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Abstract

Pricing under a consumer choice model has been extensively studied in eco-
nomics and revenue management. In this paper, we tackle a generalization of the
Rank Pricing Problem (RPP), a multi-product pricing problem with unit-demand
customers and a ranking-based consumer choice model. We generalize the RPP
assuming that each product has a limited amount of copies for sale, and we call
this extension the Capacitated Rank Pricing Problem (CRPP). We compare the
envy-free allocation of the products (a fairness criterion requiring that customers
receive their highest-ranked product given the pricing) with the envy version of the
problem. Next, we focus on the CRPP with envy. We introduce two integer linear
formulations for the CRPP and derive valid inequalities leveraging the structure of
the problem. Afterwards, we develop separation procedures for the families of valid
inequalities of greater size. The performance of the formulations and the resolution
algorithms developed is tested by means of extensive computational experiments.

Keywords: Rank Pricing Problem, Ranking-based Consumer Models, Combinatorial Opti-

mization, Integer Programming, Valid Inequality, Bilevel Programming

1 Introduction

Developing an adequate pricing strategy is a crucial decision faced daily by companies
in retail and manufacturing. Furthermore, the recent availability of data regarding cus-
tomers’ purchasing behavior and the conviction that it constitutes a high impact factor
in the overall profitability of firms have motivated the proliferation of pricing problems
under consumer choice models.

There are many variations on product pricing models under a consumer choice model
depending on the setting (for an overview, see Van Ryzin and Talluri [22]). An important
line of research is pricing under the assumption of unit-demand customers (interested in
purchasing at most one product) whose product choices are determined entirely by their
reservation prices. In this context, each customer owns a reservation price for each product
that reflects the maximum price the customer is willing to pay for the given product,
commonly known as his willingness to pay. Then the customer selects the product that
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maximizes his utility or surplus, i.e. the difference between his reservation price and the
price of the product. Some references in pricing within the utility-maximization framework
include Dobson and Kalish [7, 8], Heilporn et al. [13], Fernandes et al. [9], Myklebust et
al. [16] and Shioda et al. [19, 20].

Utility-based models assume that customers follow compensatory decision processes,
where high levels on some attributes of a product (such as the price) can compensate for
low levels on other aspects. However, customers sometimes follow less rational decision
processes, such as heuristics or shortcuts, to speed up their decision. In these cases, they
make non-compensatory decision processes (such as the lexicographic rule, where cus-
tomers rate certain features of the products by importance and purchase accordingly). In
fact, non-compensatory considerations tend to be more significant in important decisions,
such as in residential location and vehicle type choices (Swait [21]). A ranking-based
model can accommodate both compensatory and non-compensatory decision processes
(if the prices are not considered as product attributes). In this work, we focus on the
problem of pricing a product line assuming that customers’ product selection is based on
a ranking of the products.

Specifically, we study a generalization of the Rank Pricing Problem (RPP). The RPP is
given by unit-demand customers, that is, customers interested in a subset of the products
offered by the company and who intend to buy at most one of them. To do so, the
customers rank a subset of the products of the company that they consider, making a
ranked list. They are also endowed with a positive budget that is independent of the
products they desire. Once the prices are established by the company, they will purchase
their highest ranked one among the ones with a price below their budget (if any). The
RPP is classified as a multi-product pricing optimization problem with a non-parametric
ranking-based consumer choice model.

The RPP was introduced by Rusmevichientong et al. [17] and Rusmevichientong [18].
They leverage data collected through the Auto Choice Advisor (ACA) website to optimize
the price of General Motors’ vehicles. The ACA website creates a list of recommended
vehicles based on the budget constraint of the consumer and his requirements. Rus-
mevichientong et al. introduce the RPP, prove that it is NP-complete in the strong sense
and derive a heuristic approximation algorithm for the RPP (with performance bounds)
under the assumption of a price-ladder constraint (a constraint on the ordering of prices).
They apply their algorithm to a real data set from the ACA website, providing an anal-
ysis of the current pricing scheme at General Motors and suggesting improvements that
might lead to a more effective one. Aggarwal et al. [1] study variants of the original
models proposed in [17]. They show that the RPP with price-ladder can be reduced to
the Max Pricing, a problem of profit maximization proposed in [17] where customers pur-
chase the most expensive product under their budget. They also derive a polynomial time
approximation scheme for the RPP with price-ladder. Briest and Krysta [4] prove that
the previous algorithm is essentially best possible, and prove near-tight hardness results
for some versions of the RPP (including the most general). Calvete et al. [5] introduce
the first integer linear formulations for the RPP, and Domı́nguez et al. [6] present integer
linear formulations and results for the Rank Pricing Problem with Ties (RPPT), a variant
of the RPP that allows for ties in the ranking of the products.

In this paper, we tackle an extension of the RPP. In the first place, we assume that
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each customer has a different reservation price that reflects his willingness to pay for each
product of his interest, and therefore he purchases the highest-ranked product among the
ones priced under their corresponding reservation prices. Furthermore, we assume that
the company can only offer a limited amount of copies of each product for sale and might
not have enough supply to satisfy its clients. We have named this problem the Capacitated
Rank Pricing Problem (CRPP). One application of the CRPP consists in pricing tickets
for concerts or other types of events. In this case, different seats have different prices that
are related to their characteristics (distance to the event, visibility, etc.). Some customers
prefer to pay a lower price for a worse seat but, if those tickets are sold out, they might be
willing to pay more for a better one so as not to miss the event. Other customers actually
prefer the best tickets available. Hence, it fits the capacity restriction and the customers’
representation through a list of preferences and reservation prices well.

Limiting the number of copies of each product implies that in some solutions, some
customers are unable to purchase their favorite product because it has sold out, even if
they can afford it. This results in two versions of the problem that differ in the type of
solution sought by the company. On the one hand, the company may opt for a solution in
which its profit is maximized restricting the search to the solutions that avoid (possible)
conflicts among customers. In this case, it shall choose what is known as an envy-free
solution, that is, a solution in which it can provide to each customer the product he
prefers the most among all those that have a price lower than his reservation price. An
envy-free solution always exists, it suffices to consider the solution where the products
are very expensive and no customer can afford them, so there is no possible envy among
customers. Guruswami et al. [12] introduce the profit maximization problem assuming
that customers maximize their utility and are envy-free for both unit-demand and single-
minded customers. They present an algorithm with logarithmic approximation guarantee
for the envy-free unit-demand problem and prove APX-hardness. On the other hand,
the company may choose to maximize its profit regardless of possible conflicts among
customers. Such conflicts arise when a customer prefers a product more than the one he
is given and he can afford it, but the product is not available because all the copies have
been sold to other customers. In some settings, envy solutions can lead to dissatisfied
customers, what can result in the loss of clients in the long term.

Envy and envy-free allocations have different characteristics. Both allocations can be
considered equitable, in the sense that the prices are settled according to the preferences of
the customers and their reservation prices, and there is a unique price for each product.
However, although an envy-free pricing (i.e. a pricing that admits a feasible, envy-free
allocation of products) prevents the customers’ possible displeasure with their purchase,
it generally provides a smaller profit for the company than a solution that allows for envy.
Moreover, the envy setting also assumes that customers might come across products they
are willing to buy and they can afford but are sold out, which is a realistic assumption
in the context of a limited supply of products. Lastly, like in the RPP, if the pricing is
envy-free the allocation of the products to the customers is uniquely determined. Thus,
any envy-free pricing leads to a unique feasible allocation of the products. On the other
hand, if the envy-freeness is not required, a pricing can lead to multiple feasible allocations
of the products to the customers that yield different profit. As a consequence, a feasible
solution in the envy-free setting is also a solution for the envy setting, and moreover the
version of the CRPP that allows for envy is inherently more difficult than the envy-free
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one.

To the best of our knowledge, the CRPP has not yet been studied in the literature. We
address the resolution of the envy version of the CRPP by means of discrete optimization
methods. Since the only formulations and exact resolution algorithms proposed for vari-
ants of the RPP were developed in [5] and [6], our results are built on the ones designed
in these two papers. However, the fact that we allow for envy in the CRPP makes this
version of the problem intrinsically different from the previous ones. To begin with, the
assignment of the products to the customers (given a fixed pricing) is straightforward in
the envy-free case. However, in this work we show that the assignment problem associ-
ated to the CRPP with envy is NP-complete. Furthermore, widely used methods such as
Benders decomposition, used in [6] as a resolution method for a variant of the RPP, do
not apply to this version of the problem because it is not possible to relax the integrality
constraints of the decision purchase variables. Other procedures like the preprocessing
techniques developed in [5] and [6] do not apply either in this case due to the envy.

We introduce two integer linear formulations for the CRPP, one with three-index cus-
tomer decision variables and a second one that makes use of a much smaller set of variables
but generally provides worse linear relaxation bounds. These formulations have similari-
ties with the ones proposed in [5] and [6], but the constraints related to the preferences
of the customers differ and the capacity is modeled introducing a new set of variables.
The three-index formulation is strengthened by means of alternative sets of constraints
derived leveraging the capacity constraints and the three-index variables. These families
are based on the limited supply assumption, so they do not apply to the uncapacitated
versions of the problem. As for the reduced formulation, three families of valid inequal-
ities of exponential size are presented along with their respective separation procedures
to include them dynamically in branch-and-cut frameworks. One of these families was
proposed for the RPP in [5] as part of a family of exponential size. Here we prove that the
family that we derive in this paper (which is polynomial in size) dominates the previous
one. Finally, we compare the performance of both models and the different resolution
algorithms described by means of extensive computational experiments.

The rest of the paper is organized as follows. In Section 2, we introduce the notation,
explain the difference between the envy-free and the envy case by means of an example,
and prove that the assignment of the CRPP with envy is NP-complete. In Section 3, we
introduce the three-index integer linear formulation and several families of valid inequal-
ities derived to strengthen it. Section 4 is devoted to the presentation of the reduced
formulation. In Section 5 we include the families of valid inequalities for the reduced
model and the separation procedures developed to incorporate constraints in a branch-
and-cut fashion. Section 6 includes the computational study, and the conclusions are
provided in Section 7.

2 Notation and problem description

Recall that the CRPP aims at maximizing the profit of a company selling different prod-
ucts with a limited supply, taking into account the preferences and reservation prices of
the unit-demand customers. Since we tackle the version of the problem that allows for
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envy, once the prices are settled, clients are assigned their highest-ranked product among
the ones that are not sold out and have a price below the corresponding reservation price
(if any).

Let us define K = {1, . . . , |K|} as the set of customers and I = {1, . . . , |I|} as the set
of products, with ci the number of copies for sale of product i, ∀i ∈ I. Each customer
k ∈ K has a subset of products Ik ⊆ I he could potentially purchase, and he ranks the
products in Ik from the best to the worst (ties in the ranking are not allowed). If k ranks
product i higher than product j, we say that k prefers i to j, and we denote i ≺k j.
Furthermore, {j ∈ Ik : j ⪯k i} = {i} ∪ {j ∈ Ik : j ≺k i}. For a given product i ∈ I, we
define Ki := {k ∈ K : i ∈ Ik} as the set of customers that could purchase product i ∈ I.
Without loss of generality, we assume Ik ̸= ∅ ∀k ∈ K, Ki ̸= ∅ ∀i ∈ I.

Each customer k has a reservation price for each product i ∈ Ik. Since different
customers may have the same reservation price for the same product i, we define set
Mi = {1, . . . , |Mi|} as the set of indices that refer to the different reservation prices of the
customers, and (bmi )m∈Mi

as the set of different reservation prices for i, so that bm1
i < bm2

i

if m1 < m2. To represent the reservation prices of a customer for a product, we define a
function σi : Ki → Mi ∀i ∈ I such that σi(k) = m if the reservation price of k is the m-th
smallest reservation price bmi .

In Rusmevichientong et al. [17] it is proved that there always exists an optimal solution
of the RPP in which the price of any product i is equal to the budget of a customer. This
result also applies to the CRPP with different reservation prices for each product, instead
of a positive budget for all of them. With the aim of contradiction, consider an optimal
pricing vector and allocation of products with a product i of price pi, with bmi < pi < bm+1

i

(and assume there is at least one copy of i sold). Then setting the price of i to bm+1
i (and

keeping the prices of the rest of the products unaltered), we obtain a new pricing vector for
which the previous allocation of products is also feasible, because the subset of products
under the reservation price of any customer remain the same. However, for any customer
purchasing i, the company is obtaining bm+1

i instead of pi, so the new pricing vector yields
greater profit, which is a contradiction. Finally, for k ∈ Ki, M

k
i := {m ∈ Mi : m ≤ σi(k)}

represents the set of indices m of candidate prices bmi at which k could purchase i in a
feasible solution.

As explained in the introduction, the feasible solutions of the CRPP differ depending
on the setting that we choose. If we solve the envy-free version of the CRPP, then for a
fixed pricing there is a unique feasible allocation of the products to the customers because
each of them purchases the highest ranked product below his reservation price (if any). On
the other hand, if we allow for envy in the solutions, different allocations with different
revenues may exist. In the following, we illustrate the difference between an envy-free
solution of the CRPP and a solution that allows for envy by means of the example of
Figure 1.
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Ticket 1 Ticket 2

(stalls or arena) (1st Balcony)

c1 = 2 c2 = 2

Cust. 1 2* | 50 1* | 30
Cust. 2 1* | 40 2* | 40
Cust. 3 2* | 30 1* | 20

Opt. price 2* | 30 2* |30

(a) Envy-free solution

Ticket 1 Ticket 2

(stalls or arena) (1st Balcony)

c1 = 2 c2 = 2

Cust. 1 2* | 50 1* | 30
Cust. 2 1* | 40 2* | 40
Cust. 3 2* | 30 1* | 20

Opt. price 2* | 30 2* | 40

(b) Solution that allows for envy

Figure 1: Optimal solutions of an instance of the CRPP

Example 2.1. Figure 1a shows an instance of the CRPP problem where different types of
theater tickets for a specific event are sold to customers. In the example, there are |K| = 3
customers and |I| = 2 types of tickets. Ticket 1 is a ticket to see the performance from
the stalls or arena sitting area, and Ticket 2 corresponds with a ticket in the 1st Balcony
of the theater. The number of copies ci of each type of ticket i is represented right below
the product. In our instance, there are two copies of each product/ticket for sale. The left
number in an entry represents the preference of the customer for that product. If product
i is the highest ranked product for customer k, then the number represented is 1; and for
his second product, the number is 2. The right number in each entry corresponds to the
reservation price of that customer for that product. In this example, customers 1, 2 and 3
have reservation prices of 30, 40 and 20 for product 2, respectively. Therefore, the number
of different reservation prices for product 2 is |M2| = 3. As for the ordered reservation
prices, they are b12 = 20, b22 = 30 and b23 = 40. Lastly, the reservation prices for product 2
are related to the customers by means of function σ2. For instance for customer 1 it holds
σ2(1) = 2 because he owns the second lowest reservation price for product 2. Similarly,
σ2(2) = 3 and σ2(3) = 1. The optimal envy-free solution is obtained setting the prices
depicted at the bottom of the table. Customers purchase the product whose preference is
marked with an asterisk in the preference matrix, and the total revenue of the company is
equal to 90.

However, the revenue of the company increases if we allow for envy among customers.
Figure 1b contains the same instance with the optimal solution in the envy setting. In this
solution, customer 2 is allocated product 2 even though product 1 is under his reservation
price and he prefers 1 to 2, because product 1 is sold out. Thus, this allocation of products
is not feasible for the envy-free setting. The optimal value in this case is equal to 100.
A different allocation of products (with the same pricing and with envy) that yields a
smaller optimal value consists in assigning product 1 to customers 1 and 2. Product 2
remains unsold because customer 2 is purchasing product 1 and customers 1 and 3 have
a reservation price below 40. In this case, the revenue is equal to 60.

We have just seen that, given a pricing, different allocations (in the envy setting) may
have different revenue. This leads to the question of whether there exists an efficient
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algorithm for the problem of finding an allocation of maximum revenue in the restricted
version of the CRPP where the prices are fixed. In the following subsection, we show that
this problem is in fact NP-complete.

2.1 Complexity of the non envy-free assignment problem of the
CRPP

In Rusmevichientong et al. [17] it is proved that the RPP is NP-complete in the strong
sense, and hence so is the CRPP. We now consider a fixed pricing of the products in
the CRPP, and study the assignment of the products to the customers. It is clear that
in the envy-free case, the assignment of the products is straightforward: each customer
purchases the highest ranked product in his list below his reservation price (if any). In
this subsection, however, we prove that the non envy-free assignment of the CRPP is
NP-complete. To do so, we consider a restricted case of the CRPP where all the prices of
the products are fixed to one single price p and the number of copies of each product is
equal to one. We begin the subsection introducing a matching problem called the Stable
Marriage problem with Ties and Incomplete Lists (SMTI). We then reduce an NP-hard
particular case of the SMTI to our problem to prove the result. A general overview on
algorithms for matching problems under preferences can be found in Manlove [14].

An instance of SMTI involves a set U = {u1, . . . , un2} of men, a set W = {w1, . . . , wn1}
of women, and a set E ⊆ U ×W of acceptable man-woman pairs. Thus, each man ui ∈ U
has an acceptable set of women A(ui) = {wj ∈ W : (ui, wj) ∈ E} and likewise, each
woman wj has an acceptable set of men A(wj) = {ui ∈ W : (ui, wj) ∈ E}. The agents
are the men and women in U ∪ W . Each agent ak ∈ U ∪ W has a preference list in
which he/she ranks A(ak). However, agents are allowed to express indifference in their
preference lists. We denote wj ≺ui

wj′ when man ui prefers woman wj to wj′ , and we
use wj ∼ui

wj′ if ui is indifferent between two women wj and wj′ . Specifically, ∼k is
an equivalence relation (reflexive, symmetric, transitive) and there exists a linear order
over the equivalence classes of A(ak) for each k ∈ K. The special case of SMTI in which
every man-woman pair is acceptable and all the preferences are strict is called the Stable
Marriage problem (SM). The SM was first studied by Gale and Shapley [11].

An assignment M is a subset of E. If (ui, wj) ∈ E, then ui is assigned to wj and wj is
assigned to ui. For each ak ∈ U ∪W , the set of assignees of ak in M is denoted by M(ak).
If ak ∈ U ∪W and M(ak) = ∅, ai is unassigned; otherwise ak is assigned. A matching M
is an assignment such that |M(ak)| ≤ 1 ∀ak.

Given a matching M in an instance I of SMTI, a pair (ui, wj) is said to block M , or
to be a blocking pair of M , if the following conditions are satisfied:

1. ui is unassigned or prefers wj to his assigned woman in M , and

2. wj is unassigned or prefers ui to her assigned man in M .

M is said to be weakly stable (or simply stable) if it has no blocking pair. Every instance
of SMTI has a stable matching, and finding one can be done in linear time. Furthermore,
all the stable matchings in an instance of the SM have the same size. However, instances
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of the SMTI can have stable matchings of different sizes. In fact, the problem of finding a
maximum cardinality weak stable matching in an instance of SMTI, called MAX-SMTI,
is NP-hard. The NP-hardness holds even in the restricted case where the ties occur in
the women’s preference lists only, any tie forms the whole list in which it appears, and
each tie is of length 2 (Manlove et al. [15, Theorem 2]). In the following, we reduce
the restricted case of MAX-SMTI aforementioned to our problem to prove that the non
envy-free assignment of the CRPP is NP-hard. Define the following decision problem:

Name: Non envy-free assignment of the CRPP
Instance: K customers, I products with the same fixed price, a number of copies of

each product, a subset of acceptable products Ik for each customer k, a preference list
(with no ties) of products for each customer, integer reservation prices of the customers,
an integer T ∈ Z+.

Question: Does the given instance admit a feasible non envy-free assignment of prod-
ucts of revenue equal to T?

Proposition 2.2. The non envy-free assignment of the CRPP is NP-complete, even if
there is only one copy of each product and the price of every product is fixed to a common
price 1.

Proof. It is easy to see that the non envy-free assignment of the CRPP is in NP. Given a
pricing and an assignment of the products, checking for feasibility translates to checking
that, for a given customer, all the products he prefers to the one he is assigned either
are sold out or have a price above his reservation price. Clearly, this can be done in
polynomial time. To show NP-hardness, we reduce the particular version of MAX-SMTI
where ties occur in the women’s preference lists only, any tie forms the whole list in which
it appears, and each tie is of length 2.

Let I be an instance of MAX-SMTI, U = {u1, . . . , un2} the set of men,W = {w1, . . . , wn1}
the set of women, and E ⊆ U ×W . Assume that the preference list of every man has no
ties, and that every woman wj has an acceptable set A(wj) with two men and is indif-
ferent between them. We construct an instance I ′ of the CRPP as follows: let U be the
set of customers, and W be the set of products. The acceptable products for a customer
coincide with the acceptable women for the corresponding man and his preference list is
also the same. The set of customers interested in a product wj is defined as the set A(wj).
Assume that there is only one copy of each product wj. Set the price of every product to
1. Finally, for each customer ui, set the reservation price of wj equal to 0 if wj /∈ A(ui),
and equal to 1 otherwise. In this way, every customer can afford every product in his list
of preference. We claim that the SMTI instance I has a (weak) stable matching of size T
if and only if I ′ admits a feasible solution of revenue T .

For, suppose that I has a stable matching M of size T . We construct an assignment
of products M ′ to customers assigning product wj to customer ui for each (ui, wj) ∈ M .
Clearly, the revenue of this assignment is equal to the number of customers that purchase,
i.e. T . Now suppose, with the aim of contradiction, that the assignment is not feasible.
Then there exists a customer ui that has been assigned product wj but he prefers product
wj′ . Furthermore, ui ∈ A(wj′) and wj′ is not sold out. But then (ui, wj′) is a blocking
pair in M , since ui prefers wj′ to wj and wj′ is unassigned.

Conversely, suppose that M ′ is a feasible assignment of the products to the customers
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with revenue T . Then, M = {(ui, wj) ∈ E : ui purchases product wj in M ′} is a stable
matching of size T of I of SMTI. Otherwise, let (ui, wj′) block M . Then wj′ is unassigned
(because every men is tied in the list of preferences of wj′), and there exists wj such that
(ui, wj) ∈ E and ui prefers wj′ to wj. But then the assignment M ′ is not feasible in the
CRPP, because ui is purchasing wj but he prefers wj′ , and wj′ is not sold out.

Having seen that the assignment of products is intrinsically different in the envy and
envy-free versions of the CRPP, we now provide the formulations and results for the envy
version of the problem.

3 Three-index mixed integer formulation for the CRPP

We first define the variables required to introduce our three-index formulation for the
CRPP named (3ICM). We define binary variable vmi , ∀i ∈ I, ∀m ∈ Mi, that takes value
1 if the price of product i is equal to the m-th smallest reservation price bmi . Next, to
represent the purchasing decision of a customer, we define binary variable ykmi , ∀k ∈ K,
i ∈ Ik, m ∈ Mk

i , that takes value 1 if customer k purchases product i at price bmi . Lastly,
we define binary variable um

i , ∀i ∈ I, m ∈ Mi, which takes value 1 if that product i sells
out at price bmi . Formulation (3ICM) is as follows:

(3ICM) max
v,y,u

∑
k∈K

∑
i∈Ik

∑
m∈Mk

i

bmi y
km
i (1a)

s.t.
∑
i∈Ik

∑
m∈Mk

i

ykmi ≤ 1 ∀k ∈ K, (1b)

∑
m∈Mi

vmi ≤ 1 ∀i ∈ I, (1c)∑
k∈Ki

∑
m∈Mk

i

ykmi ≤ ci ∀i ∈ I, (1d)

ykmi ≤ vmi ∀k ∈ K, i ∈ Ik,m ∈ Mk
i , (1e)

um
i ≤ vmi ∀i ∈ I,m ∈ Mi, (1f)

ci
∑
m∈Mi

um
i ≤

∑
k∈Ki

∑
m∈Mk

i

ykmi ∀i ∈ I, (1g)

∑
m∈Mi

um
i + (ci − 1)

∑
m∈Mi

vmi ≥
∑
k∈Ki

∑
m∈Mk

i

ykmi ∀i ∈ I, (1h)

∑
m∈Mk

i

vmi ≤
∑

m∈Mk
i

um
i +

∑
j∈I:
j⪯ki

∑
m∈Mk

j

ykmj ∀k ∈ K, i ∈ Ik, (1i)

vmi , u
m
i ∈ {0, 1} ∀i ∈ I,m ∈ Mi, (1j)

ykmi ∈ {0, 1} ∀k ∈ K, i ∈ Ik,m ∈ Mk
i . (1k)

Constraints (1b) ensure that customers are unit-demand. Constraints (1c) guarantee
that each product has at most one price. If

∑
m∈Mi

vmi = 0, then the product is not
proposed to the customers (or equivalently its price is set arbitrarily high). Constraints
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(1d) are the capacity constraints, and they assure the capacity is not exceeded. Constraints
(1e) guarantee that customer k purchases product i at its right price. Constraints (1f)-(1h)
force the u-variables to take their right value. Constraints (1f) establish that a product i
can only sell out at price bmi (i.e. um

i = 1) if it has such price. Constraints (1g) force um
i to

be 0 when
∑

k∈Ki

∑
m∈Mk

i
ykmi < ci, and (1h) imply um

i = 1 when
∑

k∈Ki

∑
m∈Mk

i
ykmi = ci.

Constraints (1i) are the preference constraints and guarantee that the preferences are
satisfied when the products are not sold out. When

∑
m∈Mk

i
vmi = 1, customer k can

afford product i. Therefore, either
∑

m∈Mk
i
um
i = 1, that is, the product is sold out, or

customer k must purchase i or a product he prefers over i, so
∑

j∈I:
j⪯ki

∑
m∈Mk

j
ykmj = 1.

Finally, the objective function (1a) is the revenue of the company.

The set of u-variables used to derive formulation (3ICM) is not essential, in the sense
that a formulation can be derived using only the sets of v- and y-variables. However, in the
following we introduce several sets of valid inequalities that can strengthen formulation
(3ICM), some of which incorporate u-variables, so this is the motivation to include them.
First, we give a necessary definition:

Definition 3.1. Let i be a product and ci the number of copies available. Then we
define cmi as the minimum between the capacity ci and the number of customers that can
purchase i in a feasible solution at price bmi , i.e. c

m
i := min {ci, |{k ∈ Ki : σi(k) ≥ m}|}.

This definition allows for the introduction of a strengthened set of capacity constraints:

Proposition 3.2. The set of constraints∑
k∈Ki

∑
m∈Mk

i

ykmi ≤
∑
m∈Mi

cmi v
m
i ∀i ∈ I (2)

is valid for CRPP and dominates set (1d).

Proof. If
∑

m∈Mi
vmi = 0, then i is not sold and therefore

∑
k∈Ik y

km
i = 0. Otherwise, there

exists vmi = 1 for somem ∈ Mi, and
∑

k∈Ik
∑

m∈Mk
i
ykmi ≤ min {ci, |{k ∈ Ki : σi(k) ≥ m}|} =:

cmi . Therefore, (2) are valid.

Let us prove that they dominate (1d). The fact that cmi ≤ ci ∀m ∈ Mi implies:∑
k∈Ki

∑
m∈Mk

i

ykmi ≤
∑
m∈Mi

cmi v
m
i ≤

∑
m∈Mi

civ
m
i ≤ ci.

Since sets (1d) and (2) have the same number of constraints, from now on we will
consider formulation (3ICM) with (2) instead of (1d). Set (2) can be further strengthened:

Proposition 3.3. The set of constraints∑
k∈Ki:

σi(k)≥m

ykmi ≤ cmi v
m
i ∀i ∈ I,m ∈ Mi (3)

is valid for CRPP and dominates set (2).

10



Proof. The proof of the validity of set (3) follows an analogous reasoning than that of set
(2). The fact that (3) dominate (2) is clear, since we can obtain (2) from (3) summing
up each size of the constraints for m ∈ Mi.

We can also strengthen sets (1g) and (1i):

Proposition 3.4. The family of constraints

ciu
m
i ≤

∑
k∈Ki:

σi(k)≥m

ykmi ∀i ∈ I,m ∈ Mi (4)

is valid for CRPP and dominates family (1g).

Proof. If um
i = 0 then the inequality holds trivially. Otherwise, um

i = 1 means that
product i is sold out and that it has price bmi , so

∑
k∈Ki:

σi(k)≥m

ykmi = ci. The fact that (4)

dominate (1g) is clear.

Proposition 3.5. The set of constraints

vmi ≤ um
i + ykmi +

∑
j∈I:
j≺ki

∑
m∈Mk

j

ykmj ∀k ∈ K, i ∈ Ik,m ∈ Mk
i (5)

is valid for CRPP and dominates constraints (1i).

Proof. If vmi = 0, then the inequality holds trivially. If vmi = 1, then product i is sold
out (i.e. um

i = 1) or k purchases i at price bmi and ykmi = 1, or k purchases a product he
prefers to i (at any price) and thus

∑
j∈I:
j≺ki

∑
m∈Mk

j
ykmj = 1. The fact that (5) dominate

(1i) is straightforward considering (1f).

Proposition 3.6. The set of constraints

(ci − |S|)um
i ≤

∑
k∈Ki\S:
σi(k)≥m

ykmi ∀i ∈ I,m ∈ Mi, S ⊂ Ki : |S| < ci (6)

is valid for CRPP. If we set S = ∅, we obtain constraints (4).

Proof. If um
i = 0, then the inequality holds trivially. If um

i = 1, then product i is sold
out, so exactly ci copies are sold among customers from S and from Ki \ S. In the worst
case, every customer k ∈ S has bought one copy of i, so at least ci − |S| copies of i must
be sold to customers from Ki \ S.

MET1 is the first method considered in the computational study presented in Section
6, and consists in formulation (3ICM). To assess the performance of the valid inequalities
presented, we compare MET1 with MET2, where we solve formulation (3ICM) and include
valid inequalities from (3), (4), (5) and (6) in a branch-and-cut fashion. Since sets (3)-(5)
include a polynomial number of inequalities, we separate them by complete enumeration.

11



As for set (6), it includes an exponential number of inequalities. To separate them, it is
useful to notice that (6) come from the linearization of constraints

ciu
m
i ≤

∑
k∈Km

i

ykmi um
i ∀i ∈ I,m ∈ Mi, k ∈ Km

i , (7)

where Km
i := {k ∈ Ki : σi(k) ≥ m}.

In order to linearize (7), we must replace each non linear term of the RHS with an upper
bound. Since all the variables are binary, it suffices to select one of the variables involved
in each term. In this way, for any set S ⊂ Ki, we obtain the linear constraint ciu

m
i ≤∑

k∈S u
m
i +

∑
k∈Ki\S y

km
i , which is precisely (6). From here, the separation procedure

is simple. Given a fractional solution (v̄mi , ȳ
km
i , ūm

i ) of (3ICM), for each i and m we
consider set S := {k ∈ Ki : ū

m
i ≤ ȳkmi }. The resultant constraint is added if and only

if it is violated. Preliminary testing amounts for adding the violated cuts (from the four
families) both at the root node and in the nodes of the branching tree of depth less than
or equal to 3.

4 Two-index mixed integer formulation for the CRPP

In this section, we introduce formulation (2ICM), that involves a much smaller number
of variables than (3ICM).

As for variables, we use the sets vmi and um
i , ∀i ∈ I, m ∈ Mi, previously introduced,

and we define two more sets. In order to model the customers’ purchasing decision, we
define binary variable xk

i , ∀i ∈ I, k ∈ Ki, that takes value 1 if customer k purchases
product i. Finally, in order to model a linear objective function, we define zki , ∀k ∈ K,
i ∈ Ik, as a continuous variable that takes as value the price of product i if customer k
purchases it, and 0 if k does not purchase it. Using these sets of variables, we introduce
formulation (2ICM):

(2ICM) max
v,x,z,u

∑
k∈K

∑
i∈Ik

zki (8a)

s.t.
∑
i∈Ik

xk
i ≤ 1 ∀k ∈ K, (8b)∑

m∈Mi

vmi ≤ 1 ∀i ∈ I, (8c)∑
k∈Ki

xk
i ≤

∑
m∈Mi

cmi v
m
i ∀i ∈ I, (8d)

xk
i ≤

∑
m∈Mk

i

vmi ∀k ∈ K, i ∈ Ik, (8e)

um
i ≤ vmi ∀i ∈ I,m ∈ Mi, (8f)

ci
∑
m∈Mi

um
i ≤

∑
k∈Ki

xk
i ∀i ∈ I, (8g)
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∑
m∈Mi

um
i + (ci − 1)

∑
m∈Mi

vmi ≥
∑
k∈Ki

xk
i ∀i ∈ I, (8h)∑

m∈Mk
i

vmi ≤
∑

m∈Mk
i

um
i +

∑
j∈I:
j⪯ki

xk
j ∀k ∈ K, i ∈ Ik, (8i)

zki ≤ b
σi(k)
i xk

i ∀k ∈ K, i ∈ Ik, (8j)

zki ≤
∑

m∈Mk
i

bmi v
m
i ∀k ∈ K, i ∈ Ik, (8k)

vmi , u
m
i ∈ {0, 1} ∀i ∈ I,m ∈ Mi, (8l)

xk
i ∈ {0, 1} ∀k ∈ K, i ∈ Ik, (8m)

zki ≥ 0 ∀k ∈ K, i ∈ Ik. (8n)

Constraints (8b) guarantee that customers purchase at most one product from the
company. Constraints (8c) ensure that each product has at most one price. Constraints
(8d) are the capacity constraints, and they assure that no more than ci copies of product
i are sold. Constraints (8e) prevent customer k from purchasing product i if he cannot
afford it. Constraints (8f)-(8h) force the u-variables to take their right value: (8f) establish
that a product i can only sell out at price bmi (i.e. um

i = 1) if it has such price; (8g) force um
i

to be 0 when
∑

k∈Ki
xk
i < ci; and (8h) imply um

i = 1 when
∑

k∈Ki
xk
i = ci. Constraints (8i)

are the preference constraints and guarantee that the preferences are satisfied when the
products are not sold out. Note that when

∑
m∈Mk

i
vmi = 1, customer k can afford product

i. Therefore, either
∑

m∈Mk
i
um
i = 1, that is, the product is sold out, or customer k must

purchase i or a product he prefers over i, so
∑

j∈I:
j⪯ki

xk
j = 1. The last sets of constraints

(8j)-(8k) bound the z-variables to their value. If customer k does not purchase product
i, then by (8j) we deduce zki = 0. On the other hand, if xk

i = 1, then the RHS of (8j) is
an upper bound on zki , and k is able to afford i, so vm̄i = 1 for some m̄ ≤ σi(k). But then
by (8k) we obtain that zki ≤ bm̄i , which is exactly the price of i. Finally, the objective
function (8a) is the sum of the revenue of the company obtained for each customer k and
product i.

Much like (3ICM), formulation (2ICM) can be strengthened adding valid inequalities.
In the following section, we include three sets of valid inequalities developed for (2ICM).

5 Valid inequalities for formulation (2ICM) and res-

olution schemes

In this section, we introduce three families of valid inequalities for formulation (2ICM).
In the last subsection, we also explain the separation procedures developed to include
them and the branch-and-cut algorithms. We have also included an in-out stabilization
procedure to avoid the tailing off effect. In Section 6, we test and compare the performance
of these resolution schemes.
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5.1 Projecting out the customer decision variables

Formulation (3ICM) has a larger number of variables and constraints than (2ICM), but the
linear relaxation of (3ICM) with the valid inequalities (3)-(6) gives a stronger upper bound.
In this subsection, we discuss how to project out formulation (3ICM) on formulation
(2ICM), obtaining a subproblem that can be solved for a given fractional feasible solution
of (2ICM) to derive valid inequalities.

First of all, let us extend formulation (2ICM) adding the y-variables used in (3ICM), as
well as the necessary constraints to relate them to the rest of the variables. By definition,
xk
i =

∑
m∈Mi

ykmi and zki =
∑

m∈Mi
bmi y

km
i for all k ∈ K, i ∈ Ik. Adding the valid

inequalities developed in Section 3, we obtain:

(2ICM+) max
v,y,x,z,u

∑
k∈K

∑
i∈Ik

zki (8a)

s.t. (8b)− (8n), (1e), (1k), (3), (4),

vmi ≤ um
i + ykmi +

∑
j∈I:
j≺ki

xk
j ∀k ∈ K, i ∈ Ik,m ∈ Mk

i , (9a)

zki ≤
∑

m∈Mk
i

bmi y
km
i ∀k ∈ K, i ∈ Ik, (9b)

xk
i ≥

∑
m∈Mk

i

ykmi ∀k ∈ K, i ∈ Ik. (9c)

Constraints (8b)-(8n) along with the objective function constitute formulation (2ICM).
Constraints (1e), (3), (4) and (9a) dominate, respectively, constraints (8e), (8d), (8g) and
(8i). In fact, constraints (9a) are (5) with xk

j replacing
∑

m∈M∈Mk
j
ykmj in the third sum.

Finally, constraints (9b) and (9c) relate the y-variables with the x- and z-variables. Al-
though (9b) appear as inequalities, they are satisfied as equalities by any optimal solution
of (2ICM+) due to the objective function. As for (9c), let us assume that there exists a
feasible solution with xk

i >
∑

m∈Mk
i
ykmi . Then since the variables are binary, it follows

xk
i = 1 and

∑
m∈Mk

i
ykmi = 0. But then

∑
m∈Mk

i
ykmi = 0 ⇒

∑
m∈Mk

i
bmi y

km
i = 0, so by (9b)

we obtain zki = 0. Therefore k is purchasing product i but the revenue of the company
associated to this customer is 0, so the solution is not optimal.

Proposition 5.1. Consider a fixed product i ∈ I. Then the following family of constraints

∑
k∈Ki

zki α
k +

∑
m∈Mi

ciu
m
i λ

m +
∑
k∈Ki

∑
m∈Mk

i

vmi − um
i +

∑
j∈I:
j≺ki

xk
i

 ϵkm ≤

∑
k∈Ki

xk
i β

k +
∑
k∈Ki

∑
m∈Mk

i

vmi γ
km +

∑
m∈Mi

cmi v
m
i δ

m (10)

is valid for (2ICM) if for αk, βk ≥ 0 ∀k ∈ Ki, γkm, ϵ ≥ 0 ∀k ∈ Ki,m ∈ Mk
i and

δm, λm ≥ 0, ∀m ∈ Mk
i , it holds

bmi α
k + λm + ϵkm ≤ βk + γkm + δm ∀k ∈ Ki,m ∈ Mk

i . (11)
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Proof. For a fixed i ∈ I, we associate dual variables αk, βk, γkm, δk, λm and ϵkm to
constraints (9b), (9c), (1e), (3), (4) and (9a), respectively. Then the result follows applying
Farkas’ Lemma.

As for constraints (6), they cannot be projected out because the set includes an expo-
nential number. However, an alternative consists in developing an equivalent set of valid
inequalities for (2ICM). Thus, we can linearize constraints

ciu
m
i ≤

∑
k∈Km

i

xk
i v

m
i u

m
i ∀i ∈ I,m ∈ Mi, k ∈ Km

i , (12)

with Km
i := {k ∈ Ki : σi(k) ≥ m}, in a similar manner to family (7), obtaining

ciu
m
i ≤

∑
k∈S1

um
i +

∑
k∈S2

vmi +
∑
k∈Ki\
(S1∪S2)

xk
i , ∀i ∈ I,m ∈ Mi, S1, S2 ⊂ Ki : S1 ∩S2 = ∅. (13)

Family (13) can be reduced noticing that the subfamily where S2 = ∅ dominates (13)
due to (8f). Nonetheless, preliminary testing showed that the inclusion of valid inequalities
from this family does not improve the linear relaxation bound from (2ICM), so (13) is
not included in the computational experiments of Section 6.

5.2 Separation of valid inequalities from family (10)

In what follows, we are going to analyze the problem that results from fixing λ = δ = ϵ = 0
in (10). The reason is that the inequalities associated to variables α, β and γ can be
separated by customer (as well as by product). Next, we study the particular case α = 1.
Thus, in order to obtain the strongest bound we look for values of α and β which provide
the smaller value of the RHS of (10). Considering a fixed product i and customer k, our
problem (SP1) can be stated as:

(SP1) min
β,γ

xk
i β +

∑
m∈Mk

i

vmi γ
m (14a)

s.t. β + γm ≥ bmi ∀m ∈ Mk
i , (14b)

β, γ ≥ 0. (14c)

For a given β, constraints (14b) can be expressed as γm ≥ bmi − β for each m. Hence,
γm = max{0, bmi −β}. Let us see that the best value for β belongs to the set of candidate

reservation prices {b1i , . . . , b
σi(k)
i }. Suppose that bri < β < br+1

i . Then γm = 0 for m ≤ r,
and γm = bri − β for m > r. Substituting γ in the objective function of (SP1), we obtain:

xk
i β +

∑
m∈Mk

i
:

m>r

(bri − β) vmi =

xk
i −

∑
m∈Mk

i
:

m>r

vmi

 β +
∑

m∈Mk
i
:

m>r

briv
m
i . (15)

The above linear function in β attains its minimum value in one of its extreme values,
that is, β = bri or β = br+1

i , depending on the sign of the slope xk
i −

∑
m∈Mk

i
:

m>r

vmi . This

leads to the following
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Proposition 5.2. The family of inequalities

zki ≤ b
rki
i xk

i +

σi(k)∑
m=rki +1

(
bmi − b

rki
i

)
vmi , ∀k ∈ K, i ∈ Ik, rki ∈ {0, . . . , σi(k)} (16)

is valid for (2ICM).

Family (16) is included in a family of valid inequalities of exponential size originally
developed in [5] for the RPP (the uncapacitated version):

zki ≤ b
rki
i xk

i +

σi(k)∑
m=rki +1

(
bmi − b

rki
i

)
vmi +

∑
m∈Qk

i

(
bmi − b

rki
i

) (
xk
i + vmi − 1

)
, (17)

∀k ∈ K, i ∈ Ik, any integer rki ∈ {0, . . . , σi(k)} and any subset Qk
i ⊆ {1, . . . , rki − 1}. In

the following, we prove that family (16) dominates (17).

Proposition 5.3. Given k ∈ K, i ∈ Ik, the strongest valid inequality from family (17) is
obtained when Qk

i = ∅.

Proof. Let us consider k ∈ K, i ∈ Ik fixed and, for the sake of notation, r := rki and
Q := Qk

i . First of all, let q := minQ{m} (and therefore, q < r and bqi < bri ). Then the
following inequality

zki ≤ brix
k
i +

σi(k)∑
m=q

(bmi − bri ) v
m
i + (bqi − bri )

(
xk
i − 1

)
(18)

is valid and stronger than the corresponding inequality of (17), for all r and Q.

Let us prove its validity first. If xk
i = 1, then vmi = 1 for some m̄ ≤ σi(k), and the

inequality becomes zki ≤ bri+(bm̄i − bri ) = bm̄i , valid because the price of product i is exactly

bm̄i . On the other hand, if xk
i = 0, then the inequality becomes zki ≤

∑σi(k)
m=q (b

m
i − bri ) v

m
i +

br − bq. If vm0
i = 1 for m0 ≥ r, then the first sum of the RHS is non negative. If vm0

i = 1
for m0 < r, then the inequality is zki ≤ bm0

i − bri + bri − bqi = bm0
i − bqi , non negative because

of the definition of q. In both cases, since zki = 0 and the RHS of the inequality is greater
than or equal to zero, the inequality holds.

Now, to prove that it is stronger, let us subtract the RHS of (18) from the RHS of
(17) to see that the difference is non negative:brix

k
i +

σi(k)∑
m=r+1

(bmi − bri ) v
m
i +

∑
m∈Q

(bmi − bri )
(
xk
i + vmi − 1

)−

brix
k
i +

σi(k)∑
m=q

(bmi − bri ) v
m
i + (bqi − bri )

(
xk
i − 1

) =

=
∑

m∈{q,...,r−1}\Q

(bmi − bri ) v
m
i − max

m∈Q\{q}
{bmi − bri}

(
xk
i − 1

)
≥ 0.
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In the following, let us consider W (r) as the RHS of (18) with q fixed to study its
variation when r increases:

W (r + 1)−W (r) =
(
br+1
i − bri

)
xk
i +

σi(k)∑
m=q

(
br+1
i − bri

)
vmi +

(
b−ri − br+1

i

) (
xk
i − 1

)
=

=
(
br+1
i − bri

)1−
σi(k)∑
m=q

vmi

 ≥ 0. (19)

Supposing q is fixed yields a non negative difference whenever we increment r, so the
optimal is to select the smallest possible r. Given that q ≤ r, we will hence choose r = q.
This implies that Q = ∅, and we have proved the statement.

5.3 An additional set of valid inequalities

In this subsection, we present another set of valid inequalities developed for formulation
(2ICM). Unlike set (16), this set includes one inequality per product, and in this case the
capacity is used to strengthen the inequalities.

Proposition 5.4. Consider the set of inequalities

∑
k∈Ki

zki +
∑
m∈Mi

|Mi|∑
m′=m+1

(
bm

′

i − bm
′−1

i

)
Umm′

i um
i ≤

∑
k∈Ki

br
k

i xk
i +

∑
m∈Mi

m∑
m′=1

(
bm

′

i − bm
′−1

i

)
V mm′

i vmi , (20)

∀i ∈ I, rk ∈ {0, . . . , σi(k)} ∀k ∈ Ki, where Umm′
i := max {0, ci − |{k ∈ Ki : σi(k) ≥ m,

rk < m′}|
}

and V mm′
i := min

{
cmi , |{k ∈ Ki : σi(k) ≥ m, rk < m′|}

}
, ∀i ∈ I, m ∈ Mi,

m′ ∈ Mi. Set (20) is valid for (2ICM).

Proof. Let i ∈ I be a fixed product and let rk ∈ {0, . . . , σi(k)} be fixed reservation prices
indices ∀k ∈ Ki. Let (v̄, x̄, z̄, ū) be a feasible (integer) solution of formulation (2ICM). If∑

m∈Mi
v̄mi = 0, then the corresponding inequality holds trivially because all the variables

have value zero. Therefore, we assume v̄m̄i = 1 for some m̄ ∈ Mi. This yields ū
m
i = 0 for

m ̸= m̄, and ūm̄
i ∈ {0, 1}.

First of all, let K̄i := {k ∈ Ki : x̄
k
i = 1} be the set of customers purchasing i. Then

the following inequality holds:∑
k∈Ki

z̄ki +
∑
m∈Mi

∑
k∈K̄i:

rk>m

(
br

k

i − bmi

)
ūm
i ≤

∑
k∈Ki

br
k

i x̄k
i +

∑
m∈Mi

∑
k∈K̄i:

rk<m

(
bmi − br

k

i

)
v̄mi . (21)

Indeed, if ūm̄
i = 1 the LHS of (21) is equal to

∑
k∈K̄i

bm̄i +
∑

k∈K̄i: rk>m̄

(
br

k

i − bm̄i

)
,

which is equal to its RHS,
∑

k∈K̄i
br

k

i +
∑

k∈K̄i: rk<m̄

(
bm̄i − br

k

i

)
. Otherwise, the LHS is
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∑
k∈K̄i

bm̄i and thus it also holds. Now, in order to see that the statement holds, we shall
prove that the LHS (resp. RHS) of (20) is smaller than or equal to (resp. greater than
or equal to) the LHS (resp. the RHS) of (21). Given that ūm

i = v̄mi = 0 ∀m ̸= m̄ and
v̄m̄i = 1, this translates to proving:

(1)
∑
k∈K̄i:

rk<m̄

(
bm̄i − br

k

i

)
≤

m̄∑
m′=1

(
bm

′

i − bm
′−1

i

)
V m̄m′

i ,

(2)
∑
k∈K̄i:

rk>m̄

(
br

k

i − bm̄i

)
≥

|Mi|∑
m′=m̄+1

(
bm

′

i − bm
′−1

i

)
U m̄m′

i if ūm̄
i = 1.

To prove (1), we have

∑
k∈K̄i:

rk<m̄

(
bm̄i − br

k

i

)
=

∑
k∈K̄i:

rk<m̄

m̄∑
m′=rk+1

(
bm

′

i − bm
′−1

i

)
=

m̄∑
m′=1

(
bm

′

i − bm
′−1

i

) ∑
k∈K̄i:

rk<m′

1

=
m̄∑

m′=1

(
bm

′

i − bm
′−1

i

)
|{k ∈ K̄i : r

k < m′}|,

where the second equality is obtained switching the sums in m′ and m. Thus, the fact
that |K̄i| ≤ cm̄i and that for all k ∈ K̄i it holds σi(k) ≥ m̄ implies |{k ∈ K̄i : r

k < m′}| ≤
min

{
cm̄i , |k ∈ Ki : σi(k) ≤ m̄, rk < m′|

}
=: V m̄m′

i , and (1) holds.

To prove (2), we follow an analogous procedure:

∑
k∈K̄i:

rk>m̄

(
br

k

i − bm̄i

)
=

∑
k∈K̄i:

rk>m̄

rk∑
m′=m̄+1

(
bm

′

i − bm
′−1

i

)
=

|Mi|∑
m′=m̄+1

(
bm

′

i − bm
′−1

i

) ∑
k∈K̄i:

rk≥m′

1

=

|Mi|∑
m′=m̄+1

(
bm

′

i − bm
′−1

i

)
|{k ∈ K̄i : r

k ≥ m′}|.

The result follows because |{k ∈ K̄i : rk ≥ m′}| = |K̄i| − |{k ∈ K̄i : rk < m′}| =
ci − |{k ∈ K̄i : σi(k) ≥ m̄, rk < m′}| ≥ ci − |{k ∈ Ki : σi(k) ≥ m̄, rk < m′}|, and therefore
|{k ∈ K̄i : r

k ≥ m′}| ≥ U m̄m′
i .

Method MET3 consists in solving an instance of the CRPP using formulation (2ICM).
We have developed four additional methods based on (2ICM), that are fully detailed in
the following subsection.

5.4 Separation algorithms and resolution schemes using formu-
lation (2ICM) and an in-out stabilization method

We begin this subsection with the introduction of the three separation procedures designed
to include valid inequalities (10), (16) and (20) dynamically into formulation (2ICM).
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Then, we show the four resolution methods developed and the in-out stabilization method
proposed. The first three methods (MET4-MET6) correspond to a branch-and-cut involv-
ing valid inequalities from each of the three families presented, namely (10), (16) and (20).
The last one (MET7) is a branch-and-cut including a combination of valid inequalities
from families (16) and (20). These approaches are compared in Section 6 using extensive
computational experiments.

The first method MET4 incorporates violated inequalities from (10) to formulation
(2ICM). In order to obtain the dual variables for the inequalities in (10), we solve the
following separation problem (SPi) (by means of a commercial solver) for each product
i ∈ I:

max
α,β,γ,δ,λ

∑
k∈Ki

zki α
k +

∑
m∈Mi

ciu
m
i λ

m −
∑
k∈Ki

xk
i β

k −
∑
k∈Ki

∑
m∈Mk

i

vmi γ
km −

∑
m∈Mi

civ
m
i δ

m (22a)

s.t. bmi α
k + λm ≤ βk + γkm + δm ∀k ∈ Ki,m ∈ Mk

i , (22b)

αk, βk ≥ 0 ∀k ∈ Ki, (22c)

γkm ≥ 0 ∀k ∈ Ki,m ∈ Mk
i , (22d)

δm, λm ≥ 0 ∀m ∈ Mi. (22e)

Cuts from (10) are included after the linear relaxation of (2ICM), until no more valid
inequalities are violated or the linear relaxation bound does not decrease, and in the nodes
of the branching tree. Preliminary testing led us to include valid inequalities during the
branch-and-bound in the nodes of depth less than or equal to 3.

Method MET5 requires a separation procedure to include inequalities from (16) dy-
namically in a branch-and-cut framework. Thus, if we are given a fractional feasible
solution of formulation (2ICM), we calculate the r that minimizes the RHS of (16) for
each k and i fixed simplifying the reasoning developed in [5] for (17). In essence, we study
the variation of the RHS of (16) as r increases. Calling W (r) the RHS of (16) for a given
r, we have

W (r + 1)−W (r) =
(
br+1 − br

)xk
i −

σi(k)∑
m=r+1

vmi

 . (23)

Clearly br+1−br > 0, and the sum
∑σi(k)

m=r+1 v
m
i has less terms as r increases. Therefore,

the slope xk
i −

∑σi(k)
m=r+1 v

m
i is negative and for some r, the slope changes to a positive

value. So the minimum in (23) is obtained for the r such that xk
i −

∑σi(k)
m=r+1 v

m
i ≤ 0 and

xk
i −

∑σi(k)
m=r+2 v

m
i > 0. Algorithm 1 depicts the separation used in MET5 to incorporate

inequalities from set (16) in a branch-and-cut fashion.

The third method MET6 consists in solving (2ICM) including valid inequalities from
set (20) in a branch-and-cut. MET6 also requires a separation algorithm for set (20), but
this algorithm is very similar to 1. The calculation of rk ∀k ∈ Ki is analogous to that
depicted in Algorithm 1. In this case, at each iteration in a node of the branching tree,
we include one inequality per product (if violated). Like in MET3, inequalities from (20)
are also included when fractional solutions are found in the nodes of the branching tree
of depth smaller than or equal to three.
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Algorithm 1 MET5: Separation of inequalities (16)

Let (v̄, x̄, z̄, ū) be a fractional solution obtained after the linear relaxation of formulation
(2ICM) or in a node of the branching tree of depth smaller than or equal to three.
For every product i ∈ I and for every customer k ∈ Ki do

Step 1. Set r = 0.

Step 2. If r < σi(k) and xki −
∑σi(k)

m=r+1 v
m
i ≤ 0, update r := r + 1 and repeat Step 2.

Otherwise, go to Step 3.

Step 3. Incorporate constraint

zki ≤ brix
k
i +

σi(k)∑
m=r+1

(bmi − bri ) v
m
i

to formulation (2ICM) if and only if it is violated by solution (v̄, x̄, z̄, ū).

When valid inequalities from set (16) are separated, we include one inequality per
customer and product at each iteration. However, in the case of inequalities from family
(20), only one inequality per product is included at each step, and each of them combines
variables associated to all the customers. Therefore, valid inequalities from (20) have a
much larger number of non zero elements than those from (16). Moreover, and according
to preliminary testing, the linear relaxation bound of model (2ICM) improves slowly when
adding inequalities from (20), so a great number of iterations is required in this case.
These are the reasons for incorporating an in-out algorithm to stabilize the inclusion of
inequalities in the root node in the last two methods MET6 and MET7. This algorithm
has been developed by Ben-Ameur and Neto [2], used for other capacitated problems (e.g.
in Fischetti et al. [10]) and it is widely used to include Benders decomposition cuts. It is of
particular importance when only a few valid inequalities are separated at each iteration,
like in this case. It allows to generate less cuts of better quality, hopefully reducing the
tailing-off effect. In the following we describe the in-out procedure.

Let the polyhedron D′ defined by the linear relaxation of (2ICM) and D ⊂ D′ the
polyhedron defined by this same linear relaxation plus family (20). Consider a point
ρout ∈ D′\D which is the optimal solution of the linear relaxation of (2ICM). A separation
algorithm is used to derive an inequality (from (20)) separating a given separation point
from D. The classical approach sets ρout as the separation point, whereas the in-out
algorithm provides a different separation point ρsep. To derive it, define an initial feasible
interior point ρin ∈ D and create a convex combination of points ρin and ρout, obtaining
ρsep = λρout + (1 − λ)ρin, with λ ∈ (0, 1]. Thus, when we call the separation oracle for
ρsep we have two possible outcomes, depending on whether ρsep ∈ D or ρsep /∈ D. If we
obtain violated cuts, then ρsep /∈ D, so after including such cuts and reoptimizing the
linear relaxation of our current problem, we obtain a new point ρout. On the other hand,
if no valid inequalities are found, then ρsep ∈ D and we can use ρsep as the interior point
ρin in the following iteration. Hence, either ρin or ρout are updated at each iteration, and
the termination criteria defined is |ρin − ρout| < ϵ. Although λ is a scalar that can change
in every iteration, preliminary testing led us to set λ = 0.99 for all iterations. As for
the initial interior point ρin, it is frequently obtained using the barrier algorithm with
crossover. In our case, we built a non-degenerate convex combination of enough linearly
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Name Description

MET1 (3ICM)

MET2 (3ICM) + branch-and-cut with vv.ii. from sets (3), (4), (5) and (6)

MET3 (2ICM)

MET4 (2ICM) + branch-and-cut with vv.ii. from set (10)

MET5 (2ICM) + branch-and-cut with vv.ii. from set (16)

MET6 (2ICM) + branch-and-cut with vv.ii. from set (20)

MET7 (2ICM) + branch-and-cut with vv.ii. from sets (16) and (20)

Table 1: Details of methods MET1-MET7 tested in the computational study

independent points of the polytope and then obtained the centroid.

Finally, in MET7 we separate inequalities from families (16) and (20). Through pre-
liminary computational experiments, we observed that the upper bound of the linear
relaxation obtained separating inequalities from (20) was tighter than that obtained with
valid inequalities from (16). However, inequalities from (16) require less iterations to
reduce the bound. To combine them in the cut loop previous to the branching, we begin
including only constraints from (16) until no more are found. Then, we include only
inequalities from (20) and further reduce the bound. The separation oracles are the ones
previously described, and the in-out algorithm is included in this step of MET7. We also
separate inequalities from both sets in all the fractional solutions obtained in the nodes
of the branching tree of depth less than or equal to three (including all the violated ones
from both sets at every node).

We have depicted the seven resolution methods developed and their characteristics in
Table 1, to help to identify them easily.

6 Computational study

In this section, we compare the performance of formulations (2ICM) and (3ICM) and
the valid inequalities proposed testing the methods MET1-MET7. The computational
experiments were carried out on a personal computer with Intel Xeon E3-1270, 3.40 GHz
with 16 GB of RAM. The optimization problems were solved exactly by using the solver
Xpress Optimizer Version: 29.01.10 and the methods were coded using Mosel Version:
4.0.3.

To test the algorithms, we created instances with |K| = 50, |K| = 75, |K| = 100,
|K| = 125 and |K| = 150 customers. For each size of set K, we designed instances with
|I| = 5, |I| = 10 and |I| = 15 products. In the computational studies carried out for
the RPP ([5]) and the RPPT ([6]), it was shown that when the number of acceptable
products for the customers increases (i.e., when the preference matrix is less sparse), then
the instances are more difficult and take longer to solve. However, due to the amount of
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parameters already considered for this study, we have not included instances with different
preference matrix sparsity. Thus, for the instances with |I| = 15, the number of acceptable
products for each customer is equal to 3, whereas for instances with |I| = 10 and |I| = 15
products, the number ascends to 5 acceptable products. In all instances, the number of
copies of each product available (called C in the following) is the same for all the products
in I. So for each combination of the previous parameters, we considered four different sizes
for C. The reservation prices of the customers were randomly generated between 1 and
4|K|, and their ranked lists of preferences were also randomly generated. We generated 5
instances of each combination of parameters, 300 in total. All the instances can be found
at https://github.com/cdomsa/CRPP/. The time limit was set to 3600 seconds, and the
default setting of Xpress was used.

We first compare the performance of MET1-MET7 using the instances of smaller
size, namely those with |K| = 50, |K| = 75 and |K| = 100. The most significant
information obtained is summarized by means of several figures. Resolution schemes
MET1 and MET3, which consist in solving the instances using formulations (3ICM) and
(2ICM) respectively (without valid inequalities), are shown in the legends of the figures
as MET1[3ICM] and MET3[2ICM].

Figure 2: In the y-axis, the percentage of instances with an integrality gap less than or
equal to that of the x-value is represented for MET1-MET7

First, we compare the integrality gaps obtained. Figure 2 is a performance profile that
shows the percentage of instances having an integrality gap less than or equal to that on
the x-axis. For MET1 and MET3, the gap depicted is the linear relaxation gap LRGap
= 100UB-BV

BV
% where UB is the upper bound given by the linear relaxation and BV is

the best objective value found by any of the models (the optimal value almost always).
For MET2, MET4-MET7, the figure shows the integrality gap obtained after adding the
violated cuts in the linear relaxation, before branching: RGap = 100UBC-BV

BV
%, where

UBC corresponds to the upper bound obtained after adding the violated cuts in the root
node.

As expected, MET3 yields the worst linear relaxation gap of the seven, with gaps of
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up to 35%. MET1 (formulation (3ICM)) has the second worst linear relaxation bound,
and this bound is the same for MET5. This is consistent with the results obtained in
Section 5. Indeed, valid inequalities (16) are obtained projecting formulation (3ICM)
on formulation (2ICM), because the parameters associated to valid inequalities (3), (4)
and (9a) are set to 0 in the separation problem. As for MET4, MET6 and MET7, they
provide similar integrality gaps, MET7 slightly outperforming the others. These methods
yield gaps smaller than 10% for all the instances proposed. It is remarkable that the
gap obtained adding valid inequalities to (2ICM) can outperform that of (3ICM), as it
happens in four out of the seven methods developed. Finally, the best scheme in terms
of gap is MET2. This is also consistent with our theoretical results, since this method
includes a branch-and-cut with all the valid inequalities developed for (3ICM). The gaps
provided by MET2 are always smaller than 7%.

Figure 3: In the y-axis, the percentage of instances solved exploring an amount of nodes
in the branching tree less than or equal to that of the x-value is represented for MET1-
MET7

Figure 3 compares MET1-MET7 in terms of the number of nodes explored in the
branching tree with respect to the percentage of instances solved to optimality. Once
again, formulation (2ICM) (MET3) is clearly the worst in performance, it only solves
about a 25% of the instances proposed. Methods MET4-MET6 perform similarly to
MET1 (formulation (3ICM)), whereas MET7 performs a bit better than the rest of the
approaches, solving up to an 81% of the instances. Finally, MET2 solves the greatest
amount of instances and it does so with the least amount of nodes explored.

Finally, Figure 4 shows the number of instances solved with respect to the time (in
seconds), up to 3600 seconds of time limit. This figure confirms the results already seen
in the two previous figures, where MET2 and MET3 are the best and worst (respectively)
in terms of solved instances. The addition of inequalities to formulation (2ICM) triples
the number of instances that are solved to optimality, regardless of the method. Here,
the difference in performance between MET4-MET7 is more pronounced than in the
previous figures. Thus, we can see that valid inequalities (16) alone (in MET5) perform
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Figure 4: Percentage of instances solved with respect to the time (with a time limit of
3600 seconds) by MET1-MET7

slightly better than (20) (in MET6), even though the upper bound provided by MET6 is
smaller. Moreover, the combination of both types of valid inequalities in the branch-and-
cut makes MET7 outperform the two previous approaches. MET4, the branch-and-cut
obtained solving the Farkas separation problem (10), provides the worst results of the
group.

In view of the results obtained, we decided to run the largest instances (those with
|K| = 125 and |K| = 150) with the three best methods developed: MET2, MET5 and
MET7. Table 2 summarizes the main results obtained. It shows the integrality gap of
the linear relaxation (LRGap, the same for MET5 and MET7), the integrality gap of
the linear relaxation after the cuts in the root node (RGap), the integrality gap after
3600 seconds (FGap), the average time in seconds needed to optimally solve the instances
(t(s)) and the number of instances solved to optimality in less than the time limit of 3600
seconds. Note that RGap for MET5 is the same as LRGap for MET2.

We can see that the relationship between the number of customers, products and copies
of each product determines the number of instances that can be solved to optimality within
an hour. In some cases, the three methods can solve all the instances, whereas in other
cases none of the instances is solved. Moreover, each method performs better than the
rest for certain combinations of parameters. For instance, for a small number of products
(|I| = 5), MET5 yields the best results in terms of time, even if all the instances are
also solved by MET7 within the time limit. However, for |I| = 15, MET5 is worse than
MET7 in terms of time, final bound and number of instances solved. Besides, for greater
values of C, valid inequalities (20) added in MET7 reduce the gap RGap significantly.
For instance, for |K| = 150, |I| = 15, C = 30, RGap for MET5 is equal to 14.6, whereas
RGap for MET7 is equal to 4.2. As for MET2, it solves less instances than MET5 and
MET7. Nonetheless, it provides better final bounds for the combinations of parameters
that make the instances hard to solve in one hour. All in all, the inclusion of valid
inequalities to models (2ICM) and (3ICM) in a branch-and-cut fashion highly improves
their performance. Valid inequalities (16) are essential to reduce the bound of (2ICM)
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regardless of the instance, whereas (20) are particularly useful for instances with a greater
number of products and/or copies of each product.

|K| |I| C
MET2 MET5 MET7

LRGap RGap FGap t(s) Sol. LRGap RGap FGap t(s) Sol. RGap FGap t(s) Sol.

125 5 5 0.3 0.2 0.0 10 5 5.9 0.3 0.0 4 5 0.3 0.0 12 5

125 5 13 2.4 2.1 0.0 254 5 17.8 2.4 0.0 41 5 2.3 0.0 65 5

125 5 20 4.0 3.6 0.0 1479 5 29.8 4.0 0.0 81 5 3.9 0.0 196 5

125 5 25 6.2 4.5 1.0 3271 2 34.7 6.2 0.0 206 5 5.6 0.0 520 5

125 10 5 0.7 0.6 0.0 78 5 8.8 0.7 0.0 53 5 0.7 0.0 84 5

125 10 13 4.4 3.5 3.0 3600 0 23.3 4.4 1.8 3529 1 4.0 2.9 3600 0

125 10 20 11.3 5.6 5.0 3600 0 31.6 11.3 7.4 3600 0 7.8 6.9 3600 0

125 10 25 15.2 6.7 6.3 3600 0 36.6 15.2 8.9 3600 0 9.0 7.5 3600 0

125 15 5 1.1 0.8 0.0 266 5 11.1 1.1 0.0 231 5 1.0 0.0 219 5

125 15 13 8.3 4.0 3.0 3101 1 26.0 8.3 4.9 3600 0 5.8 4.5 3600 0

125 15 20 14.2 4.7 3.7 3600 0 32.6 14.2 7.7 3600 0 6.4 4.6 3600 0

125 15 25 15.0 4.2 2.2 3377 1 33.7 15.0 7.5 3600 0 4.9 1.1 2763 2

150 5 6 0.2 0.1 0.0 21 5 6.5 0.2 0.0 4 5 0.2 0.0 18 5

150 5 15 1.8 1.5 0.0 647 5 16.7 1.8 0.0 57 5 1.7 0.0 151 5

150 5 24 4.4 4.1 2.0 3334 1 30.8 4.4 0.0 127 5 4.3 0.0 226 5

150 5 30 7.1 4.7 4.0 3600 0 35.5 7.1 0.0 395 5 6.0 0.0 1259 5

150 10 6 0.8 0.7 0.0 229 5 9.3 0.8 0.0 177 5 0.8 0.0 183 5

150 10 15 4.4 3.8 3.4 3600 0 24.2 4.4 3.5 3600 0 4.2 3.3 3600 0

150 10 24 12.8 6.9 6.4 3600 0 34.0 12.8 10.5 3600 0 9.2 8.6 3600 0

150 10 30 15.7 6.9 6.6 3600 0 37.2 15.7 11.9 3600 0 9.5 8.7 3600 0

150 15 6 1.2 0.9 0.0 1064 5 12.1 1.2 0.0 1078 5 1.1 0.0 683 5

150 15 15 9.2 4.9 4.4 3600 0 27.8 9.2 7.3 3600 0 6.8 6.2 3600 0

150 15 24 13.7 4.6 4.0 3600 0 33.3 13.7 10.3 3600 0 6.4 4.9 3600 0

150 15 30 14.6 3.7 2.3 3421 1 33.7 14.6 10.4 3600 0 4.2 0.9 2318 3

Table 2: Results obtained testing MET2, MET5 and MET7 with the instances with 125
and 150 customers (5 instances averaged per line). The table includes the integrality gap
of the linear relaxation (LRGap), the integrality gap of the linear relaxation after the
cuts in the root node (RGap), the integrality gap after 3600 seconds (FGap), the average
time in seconds needed to optimally solve the instances (t(s)) and the number of instances
solved to optimality in less than the time limit of 3600 seconds

7 Conclusions

In this paper, we studied the CRPP, a generalization of the RPP in which there is a limited
number of copies of each product and customers are endowed with different reservation
prices for each product of their interest. First, we explained the differences between the
allocation of products of the envy-free version of the CRPP and that of the envy version.
In this line, we proved that the allocation of products in the CRPP with envy is NP-
complete. Then we presented two mixed-integer formulations along with valid inequalities
for each of them. We developed several resolution methods based on the inclusion of valid
inequalities in branch-and-cut fashions. To finish, we tested the performance of this
methods in terms of integrality gaps, number of nodes and resolution time by means of
extensive computational experiments.
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An interesting future line of research consists in modifying the problems’ characteri-
zation of the customers to make them more realistic and the problem more robust. One
way of doing it is considering customers as a combination of different behaviors, where
each behavior includes a ranking and the reservation prices associated to a subset of prod-
ucts. In this setting, we could represent the customers’ choice rule using a probability
mass function over the set of behaviors that would alter the objective function of our
models (very much in the spirit of [3]). This approach can also serve as a generalization
of the assumption that customers own a fixed reservation price related to each product,
and that these reservation prices are known by the company. For instance, we can have
descriptions of customers that make choices according to different behaviors which have
the same ranking but different reservation prices associated to each product. In this case,
the said customers are purchasing according to only one ranking, but they buy at certain
prices with certain probabilities.

Another challenging line of research consists in considering the pessimistic approach in
the allocation of the products to the customers. In the optimistic case studied, the com-
pany can decide on the allocation of a product to the customers to a certain extent (only
if it is sold out in the feasible solution). But there are other situations, like considering
allocations that depend on the order of arrival of the customers, where the allocation is
uncertain and thus it is realistic to assume that the company must optimize the prices
for the worst-case scenario.

Finally, a third possible future line of research consists in the study of the sensitivity
of the algorithms developed with respect to certain problem parameters, such as the
plausible correlation between the customer’s reservation prices, the number of acceptable
products considered for each customer (related to the sparsity of the instance), et cetera.
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