343bb 50 .js scripts 1939

poppler PDF rendering 42dde68 16 .pdf files 1480

SQLite DBMS 53fa025 50 databases 150

x264 Video encoding e9a5903 201 videos 1397

xz Data compression e7da44d 30 system files 48

System #M Performance(s) P Docker Dataset

gcc 2400 size, ctime, exec Link Link

ImageMagick 100 000 size, time Link Link

lingeling 35 100 #confl.,#reduc. Link Link

nodeJS 96 950 #operations/s Link Link

poppler 23 680 size, time Link Link

SQLite 7500 15 query times q1-q15 Link Link

x264 280 797 cpu, fps, kbs, size, time Link Link

xz 1440 size, time Link Link

Fig. 2: Measuring performance - Protocol

6

https://gcc.gnu.org/
https://github.com/gcc-mirror/gcc/commit/ccb4e0774b3e5859ea1d7f1864b02fa5826c4a79
https://imagemagick.org/index.php
https://github.com/ImageMagick/ImageMagick/commit/5ee49d66e6534ab7d145dce89e502a6d0b9f18fa
http://fmv.jku.at/lingeling/
https://github.com/arminbiere/lingeling/commit/7d5db72420b95ab356c98ca7f7a4681ed2c59c70
https://nodejs.org/en/
https://github.com/nodejs/node/commit/78343bbdc572590886c9da53a73b6061e62a5f3e
https://poppler.freedesktop.org
https://github.com/freedesktop/poppler/commit/42dde686bf5a674401850b2d3fdd2bc7467e9a66
https://sqlite.org/index.html
https://github.com/sqlite/sqlite/commit/53fa02507b2025db7b74a155c8df4a8a2e4db4d8
https://www.videolan.org/developers/x264.html
https://github.com/mirror/x264/commit/e9a5903edf8ca59ef20e6f4894c196f135af735e
https://tukaani.org/xz/
https://github.com/xz-mirror/xz/commit/e7da44d5151e21f153925781ad29334ae0786101
https://gcc.gnu.org/
https://hub.docker.com/r/anonymicse2021/gcc_inputs
https://zenodo.org/record/5136613
https://imagemagick.org/index.php
https://hub.docker.com/r/anonymicse2021/imagemagick_inputs
https://zenodo.org/record/5145853
http://fmv.jku.at/lingeling/
https://hub.docker.com/r/anonymicse2021/lingeling_inputs
https://zenodo.org/record/5101310
https://nodejs.org/en/
https://hub.docker.com/r/anonymicse2021/nodejs_inputs
https://zenodo.org/record/5067851
https://poppler.freedesktop.org
https://hub.docker.com/r/anonymicse2021/poppler_inputs
https://zenodo.org/record/5033478
https://sqlite.org/index.html
https://hub.docker.com/r/anonymicse2021/sqlite_inputs
https://zenodo.org/record/5139331
https://www.videolan.org/developers/x264.html
https://hub.docker.com/r/anonymicse2021/x264_inputs
https://zenodo.org/record/3928253
https://tukaani.org/xz/
https://hub.docker.com/r/anonymicse2021/xz_inputs
https://zenodo.org/record/5033489


Step 4 - Inputs I. For each system, we selected a different set of input 143

data: for gcc, PolyBench v3.1 [73]; for ImageMagick , a sample of ImageNet [14] 144

images (from 1.1 kB to 7.3MB); for lingeling , the 2018 SAT competition’s 145

benchmark [34]; for nodeJS , its test suite; for poppler, the Trent Nelson’s PDF 146

Collection [64]; for SQLite, a set of generated TPC-H [70] databases (from 147

10MB to 6GB); for x264 , the YouTube User General Content dataset [94] 148

of videos (from 2.7MB to 39.7GB); for xz , the Silesia corpus [15]. These are 149

large, well-known and freely available datasets of inputs. 150

Steps 5 & 6 - Performance properties P. For each system, we sys- 151

tematically executed all the configurations of C on all the inputs of I. For 152

the #M resulting executions, we measured as many performance properties 153

as possible: for gcc, ctime and exec the times needed to compile and execute 154

a program and the size of the binary; for ImageMagick , the time to apply a 155

Gaussian blur [35] to an image and the size of the resulting image; for lingeling , 156

the number of reductions and conflicts found in 10 seconds of execution; for 157

nodeJS , the number of operations per second (ops) executed by the script; 158

for poppler , the time needed to extract the images of the pdf, and the size of 159

the images; for SQLite, the time needed to answer 15 different queries q1-q15; 160

for x264 , the size of the compressed video, the elapsed time, the cpu usage 161

(percentage), the bitrate (the average amount of data encoded per second) 162

and the average number of frames encoded per second (fps); for xz , the size of 163

the compressed file, and the time needed to compress it. 164

Replication. To allow researchers to easily replicate the measurement 165

process, we provide a docker container for each system (see the links in the 166

Docker column of Table 1). We also publish the resulting datasets online (see 167

the links in the Dataset column) and in the companion repository with addi- 168

tional replication details.4 169

For the next research questions, our results are computed with Python 170

v3.7.6 and specific versions of data science libraries.5 171

3.2 Performance Correlations (RQ1) 172

Based on the analysis of the data collected in Section 3.1, we can now answer 173

the first research question: RQ1 - Do software performance stay con- 174

sistent across inputs? To check this hypothesis, we compute, analyze and 175

compare the Spearman’s rank-order correlation [45] of each couple of inputs 176

for each system. It is appropriate in our case since all performance properties 177

are quantitative variables measured on the same set of configurations. 178

Spearman correlations. The correlations are considered as a measure 179

of similarity between the configurations’ performance over two inputs. We 180

compute the related p-values: a correlation whose p-value is higher than the 181

chosen threshold 0.05 is considered as null. We use the Evans rule [20] to 182

4 Guidelines for replication are available at: https://anonymous.4open.science/r/
df319578-8767-47b0-919d-a8e57eb67d25/replication/README.md

5 The description of the python environment is available at: https://anonymous.4open.
science/r/df319578-8767-47b0-919d-a8e57eb67d25/replication/requirements.txt
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interpret these correlations. In absolute value, we refer to correlations by the183

following labels; very low: 0-0.19, low: 0.2-0.39, moderate: 0.4-0.59, strong: 0.6-184

0.79, very strong: 0.8-1.00. A negative score tends to reverse the ranking of185

configurations. Very low or negative scores have practical implications: a good186

configuration for an input can very well exhibit bad performance for another187

input.188

3.3 Effects of Options (RQ2)189

To understand how a performance model can change based on a given input,190

we next study how input data interact with configuration options. RQ2 - Do191

configuration option’s effects change with input data? To assess the192

relative significance and effect of options, we use two well-known statistical193

methods [8, 77].194

Random Forest Importances. The tree structure provides insights about195

the most essential options for prediction, because such a tree first splits w.r.t.196

options that provide the highest information gain. We use random forests [8],197

a vote between multiple decision trees: we can derive, from the forests trained198

on the inputs, estimates of the options importance. The computation of option199

importance is realized through the observation of the effect on random forest200

accuracy when randomly shuffling each predictor variable [58]. For a random201

forest, we consider that an option is influential if the median (on all inputs) of202

its option importance is greater than 1
nopt

, where nopt is the number of options203

considered in the dataset. This threshold represents the theoretic importance204

of options for a software having equally important options -inspired by the205

Kaiser rule [102].206

Linear Regression Coefficients. The coefficients of an ordinary least207

square regression [77] weight the effect of configuration options. These coef-208

ficients can be positive (resp. negative) if a bigger (resp. lower) option value209

results in a bigger performance. Ideally, the sign of the coefficients of a given210

option should remain the same for all inputs: it would suggest that the effect211

of an option onto performance is stable. We also provide details about coeffi-212

cients related to the interactions of options (i.e., feature interactions [76, 89])213

in RQ2 results.214

3.4 Impact of Input Sensitivity (RQ3)215

To complete this experimental protocol, we ask whether adapting the software216

to its input data is worth the cost of finding the right set of parameters i.e.,217

the concrete impact of input sensitivity. RQ3 - Can we ignore input sen-218

sitivity? To estimate how much we can lose, we first define two scenarios S1219

and S2:220

S1: Baseline. In this scenario, we value input sensitivity and just train a simple221

performance model on an input - i.e., the target input. We choose the best222
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configuration according to the model, configure the related software with 223

it and execute it on the target input. 224

S2: Ignoring input sensitivity. In this scenario, let us pretend that we ignore 225

the input sensitivity issue. We train a model related to a given input i.e., 226

the source input, and then predict the best configuration for this source 227

input. If we ignore the issue of input sensitivity, we can easily reuse this 228

model for any other input, including the target input defined in S1. Finally, 229

we execute the software with the configuration predicted by our model on 230

the target input. 231

In this part, we systematically compare S1 and S2 in terms of performance 232

for all inputs, all performance properties and all software systems. For S1, we 233

repeat the scenario ten times with different sources, uniformly chosen among 234

other inputs and consider the average performance. For both scenarios, due 235

to the imprecision of the learning procedure, the models can recommend sub- 236

optimal configurations. Since this imprecision can alter the results, we consider 237

an ideal case for both scenarios and assume that the performance models 238

always recommend the best possible configuration. 239

Performance ratio. To compare S1 and S2, we use a performance ratio 240

i.e., the performance obtained in S1 over the performance obtained in S2. If 241

the ratio is equal to 1, there is no difference between S1 and S2 and the input 242

sensitivity does not exist. A ratio of 1.4 would suggest that the performance 243

of S1 is worth 1.4 times the performance of S2; therefore, it is possible to gain 244

up to (1.4 − 1) ∗ 100 = 40% performance by choosing S1 instead of S2. We 245

also report on the standard deviation of the performance ratio distribution. A 246

standard deviation of 0 implies that for each input, we gain or lose the same 247

proportion of performance when picking S1 over S2. 248

4 Results 249

We now present the results obtained by following the methodology defined in 250

Section 3. 251

4.1 Performance Correlations (RQ1) 252

We first explain the results of RQ1 and their consequences on the poppler use 253

case i.e., an extreme case of input sensitivity, and then generalize to our other 254

software systems. 255

Extract images of input pdfs with poppler . The content of pdf files 256

fed to poppler may vary; the input pdf can be a 2-page report with a simple 257

figure, a 10-page article or a 300-page picture book. Depending on this content, 258

extracting the images embedded in those files can be quick or slow. Moreover, 259

a user can adapt different configurations for the report and not for the book 260

(or conversely), leading to different rankings in terms of extraction time. 261

9



Each square(i,j) represents the Spearman correlation between the time needed to extract
the images of pdfs i and j. The color of this square respects the top-left scale: high posi-
tive correlations are red; low in white; negative in blue. Because we cannot describe each
correlation individually, we added a table describing their distribution.

Fig. 3: Spearman correlogram - poppler , time.

In Figure 3, we depict the Spearman rank-order correlations, in terms of262

extraction time, between pairs of input pdfs fed to poppler . We also perform263

hierarchical clustering [42] on poppler data to gather inputs having similar time264

distributions and visually group correlated pdfs together.6 Results suggest a265

positive correlation (see dark red cells), though there are pairs of inputs with266

lower (see white cells) and even negative (see dark blue cells) correlations.267

More than a quarter of the correlations between input pdfs are positive and268

at least moderate - third quartile Q3 greater than 0.52.269

On the top-left part of the correlogram (see triangle 1○), we even observe270

a first group of input pdfs that are highly correlated with each other - posi-271

6 Detailed RQ1 results for other systems available at: https://anonymous.4open.science/r/
df319578-8767-47b0-919d-a8e57eb67d25/results/RQS/RQ1/RQ1.md
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tively, strong or very strong. In this first group, the input pdfs have similar 272

time rankings; their performance react the same way to the same configura- 273

tions. However, this group of pdfs is uncorrelated (very low, low) or negatively 274

correlated (moderate, strong and very strong) with the second group of pdfs - 275

see the triangle 2○. In this case, a single configuration working for the group 276

1○ should not be reused directly on a pdf of the group 2○. 277

Meta-analysis. Over the 8 systems, we observe different cases: 278

– There exist software systems not sensitive at all to inputs. In our experi- 279

ment, gcc, imagemagick and xz present almost exclusively high and positive 280

correlations between inputs e.g., Q1 = 0.82 for the compressed size and xz . 281

For these, un- or negatively-correlated inputs are an exception more than 282

a rule. 283

– In contrast, there are software systems, namely lingeling , nodeJS , SQLite 284

and poppler , for which performance distributions completely change and 285

depend on input data e.g., Q2 = 0.09 for nodeJS and ops, Q3 = 0.12 for 286

lingeling and conflicts. For these, we draw similar conclusions as in the 287

poppler case. 288

– In between, x264 is only input-sensitive w.r.t. a performance property; it 289

is for bitrate and size but not for cpu, fps and time e.g., 0.29 as standard 290

deviation for size and bitrate but 0.08 for the time. 291

RQ1 - Do software performance stay consistent across inputs?
Performance distributions can change depending on inputs. Our sys-
tematic empirical study shows evidences about the existence of input
sensitivity: (1) input sensitivity does not affect all systems; (2) input
sensitivity may affect not the whole systems but some specific perfor-
mance properties. So, without having scrutinized the input sensitiv-
ity of a system, one cannot develop techniques sensitive to this phe-
nomenon.

292

4.2 Effects of Options (RQ2) 293

We first explain the results of RQ2 and their concrete consequences on the 294

bitrate of x264 - an input-sensitive case, to then generalize to other software 295

systems. 296

Encode input videos with x264 . x264 can encode different kinds of 297

videos, such as an animation movie with many details, or a soccer game with 298

large and monochromatic areas of grass. When encoding the soccer game, 299

x264 can use those fixed green areas to reduce the amount of data encoded 300

per second (i.e., the bitrate). In other words, configuration options aggregating 301

pixels (e.g., macro-block tree estimation mbtree) could both reduce the bitrate 302

for the soccer game and increase the bitrate for the animation movie where 303

nothing can be aggregated. 304
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(a) Importance

(b) Effect

Fig. 4: Importance and effect of configuration options - x264 , bitrate

Figures 4a and 4b report on respectively the boxplots of configuration op-305

tions’ feature importances and effects when predicting x264 ’s bitrate for all306

input videos.7 Three options are strongly influential for a majority of videos307

on Figure 4a: subme, mbtree and aq-mode, but their importance can differ308

depending on input videos: for instance, the importance of subme is 0.83 for309

video #1365 and only 0.01 for video #40. Because influential options vary310

with input videos for x264 , performance models and approaches based on fea-311

7 Detailed RQ2 results for other systems available at: https://anonymous.4open.science/r/
df319578-8767-47b0-919d-a8e57eb67d25/results/RQS/RQ2/RQ2.md
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ture selection [58] may not generalize well to all input videos. Most of the 312

options have positive and negative coefficients on Figure 4b; thus, the specific 313

effects of options heavily depend on input videos. It is also true for influen- 314

tial options: mbtree can have positive and negative (influential) effects on the 315

bitrate i.e., activating mbtree may be worth only for few input videos. The 316

consequence is that one cannot reliably provide end-users with a unique x264 317

default configuration whatever the input is. 318

Another interesting point is the link between RQ1 and RQ2 for x264 and 319

the bitrate; the more stable the effect of options in RQ2, the more stable the 320

distribution of performance in RQ1. In fact, in a group of highly-correlated 321

input videos (e.g., like the group 1○ of pdfs in Figure 3, but for x264 ), the 322

effect and importance of options are stable i.e., the inputs all react the same 323

way to the same options.8 These different effects of influential options of x264 324

may alter its encoding performance, thus explaining the different distributions 325

pointed out in RQ1. Under these circumstances, configuring the software sys- 326

tem once per group of inputs is probably a reasonable solution for tackling 327

input sensitivity. 328

Meta-analysis. For gcc, imagemagick and xz , the importances are quite 329

stable. As an extreme case of stability, the importances of the compressed 330

size for xz are exactly the same, except for two inputs. For these systems, the 331

coefficients of linear regression mostly keep the same sign across inputs i.e., 332

the effects of options do not change with inputs. For input-sensitive software 333

systems, we always observe high variations of options’ effects (lingeling , pop- 334

pler or SQLite), sometimes coupled to high variations of options’ importances 335

(nodeJS ). For instance, the option format for poppler can have an importance 336

of 0 or 1 depending on the input. For all software systems, there exists at 337

least one performance property whose effects are not stable for all inputs e.g., 338

one input with negative coefficient and another with a positive coefficient. For 339

x264 , it depends on the performance property; for cpu, fps and time, the effect 340

of influential options are stable for all inputs, while for the bitrate and the size, 341

we can draw the conclusions previously presented in this section. 342

RQ2 - Do configuration option’s effects change with input
data? Different inputs lead to different configuration options’ signif-
icance and effects. A set of influential options with changing effects
can alter the distribution of performance, thus explaining RQ1 results.
Therefore, a configuration should not be fixed across inputs but evolve
according to the input data fed to the system.

343

8 See the detailed case of x264 at: https://anonymous.4open.science/r/
df319578-8767-47b0-919d-a8e57eb67d25/results/others/x264_groups/x264_bitrate.md
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4.3 Impact of Input Sensitivity (RQ3)344

This section presents the evaluation of RQ3 w.r.t. the protocol of Section 3.4.345

In Table 2, we computed the performance ratios for the different software346

systems and their performance properties.9347

Table 2: Performance ratio distributions across inputs, for different software
systems and different performance properties. In lines, Avg the average per-
formance ratio. Std the standard deviation. 5th the 5th percentile. Q1 the first
quartile. Q2 the median. Q3 the third quartile. 95th the 95th percentile. Due
to space constraints, we arbitrarily select few performance properties.

System gcc lingeling nodeJS poppler

Perf. P ctime exec size confl reduc ops size time

Avg 1.08 1.13 1.27 2.11 1.38 1.73 1.56 2.69

Std 0.07 0.07 0.36 2.6 0.79 1.88 1.27 3.72

5th 1.0 1.05 1.01 1.02 1.0 1.01 1.0 1.03

Q1 1.01 1.11 1.04 1.05 1.04 1.08 1.0 1.14

Q2 1.08 1.12 1.16 1.14 1.11 1.16 1.07 1.38

Q3 1.11 1.14 1.32 1.47 1.25 1.54 1.51 2.22

95th 1.2 1.2 1.97 8.05 2.79 4.22 3.85 10.11

System SQLite x264 xz

Perf. P q1 q12 q14 cpu etime fps bitrate size size time

Avg 1.03 1.08 1.07 1.42 1.43 1.1 1.11 1.11 1.0 1.08

Std 0.02 0.05 0.05 1.27 1.45 0.14 0.13 0.13 0.0 0.06

5th 1.01 1.01 1.01 1.05 1.05 1.02 1.01 1.02 1.0 1.0

Q1 1.02 1.03 1.03 1.12 1.12 1.04 1.03 1.05 1.0 1.02

Q2 1.03 1.07 1.07 1.21 1.21 1.06 1.07 1.08 1.0 1.07

Q3 1.04 1.11 1.09 1.38 1.37 1.1 1.15 1.12 1.0 1.11

95th 1.08 1.17 1.16 2.11 2.11 1.25 1.32 1.28 1.0 1.2

For software systems whose performance are stable across inputs (gcc, im-348

agemagick and xz ), there are few differences between inputs. For instance, for349

the output size of xz , there is no variation between scenarios S1 (i.e., using350

the best configuration) and S2 (i.e., reusing a the best configuration of a given351

input for another input): all performance ratios (i.e., performance S1 over352

performance S2) are equals to 1 whatever the input.353

For input-sensitive software systems (lingeling , nodeJS , SQLite and pop-354

pler), changing the configuration can lead to a negligible change in a few cases.355

For instance, for the time to answer the first query q1 with SQLite, the third356

quartile is 1.04; in this case, SQLite is sensitive to inputs, but its variations357

of performance -less than 4%- do not justify the complexity of tuning the358

software. But it can also be a huge change; for lingeling and solved conflicts,359

the 95th percentile ratio is equal to 8.05 i.e., a factor of 8 between S1 and360

S2. It goes up to a ratio of 10.11 for poppler ’s extraction time: there exists an361

input pdf for which extracting its images is ten times slower when reusing a362

configuration, compared to the best one (i.e., the fastest).363

9 Detailed RQ3 results for other performance properties available at: https://anonymous.
4open.science/r/df319578-8767-47b0-919d-a8e57eb67d25/results/RQS/RQ3/RQ3.md
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In between, x264 is a complex case. For its low input-sensitive performance 364

(e.g., cpu and etime), it moderately impacts the performance when reusing a 365

configuration from one input to another - average ratios at resp. 1.42 and 1.43. 366

In this case, the rankings of performance do not change a lot with inputs, but 367

a small ranking change does make the difference in terms of performance. 368

On the contrary, for the input-sensitive performance (e.g., the bitrate), 369

there are few variations of performance: we can lose 1− 1
1.11 ≃ 9% of bitrate in 370

average. In this case, it is up to the compression experts to decide; if losing up 371

to 1− 1
1.32 ≃ 24% of bitrate is acceptable, then we can ignore input sensitivity. 372

Otherwise, we should consider tuning x264 for its input video. 373

RQ3 - Can we ignore input sensitivity? There exist input-sensitive
cases for which the difference of performance does not justify to consider
the input sensitivity e.g., 5% change is probably negligible. However,
performance can be multiplied up to a ratio of 10 if we tune other
systems for their input data: we cannot ignore it.

374

5 Sensitivity to Inputs in Research 375

In this section, we explore the significance of the input sensitivity problem in 376

research. Do researchers know the issue of input sensitivity? How do they deal 377

with inputs in their papers? Is the interaction between software configurations 378

and input sensitivity a well-known issue? 379

5.1 Experimental Protocol 380

First, we aim at gathering research papers that actually predict performance 381

of configurable systems i.e., with a performance model [28]. 382

Gather research papers. We focused on the publications of the last ten 383

years. To do so, we analyzed the papers published (strictly) after 2011 from 384

the survey of Pereira et al. [67] - published in 2019. We completed those papers 385

with more recent papers (2019-2021), following the same procedure as in [67]. 386

We have only kept research work that trained performance models on software 387

systems. 388

Search for input sensitivity. We read each selected paper and answered 389

four different questions: Q-A. Is there a software system processing input data 390

in the study? If not, the impact of input sensitivity in the existing research 391

work would be relatively low. The idea of this research question is to estimate 392

the proportion of the performance models that could be affected by input 393

sensitivity. Q-B. Does the experimental protocol include several inputs? If 394

not, it would suggest that the performance model only captures a partial 395

truth, and might not generalize for other inputs fed to the software system. Q- 396

C. Is the problem of input sensitivity mentioned e.g., in threat? This question 397
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aims to state whether researchers are aware of the input sensitivity issue, and398

estimate the proportion of the papers that mention it as a potential threat to399

validity. Q-D. Does the paper propose a solution to generalize the performance400

model across inputs? Finally, we check whether the paper proposes a solution401

managing input sensitivity i.e., if the proposed approach could be adapted402

to our problem and predict a near-optimal configuration for any input. The403

results were obtained by one author and validated by all other co-authors.404

5.2 How do Research Papers address Input Sensitivity?405

Table 3 lists the 64 research papers we identified following this protocol, as406

well as their individual answers to Q-A→Q-D. A checked cell indicates that the407

answer to the corresponding question (column) for the corresponding paper408

(line) is yes. Since answering Q-B, Q-C or Q-D only makes sense if Q-A is409

checked, we grayed and did not consider Q-B, Q-C and Q-D if the answer410

of Q-A is no. We also provide full references and detailed justifications in411

the companion repository.10 We now comment the average results for each412

question:413

Table 3: Input sensitivity in research. Paper identifier ID in the list. Au-
thors of the paper. Conference in which the paper was accepted. Year of
publication of the paper. Title of the paper. Q-A. Is there a software sys-
tem processing input data in the study? Q-B. Does the experimental protocol
include several inputs? Q-C. Is the problem of input sensitivity mentioned
e.g., in threat? Q-D. Does the paper propose a solution to generalize the
performance model across inputs? Due to space limitation, we do not justify
the answers directly in the paper, see the companion repository (file result-
s/RQS/RQ4/RQ4.md) for justifications.

ID Authors Conference Year Title Q-A Q-B Q-C Q-D

1 Guo et
al. [29]

ESE 2017 Data-efficient performance learning for configurable
systems

X

2 Jamshidi et
al. [41]

SEAMS 2017 Transfer learning for improving model predictions [...] X X X

3 Jamshidi et
al. [39]

ASE 2017 Transfer learning for performance modeling of config-
urable [...]

X X X X

4 Oh et
al. [65]

ESEC/FSE 2017 Finding near-optimal configurations in product lines
by [...]

X

5 Kolesnikov
et al. [47]

SoSyM 2018 Tradeoffs in modeling performance of highly config-
urable [...]

X

6 Nair et
al. [61]

ESEC/FSE 2017 Using bad learners to find good configurations X X

7 Nair et
al. [63]

TSE 2018 Finding Faster Configurations using FLASH X X X

8 Murwantara
et al. [59]

iiWAS 2014 Measuring Energy Consumption for Web Service
Product [...]

X X X X

10 The list of papers can be consulted at https://anonymous.4open.science/r/
df319578-8767-47b0-919d-a8e57eb67d25/results/RQS/RQ4/RQ4.md
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ID Authors Conference Year Title Q-A Q-B Q-C Q-D

9 Temple et
al. [87]

SPLC 2016 Using Machine Learning to Infer Constraints for
Product Lines

10 Temple et
al. [85]

IEEE Soft. 2017 Learning Contextual-Variability Models X X

11 Valov et
al. [91]

ICPE 2017 Transferring performance prediction models across
different [...]

X X X

12 Weckesser
et al. [96]

SPLC 2018 Optimal reconfiguration of dynamic software product
[...]

13 Acher et
al. [2]

VaMoS 2018 VaryLATEX: Learning Paper Variants That Meet
Constraints

X X X

14 Sarkar et
al. [76]

ASE 2015 Cost-Efficient Sampling for Performance Prediction of
[...]

X

15 Temple et
al. [84]

Report 2018 Towards Adversarial Configurations for Software
Product Lines

16 Nair et
al. [62]

ASE 2018 Faster Discovery of Faster System Configurations
with [...]

X

17 Siegmund
et al. [79]

ESEC/FSE 2015 Performance-Influence Models for Highly Config-
urable Systems

X

18 Valov et
al. [89]

SPLC 2015 Empirical comparison of regression methods for [...] X

19 Zhang et
al. [99]

ASE 2015 Performance Prediction of Configurable Software Sys-
tems [...]

X X

20 Kolesnikov
et al. [48]

ESE 2019 On the relation of control-flow and performance fea-
ture [...]

X

21 Couto et
al. [12]

SPLC 2017 Products go Green: Worst-Case Energy Consumption
[...]

X X

22 Van Aken
et al. [92]

SIGMOD 2017 Automatic Database Management System Tuning
Through [...]

X X X X

23 Kaltenecker
et al. [44]

ICSE 2019 Distance-based sampling of software configuration
spaces

X

24 Jamshidi et
al. [40]

ESEC/FSE 2018 Learning to sample: exploiting similarities across [...] X X X X

25 Jamshidi et
al. [38]

MASCOTS 2016 An Uncertainty-Aware Approach to Optimal Config-
uration of [...]

X X X

26 Lillacka et
al. [53]

Soft. Eng. 2013 Improved prediction of non-functional properties in
Software [...]

X X X X

27 Zuluaga et
al. [101]

JMLR 2016 ε-pal: an active learning approach [...] X X

28 Amand et
al. [6]

VaMoS 2019 Towards Learning-Aided Configuration in 3D Printing
[...]

X X X

29 Alipourfard
et al. [4]

NSDI 2017 Cherrypick: Adaptively unearthing the best cloud [...] X X X

30 Saleem et
al. [75]

TSC 2015 Personalized Decision-Strategy based Web Service Se-
lection [...]

X X

31 Zhang et
al. [100]

SPLC 2016 A mathematical model of performance-relevant [...] X

32 Ghamizi et
al. [25]

SPLC 2019 Automated Search for Configurations of Deep Neural
[...]

X X X

33 Grebhahn
et al. [27]

CPE 2017 Performance-influence models of multigrid methods
[...]

34 Bao et
al. [7]

ASE 2018 AutoConfig: Automatic Configuration Tuning for Dis-
tributed [...]

X X

35 Guo et
al. [28]

ASE 2013 Variability-aware performance prediction: A statisti-
cal [...]

X

36 Švogor et
al. [103]

IST 2019 An extensible framework for software configuration
optim[...]

X X
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ID Authors Conference Year Title Q-A Q-B Q-C Q-D

37 El Afia et
al. [3]

CloudTech 2018 Performance prediction using support vector machine
for the [...]

X X

38 Ding et
al. [16]

PLDI 2015 Autotuning algorithmic choice for input sensitivity X X X X

39 Duarte et
al. [19]

SEAMS 2018 Learning Non-Deterministic Impact Models for Adap-
tation

X X X X

40 Thornton
et al. [88]

KDD 2013 Auto-WEKA: Combined selection and hyperparame-
ter [...]

X X X

41 Siegmund
et al. [80]

ICSE 2012 Predicting performance via automated feature-
inter[...]

X X X

42 Siegmund
et al. [81]

SQJ 2012 SPL Conqueror: Toward optimization of non-
functional [...]

X X

43 Westermann
et al. [97]

ASE 2012 Automated inference of goal-oriented performance
prediction [...]

X X

44 Velez et
al. [93]

ICSE 2021 White-Box Analysis over Machine Learning: Modeling
[...]

X X

45 Pereira et
al. [5]

ICPE 2020 Sampling Effect on Performance Prediction of Config-
urable [...]

X X X

46 Shu et
al. [78]

ESEM 2020 Perf-AL: Performance prediction for configurable
software [...]

X

47 Dorn et
al. [18]

ASE 2020 Mastering Uncertainty in Performance Estimations of
[...]

X

48 Kaltenecker
et al. [43]

IEEE Soft. 2020 The Interplay of Sampling and Machine Learning for
Software [...]

X

49 Krishna et
al. [49]

TSE 2020 Whence to Learn? Transferring Knowledge in Config-
urable [...]

X X X X

50 Weber et
al. [95]

ICSE 2021 White-Box Performance-Influence Models: A Profiling
[...]

X X

51 Mühlbauer
et al. [60]

ASE 2020 Identifying Software Performance Changes Across
Variants [...]

X X

52 Han et
al. [32]

Report 2020 Automated Performance Tuning for Highly-
Configurable [...]

X X

53 Han et
al. [33]

ICPE 2021 ConfProf: White-Box Performance Profiling of Con-
figuration [...]

X X

54 Valov et
al. [90]

ICPE 2020 Transferring Pareto Frontiers across Heterogeneous
Hardware [...]

X X

55 Liu et
al. [54]

CF 2020 Deffe: a data-efficient framework for performance [...] X X X X

56 Fu et
al. [23]

NSDI 2021 On the Use of ML for Blackbox System Performance
Prediction

X X X X

57 Larsson et
al. [50]

IFIP 2021 Source Selection in Transfer Learning for Improved
Service [...]

X X X X

58 Chen et
al. [9]

ICSE 2021 Efficient Compiler Autotuning via Bayesian Opti-
mization

X X X

59 Chen et
al. [10]

SEAMS 2019 All Versus One: An Empirical Comparison on Re-
trained [...]

X X

60 Ha et
al. [30]

ICSE 2019 DeepPerf: Performance Prediction for Configurable
Software [...]

X

61 Pei et
al. [66]

Report 2019 DeepXplore: automated whitebox testing of deep
learning systems

X X

62 Ha et
al. [31]

ICSME 2019 Performance-Influence Model for Highly Configurable
[...]

X

63 Iorio et
al. [37]

CloudCom 2019 Transfer Learning for Cross-Model Regression in Per-
formance [...]

X X X X

64 Koc et
al. [72]

ASE 2021 SATune: A Study-Driven Auto-Tuning Approach for
[...]

X X X X

Total 60 38 28 16
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Q-A. Is there a software system processing input data in the study? Of 414

the 64 papers, 60 (94%) consider at least one configurable system processing 415

inputs. This large proportion gives credits to input sensitivity and its potential 416

impact on research work. 417

Q-B. Does the experimental protocol include several inputs? 63% of the 418

research work answering yes to Q-A include different inputs in their protocol. 419

But what about the other 37%? It is understandable not to consider sev- 420

eral inputs because of the cost of measurements. However, if we reproduce all 421

experiments of Table 3 using other input data, will we draw the same conclu- 422

sions for each paper? Based on the results of RQ1 → RQ3, we encourage all 423

researchers to consider at least a set of well-chosen inputs in their protocol 424

e.g., an input per group, as shown in RQ1. We give an example of such a set 425

for x264 in Section 6. 426

Q-C. Is the problem of input sensitivity mentioned e.g., in threat? 427

Only half (47%) of the papers mention the issue of input sensitivity, mostly 428

without naming it or using a domain-specific keyword e.g., workload varia- 429

tion [91]. For the other half, we cannot guarantee with certainty that input 430

sensitivity concerns all papers. But we shed light on this issue: ignoring in- 431

put sensitivity can prevent the generalization of performance models across 432

inputs. This is especially true for the 37% of papers answering no to Q-B i.e., 433

considering one input per system: only 14% of these research works mention 434

it in their publication. 435

Q-D. Does the paper propose a solution to generalize the performance 436

model across inputs? We identified 16 papers [2, 16, 19, 23, 37, 39, 40, 49, 50, 437

53,54,59,72,90–92] proposing contributions that may help in better managing 438

the input sensitivity problem, and that should be adapted and tested (e.g., 439

with our data) to evaluate their ability to support this problem. 440

Conclusion. While half of the research articles mention input sensi-
tivity, few actually address it, and most often on a single system and
domain. Input sensitivity can affect multiple research works and ques-
tions their practical relevance for a field deployment.

441

6 Impact for researchers and research opportunities 442

This section discusses the implications of our work. 443

Impacts for researchers. We warn researchers that the effectiveness of 444

learning strategies for a given configurable system can be biased by the inputs 445

and the performance property used. That is, a sampling strategy, a prediction 446

or optimisation algorithm, or a transfer technique may well be highly accu- 447

rate for an input and still inaccurate for others. Most of the studies neglect 448

either inputs or configurations, which is perfectly understandable owing to the 449

investments required. However, the scientific community should be extremely 450

19



careful with this input sensitivity issue. In view of the results of our study, new451

problems deserve to be tackled with associated challenges. We detail some of452

them hereafter.453

Sampling configurations. With the promise to select a small and repre-454

sentative sample set of valid configurations, several sampling strategies have455

been devised in the last years [5, 43, 67] (e.g., random sampling, t-wise sam-456

pling, distance-based sampling). As recently reported in other experimental457

settings [5,43], finding the most effective combinations of sampling and learn-458

ing strategies is an open problem. Input sensitivity further exacerbates the459

problem. We conjecture that some strategies for sampling configurations might460

be effective for specific inputs and performance properties. Pereira et al. [5]461

actually provided preliminary evidence on x264 for 19 input videos and two462

performance properties. Our results show and confirm that the importance of463

options and their interactions is indeed sensitive to the input (see RQ2), thus464

suggesting that some sampling strategies may not always capture them. An465

open issue is thus to find sampling strategies that are effective for any input.466

Tuning and performance prediction. Numerous works aim to find op-467

timal configurations or predict the performance of an arbitrary configuration.468

However, our empirical results show that the best configuration can be differ-469

ently ranked (see RQ1) depending on an input. The tuning or the prediction470

cannot be reused as such (see RQ3) but should be redone or adapted whenever471

a system processes a new input. To illustrate this, we present a minimal ex-472

ample using SPLConqueror [81]: we train two performance models predicting473

the encoding sizes of two different input videos fed to x264 and show that the474

two related models do not share any common (interaction of) option.11 So, an475

open challenge is to deliver algorithms and practical tools capable of tuning476

a system whatever the input. Another issue is to reduce the cost of training477

models for each input (e.g., through sampling or transfer learning).478

Understanding of configurable systems. Understanding the effects of479

options and their interactions is hard for developers and users yet crucial for480

maintaining, debugging or configuring a software system. Some works (e.g.,481

[95]) have proposed to build performance models that are interpretable and482

capable of communicating the influence of individual options and interactions483

on performance (possibly back to the code). Our empirical results show that484

performance models, options and their interactions are sensitive to inputs (see485

RQ2). A first open issue is to communicate when and how options together486

with input data interact and influence performance. Another challenge is to487

identify a minimal set of representative inputs in such a way a configurable488

system can be observed and performance models learnt.489

Recommendations for researchers and practitioners.Given the state490

of the art and the open problems to be addressed, there is no complete solu-491

tion that can be systematically employed. However, we can give two recom-492

mendations: (1) Detecting input sensitivity. As practitioners dealing with new493

inputs, we first have to to determine whether the software under study is input-494

11 See the performance models for the first and the second input videos.
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sensitive w.r.t. the performance property of interest. If the input sensitivity is 495

negligible (see RQ3), we can use a single model to predict the performance of 496

the software system. If not, measurements over multiple inputs are needed. (2) 497

Selecting representative inputs. To reduce the cost of measurements, the ideal 498

would be to select a set of input data, both representative of the usage of the 499

system and cheap to measure. We believe our work can be helpful here. On 500

the x264 case study, for the bitrate, we isolate four encoding groups of input 501

videos (action movie - big resolution - still image - standard). Within a group, 502

the videos share common properties, and x264 processes them in the same 503

way i.e., same performance distributions (RQ1), same options’ effects (RQ2) 504

and a negligible effect of input sensitivity (RQ3). In the companion repository, 505

we propose to reduce the dataset of 1397 input videos [94] to a subset of 8 506

videos, selecting 2 cheap videos in each group of performance.12 Automating 507

this grouping could drastically reduce the cost of measuring configurations’ 508

performance over inputs. 509

7 Threats to Validity 510

This section discusses the threats to validity related to our protocol. 511

Construct validity.Due to resource constraints, we did not include all the 512

options of the configurable systems in the experimental protocol. We may have 513

forgotten configuration options that matter when predicting the performance 514

of our configurable systems. However, we consider features that impact the 515

performance properties according to the documentation, which is sufficient to 516

show the existence of the input sensitivity issue. 517

Internal Validity. First, our results can be subject to measurement bias. 518

We alleviated this threat by making sure only our experiment was running 519

on the server we used to measure the performance of software systems. It has 520

several benefits: we can guarantee we use similar hardware (both in terms of 521

CPU and disk) for all measurements; we can control the workload of each 522

machine (basically we force the machine to be used only by us); we can avoid 523

networking and I/O issues by placing inputs on local folders. But it could also 524

represent a threat: our experiments may depend on the hardware and oper- 525

ating system. The measurement process is launched via docker containers. If 526

this aims at making this work reproducible, this can also alter the results of 527

our experiment. Because of the amount of resources needed to compute all the 528

measures, we did not repeat the process of Figure 2 several times per system. 529

We consider that the large number of inputs under test overcomes this threat. 530

Moreover, related work (e.g., [5] for x264 ) has shown that inputs often main- 531

tain stable performance between different launches of the same configuration. 532

Finally, the measurement process can also suffer from a lack of inputs. To limit 533

this problem, we took relevant dataset of inputs produced and widely used in 534

12 See the resulting benchmark and its construction at: https://anonymous.4open.science/r/
df319578-8767-47b0-919d-a8e57eb67d25/results/others/x264_groups/x264_bitrate.md
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their field. For RQ1-RQ3, executing our code with another python environ-535

ment may lead to slightly different conclusions. For RQ3, we consider oracles536

when predicting the best configurations for both scenarios, thus neglecting the537

imprecision of performance models: these results might change on a real-world538

case. In Section 5, our results are subject to the selection of research papers:539

since we use and reproduce [67], we face the same threats to validity.540

External Validity. A threat to external validity is related to the used case541

studies and the discussion of the results. Because we rely on specific systems542

and interesting performance properties, the results may be subject to these543

systems and properties. To reduce this bias, we selected multiple configurable544

systems, used for different purposes in different domains.545

8 Related Work546

In this section, we discuss other related work (see also Section 5).547

Workload Performance Analysis. On the one hand some work have548

been addressing the performance analysis of software systems [11, 22, 26, 51,549

71, 82] depending on different input data (also called workloads or bench-550

marks), but all of them only considered a rather limited set of configurations.551

On the other hand, as already discussed in Section 5, works and studies on552

configurable systems usually neglect input data (e.g., using a unique video553

for measuring the configurations of a video encoder). In this paper, we com-554

bined both dimensions by performing an in-depth, controlled study of several555

configurable systems to make it vary in the large, both in terms of configura-556

tions and inputs. In contrast to research papers considering multiple factors557

of the executing environment in the wild [40, 91], we concentrated on inputs558

and software configurations only, which allowed us to draw reliable conclusions559

regarding the specific impact of inputs on software variability.560

Performance Prediction. Research work have shown that machine learn-561

ing could predict the performance of configurations [28,76,89,99]. These works562

measure the performance of a configuration sample under specific settings to563

then build a model capable of predicting the performance of any other config-564

uration, i.e., a performance model. Numerous works have proposed to model565

performance of software configurations, with several use-cases in mind for de-566

velopers and users of software systems: the maintenance and understanding567

of configuration options and their interactions [79], the selection of an op-568

timal configuration [24, 63, 65], the automated specialization of configurable569

systems [85, 86]. Input sensitivity complicates their task; since inputs affect570

software performance, it is yet a challenge to train reusable performance pre-571

diction models i.e., that we could apply on multiple inputs.572

Input-aware tuning. The input sensitivity issue has been partly consid-573

ered in some specific domains (SAT solvers [21,98], compilation [16,69], video574

encoding [57], data compression [46], etc.). It is unclear whether these ad hoc575

solutions are cost-effective. As future work, we plan to systematically assess576

domain-specific techniques as well as generic, domain-agnostic approach (e.g.,577
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transfer learning) using our dataset. Furthermore, the existence of a general 578

solution applicable to all domains and software configurations is an open ques- 579

tion. For example, is it always possible and effective to extract input properties 580

for all kinds of inputs? 581

Input Data and other Variability Factors. Most of the studies sup- 582

port learning models restrictive to specific static settings (e.g., inputs, hard- 583

ware, and version) such that a new prediction model has to be learned from 584

scratch once the environment change [67]. Jamshidi et al. [39] conducted an 585

empirical study on four configurable systems (including SQLite and x264 ), 586

varying software configurations and environmental conditions, such as hard- 587

ware, input, and software versions. But without isolating the individual effect 588

of input data on software configurations, it is challenging to understand the 589

existing interplay between the inputs and any other variability factor e.g., the 590

hardware. 591

9 Conclusion 592

We conducted a large study over the inputs fed to 8 configurable systems that 593

shows the significance of the input sensitivity problem on performance prop- 594

erties. We deliver one main message: inputs interact with configuration 595

options in non monotonous ways, thus making it difficult to (au- 596

tomatically) configure a system. It appears that inputs can significantly 597

change the performance of the configurable systems up to the point some op- 598

tions’ values have an opposite effect depending on the input. Ignoring this 599

lesson could lead to the learning of inaccurate performance prediction models 600

and ineffective configuration recommendations for developers and end-users. 601

As future work, it is an open challenge to solve the issue of input sensi- 602

tivity when predicting, optimising or understanding configurable systems. We 603

encourage researchers to confront both existing methods of the literature and 604

future ideas with our data. 605
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prediction of configurable systems: A case study. In: Proc. of ICPE’20, p. 277–288
(2020)

23

https://medium.com/netflix-techblog/a-large-scale-comparison-of-x264-x265-and-libvpx-a-sneak-peek-2e81e88f8b0f


6. Amand, B., Cordy, M., Heymans, P., Acher, M., Temple, P., Jézéquel, J.M.: Towards
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48. Kolesnikov, S., Siegmund, N., Kästner, C., Apel, S.: On the relation of external and
internal feature interactions: A case study (2018)

49. Krishna, R., Nair, V., Jamshidi, P., Menzies, T.: Whence to learn? transferring
knowledge in configurable systems using BEETLE. CoRR pp. 1–16 (2019). URL
http://arxiv.org/abs/1911.01817

50. Larsson, H., Taghia, J., Moradi, F., Johnsson, A.: Source selection in transfer learning
for improved service performance predictions. In: Proc. of Networking’21, pp. 1–9
(2021). DOI 10.23919/IFIPNetworking52078.2021.9472818

51. Leitner, P., Cito, J.: Patterns in the chaos—a study of performance variation and
predictability in public iaas clouds. ACM Trans. Internet Technol. 16(3) (2016). DOI
10.1145/2885497. URL https://doi.org/10.1145/2885497
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