
HAL Id: hal-03482424
https://inria.hal.science/hal-03482424

Submitted on 15 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cost and Quality in Crowdsourcing Workflows
Loïc Hélouët, Zoltan Miklos, Rituraj Singh

To cite this version:
Loïc Hélouët, Zoltan Miklos, Rituraj Singh. Cost and Quality in Crowdsourcing Workflows. PETRI
NETS 2021 - 42nd International Conference on Applications and Theory of Petri Nets and Concur-
rency, Jun 2021, Paris, France. pp.33-54, �10.1007/978-3-030-76983-3_3�. �hal-03482424�

https://inria.hal.science/hal-03482424
https://hal.archives-ouvertes.fr

Cost and Quality in Crowdsourcing Workflows?

Löıc Hélouët1, Zoltan Miklos2, and Rituraj Singh2

1 INRIA Rennes loic.helouet@inria.fr
2 Univ. Rennes 1 {zoltan.miklos,rituraj.singh}@irisa.fr

Abstract. Crowdsourcing platforms provide tools to replicate and dis-
tribute micro tasks (simple, independent work units) to crowds and
assemble results. However, real-life problems are often complex: they
require to collect, organize or transform data, with quality and costs
constraints. This work considers dynamic realization policies for com-
plex crowdsourcing tasks. Workflows provide ways to organize a com-
plex task in phases and guide its realization. The challenge is then to
deploy a workflow on a crowd, i.e., allocate workers to phases so that
the overall workflow terminates, with good accuracy of results and at a
reasonable cost. Standard ”static” allocation of work in crowdsourcing
affects a fixed number of workers per micro-task to realize and aggre-
gates the results. We define new dynamic worker allocation techniques
that consider progress in a workflow, quality of synthesized data, and
remaining budget. Evaluation on a benchmark shows that dynamic ap-
proaches outperform static ones in terms of cost and accuracy.

Keywords: Crowdsourcing; Data-centric workflows

1 Introduction

Despite recent advances in artificial intelligence and machine learning, many
tasks still require human contributions. With the growing availability of Inter-
net, it is now possible to hire workers all around the world on crowdsourcing
marketplaces. Many crowdsourcing platforms have emerged in the last decade:
Amazon Mechanical Turk1, Figure Eight2, Wirk3, etc. They hire workers from a
crowd to solve problems [23]. A platform allows employers to post tasks, that are
then realized by workers in exchange for some incentives [3]. Common tasks in-
clude image annotation, surveys, classification, recommendation, sentiment anal-
ysis, etc. [10]. The existing platforms support simple, repetitive and independent
micro-tasks which require a few minutes to an hour to complete.

However, many real-world problems are not simple micro-tasks, but rather
complex orchestrations of dependent tasks, that process input data and collect
workers answers for tasks requiring human expertize. Existing crowdsourcing
platforms provide interfaces to execute micro-tasks and access crowd, but lack
ways to specify and execute complex tasks. The next stage of crowdsourcing is
to design systems to specify more involved tasks over existing crowd platforms.

? Work supported by the Headwork ANR
1 www.mturk.com, 2 www.appen.com, 3 www.wirk.com

2 L. Hélouët, Z. Miklos, R. Singh

A natural solution is to define complex tasks as workflows, i.e., orchestrations of
phases that exchange data to achieve a final objective [27]. The data output by
an individual phase is passed to the next one(s) according to the workflow rules.

p0

Blur?

p1

Classify p2

Expert

pf DoutDin

Fig. 1. a) A workflow from SPIPOLL, b) Generating functions Pr(lij =yj |dj , αi, yj =1)

We illustrate complex workflows in Figure 1-a). This workflow is an image
annotation process on SPIPOLL [5], a platform to survey populations of polli-
nating insects. Contributors take pictures of insects that are then classified by
crowdworkers. Pictures are grouped in a dataset Din, input to node p0 . The pro-
cess is the following. First, received images are filtered to eliminate bad pictures
(fuzzy or blurred ones) in phase p0. The remaining pictures are sent to workers
who try to classify them with the help of the SPIPOLL website. If classification
is too difficult, the image is sent to an expert. Initial classification is represented
by phase p1 in the workflow, and expert classification by p2. Pictures that were
discarded, classified easily or studied by experts are then assembled in a result
dataset Dout in phase pf , to do statistics on insect populations.

Workflows alone are not sufficient to handle complex tasks with crowdsourc-
ing. Many data-centric applications come with budget and quality constraints:
As human workers are prone to errors, one has to hire several workers to aggre-
gate a final answer with sufficient confidence. An unlimited budget allows hiring
large pools of workers to assemble reliable answers for each micro-task, but in
general, a client for a complex task has a limited budget. This forces to replicate
micro-tasks in an optimal way to achieve the best possible quality, but without
exhausting the given budget. The objective is hence to obtain a reliable result,
forged through a complex orchestration, at a reasonable cost.

This paper proposes a solution for the efficient realization of complex tasks.
We define a workflow model, which orchestrates tasks and work distribution
according to a dynamic policy that considers confidence in aggregated data and
the cost to increase this confidence. A workflow can be seen as an orchestration
of phases, where the goal of each phase is to tag records from its input dataset.
The output of a phase is used as input for the next ones in the workflow. A
complex task terminates when the last of its phases has completed its tagging.
For simplicity, we consider simple Boolean tagging tasks that associate a tag in
{0, 1} to every record in a dataset. Each tagging task on each record is performed
by several workers to reduce errors, and the answers are assembled using an
aggregation technique. We assume that workers are uniformly paid. For each

Cost and Quality in Crowdsourcing Workflows 3

record, one of the possible answers (called the ground truth) is correct, and an
aggregated answer is considered as reliable if its probability to be the ground
truth (computed by the agregation technique) is high. Hiring more workers to tag
records increases the reliability of the aggregated answer. The overall challenge
is hence to realize a workflow within a given budget B0, while guaranteeing
that the final dataset forged during the last phase of the workflow has a high
probability to be the ground truth.

Design choices influence realization and quality of workflows realization.
First, the chosen aggregation technique influences the quality of the final results.
Furthermore, the mechanisms used to hire workers impacts costs and accuracy
of answers. The simplest way to replicate micro-tasks is static execution, i.e., af-
fect an identical fixed number of workers to each micro-task in the orchestration
without exceeding budget B0. On the other hand, one can allocate workers to
tasks dynamically. One can wait in each phase to achieve a sufficient reliability
of answers for all records of the input before forwarding data. This is called a
synchronous execution of a workflow. Last, one can eagerly forward records with
reliable tags to the next phases without waiting for the total completion of a
phase. This is called an asynchronous execution.

We then study execution strategies for complex workflows in different con-
texts. We consider several types of workflows, different aggregation mechanisms
(namely Majority Voting (MV) and Expectation Maximization (EM) [12]), sev-
eral distributions of data, difficulty of tasks and workers expertize. We evaluate
the cost and accuracy of workflows execution in these contexts under static,
synchronous and asynchronous assignment of workers to tasks. Unsurprisingly,
dynamic distribution of work saves costs in all cases. A more surprising result is
that synchronous realization of complex tasks is in general more efficient than
asynchronous realization.

Related Work: Several works consider data centric models, deployment on
crowdsourcing platforms, and aggregation techniques to improve data quality.
Due to lack of space, we only mention some of them and refer readers to the
long version of this work [14] for a more complete bibliography.

Coordination of tasks has been considered in many languages such as BPMN
[22], ORC [16], BPEL [21], or workflow nets [28], a variant of Petri nets dedicated
to business processes. They allow parallel or sequential execution of tasks, fork
and join operations to create or merge a finite number of parallel threads. Some
works propose empirical solutions for complex data acquisition, mainly at the
level of micro-tasks [10, 19]. Crowdforge uses Map-Reduce techniques to solve
complex tasks [17]. Turkit [20] is a crash and rerun programming model. It builds
on an imperative language, that allows for repeated calls to services provided by a
crowdsourcing platform. Turkomatic [18] is a tool that recruits crowd workers to
help clients planning and solving complex jobs. It implements a Price, Divide and
Solve (PDS) loop, that asks crowd workers to divide a task into orchestrations
of subtasks, and repeats this operation up to the level of micro-tasks. A PDS
scheme is also used by [31] in a model based on hierarchical state machines that
orchestrates sub-tasks.

4 L. Hélouët, Z. Miklos, R. Singh

In this work, we assemble answers returned by workers using aggregation
techniques. Basic aggregation is majority voting (MV), i.e., a mechanism that
takes the most returned answer as final result for a tagging task. Several ap-
proaches have improved MV by giving more weight to competent workers. Other
approaches use aggregation mechanisms based on Expectation Maximization
(EM), and consider workers competences, expressed in terms of accuracy (ratio
of correct answers) or in terms of recall and specificity (that considers correct
classification for each possible type of answer). It is usually admitted [32] that
recall and specificity give a finer picture of worker’s competence than accuracy.
We only highlight works that focus on EM or MV to aggregate data, and refer
interested readers to [32] for a more complete survey of the domain. Zencrowd
[6] considers workers competences in terms of accuracy and aggregates answers
using EM. Workers accuracy and ground truth are hidden variables that must
be discovered in order to minimize the deviations between workers answers and
aggregated conclusion. D&S [4] uses EM to synthesize answers that minimize
error rates from a set of patient records. It considers recall and specificity, but
not the difficulty of tasks. [15] proposes an algorithm to assign tasks to workers,
synthesize answers, and reduce the cost of crowdsourcing. It assumes that all
tasks have the same difficulty, and that workers reliability is a static probability
to return a correct value (i.e., the ground truth) that applies to all types of tasks.
EM is used by [24] to discover recall and specificity of workers and propose a
maximum-likelihood estimator that jointly learns a classifier, discovers the best
experts, and estimates the ground truth. Most of the works cited above con-
sider expertise of workers but do not address tasks difficulty. Approaches such
as GLAD [30] or [2] also estimate tasks difficulty to improve quality of answers
aggregation on a single batch of Boolean tagging tasks.

A few papers on data aggregation focus on costs optimization. CrowdBud-
get [26] is an approach that divides a budget B among K existing tasks to
replicate them and then aggregate answers with MV. Crowdinc [25] is an EM-
based aggregation technique that considers task difficulty, recall and specificity
of workers to realize a single batch of micro tasks with a good trade-off between
costs and data quality. It computes accuracy of an aggregation, and launches
new tasks dynamically. The model proposed in this paper is a workflow that or-
chestrates tasks, replicates them, distributes them and aggregates the returned
results before passing the forged dataset to the next tasks. It is a variant of the
complex workflow model proposed in [1], and it uses the aggregation technique
of Crowdinc [25] to forge reliable answers.

Some works consider deployment of tasks, i.e., synthesis of strategies to hire
workers and parallelize realization of batches of tasks. The objective is to im-
prove costs and latency, i.e., the time needed to treat a complete batch with
an optimal deployment. CLAMSHELL [13] focuses on latency improvement. It
affects workers to batches of tagging tasks and detects staggers. To speed up
tasks completion, some batches are replicated. Pools are assembled and main-
tained by rewarding workers for waiting. This approach improves latency, but
increases costs. [9] uses Markov decision processes to dynamically adapt a pric-

Cost and Quality in Crowdsourcing Workflows 5

ing policy so that batches of tasks are completed with the lowest latency within
a fixed budget, or at the lowest price given some time constraint. [11] proposes
a solution to compute the best static deployment policies in order to achieve
an optimal utility (i.e., a weighted sum of overall cost and accuracy) using se-
quencing or parallelization of tasks. This approach is an exhaustive search which
limits the number of workers and orchestrations that can be considered. [29] is a
recommendation technique for deployments, that allows parallelization of tasks,
sequential composition, and use of machines to solve open tasks such as trans-
lation or text writing. This approach builds on optimization techniques to find
deployments that reduces latency and improves quality of data.

2 Complex Workflows with aggregation

Complex Workflows are inspired by data centric workflows [1], but allow tasks
replication, and consider aggregation and budget management. The context of
the workflow is the following: A client wants to realize a complex task that needs
the knowledge and skills of human workers. Complex tasks are divided into sev-
eral dependent phases. Each phase processes records from an input dataset or
merges different inputs to a single one, and forwards the result to its successor.
Datasets are collections of records, i.e., relations of the form r(a1, . . . ak) where
each ai is a value for a field of the record, chosen from a domain Domi. One
can use First-Order statements with variables denoting fields values to address
properties of a record (e.g. write vi == true), or of a set of records in a dataset
(e.g. ∃r(v1, . . . vk) ∈ D, vk == true). We will denote by FOR the FO formu-
las for records, and by FOD the FO formulas for datasets. For simplicity, we
assume that processing a record is a micro-task that simply consists in adding
a new Boolean field (called a tag) to this record. Hence a micro-task can be
seen as an operation that transforms a record r(v1, . . . , vk) into a new record
r′(v1, . . . , vk, vk+1) where vk+1 is a Boolean value. This setting can be easily
adapted to let vk+1 take values from a discrete domain.

As humans are prone to errors, phases are not unique micro tagging tasks,
but rather replications of batches of tagging tasks allocated to several workers.
The returned answers are then aggregated before proceeding to the next phase.
Hence, an aggregation mechanism is required to combine the answers and for-
ward the results to the next phases. When a phase has several successors, the
contents of records is used to decide to which successor(s) it should be forwarded.
This allows to split datasets according to the value of a particular field, process
differently records depending on their contents, create concurrent threads, etc.

Definition 1 (Complex Workflow). A complex workflow is a tuple W =
(P,−→, G,

⊗
, p0, pf) where P is a finite set of phases, p0 is a particular phase

without predecessor, pf a phase without successor, −→⊆ P ×FOR×P is a flow
relation and G : P → FOD associates a guard to every phase, and for every
px ∈ P,

⊗x
is an operator used to merge datasets input to px.

Intuitively, a phase performs a batch of tagging tasks (one for each record in
a dataset), but replicates and distributes them to several workers. The answers

6 L. Hélouët, Z. Miklos, R. Singh

returned by all hired workers are then aggregated to get a final trusted answer.
We assume that workers answers are independent. For a triple (px, gx,y, py) in
−→, we will say that px is a predecessor of py. We denote by Succ(px) = {py |
px −→∗ py} the set of phases that must occur after px, and by Pred(px) = {py |
py −→∗ px} the set of phases that must occur before px. The meaning of guard
gx,y is that every record produced by phase px that satisfies guard gx,y is for-
warded to py. We will see in the rest of this section that ”producing a record” is
not done in a single shot, and requires to duplicate a tagging micro-task, aggre-
gate answers, and decide if the confidence in the aggregated answer is sufficient.
When a phase px has several successors p1y, . . . p

k
y and the guards gx,y1 , . . . gx,y1

are exclusive, each record processed by px is sent to at most one successor. We
will say that px is an exclusive fork phase. On the contrary, when guards are not
exclusive, a copy of each record processed in px can be sent to each successor
(hence increasing the amount of data processed in the workflow), and px is called
a non-exclusive fork phase. For a phase px ∈ P, we denote by Gx ∈ FOD the
guard attached to phase px. Gx addresses properties of the datasets input to
px by its predecessors. This allows in particular to require that all records in
preceding phases have been processed (we will then say that phase px is syn-
chronous), that at least one record exists in a dataset produced by a predecessor
(the task is then fully asynchronous), or more generally satisfaction of any FO
expressible property on datasets produced by predecessors of px. The operator⊗x

can be either a simple union of datasets, or a more complex join operation.
If
⊗x

is a join operation, we impose that px is synchronous. This is reasonable,
as one cannot start processing data produced by a join operation when the final
set of records is not known. When

⊗x
is a simple union of datasets, as tasks

are independent, any record processed on a predecessor of px can be forwarded
individually without waiting for other results to be available. This allows asyn-
chronous executions in which two phases px, py can be concurrently active (i.e.,
have started processing records), even if px precedes py. On the contrary, if the
execution of a phase px is synchronous, and py is a successor of px all records
input to px must be processed before starting phase py.

The semantics of a complex workflow is defined in terms of moves from a
configuration to the next one, organized in rounds. Configurations memorize the
data received by phases, a remaining budget, the answers of workers, aggregated
answers quality and workers competences.

Definition 2. A configuration is a tuple C=(Din,Win,Wout, conf,B) where

– Din : P → Dsets associates a (possibly empty) dataset to every phase px∈P.
– Win : P×N× → 2W is a partial map that associates a set of workers to each

record in Din(px).
– Wout : P ×N×W → {0, 1} ∪ ∅ is a partial map that associates a tag or the

empty set to a worker, a phase and a record. Wout(p, n, w) is defined only
if w ∈ Win(p, n). We denote by lxi,j the answer returned by worker wi when
tagging record rj during phase px.

– conf : P × N → [0, 1] is a map that associates to each record in Din(px) a
confidence score in [0, 1] computed from answers in Wout.

Cost and Quality in Crowdsourcing Workflows 7

– B ∈ N is the remaining budget.

Wout(px, k, w) = ∅ indicates that a worker w in a phase px has not yet
processed record rk. We say that phase px is completed for a record rk from
Din(px) if there is no worker w such that Wout(px, w, rk) = ∅. As soon as phase
px is completed for rk, we can derive an aggregated answer r′k(v1, . . . , vn, y

x
k) for

each record rk(v1, . . . vn) from the set of all answers returned by the workers in
Win(px, k). Similarly, we can compute a confidence score conf(px, k) for value
yxk and the expertise of each worker (we will see how these values are evaluated
in Section 4). We say that a record ri in a phase px is inactive if no more workers
are assigned to it. It is active otherwise. Given a threshold value Th, we will say
that px is finished for a record rk from Din(px) if px is completed for rk and
conf(px, k) > Th. Record r′k(v1, . . . , vn, y

x
k) will then be part of the input of

phase py if (px, gx,y, py) ∈−→ and r′k(v1, . . . , vn, y
x
k) satisfies guard gx,y.

We can now detail how rounds change the configuration of a workflow.
The key idea is that each round aggregates available answers, and then de-
cides whether the confidence in aggregated results is sufficient. If confidence in
a record is high enough, this record is forwarded to the successor phases, if not
new workers are hired for the next round, which decreases the remaining budget.
The threshold for the confidence decreases accordingly. Then new workers are
hired for freshly forwarded data, leaving the system ready for the next round.
From a configuration C=(Din,Win,Wout, conf, exp,B), a round produces a new
configuration C ′ = (Din,Win,Wout, conf, exp,B) as follows:

– Answers: Workers hired in preceding round produce new data. For every
phase px, every record rn ∈ Din(px), and every worker wi such that wi ∈
Win(px, n) and Wout(px, wi, n) = ∅, we produce a new output lxi,n ∈ {0, 1}
and set Wout(px, wi, n) = lxi,n.

– Aggregation: The system aggregates answers in every active phase px. For
every record rk in Din(px), we compute an aggregated answer yxk from the set
of answers Ak = {lxi,k | wi ∈Win(px, n)}. We also compute a new confidence
score conf ′(px, n) for the aggregated answer (this confidence depends on the
aggregation technique), and evaluate workers expertize and the difficulty of
tagging each record(with the algorithm shown in Section 3).

– Data forwarding: We distinguish asynchronous and synchronous phases.
Let py be an asynchronous phase (

⊗y
can only be a union of records).

Then py accept every new record r′(v1, . . . vk, y
x
n) that was not yet among

its inputs from a predecessor px provided r′ satisfies guard gx,y, and the
confidence in the aggregated answer yxn is high enough. Formally, D′in(py) =
Din(py) ∪ {r′(v1, . . . vk, yxn)} if (px, gx,y, py) ∈−→, conf ′(px, n) ≥ Th and
r′(v1, . . . vk, y

x
n) |= gx,y. Let py be a phase such that

⊗y
is synchronous.

We will say that a phase is closed if all its predecessors are closed, and for
every n, rn ∈ Din(px), conf(px, n) ≥ Th. If there exists a predecessor px
of py that is not closed, then D′in(py) = ∅. Otherwise we can compute an
input for phase py as a join over datasets computed by all preceding phases.
Formally, D′in(py) =

⊗y{Dx | px −→ py}, where Dx = {r′(v1, . . . vk, yxn) |
r(v1, . . . vk) ∈ Din(px) ∧ r′(v1, . . . vk, yxn) |= gx,y} i.e., D′in(py) merges data

8 L. Hélouët, Z. Miklos, R. Singh

produced by all predecessors of py. Hence, for a synchronous phase py, the
input dataset is obtained by a join operation computed over datasets filtered
by guards, and realized only once preceding tasks have produced all their
results. In synchronous and asynchronous settings, a phase py becomes active
if D′in(py) |= G(py). We set conf ′(py, n) = 0 for every new record in D′in(py).

– Worker allocation: For every px that is active and every record rn =
r(v1, . . . vk) ∈ D′in(px) such that conf ′(px, n) < Th, we allocate k new work-
ers w1, . . . wk to record rn for phase px, i.e., W ′in(px, n) = Win(px, n) ∪
{w1, . . . , wk}. This number k of workers depend on the chosen policy (see
details in Section 4). Accordingly, for every new worker wi affected to a
tagging task for a record rn in phase px, we set W ′out(px, n, i) = ∅.

– Budget update: We then update the budget. The overall number of work-
ers hired is nw =

∑
px∈P

∑
rn∈D′in(px)

|W ′in(px, n) \ Win(px, n)|. We consider,

for simplicity, that all workers and tasks have identical costs, we hence set
B′ = B − nw.

An execution starts from an initial configuration C0 in which only p0 is ac-
tive, with an input dataset affected to p0, and begins with workers allocation.
Executions end successfully in a configuration Cf where all records in Din(pf)
are tagged with a sufficient threshold, or fail if they reach a configuration C 6= Cf
with a remaining budget B = 0. Notice that several factors influence the overall
execution of a workflow. First of all, the way workers answers are aggregated
influence the number of workers that must be hired to achieve a decent confi-
dence in the synthesized answer. We propose to consider two main aggregation
policies. The first one is majority voting (MV), where a fixed static number of
workers is hired for each record in each phase. A second policy is the expectation
maximization (EM) based technique proposed in [25], in which workers are hired
on demand to increase confidence in aggregated answers. With this policy, the
confidence in answers is computed taking into account the estimated expertise
of workers, and the difficulty of records tagging. The number of workers hired
per record in a phase is not fixed, but rather computed considering the difficulty
of tagging records, and the remaining budget.

Recall that for a phase px, asynchronous execution allows to start process-
ing records as soon as Din(px) 6= ∅. Conversely, synchronous execution forces
px to wait for the termination of its predecessors. Choosing a synchronous
or asynchronous execution policy may hence influence the time and budget
spent to realize a complex task. In Section 5, we study the impact of syn-
chronous/asynchronous guards on the overall execution of a workflow.

3 Aggregation Model

As mentioned in previous section, crowdsourcing requires replication of micro-
tasks, and aggregation mechanisms for the answers returned by the crowd. For
simplicity, we consider Boolean tasks, i.e., with answer 0 or 1. However, the
model easily extends to a more general setting with a discrete set of answers.

Cost and Quality in Crowdsourcing Workflows 9

Consider a phase px which input is a set of records Dx = {r1, r2, . . . , rn},
and which goal is to associate a Boolean tag to each record of Dx. We assume
a set of k independent workers that return Boolean answers, and denote by lij
the answer returned by worker j for a record ri. Li =

⋃
j∈1...k

lij denotes the set of

answers returned by k workers for a record ri and L =
⋃

j∈1..n
Lj denotes the set of

all answers. We assume that workers are independent (there is no collaboration
and their answers are hence independent), and faithful (they do not give wrong
answers intentionally). The objective of aggregation is to derive a set of final
answers Y = {yj , 1 ≤ j ≤ n} from the set of answers L. Once a final answer yj
is computed, it can be appended as a new field to record rj . The set of produced
results can be forwarded to successor phases of px, which may launch new phases.

We consider several parameters to model tasks and workers, namely the
difficulty to tag a record, and the expertise of workers. The difficulty to tag
a record rj is modeled by a real valued parameter dj ∈ [0, 1]. Value 0 means
that tagging rj is very easy, and dj = 1 means that it is extremely difficult.
Expertise of a worker is often quantified in terms of accuracy, i.e., as the ratio of
correct answers. However, accuracy can lead to bias in the case of datasets with
unbalanced ground truth. Indeed, consider a case where the number of records
with ground truth 1 is much higher than the number of records with ground truth
0. If a worker annotates most of records with ground truth 1 as 1 but makes
errors when tagging records with ground truth 0, her accuracy will still be very
high. We hence prefer a more precise model, where expertise of a worker is given
as a pair ξi = {αi, βi}, where αi is the recall and βi the specificity of worker i.
The recall αi is the probability that worker i answers 1 when the ground truth is
1, i.e., αi = Pr(lij = 1|yj = 1). The specificity βi is the probability that worker
i answers 0 when the ground truth is 0, i.e., βi = Pr(lij = 0|yj = 0). We do
not have a priori knowledge of the behavior of workers, so we define a generative
model to determine the probability of correct answers when αi, βi are known.
This probability depends on the difficulty of a task, on recall and specificity of
the considered worker, and on the ground truth. We set Pr(lij = yj |dj , αi, yj =
1) = (1+(1−dj)(1−αi))/2 and Pr(lij = yj |dj , βi, yj = 0) = (1+(1−dj)(1−βi))/2.

Figure 1-b) shows probability to get lij = 1 when yi = 1. The horizontal axis
represents the difficulty of a task, the vertical axis denotes the probability to get
answer lij = 1. Each curve represents this probability for a particular value of
recall. Note that the vertical axis ranges from 0.5 to 1.0 as a random guess by a
worker can still provide a correct answer with probability 0.5. As the difficulty
of task increases, the probability of giving a correct answer decreases and when
the task difficulty is 1 workers only make random guesses. For a fixed difficulty
of a task, the higher recall is, the more accurate answers are.

We equip complex workflows with an aggregation technique that uses Ex-
pectation Maximization (EM) [12]. EM is an iterative method that alternates
between an expectation (E) step and a maximization (M) step. For a pool of
k workers processing n records, we estimate jointly latent variables (αi)i∈1..k,
(βi)i∈1..k, (dj)j∈1..n and derive a set of final answers Y = y1 . . . yn. We denote

10 L. Hélouët, Z. Miklos, R. Singh

by θ the values of (αi)i∈1..k, (βi)i∈1..k, (dj)j∈1..n. In the E-step, we compute for
each record rj the posterior probability of yj = 0 and yj = 1, given the difficulty
dj , workers expertise (αi, βi)(i∈1..k) and the answers Lj = {li,j | i ∈ 1..k}. In
the M-Step, we compute the parameters θ that maximize Q(θ, θt), the expected
value of the log likelihood function, with respect to the estimated posterior prob-
abilities of Y computed during the E-step of the algorithm. Let θt be the value
of parameters computed at step t of the algorithm. We use the observed values
of L, and the previous expectation for Y . We find parameters θ that maximize
Q′(θ, θt) = E[logPr(L, Y | θ) | L, θt] (we refer interested readers to [8]-Chap. 9
and [7] for explanations showing why this is equivalent to maximizing Q(θ, θt)).
We take as next value for parameters θt+1 = arg max

θ
Q′(θ, θt). This maximiza-

tion is done with optimization techniques provided by the scipy4 library. We
iterate E and M steps, computing at each iteration t the posterior probability
and the parameters θt+1 maximizing Q′(θ, θt). The algorithm converges, and
stops when the difference between two successive joint log-likelihood values is
below a threshold (set in our case to 1 · e−7). It returns values for parameters
(αi)i∈1..k, (βi)i∈1..k, (dj)j∈1..n. The final answers are the most probable yj ’s.

4 Cost Model for Workflow

The objective of a complex workflow W over a set of phases P = {p0, . . . , pf} is
to transform a dataset input to the initial phase p0 and eventually produce an
output dataset. The final answer is the result of the last processed phase pf . The
simplest scenario is a workflow that adds several binary tags to input records.
The realization of a micro-task by a worker is paid, and workflows come with
a fixed maximal budget B0 provided by the client. For simplicity, we consider
that each worker receives one unit of credit per realized task. As explained in
Section 2, each phase receives records, each record is tagged by one or several
workers. Answers are then aggregated, and the records produced by a phase px
are distributed to its successors if they meet some conditions on their data. A
consequence of this filtering is that records have different lifetimes and follow
different paths in the workflow. Further, one can hire more workers to increase
confidence in an aggregated result if needed and if a sufficient budget remains
available. Several factors influence the realization of a workflow and its cost: the
number of tagging tasks that have to be realized, the available initial budget, the
confidence in produced results, workers expertise, the size and nature of input
data, the difficulty of tagging, and the policies chosen to realize a workflow and
to hire workers. Existing crowdsourcing platforms often use static allocation, i.e.,
fix a number Ks of workers to hire for each micro-task. An obvious drawback of
this approach is that the same effort is spent on easy and difficult tasks.

In Section 2, we have defined synchronous and asynchronous schemes to
allocate workers on-the-fly to tasks. In this section, we define the cost model
associated with these schemes, and in particular, the threshold measure used to
decide whether more workers should be hired. We show in Section 5 that the

4 docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

Cost and Quality in Crowdsourcing Workflows 11

algorithm achieves a good trade-off between cost and accuracy. Recall that at
each round, we allocate new micro-tagging tasks to workers, to obtain answers
for records that are still open. EM aggregation is used to compute a plausible
aggregated tag yxj for each record rj from a set of answers Lxj obtained in each
active phase px. The algorithm also gives an estimation of difficulty dxj (the
difficult of the micro-task that consists in tagging record rj ∈ px), and evaluates
the expertise level of every worker wi, i.e., its recall αi and its specificity βi. We
also obtain a confidence score ĉxj for the aggregated answer yxj . This score is used
to decide whether one needs more answers or conversely has to consider yxj as a
definitive result. Let kxj = |Lxj | denote the number of answers for record rj ∈ px
at a given instant. The confidence ĉxj in final label yxj is defined as:

ĉxj =


1
kxj
·
∑kxj
i=1

{
lxij × (

1+(1−dxj)
(1−αi)

2) + (1− lxij)× (1− 1+(1−dxj)
(1−αi)

2)
}

if yxj=1

1
kxj
·
∑kxj
i=1

{
(1− lxij)× (

1+(1−dxj)
(1−βi)

2) + (lxij)× (1− 1+(1−dxj)
(1−βi)

2)
}

if yxj=0

Confidence ĉxj is a weighted sum of individual confidence of workers in the
aggregated result. Each worker adds its probability of answering correctly (i.e.,
choose lxij = yxj) when aggregating the final answer. This probability depends on
yxj , but also on worker’s competences. If confidence ĉxj is greater than a current
threshold Th, then answer yxj is considered as definitive and the record rj is
closed. Otherwise, the record remains active. We fix a maximal number τ ≥ 1 of
workers that can be hired during a round for a particular record. Let Tar denote
the set of active records after aggregation and Dx

max the maximal difficulty for
an active record in Tar tagged by phase px. For every record rxj ∈ Tar with
difficulty dxj , we allocate axj = d(dxj /Dx

max)× τe new workers for the next round.
Intuitively, we allocate more workers to difficult tasks. Now, Tar and hence axj
depend on the threshold computed at each round. An appropriate threshold
must consider the remaining budget, the remaining work to do, that depends
on the number of records to be processed, on the structure of the workflow,
and on the chosen policy. The first parameter to fix for the realization of a
workflow is the initial budget B0. The height and width of a workflow can be
used to find a coarse overapproximation of the budget allowing to complete an
execution of a workflow. To obtain sharper bound, we first bound the number of
remaining phases that a record have to go through to the final phase pf when
it is processed in a phase px. We call this number the foreseeable workload at
phase px and denote it by fw(px).

Definition 3 (Foreseeable workload). The foreseeable workload fw(px) at
phase px is the maximal number of phases visited by a record processed in px.

We give an algorithm to compute the foreseeable workload in [14]. Intuitively,
it considers the structure of the workflow to compute the number of phases
visited between a fork node n1 and the corresponding merge node n2: it is the
longest path in case of an exclusive fork node, and the total number of nodes
between n1 and n2 otherwise.

12 L. Hélouët, Z. Miklos, R. Singh

Definition 4 (Foreseeable task number). Let C be a configuration, and nx
denote the total number of active records at a phase px in C. The foreseeable task
number from px in C is denoted ftC(px) and defined as ftC(px) = nx×fw(px).
The foreseeable task number in C is the sum FTN(C) =

∑
px∈P ftC(px).

Let us now define a threshold function based on the current configuration of
a workflow. This function must consider all records that still need processing,
the remaining budget, and an upper bound on the number of tagging tasks that
will have to be realized to complete the workflow. Further, the execution policy
will influence the way workers are hired, and hence the budget spent. In a syn-
chronous execution, records in a phase px can be processed only when all records
in preceding phases have been processed. On the contrary, in asynchronous exe-
cution mode, processing of records input to a phase px can start without waiting
for the closure of all records input to preceding phases. A consequence is that in
synchronous modes, the decision to hire workers to improve accuracy of answers
for a task can be taken locally to each phase, while in an asynchronous mode, this
decision depends on a global view of the remaining work in the workflow. Hence,
for a synchronous execution policy, we will define a local threshold computed for
each phase, and for an asynchronous execution policy, we will consider a global
threshold, computed for the whole workflow.

Asynchronous execution: The execution of a workflow starts from a configuration
C0 with an expected workload FTN(C0). It is an upper bound, as all records
do not necessarily visit this maximal number of phases. We define a global ratio
ΓC ∈ [0, 1] of already executed or avoided work in configuration C as ΓC =
(FTN(C0)−FTN(C))

FTN(C0)
. Note that at the beginning of an execution, ΓC0

= 0 as no

record is processed yet. When records are processed and moved to successor
phases, Γ increases, and we necessarily have ΓCf = 1 when no record remains
to process in a final configuration Cf . Now, the threshold value has to account
for the remaining budget to force the progress of records processing. Let B0

denote the initial budget at the beginning of execution, and BC be the budget
consumed in configuration C. We denote by βC the fraction of B0 consumed in
configuration C, i.e., βC = BC

B0
. In the initial configuration , βC0 = 0. The value

of β increases at every round of the execution, and takes value β = 1 when the
whole budget is spent. However, our objective is to end executions with β < 1.
We now define a global threshold value ThC ∈ [0.5, 1.0] that accounts for the
remaining work and budget.

ThC =
1 + (1− βC)ΓC

2
(1)

We remind that in a phase px, a record rj with confidence level ĉxj > ThC is
considered as processed for phase px. In an asynchronous execution policy, the
threshold is a global value and applies to all records in the workflow at a given
instant. The intuition for ThC is simple: when only a few records remain to be
processed, and the remaining budget is sufficiently high, then one can hire more
workers. With more contributions, the confidence in aggregated final answers
is expected to increase for several records. Conversely, if the number of records
to be processed is high and the remaining budget is low, then the threshold

Cost and Quality in Crowdsourcing Workflows 13

decreases, and even records which current answer have a low confidence level are
considered as processed and moved to the next phase(s).

Synchronous execution: In asynchronous execution, a phase does not wait for
the completion of its predecessors to start. As a consequence, records can be
processed in all phases, and we consider a global threshold ThC , and hence
a global policy to hire workers. However, in synchronous execution, records are
processed phase by phase, i.e., a phase does not start processing its input dataset
until all records in the preceding phases have been processed. Using our global
threshold ThC may produce data with poor quality: as a phase is not launched
as long as a preceding phase has an unprocessed record, one can easily meet
situations where the larger part of the budget Bin is spent to hire workers in the
first phases of the workflow, forcing to accept final answers with low confidence
in the next phases. To avoid this problem, we propose to allocate the budget
phase by phase. The idea is to divide the budget among phases based on the
number of records processed.

We will say that a task becomes active when it starts processing records, i.e.,
once preceding phases have tagged all their records with a sufficient confidence
on aggregated answer and the obtained datasets meet guard Gx. We denote by
init(px) the number of records input to px when the phase becomes active. As
for asynchronous execution, synchronous execution of a workflow starts from
an initial configuration C0 with an initial budget B0, and in each configuration
C, the remaining budget is denoted by Br(C). The key idea in synchronous
execution is to compute resources needed for each active phase, and to maintain
after each round a ratio of input records that still need additional answers to
forge a trusted answer, and a local threshold per phase. Let px be a phase that
becomes active when the execution reaches configuration C. The initial budget
allocated to px with init(px) records in a configuration C is:

Bxin =
Br(C)∑

pi active phase FTN(pi)
× init(px) (2)

Intuitively, the remaining budget is shared among active phases to allow
termination of the workflow from each phase. Then for each active phase px, we

maintain the consumed budget Bxc , and the ratio βx =
Bxc
Bxin

of consumed budget.

At the end of each round, for each active phase px, we compute the ratio of
processed tasks

Γ xC =
|{ri | ĉi ≤ Thx}|

Init(px)
(3)

where Thx is the threshold computed at previous round. Obviously, if Γ xC = 1,
phase px becomes inactive. Otherwise, a local threshold Th′x for px to be used
in the next round is computed, using the formula:

Th′x =
1 + (1− βx)Γ

x
C

2
(4)

With the convention that the initial threshold Thx for a starting active phase,

as no record is processed yet is Thx = 1+(1−βx)
2 .

14 L. Hélouët, Z. Miklos, R. Singh

Realization of Workflows: Regardless of the chosen policy, the execution of
a workflow always follows the same principles. The structure of workflow W
is static and does not change with time. It describes a set of phases P =
{p0, . . . , pf}, their dependencies, and guarded data flows from one phase to the
next one. A set of n records R = {r1, . . . , rn} is used as input to W , i.e., is passed
to initial phase p0, and must be processed with a budget smaller than a given
initial budget B0. As no information about the difficulty of a task dxj is available
at the beginning of phase p0, τ workers are allocated to each record for an initial
estimation round. The same principle is followed for each record when it enters
a new phase px ∈W . After collection of τ answers, at each round we first apply
EM aggregation to estimate the difficulty dxj of active records rj ∈ px, ĉxj the
confidence in the final aggregated answer yxj and the recall αi and specificity βi
of each worker wi. Then we use a stopping threshold to decide whether we need
more answers for each record. In asynchronous execution, the threshold Th is
a global threshold, and in synchronous mode, the confidence of each record rj
in px is compared to the local threshold Thx. Records with sufficient confidence
are passed to the next phase(s). We hire new workers to obtain more answers
for other records. This can increase the confidence level, but also decrease the
threshold, as a part of the remaining budget is consumed. Executions stop when
the whole budget Bin is exhausted or when there is no additional record left to
process. Last, the final phase pf returns the aggregated answer for each record.

Termination: Obviously, when the remaining budget decreases, the threshold(s)
decrease too. However, there are situations where the confidence in some answers
remains low, and the remaining budget reaches 0 before the threshold attains
the lower bound 0.5 (that forces moving any record to the next phase(s)). Sim-
ilarly, when records do not progress in the workflow, the ratio of realized work
ΓC remains unchanged for many rounds. As a consequence, synchronous and
asynchronous realization of a workflow may fail. We will see in the experimental
results section that even with poor accuracy of workers, this situation was never
met. Failure corresponds to situations where the weighted answers of workers
remain balanced for a long time. The threshold decreases slowly, and the con-
fidence in aggregated answers remains lower. In that case, when threshold and
confidence values coincide (in the worst case at value 0.5), the remaining budget
is too low to realize the remaining work. Solutions to solve this issue and guar-
antee termination is to bound the sojourn time of a record in a phase, or to keep
a sufficient budget to terminate the workflow with a static worker allocation
policy hiring only a small number of workers per record. Another solution is to
limit allocation of workers to tasks with the highest remaining workload. Yet,
realization can still fail if records remain stuck in the last but one phase.

5 Experiments and results

In this section, we evaluate execution policies on typical workflows. We consider
a standard situation, where a client wants to realize a complex task defined by a
workflow on a crowdsourcing platform. The client provides input data, and has

Cost and Quality in Crowdsourcing Workflows 15

p0

A/B

W1 :

p1

C/D

p2

E/F

p3

G/H

pf

Dout

p0

A/B

W2 :

p1

C/D

p2

E/F

p3

G/H

pf

Dout

p0

A/B

W3 : p1

C/D

p2

E/F

p3

G/H

p4

I/J

p5

K/L

p6

M/N

pf

Dout

p0

A/B

W4 :

p1

C/D

p2

E/F

p3

G/H

p4

I/J

p5

K/L

p6

M/N

pf

Dout

p0

A/B

W5 : p1

C/D

p2

E/F

p3

G/H

p4

I/J

p5

K/L

p6

M/N

p7

p8

p9

M/N

p10

O/P

p11

Dout

Fig. 2. Five different workflows. W1: Sequence of phases, W2: Parallel data transfor-
mations followed by an aggregation of results, W3: Fork-join patterns with uniform
lengths of branches, W4,W5: Fork-join patterns with nonuniform lengths of branches.

a budget B0. Crowd workers do not collaborate and hence realize their micro-
tasks independently. As there exists no platform to realize complex tasks, there
is no available data to compare the realization of a workflow with our approach
to existing complex task executions. To address this issue, we design several
typical workflows, synthetic data, and consider realizations of these workflows
for various execution policies, characteristics of data, and accuracy of workers.

We consider 5 different workflows, represented in Figure 2. Workflow W1 is a
sequence of tasks, W2 is a standard fork-join pattern i.e., parallel processing of
data followed by a merge of branches results, W3 and W4 are fork-join patterns
with equal and different lengths on branches, and W5 is a more complex workflow
with two consecutive forks followed by merges on each branch. We consider
micro-tasks that simply add Boolean tags to records. Guards from one phase
px to the next phase py are simple exclusive guards sending each record to one
successor, depending on the tag obtained at phase px. Formally, guards are FO
formulas of the form f == l0 or f == l1, where f is the new field produced
by the phase. To avoid unnecessary blocking of workflow progressions, we set
Gx == true for every phase px ∈ P. In Figure 2 we depict these choices by
pairs of letters (l0, l1) representing the binary decision taken on each phase, For
example, in workflow W1, phase p0 considers two possible tags denoted A and
B. Phases p7, p8 in workflow W5 are simple aggregations, and hence are not
labeled by choices. After realization of the tasks, if the records are tagged as A
by the workers then records are moved to the phase pf and if tagged with B the
records are assigned to phase p1 for further processing. Each phase of workflows
implements similar tagging and decision.

We evaluate average costs and accuracies achieved by workflows realizations
with the following parameters. First, the input of each complex task is a dataset
of 80 records. Notice that despite this fixed size, the number of micro-tasks real-
ized during executions depend on workers competences, on the execution policy,

16 L. Hélouët, Z. Miklos, R. Singh

Workflow W1 W2 W3 W4 W5

Parameter Value

Worker Accuracy Low Mid Average High

Value of ksmv 10 20 30

Data Type Balanced Unbalanced

Mechanisms Static MV Synchronous Asynchronous

Table 1. Evaluation Parameters

on the value of data fields produced by workers, but also on the initial dataset,
on the initial budget, etc. Each record in the original dataset has initially known
data fields, and new fields are added by aggregation of workers answers during
the execution of the workflow. For these fields, we assume a prior ground truth,
which influences the probability that a worker answers 0 or 1 when filling this
field. We generate balanced (equal numbers of 0 and 1 in fields) and unbalanced
datasets (unbalanced numbers of 0 and 1).

We run the experiment with 4 randomly generated pools of 50 crowd work-
ers, making their accuracy range from low to high expertise. For each pool,
we sampled accuracies of workers according to normal distributions ranging re-
spectively in intervals [0.2, 0.7] (Expertise0, low expertise of workers), [0.4, 0.9]
(Expertise1, low to average expertise), [0.6, 0.99] (Expertise3, average exper-
tise) and [0.8, 0.99] (Expertise4, high expertise).

The last parameter to set is the initial budget B0. We first evaluated the cost
for the realization of workflows with a static allocation policy that associates a
fixed number of ksmv workers to each record in each phase, and aggregates their
answers with Majority Voting. We call this policy Static Majority Voting (SMV).
A priori, running SMV with a chosen value for ksmv should consume a budget
lower than ksmv.ftC0

(p0), i.e., 80.ksmv.fw(p0). This is however a coarse upper
bound for the total budget Bmv consumed during the realization of a workflow
with an SMV policy, as Bmv depends on the execution path followed by records
during execution, and hence on random answers of workers. Yet, SMV was shown
to be a naive and costly approach in most benchmarks (see for instance [25]),
so starting with a budget B0 = Bmv for realization techniques tailored to save
costs when accuracy is sufficient is a sensible approach. For each workflow, and
for three different values ksmv = 10/20/30, we performed random runs of SMV
to evaluate the maximal budget Bmv needed.

In a second step, we used the total budget Bmv spent by the SMV approach
as initial budget for realization of the same workflow with synchronous and
asynchronous policies. The objective was to achieve at least the same accuracy as
SMV with synchronous and asynchronous execution policies with the same initial
budget B0 = Bmv, while spending a smaller fraction of this budget. Overall, our
experiments cover realization of 5 different workflows with different values for
initial budget, workers accuracy, characteristics of data, and realization policy.
This means 72 different contexts, represented in Table 1 (one type of experiment
represents a selection of one entry in each row). We ran each experiment 15 times
to get rid of bias. This represents a sample of 1080 workflow realizations.

Cost and Quality in Crowdsourcing Workflows 17

S A M
0

500

1000

1500
Cost

S A M
0

0.1
0.15

Accuracy

S A M
0

500
1000
1500

Cost

S A M
0

0.1
0.15

Accuracy

S A M
0

1000
2000
3000
4000

Cost

S A M
0

0.1
0.15

Accuracy

S A M
0

500

1000

1500

S A M
0

0.1
0.15

S A M
0

1000

2000

3000

S A M
0

0.1
0.15

S A M
0

1500

3000

S A M
0

0.1
0.15

0.3

S A M
0

1000

2000

S A M
0

0.1
0.15

S A M
0

2000

4000

S A M
0

0.1
0.15

S A M
0

2000

4000

6000

S A M
0

0.1
0.15

S A M
0

1000

2000
2500

S A M
0

0.1
0.15

S A M
0

2000

4000

S A M
0

0.1
0.15

S A M
0

3000

6000

S A M
0

0.1
0.15

S A M
0

2000

4000

S A M
0
0.1
0.15

S A M
0

2000

4000

S A M
0

0.1
0.15

S A M
0

0.5

1
·104

S A M
0

0.1
0.15

W
or
k
f
lo
w

1
W
or
k
f
lo
w

2
W
or
k
f
lo
w

3
W
or
k
f
lo
w

4
W
or
k
f
lo
w

5

B = 10 B = 20 B = 30

Synchronous Asynchronous StaticMV

Fig. 3. Budgets and accuracies with low expertize

We can now analyze the outcomes of our experiments. A first interesting
result is that all workflow executions terminated without exhausting their given
initial budget, even with low competences of workers. A second interesting (but
rather expected) result is that for all realization policies, and for all workflows,
executions end with poor accuracy when expertize is low. Consider for instance
the results of Figure 3. This Figure gives the consumed budget and achieved
accuracy for a given workflow and a given initial budget when workers have a low
expertize. The first series of results concern Workflow 1 with a parameter ksmv
set to 10, 20, 30 workers per record in each phase. The overall expended budget
with an SMV approach is around 1200, 2800, 4000, respectively. Regardless of the
initial budget, synchronous and asynchronous approaches spend only a fraction
of the budget allowed by SMV. Accuracy is not conclusive, as the best realization
policy varies with each experiment: for instance, for W1 with 10 workers per
record to tag in each phase, SMV seems to be the best approach, while with
a budget of 20, the synchronous approach is the best. However, most of the
experiments achieve accuracies below 0.2, which is quite low. An explanation
is that, as shown in Fig. 1−b), with low expertise, workers answers are almost
random choices. Hence when all workers have a low expertise, individual errors
are not corrected by other answers, and the ground truth does not influence the
results. At each phase, the algorithms take their decisions mostly based on wrong
answers provided by the workers and as a consequence errors accumulate. The
system’s behavior is then completely random, which results in poor performance.
This tendency shown for all workflows and initial budgets with balanced data is
confirmed on unbalanced data (the results of the experiments with unbalanced
data are available in [14]).

Next experiments consider mid-level to high expertise, which is a common
setting in crowdsourcing. The experiments with competent workers and syn-
chronous and asynchronous execution policies clearly show that dynamic alloca-

18 L. Hélouët, Z. Miklos, R. Singh

Fig. 4. Workflow 1 on Balanced Data

Fig. 5. Workflow 1 on Unbalanced Data

tion schemes outperform the SMV approach both in terms of cost and accuracy.
One can easily see these results Figures 4 and 5, that represent executions of
workflows W1 with three levels of expertize, 3 values of ksmv (and hence 3 dif-
ferent initial budgets), and all execution policies, respectively for balanced and
unbalanced data. We show similar results in [14] for workflows W2,W3,W4,W5.

In the worst cases, synchronous and asynchronous executions achieve accura-
cies that are almost identical to that of SMV, but often give answers with better
accuracy. With a sufficient initial budget, dynamic approaches achieve an accu-
racy greater than 0.9. An explanation for this improvement of synchronous and
asynchronous executions w.r.t. SMV is that in SMV, one does not consider the
expertise of the worker, whereas the synchronous and asynchronous executions
are EM based algorithms that compute the final answers by weighting individ-
ual answers according to worker’s expertise. This makes EM -based evaluation
of final answers more accurate than SMV. This improvement already occurs
at the level of a single phase execution (this was also the conclusion of [25]).
The reasons for cost improvement with respect to SMV are also easy to fig-
ure. SMV allocates a fixed number of workers to every record in every phase of

Cost and Quality in Crowdsourcing Workflows 19

a workflow, whereas synchronous and asynchronous execution schemes allocate
workers on-the-fly based on a confidence level which depends on the difficulty of
tasks, workers expertise, and returned answers. By comparing confidence levels
with a dynamic threshold, workers allocation considers the remaining budget
and workload as well. This clever allocation of workers saves costs, as easy tasks
call for the help of fewer workers than the fixed number imposed by SMV. The
resources that are not used on easy tasks can be reused later for difficult tasks,
hence improving accuracy.

These results were expected. A more surprising outcome of the experiment is
that in most cases synchronous execution outperforms asynchronous execution in
terms of accuracy. The intuitive reason behind this result is that the way records
are spread in the workflow execution affects the evaluation of expertize and dif-
ficulty. The synchronous execution realizes tasks in phases, while asynchronous
execution starts tasks independently in the whole workflow. A consequence is
that evaluation of hidden variables such as the difficulty of tasks and work-
ers expertise in the EM aggregation improves with a larger number of records
per phase in synchronous execution, while it might remain imprecise when the
records are spread in different phases during an asynchronous execution. This
precise estimation helps synchronous execution to allocate workers as well as to
derive the final answers more efficiently and hence outperform asynchronous ex-
ecution. A third general observation is that both synchronous and asynchronous
executions need a greater budget to complete a workflow when data is unbal-
anced. Observe the results in Figure 4 and Figure 5: the budgets spent are always
greater with unbalanced data. A possible explanation is that with balanced data,
records are sent uniformly to all phases, which helps evaluation of workers ex-
pertize and difficulty of tasks, while with unbalanced data, some phases receive
only a few records, which affects evaluation of hidden variables.

Unsurprisingly (see for instance Figure 4), for a fixed budget, when worker
expertise increases, accuracy increases too, and consumed budget decreases.
Competent workers return correct answers, reach a consensus earlier, and hence
achieve better accuracy faster. Similarly for a fixed expertise level, increasing the
initial budget increases the overall accuracy of the workflow. Again, the explana-
tion is straightforward: a higher budget increases the threshold used to consider
an aggregated answer as correct, giving better accuracies. To summarize, for a
fixed initial budget and high enough expertize, synchronous and asynchronous
policies usually improve both cost and accuracy.

6 Conclusion

This work has proposed a model to realize complex tasks with the help of a crowd
of workers. It fosters on the advantages of crowdsourcing systems and workflow.
A particular attention is paid to quality of the data produced, and to the overall
cost of complex tasks realization. We have compared several task distribution
strategies through experiments and showed that dynamic distribution of work
outperforms static allocation in terms of cost and accuracy.

20 L. Hélouët, Z. Miklos, R. Singh

A short-term extension is to consider termination of complex tasks realization
with dynamic policies. Indeed, workflows realized with dynamic policies may
not terminate: this happens when the guard associated with a phase is never
satisfied, or when for some record, all workers agree to return the answers that
do not increase the confidence. However, this latter situation was never met
during our experiments, even with low expertize of workers. The probability
of non-terminating executions with synchronous/asynchronous policies seems
negligible. In our future work, we plan to demonstrate formally that P(Br =
0 ∧ FTN(C) > 0), the probability of reaching a configuration with exhausted
budget and remaining work to do is very low.

This work opens the way to new challenges. The next step is to test our
approach with existing crowdsourcing platforms on a real case study. We are
targeting citizen science initiatives, that typically require orchestration of various
competence to reach a final objective. Now that our model is settled, another
objective is to consider various strategies to hire workers in the most efficient way.
A possibility to address this challenge is to see complex workflows as stochastic
games, in which one player tries to maximize accuracy and reduce costs, while
its opponent tries to achieve the opposite objectives.

References

1. Bourhis, P., Hélouët, L., Miklos, Z., Singh, R.: Data centric workflows for crowd-
sourcing. In: Proc. of Petri Nets 2020. pp. 46–61 (2020)

2. Dai, P., Lin, C.H., Weld, D.S.: Pomdp-based control of workflows for crowdsourc-
ing. Artificial Intelligence 202, 52–85 (2013)

3. Daniel, F., Kucherbaev, P., Cappiello, C., Benatallah, B., Allahbakhsh, M.: Quality
control in crowdsourcing: A survey of quality attributes, assessment techniques,
and assurance actions. ACM Comput. Surv. 51(1), 7 (2018)

4. Dawid, A., Skene, A.: Maximum likelihood estimation of observer error-rates using
the em algorithm. J. of the Royal Statistical Society: Series C (Applied Statistics)
28(1), 20–28 (1979)

5. Deguines, N., Julliard, R., De Flores, M., Fontaine, C.: The whereabouts of flower
visitors: contrasting land-use preferences revealed by a country-wide survey based
on citizen science. PloS one 7(9), e45822 (2012)

6. Demartini, G., Difallah, D., Cudré-Mauroux, P.: Zencrowd: leveraging probabilistic
reasoning and crowdsourcing techniques for large-scale entity linking. In: Proc. of
WWW 2012. pp. 469–478. ACM (2012)

7. Dempster, A., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the em algorithm. J. of the Royal Statistical Society: Series B (Method-
ological) 39(1), 1–22 (1977)

8. Flach, P.: Machine Learning - The Art and Science of Algorithms that Make Sense
of Data. Cambridge University Press (2012)

9. Gao, Y., Parameswaran, A.G.: Finish them!: Pricing algorithms for human com-
putation. Proc. VLDB Endow. 7(14), 1965–1976 (2014)

10. Garcia-Molina, H., Joglekar, M., Marcus, A., Parameswaran, A., Verroios, V.: Chal-
lenges in data crowdsourcing. Trans. on Knowledge and Data Engineering 28(4),
901–911 (2016)

Cost and Quality in Crowdsourcing Workflows 21

11. Goto, S.and Ishida, T., Lin, D.: Understanding crowdsourcing workflow: Modeling
and optimizing iterative and parallel processes. In: Proc. of HCOMP 2016. pp.
52–58. AAAI Press (2016)

12. Gupta, M., Chen, Y.: Theory and use of the em algorithm. Foundations and Trends
in Signal Processing 4(3), 223–296 (2011)

13. Haas, D., Wang, J., Wu, E., Franklin, M.J.: Clamshell: Speeding up crowds for
low-latency data labeling. Proc. VLDB Endow. 9(4), 372–383 (2015)

14. Hélouët, L., Miklos, Z., Singh, R.: Cost and Quality Assurance in Crowdsourcing
Workflows (Oct 2020), https://hal.inria.fr/hal-02964736, extended Version

15. Karger, D., Oh, S., Shah, D.: Iterative learning for reliable crowdsourcing systems.
In: Proc. of NIPS’11. pp. 1953–1961 (2011)

16. Kitchin, D., Cook, W., Misra, J.: A language for task orchestration and its semantic
properties. In: Proc. of CONCUR’06. pp. 477–491 (2006)

17. Kittur, A., Smus, B., Khamkar, S., Kraut, R.: Crowdforge: Crowdsourcing complex
work. In: Proc. of UIST’11. pp. 43–52. ACM (2011)

18. Kulkarni, A., Can, M., Hartmann, B.: Collaboratively crowdsourcing workflows
with turkomatic. In: Proc. of CSCW’12. pp. 1003–1012. ACM (2012)

19. Li, G., Wang, J., Zheng, Y., Franklin, M.: Crowdsourced data management: A
survey. Trans. on Knowledge and Data Engineering 28(9), 2296–2319 (2016)

20. Little, G., Chilton, L., Goldman, M., Miller, R.: Turkit: tools for iterative tasks on
Mechanical Turk. In: Proc. of HCOMP’09. pp. 29–30. ACM (2009)

21. OASIS: Web Services Business Process Execution Language. Tech. rep., OASIS
(2007)

22. OMG: Business Process Model and Notation (BPMN). OMG (2011)
23. Quinn, A., Bederson, B.: Human computation: a survey and taxonomy of a growing

field. In: Proceedings of the SIGCHI conference on human factors in computing
systems. pp. 1403–1412 (2011)

24. Raykar, V.C., Yu, S., Zhao, L., Valadez, G., Florin, C., Bogoni, L., Moy, L.: Learn-
ing from crowds. J. of Machine Learning Research 11(Apr), 1297–1322 (2010)

25. Singh, R., Hélouët, L., Miklós, Z.: Reducing the cost of aggregation in crowdsourc-
ing. In: Proc. of ICWS’20 (2020)

26. Tran-Thanh, L., Venanzi, M., Rogers, A., Jennings, N.: Efficient budget alloca-
tion with accuracy guarantees for crowdsourcing classification tasks. In: Proc. of
AAMAS’13. pp. 901–908 (2013)

27. Tsai, C.H., Luo, H.J., Wang, F.J.: Constructing a bpm environment with bpmn.
In: 11th IEEE International Workshop on Future Trends of Distributed Computing
Systems (FTDCS’07). pp. 164–172. IEEE (2007)

28. Van Der Aalst, W., van Hee, K., ter Hofstede, A., Sidorova, N., Verbeek, H.,
Voorhoeve, M., Wynn, M.: Soundness of workflow nets: classification, decidability,
and analysis. Formal Aspects of Computing 23(3), 333–363 (2011)

29. Wei, D., Roy, S., Amer-Yahia, S.: Recommending deployment strategies for col-
laborative tasks. In: Proc. of the 2020 International Conference on Management of
Data, SIGMOD Conference 2020. pp. 3–17. ACM (2020)

30. Whitehill, J., Wu, T., Bergsma, J., Movellan, J., Ruvolo, P.: Whose vote should
count more: Optimal integration of labels from labelers of unknown expertise. In:
Proc. of NIPS’09. pp. 2035–2043 (2009)

31. Zheng, Q., Wang, W., Yu, Y., Pan, M., Shi, X.: Crowdsourcing complex task
automatically by workflow technology. In: MiPAC’16 Workshop. pp. 17–30 (2016)

32. Zheng, Y., Li, G., Li, Y., Shan, C., Cheng, R.: Truth inference in crowdsourcing:
Is the problem solved? Proc. of VLDB Endowment 10(5), 541–552 (2017)

