
HAL Id: hal-03498444
https://inria.hal.science/hal-03498444

Submitted on 21 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Influence maximization in the presence of vulnerable
nodes: A ratio perspective

Huiping Chen, Grigorios Loukides, Solon P Pissis, Hau Chan

To cite this version:
Huiping Chen, Grigorios Loukides, Solon P Pissis, Hau Chan. Influence maximization in the pres-
ence of vulnerable nodes: A ratio perspective. Theoretical Computer Science, 2021, 852, pp.84-103.
�10.1016/j.tcs.2020.11.020�. �hal-03498444�

https://inria.hal.science/hal-03498444
https://hal.archives-ouvertes.fr


See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/345632661

Influence Maximization in the Presence of Vulnerable Nodes: A Ratio

Perspective

Article  in  Theoretical Computer Science · November 2020

DOI: 10.1016/j.tcs.2020.11.020

CITATIONS

0
READS

98

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Reverse-Safe Text Indexing View project

Huiping Chen

King's College London

12 PUBLICATIONS   23 CITATIONS   

SEE PROFILE

Grigorios Loukides

King's College London

94 PUBLICATIONS   1,319 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Grigorios Loukides on 09 November 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/345632661_Influence_Maximization_in_the_Presence_of_Vulnerable_Nodes_A_Ratio_Perspective?enrichId=rgreq-15dbc8a69411108efa674d90482c667e-XXX&enrichSource=Y292ZXJQYWdlOzM0NTYzMjY2MTtBUzo5NTYwMTQ1OTc3NjcxNzNAMTYwNDk0MzA1MDkzNA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/345632661_Influence_Maximization_in_the_Presence_of_Vulnerable_Nodes_A_Ratio_Perspective?enrichId=rgreq-15dbc8a69411108efa674d90482c667e-XXX&enrichSource=Y292ZXJQYWdlOzM0NTYzMjY2MTtBUzo5NTYwMTQ1OTc3NjcxNzNAMTYwNDk0MzA1MDkzNA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Reverse-Safe-Text-Indexing?enrichId=rgreq-15dbc8a69411108efa674d90482c667e-XXX&enrichSource=Y292ZXJQYWdlOzM0NTYzMjY2MTtBUzo5NTYwMTQ1OTc3NjcxNzNAMTYwNDk0MzA1MDkzNA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-15dbc8a69411108efa674d90482c667e-XXX&enrichSource=Y292ZXJQYWdlOzM0NTYzMjY2MTtBUzo5NTYwMTQ1OTc3NjcxNzNAMTYwNDk0MzA1MDkzNA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Huiping-Chen-2?enrichId=rgreq-15dbc8a69411108efa674d90482c667e-XXX&enrichSource=Y292ZXJQYWdlOzM0NTYzMjY2MTtBUzo5NTYwMTQ1OTc3NjcxNzNAMTYwNDk0MzA1MDkzNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Huiping-Chen-2?enrichId=rgreq-15dbc8a69411108efa674d90482c667e-XXX&enrichSource=Y292ZXJQYWdlOzM0NTYzMjY2MTtBUzo5NTYwMTQ1OTc3NjcxNzNAMTYwNDk0MzA1MDkzNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Kings_College_London?enrichId=rgreq-15dbc8a69411108efa674d90482c667e-XXX&enrichSource=Y292ZXJQYWdlOzM0NTYzMjY2MTtBUzo5NTYwMTQ1OTc3NjcxNzNAMTYwNDk0MzA1MDkzNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Huiping-Chen-2?enrichId=rgreq-15dbc8a69411108efa674d90482c667e-XXX&enrichSource=Y292ZXJQYWdlOzM0NTYzMjY2MTtBUzo5NTYwMTQ1OTc3NjcxNzNAMTYwNDk0MzA1MDkzNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Grigorios-Loukides?enrichId=rgreq-15dbc8a69411108efa674d90482c667e-XXX&enrichSource=Y292ZXJQYWdlOzM0NTYzMjY2MTtBUzo5NTYwMTQ1OTc3NjcxNzNAMTYwNDk0MzA1MDkzNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Grigorios-Loukides?enrichId=rgreq-15dbc8a69411108efa674d90482c667e-XXX&enrichSource=Y292ZXJQYWdlOzM0NTYzMjY2MTtBUzo5NTYwMTQ1OTc3NjcxNzNAMTYwNDk0MzA1MDkzNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Kings_College_London?enrichId=rgreq-15dbc8a69411108efa674d90482c667e-XXX&enrichSource=Y292ZXJQYWdlOzM0NTYzMjY2MTtBUzo5NTYwMTQ1OTc3NjcxNzNAMTYwNDk0MzA1MDkzNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Grigorios-Loukides?enrichId=rgreq-15dbc8a69411108efa674d90482c667e-XXX&enrichSource=Y292ZXJQYWdlOzM0NTYzMjY2MTtBUzo5NTYwMTQ1OTc3NjcxNzNAMTYwNDk0MzA1MDkzNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Grigorios-Loukides?enrichId=rgreq-15dbc8a69411108efa674d90482c667e-XXX&enrichSource=Y292ZXJQYWdlOzM0NTYzMjY2MTtBUzo5NTYwMTQ1OTc3NjcxNzNAMTYwNDk0MzA1MDkzNA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Influence Maximization in the Presence of Vulnerable
Nodes: A Ratio Perspective

Huiping Chena, Grigorios Loukidesa, Solon P. Pissisb, Hau Chanc

aDept. of Informatics, King’s College London, London, UK
bCWI, Amsterdam, The Netherlands

cDept. of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, USA

Abstract

Influence maximization is a key problem seeking to identify users who will diffuse
information to influence the largest number of other users in a social network. A
drawback of the influence maximization problem is that it could be socially irre-
sponsible to influence users many of whom would be harmed, due to their demo-
graphics, health conditions, or socioeconomic characteristics (e.g., predominantly
overweight people influenced to buy junk food). Motivated by this drawback and
by the fact that some of these vulnerable users will be influenced inadvertently,
we introduce the problem of finding a set of users (seeds) that limits the influence
to vulnerable users while maximizing the influence to the non-vulnerable users.
We define a measure that captures the quality of a set of seeds as an additively
smoothed ratio (ASR) between the expected number of influenced non-vulnerable
users and the expected number of influenced vulnerable users. Then, we develop
methods which aim to find a set of seeds that maximizes the measure: greedy
heuristics, an approximation algorithm, as well as several variations of the ap-
proximation algorithm. We evaluate our methods on synthetic and real-world
datasets and demonstrate they substantially outperform a state-of-the-art competi-
tor in terms of both effectiveness and efficiency. We also demonstrate that the
variations of our approximation algorithm offer different trade-offs between ef-
fectiveness and efficiency.
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1. Introduction

There has been an increased interest from public and private sectors and orga-
nizations in leveraging social networks to spread information of adopting certain
behavior (e.g., for buying computer tablets or alcoholic beverages) [1, 2, 3, 4, 5,
6, 7, 8]. A typical methodology of an organization is to influence a few carefully
selected users (or seeds), through free gifts, discounts, and information sessions,
to adopt the desirable behavior (e.g., by posting a picture of the advertised com-
puter tablet or alcoholic beverage) [9]. The hope is that these seeds will influence
other users in their social circles to adopt the same behavior, and the subsequent
influenced users will influence others in their respective social circles. As the in-
formation propagates throughout the social network, eventually some number of
users will adopt the desirable behavior.

As a result, the organization’s goal is to select a set of k seeds which maxi-
mize the largest expected number of adoptions (or spread) of all the users in the
social network. This problem is known as the influence maximization problem
in social networks [1] and has been widely studied in the recent decade [9]. A
main drawback of influence maximization is that it could be socially irresponsi-
ble to influence users many of whom could be harmed due to their demographics,
health conditions, or socioeconomic profile [10]. The users who could be harmed
are referred to as vulnerable and can be identified based on domain knowledge
(e.g., user message content and sentiment analysis) [11, 8]. For example, when
an organization aims to promote alcoholic beverages, it should avoid influencing
users many of whom have drinking problems. Similarly, when it aims to pro-
mote junk food, it should avoid influencing users many of whom are overweight.
This is important for performing socially responsible influence maximization [12],
which benefits not only the vulnerable users but also the companies, because most
users are often willing to pay more for products marketed in a socially respon-
sible way [13]. Motivated by the presence of vulnerable users, we initiate the
study of influence maximization in social networks with both vulnerable and non-
vulnerable users. In particular, we consider the problem of finding a set of seeds
that limit the influence to vulnerable users while maximizing the influence to the
non-vulnerable users in social networks. Our goal is to ensure that many non-
vulnerable users are influenced, which is the main reason for which an organiza-
tion spreads information in social networks, without influencing many vulnerable
users. A solution to our problem may lead to influencing some vulnerable users,
due to the diversity of social networks and the connections between vulnerable
and non-vulnerable users. Yet, this can easily be avoided by a post-processing
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step, in which edges to vulnerable nodes are deleted [8].

Contribution. Our work makes the following specific contributions.

(1) Influence Measure. To deal with influence maximization in our setting, we
need a measure to quantify the quality of a set S of seeds (or seed-set). The
measure should ideally: (I) consider both vulnerable and non-vulnerable users,
(II) limit influencing users many of whom are vulnerable, and (III) allow con-
structing a seed-set with guaranteed quality in our setting. We first examine the
following natural measures and show that they are inappropriate to be used for
influence maximization in our setting: (a) the difference σN (S) − σV(S) and (b)
the ratio σN (S)

σV (S)
, where S is a seed-set and σN (S) and σV(S) are the expected num-

ber of influenced non-vulnerable users and the expected number of vulnerable
users, respectively. Then, we propose an additively smoothed ratio (ASR) mea-
sure σN (S)+c

σV (S)+c
, where c > 0 is a specified constant. We show that ASR satisfies

all the aforementioned properties I, II, and III and examine the impact of c in our
influence maximization setting. Thus, our problem becomes finding a seed-set S
of size at most k that maximizes ASR. This is a challenging problem because, as
we show, ASR is non-monotone and neither submodular nor supermodular, which
implies that it cannot be approximated through algorithms for submodular or su-
permodular maximization directly [14, 7, 15].

(2) Baseline Heuristics for Finding an ASR-Maximizing Seed-set. We develop a
natural greedy heuristic (GR) that finds a seed-set of size at most k and large ASR
iteratively. In each iteration, GR selects as seed a non-vulnerable node which in-
fluences a large (expected) number of additional non-vulnerable nodes for a small
(expected) number of additional vulnerable nodes. GR is inspired by the GreedRa-
tio framework [16] for maximizing a ratio of two submodular functions, because
ASR is the ratio of the functions σN (S) + c and σV(S) + c, which are submod-
ular since σN (S) and σV(S) are submodular [17] and the addition of a constant
does not change submodularity [18]. Different from GreedRatio though, GR finds
a seed-set of bounded size, which is necessary because influencing seeds entails
monetary costs to an organization (e.g., for free gifts) that need to be controlled
as the organization has limited budget. We then develop GRMB, a variation of
GR that estimates the spread efficiently, by considering paths from seeds to other
nodes that amount for a “large” fraction of the spread, instead of considering all
paths as GR does.

(3) Approximation Algorithm for Finding an ASR-Maximizing Seed-set and its
Variations. We design SAS (Sandwich Approximation algorithm with Spread
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bounds), an efficient approximation algorithm for finding a seed-set to maximize
ASR. Since ASR is not submodular, SAS cannot approximately maximize it di-
rectly. Instead, SAS constructs three candidate seed-sets (one with ASR, another
with a submodular lower bound function of ASR, and a third with a submodular
upper bound function of ASR) and selects the best candidate seed-set with respet
to ASR. To efficiently construct each candidate seed-set, SAS creates a uniform
random sample of the non-vulnerable nodes and adds into the candidate seed-set
the node from the sample that yields the maximum marginal gain in the function
(i.e., ASR or a bound function of ASR). We also propose a heuristic, called ISS
(Iterative Subsample with Spread bounds), that follows the main principle of SAS
but uses tighter lower and upper bound functions of ASR, which are non-monotone
and non-submodular. ISS works iteratively, aiming to increase the ASR of the fi-
nal seed-set. In addition, we propose two variations of ISS, namely ISSU, and
ISSGr, which explore differing trade-offs between efficiency and effectiveness.
ISSU aims to maximize only the upper bound of ASR that is used in ISS; it per-
forms worse than ISS, but it is much more efficient. ISSGr differs from ISS in that
it selects seeds from the entire set of non-vulnerable nodes, instead of a random
sample of this set. ISSGr outperforms ISS in terms of ASR in practice but is less
efficient.

(4) Experimental Evaluation. Our experiments using three publicly available
datasets from Twitter, a political blog website, and Wikipedia, as well as a syn-
thetic dataset, show that SAS and ISS outperform a state-of-the-art heuristic [6]
that is based on the difference σN (S)− σV(S), as well as our GR and GRMB meth-
ods. For example, ISS constructed seed-sets that had on average 9 times larger
ASR compared to those constructed by the heuristic in [6], while it was also 3
orders of magnitude more efficient. The experiments also show that ISS achieves
a good trade-off between effectiveness and efficiency. It is 5 times faster than
the best-performing ISSGr method and only slightly worse in terms of ASR, while
it is slower than the most-efficient ISSU method but 2 times better than ISSU on
average in terms of ASR.

This work updates and extends a preliminary work that was presented at [19]1.
In this version, we provide a more complete exposition of the underlying theo-
retical ideas of our approach. This includes identifying non-trivial connections
between our algorithms and algorithms for maximizing general submodular func-
tions (monotone and non-monotone) as well as non-submodular functions, show-

1It was also presented at the London Stringology Days & London Algorithmic Workshop 2019.
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ing that the problem addressed in our work is NP-hard and proposing the SAS
approximation algorithm. In addition, we propose two new heuristics, ISSU and
ISSGr. Lastly, we present a thorough experimental evaluation of the proposed
algorithms.

Paper Organization. Section 2 provides the necessary background. Section 3
introduces measures for quantifying the quality of a seed-set in our setting and
defines the problem we address. Section 4 discusses the greedy baselines we pro-
pose. Section 5 and 6 discusses the SAS and ISS algorithm, respectively, while 7
discusses different variations of ISS. Section 8 presents our experimental evalua-
tion. Section 9 discusses related work. Section 10 concludes the paper.

2. Preliminaries
In this section, we first define some preliminary concepts about submodular

functions and discuss the Independent Cascade (IC) model [1] employed in our
work. After that, we briefly discuss algorithms for optimizing submodular and
non-submodular functions.

2.1. Submodular Functions
Let U be a universe of elements and 2U be its power set. A function f : 2U →

R is monotone, if f(X) ≤ f(Y ) for all subsets X ⊆ Y ⊆ U , and non-monotone
otherwise.

A function f : 2U → R is submodular, if it satisfies the diminishing returns
property: f(X ∪ {u}) − f(X) ≥ f(Y ∪ {u}) − f(Y ), for all X ⊆ Y ⊆ U and
any u ∈ U \ Y [18]. If the property holds with equality, then f is called modular.
A function f : 2U → R is supermodular if and only if −f is submodular [18]. A
modular function f : 2U → R is both submodular and supermodular. For brevity,
we may write f(X|u) for the marginal gain f(X ∪ {u})− f(X).

Let f : 2U → R≥0 be a submodular function. For any Y ⊆ U , the modular
upper bound f̂Y (X) of f(X) is a modular function [20]

f̂Y (X) = f(Y )+
∑

u∈X\Y

(f({u})− f({}))−
∑

u∈Y \X

(f(Y )− f(Y \ {u})). (1)

Y is referred to as the parameter of the bound.
The intuition behind the computation of Equation 1 is as follows (see Fig-

ure 1). Instead of computing f for a set X ⊆ U , we compute f for a different
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Figure 1: Illustration of the computation of Equation 1.

set Y and take into account each element in X \ Y and each element in Y \ X .
An element u ∈ X \ Y contributed to the value of f(X) but does not contribute
to the value of f(Y ). Therefore, in the bound calculation, we make a worst case
assumption for the difference between f(X) and f(Y ) that is caused by not tak-
ing into account u and add into f(Y ) the maximum possible contribution of u to
f(X). That is, we assume that the marginal gain of u is f({u}) − f({}), which
is maximum due to the submodularity of f , and add the marginal gain into f(Y ).
Doing this for every u ∈ X \Y is equivalent to adding the first sum in Equation 1
into f(Y ). On the contrary, an element u ∈ Y \ X contributes to the value of
f(Y ) but did not contribute to the value of f(X). Therefore, in the bound cal-
culation, we make a worst case assumption for the difference between f(X) and
f(Y ) by taking into account u ∈ Y \ X and subtract from f(Y ) the minimum
possible contribution of u to f(Y ). That is, we assume that the marginal gain of u
is f(Y )− f(Y \ {u}), which is minimum due to the submodularity of f , and sub-
tract the marginal gain from f(Y ). Doing this for every u ∈ Y \X is equivalent to
subtracting the second sum in Equation 1 from f(Y ). Due to the assumptions in
the calculation of the sums in Equation 1, we may overestimate the contribution of
the elements in X \ Y (for the first sum) and may underestimate the contribution
of the elements in Y \X (for the second sum). Therefore, the right hand side of
Equation 1 is at least equal to f(X) (equal when Y = X), and f̂Y (X) is an upper
bound of f(X).

For any Y ⊆ U , the modular lower bound

̂
fY,πY (X) of f(X) is a modular

function [20]
̂
fY,πY (X) =

∑
u∈X

fY,πY (u). (2)

Y is referred to as the parameter of the bound, πY is a random permutation of the
elements of Y (i.e., one-to-one mapping of Y onto itself), and
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fY,πY (u) =

{
f(πYu )− f(πYu−), if u ∈ Y
0, otherwise

(3)

where πYu− is the prefix of πY comprised of all elements of πY that appear before
u in πY , and πYu is the prefix of πY comprised of all elements of πYu− and u.

The intuition behind the computation in Equation 2 is to use a random permu-
tation of the elements of Y instead of the elements of X and exclude the contri-
bution of the elements of X that are not in Y . Therefore, the right hand side of
Equation 2 is at most equal to f(X) (equal when Y = X) and

̂
fY,πY (X) is a lower

bound of f(X).
Let f : 2U → R≥0 be a non-negative submodular function. The (submodular)

curvature of f is defined as κf = 1 − minu∈U
f(U)−f(U\{u})

f({u}) [21] and measures
how close f is to being modular. The minimum value κf = 0 implies that f
is modular and the maximum value κf = 1 implies that f is fully curved. The
(submodular) curvature of f with respect to a set X ⊆ U is defined as κ̂f (X) =

1 −
∑

u∈X(f(X)−f(X\{u}))∑
u∈X f({u}) [22]. Note that the definition of κ̂f (x) differs from that

of κf in that: (I) it takes into account each element in the set X , instead of the
element with the smallest ratio between the maximum and minimum marginal
gain, and (II) it uses the ratio between the sum of the maximum marginal gain for
each element in the set X and the sum of the minimum marginal gain for each
element in X .

Let g : 2U → R≥0 be a non-negative supermodular function. The (supermod-
ular) curvature of g is defined as κg = 1 − minu∈U

g({u})
g(U)−g(U\{u}) [23]. Note, the

definition of κg differs from that of κf in that the smallest marginal gain of an
element u corresponds to when u is added into the smallest possible subset {} of
U (numerator in the min term of κg) instead of the largest possible subset U \ {u}
of U . Similarly, the largest marginal gain of u corresponds to when u is added
into U \ {u} (denominator in the min term of κg) instead of {}.

2.2. Independent Cascade Model
We model influence based on the classical independent cascade (IC) model [1,

24, 6]. The model views the social network as a weighted directed graphG(V,E),
where V and E are the sets of nodes and edges of G, respectively. In our setting,
V is partitioned into N and V , comprised of all non-vulnerable and vulnerable
nodes, respectively. We assume that N 6= ∅, otherwise no seed can be selected,
and that V is determined by the organization performing influence maximization
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(e.g., the social network provider) based on domain knowledge regarding users
profiles [11, 8]. We also assume that seeds are selected from the set of non-
vulnerable nodes (i.e., that the seed-set S is a subset of N ). This is natural, since
selecting vulnerable nodes as seeds would harm them (i.e., it is against the goal
of our approach). The set of in-neighbors (respectively, out-neighbors) of a node
u is denoted by n−(u) (respectively, n+(u)), and its size is referred to as the in-
degree (respectively, out-degree) of u. In the IC model, each newly activated node
u′ tries to activate each inactive out-neighbor u ∈ n+(u′) once with probability
p((u′, u)), which is modeled as the weight of edge (u′, u) in E. The edge prob-
ability p((u′, u)) is typically set to 1

|n−(u)| [24]. If multiple newly activated nodes
have the same inactive out-neighbor, they all try to activate it in an arbitrary or-
der independently. The diffusion process starts from a set S of initial nodes (or
seeds), which are active at time 0. Each seed tries to activate its out-neighbors at
time 0, each activated out-neighbor stays active and tries to activate its own in-
active out-neighbors at time 1, and the process proceeds similarly and ends when
no new node becomes active. A seed-set S activates a node u with probability
PS(u), and the spread of S over V , N , and V is defined as σ(S) =

∑
u∈V PS(u),

σN (S) =
∑

u∈N PS(u), and σV(S) =
∑

u∈V PS(u), respectively. For any seed-set
S, σN (S) and σV(S) are monotone submodular functions [1]. We may omit the
argument and value of σN and σV when it is clear from the context (e.g., write a
seed-set with zero σN instead of a seed-set S with σN (S) = 0).

There are several methods for computing spread in the IC model. These in-
clude Monte Carlo simulation [1], dynamic programming algorithms [25, 26],
heuristics such as the MIA (Maximum Influence Arborescence) method [24], as
well as sampling-based algorithms [27, 28, 29]. Dynamic programming algo-
rithms are exact and generally faster than Monte Carlo simulation, since the latter
requires a very large number of simulations to estimate spread well [1]. Sampling-
based algorithms are approximate, unlike heuristics. Both sampling-based algo-
rithms and heuristics are generally faster than dynamic programming algorithms.
Our algorithms can use any method to compute spread. However, we employed
the dynamic programming algorithm of [25], because, being exact, it allows to us
to more clearly compare the effectiveness of the different algorithms for dealing
with our problem.

2.3. Algorithms for Optimizing Submodular and Non-Submodular Functions
In this section, we briefly review algorithms for optimizing submodular and

non-submodular functions that are relevant to our work.
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Greedy [14]. Given a non-negative monotone submodular function f : 2U →
R≥0, and a parameter k, Greedy finds a subset S ⊆ U of size |S| ≤ k with
f(S) ≥ (1 − 1

e
) · argmaxS′⊆U,|S′|≤k f(S

′), where e is the base of the natural
logarithm. Greedy performs k iterations. In each iteration, it adds into S the
element u ∈ U with the maximum marginal gain f(S ∪ {u}) − f(S). Thus, it
performs O(|U | · k) evaluations of function f assuming value oracle access to f
(i.e., assuming that f can be queried at any subset of U in polynomial time). A
variation of Greedy, referred to as Lazy Greedy or CELF [30, 1], performs fewer
evaluations of f in practice and is faster by orders of magnitude. CELF uses a
priority queue to efficiently find the element of U that has the largest marginal gain
and should be added into S. The priority queue is initialized with the marginal
gain f(S ∪ {u})− f(S) of each element u ∈ U and is sorted in decreasing order.
In the first iteration, the top entry is removed from the queue and its corresponding
element u1 is added into S. In the second iteration, the top entry of the queue (i.e.,
the second topmost entry in the previous iteration) is updated to reflect the addition
of u1 into S. If the entry stays on the top of the queue (i.e., it still has the largest
marginal gain), it is removed from the queue and its corresponding element u2 is
added into S. This is because, after the update, the marginal gain of u2 is at least
equal to that of any element in U \S, and due to submodularity, the marginal gain
of any such element cannot increase. Otherwise, CELF updates the current top
entry of the priority queue and repeats the process. After an element is added into
S, CELF proceeds into the next iteration, which is similar to the second iteration.
In practice, the number of updates on the priority queue is small, which makes the
algorithm efficient.

GreedRatio [16, 22]. Let f : 2U → R≥0 and g : 2U → R≥0 be non-negative
submodular functions such that f({}) ≥ 0, g({}) ≥ 0, f({u}) > 0 for each u ∈
U and g({u}) > 0 for each u ∈ U . GreedRatio works by iteratively adding into
S the element u with the maximum ratio of marginal gains g(S∪{u})−g(S)

f(S∪{u})−f(S) , as long
as there is at least one element with f(S ∪{u})− f(S) > 0. Let λ be the number
of iterations performed by Greedratio and Si be the subset of S comprised of the
elements that were added into S in the first i ∈ [1, λ] iterations. Then, GreedRatio
returns the subset Si that has maximum ratio g(Si)

f(Si)
over S1, . . . , Sλ. Let S∗ =

argmaxS′⊆U
g(S′)
f(S′)

be the subset of U with the maximum ratio and S∗,min be the

set S∗ with the minimum size. GreedRatio finds a subset S ⊆ U with g(S)
f(S)
≥ (1−

e(κf−1)) · g(S
∗)

f(S∗)
, where κf is the curvature of the submodular function f . Recently,

the bound for GreedRatio was improved [22] to g(S)
f(S)
≥ 1+(|S∗,min|−1)(1−κ̂f (S∗,min)

|S∗.,min| ·
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g(S∗,min)
f(S∗,min)

, where κ̂f (X) is the curvature with respect to a set X ⊆ U . Note that
the bound in [16] for a modular function f (i.e., a function f with κf = 0) is e

e−1 ,
while the improved bound in [22] is 1. In addition, the bound in [16] for a fully
curved function f (i.e., a function f with κf = 1) is∞, while the improved bound
is 1
|S∗,min| .

GreedMax [23]. Given a non-negative monotone submodular function f : 2U →
R≥0, a non-negative monotone supermodular function g : 2U → R≥0, and a
parameter k, GreedMax finds a subset S ⊆ U of size |S| at most k such that f(S)+
g(S) ≥ ( 1

κf
·[1−e−(1−κg)·κf ])· argmax

S′⊆U,|S′|≤k
(f(S ′)+g(S ′)), where κf is the curvature

of the submodular function f and κg is the curvature of the supermodular function
g. GreedMax performs k iterations. In each iteration, it adds into S the element u
with the maximum sum of marginal gains f(S∪{u})−f(S)+g(S∪{u})−g(S).
Subsample Greedy [31]. Given a non-negative submodular function f : 2U →
R≥0, and a parameter k, Subsample Greedy finds a subset S ⊆ U of size |S| ≤ k
with E[f(S)] ≥ 1

e
· (1− 1

e
) · argmaxS′⊆U :|S′|≤k f(S

′), where E[f(S)] denotes the
expected value of f(S). If f is additionally monotone, the guarantee improves to
E[f(S)] ≥ (1− 1

e
)·argmaxS′⊆U :|S′|≤k f(S

′). The expected value is computed over
every possible S constructed by Subsample Greedy. Subsample Greedy performs
k iterations. In each iteration, it constructs a uniform random sample of U , adds
into the sample a dummy element e (i.e., an element with marginal gain f(X ∪
{e})− f(X) = 0, for each X ⊆ U ), and adds into the subset S the element with
the maximum marginal gain in the sample. The sample has size |U |

k
which must

be an integer. If it is not an integer, the minimum number of dummy elements
are added into U . After k iterations, any dummy elements are removed from
the subset S, and the subset is returned. Subsample Greedy performs O(|U |)
evaluations of f , assuming value oracle access to f . Thus, it is more efficient than
competitors [7] which perform O(|U | · k) evaluations.

Sandwich Approximation (SA) Strategy [32]. The SA strategy approximates
the following problem: Given a non-negative non-submodular function f : 2U →
R≥0, non-negative monotone submodular functions lf : 2U → R≥0 and uf :
2U → R≥0 such that lf (S) ≤ f(S) ≤ uf (S) for each subset S ⊆ U , and a
parameter k, find a subset S of size |S| ≤ k with maximum f(S). The SA
strategy applies Greedy three times: with f to produce a subset Sf ; with lf to
produce a subset Slf , and with uf to produce a subset Suf . Then, SA returns
the subset in {Sf , Slf , Suf} with the largest value in f . Interestingly, S satisfies
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f(S) ≥ max
{

f(Suf
)

uf (Suf
)
,
lf (S

∗)

f(S∗)

}
·(1− 1

e
)·f(S∗), where S∗ = argmaxS⊆U,|S|≤k f(S)

is the optimal subset of size at least k with respect to f . That is, SA allows
approximating a non-submodular function f based on Greedy to obtain a solu-
tion that is worse than the solution that would be obtained by Greedy if f was
monotone submodular by no more than a factor max{ f(Suf

)

uf (Suf
)
,
lf (S

∗)

f(S∗)
}. The fac-

tor cannot be computed in polynomial time because it requires computing S∗.
Yet, for some functions f such as those in [32], it can be approximated fairly
well by

f(Suf
)

uf (Suf
)
, and therefore, the following slightly weaker lower bound applies

f(S) ≥ f(Suf
)

uf (Suf
)
· (1− 1

e
) · f(S∗).

3. Measures and Problem Definition

To study influence maximization in our setting, we need a measure that quan-
tifies the quality of a seed-set and can be incorporated into methods to construct a
high quality seed-set. The measure should favor a seed-set S that influences many
non-vulnerable but few vulnerable nodes and also satisfy the following properties:

1. It should consider the influence of vulnerable and non-vulnerable nodes. In
fact, we observed experimentally that constructing S based on only σN (S)
(resp., σV(S)) results in large σV(S) (resp., small σN (S)), which is undesir-
able.

2. It should consider what fraction of all influenced users are vulnerable. This
is important to penalize seed-sets that influence a large expected number of
users many of whom are vulnerable.

3. It should allow constructing a seed-set with guaranteed quality (e.g., not
“too far” from the optimal seed-set in the worst case) [1].

Natural Measures. A first measure is the difference σN (S) − σV(S) given a
seed-set S (i.e., the measure used in [6], with vulnerable nodes being treated as
non-target nodes). This measure does not consider what fraction of all influenced
users are vulnerable. Therefore, it may lead to constructing seed-sets with a large
expected number of influenced users many of whom are vulnerable. For example,
this measure would favor promoting an alcoholic beverage to 140 users out of
whom 40 have drinking problems, instead of 59 users with no drinking problems,
since (140− 40)− 40 > 59− 0.

In addition, σN (S) − σV(S) is a non-submodular function [6], expressed as a
difference between two submodular functions, so it is difficult to approximately
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maximize [20]. Thus, to construct a seed-set S, one has to settle with heuris-
tics, such as [6], which offer no approximation guarantees. One may notice that
σN (S)−σV(S) can be written as a sum of the submodular function σN (S) and the
supermodular function−σV(S) (−σV(S) is supermodular since σV(S) is submod-
ular); and recall from Section 2 that the GreedMax algorithm [23] can be applied
to a sum of a submodular and a supermodular function. However, we cannot use
the GreedMax algorithm to find a seed-set of size at most k with approximately
maximum f(S) + g(S) = σN (S) + (−σV(S)). This is because GreedMax also
requires g(S) to be (I) non-negative and (II) monotone, whereas g(S) = −σV(S)
can clearly not take positive values and it is also not monotone (since σV(S) is
monotone [1]).

Another natural measure is the ratio σN (S)
σV (S)

. The ratio considers what fraction

of all influenced users are vulnerable, because it can be rewritten as σ(S)−σV (S)
σV (S)

=
σ(S)
σV (S)

− 1 and the constant can be removed when it is maximized. However, the
ratio is undefined for every seed-set S with σV(S) = 0 (i.e., S that does not influ-
ence vulnerable nodes). Thus, it cannot distinguish between any two seed-sets S1,
S2 such that σV(S1) = σV(S2) = 0 and σN (S1) > σN (S2) (e.g., it cannot favor
promoting an alcoholic beverage to 59 users with no drinking problems vs. 2 users
with no drinking problems) and also it is not clear how it can be approximately
maximized. For example, the GreedRatio framework [16, 22] (see Section 2) for
maximizing a ratio of two monotone submodular functions f(S) = σN (S) and
g(S) = σV(S) would output a seed-set S of unbounded size, which is not useful
for influence maximization. This is because there is a limited budget that an orga-
nization can devote to seeds (i.e., free sample products or discounts that are given
to users in order to attract them to start the diffusion process). The inverse ratio
σV (S)
σN (S)

is defined for σV(S) = 0 but it cannot be used to distinguish between the
seed-sets S1 and S2 above, and it is equally difficult to minimize (minimizing it is
equivalent to maximizing σN (S)

σV (S)
). Thus, it cannot be used to find a seed-set with

small or zero σV(S) and large σN (S), which helps our goal (to attract many users
few of whom are vulnerable).

Our Proposed Measure. To retain the benefits of the ratio σN (S)
σV (S)

, while fixing the
issues caused by seed-sets that do not influence any vulnerable nodes, we apply
additive smoothing [33] to the ratio. This leads to our additively smoothed ratio
(ASR) measure, defined as ASR(S, c) = σN (S)+c

σV (S)+c
, where S is a seed-set and c > 0

is a constant determined by the organization performing influence maximization.
ASR is well defined (and larger than zero) when σV(S) = 0. Furthermore, among
the seed-sets S1 and S2 mentioned above, it favors the seed-set S1, which influ-
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ences a larger expected number of non-vulnerable nodes. In ASR, the constant c
can be seen as a weight whose addition to σN (S) and to σV(S) changes their ratio
and determines seed selection. The impact of c on seed selection will be discussed
in Sections 4 and 8. Given the ASR measure, we are in a position to define our
influence maximization problem.

Problem 1 (ASR-Maximization (ASR-MAX)). Given a graph G whose nodes are
partitioned into N and V and parameters k and c, find a seed-set S ⊆ N of size
at most k that maximizes ASR(S, c).

The next theorem establishes the hardness of the ASR-MAX problem.

Theorem 1. The ASR-MAX problem is NP-hard.

Proof. The Influence Maximization (IM) problem is NP-hard under the Indepen-
dent Cascade model [1]. We show that ASR-MAX is NP-hard by restriction.
Specifically, from any given instance IIM of the IM problem, we create an instance
IASR−MAX of the ASR-MAX problem in polynomial time. The only difference be-
tween the instances is that the graph, in the instance of the ASR-MAX problem,
has only non-vulnerable nodes. Clearly, a solution of IASR−MAX has at most k
nodes and a maximum ASR, or equivalently a maximum spread, among seed-sets
of size at most k (since all nodes are non-vulnerable). Thus, the corresponding
seed-set of IIM has also at most k nodes and a maximum spread among seed-sets
of size at most k, and therefore it is a solution of IIM. The converse can be shown
similarly (omitted).

The ASR-MAX problem is fundamentally different from the IM problem. This
is because, as we show below, the ASR-MAX problem seeks to optimize a non-
monotone non-submodular function, unlike IM that seeks to optimize a monotone
submodular function.

Theorem 2. ASR is non-monotone and is neither submodular nor supermodular.

Proof. We prove the theorem by means of a counterexample. Consider the graph
of Figure 2a, whose set of nodes is partitioned into N = {u1, . . . , u4} and V =
{v1, v2, v3}, and the ASR of the seed-sets in Figure 2b with c = 1. ASR(S, c)
is: (I) non-monotone, because for S0 ⊆ S0 ∪ {u1}, ASR(S0, 1) = 3/2 > ASR(S0 ∪
{u1}, 1) = 4/3; (II) not submodular, because for S0 ⊆ S1 and u1 ∈ N\S1, ASR(S0∪
{u1}, 1)− ASR(S0, 1) = −1/6 < ASR(S1 ∪ {u1}, 1)− ASR(S1, 1) = −1/12, and (III)
not supermodular, because for S2 ⊆ S3 and u2 ∈ N \ S3 , ASR(S2 ∪ {u2}, 1) −
ASR(S2, 1) = 1/3 > ASR(S3 ∪ {u2}, 1)− ASR(S3, 1) = 1/4.
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u1 u4

v1

v2

v3

u2

u3

1
1

1

1

1

1

(a)

Seed-set S σN (S) σV(S) ASR(S, 1)
S0 = {u2, u4} 2 1 3/2
S0 ∪ {u1} 3 2 4/3

S1 = {u2, u3, u4} 3 2 4/3
S1 ∪ {u1} 4 3 5/4
S2 = {u3} 1 2 2/3
S2 ∪ {u2} 2 2 1

S3 = {u1, u3} 3 3 1
S3 ∪ {u2} 4 3 5/4

(b)

Figure 2: (a) Example graph. N = {u1, . . . , u4}, V = {v1, v2, v3}, and each edge
probability is equal to 1. (b) The spread over non-vulnerable nodes, the spread over
vulnerable nodes, and ASR for different seeds-sets with c = 1.

One may wonder whether the GREEDRATIO [16, 22] framework can be used
to solve the ASR-MAX problem, since ASR is a ratio between two monotone sub-
modular functions. This is not possible, because the algorithms in [16, 22] con-
struct an unbounded seed-set, which is not useful in our setting, and also because
the analysis in [22] assumes that σV({}, c) = 0, which does not hold in our case.

4. Baselines: Greedy Heuristics for Maximizing ASR

We explore two greedy baseline methods for constructing a seed-set S with
size at most k and large ASR(S, c). The first is GR, a natural heuristic for limiting
the influence to vulnerable nodes. GR is conceptually similar to GreedRatio in that
it aims to maximize the ratio of two submodular functions iteratively. However, it
differs from GR in two important dimensions. First, it creates seed-sets of size at
most k, instead of seed-sets of unbounded size. Second, it uses ASR(S, c) instead
of σN (S)

σV (S)
(i.e., it adds c into the numerator and denominator of the latter ratio to

avoid the zero-spread problem in the denominator). Intuitively, GR aims to add a
node which many non-vulnerable and few vulnerable nodes to be influenced.

GR performs k iterations. In each iteration i (steps 3 to 6), it adds into the
subset Si the node u with the maximum ratio between: (I) the sum of the marginal
gain in σN , caused by adding u, and the constant c, and (II) the sum of the marginal
gain in σV , caused by adding u, and the constant c. Since ASR is non-monotone, a
subset constructed in an iteration before i may have a larger ASR than Si. There-
fore, in Step 7, GR considers the subsets constructed in all iterations and returns
the one with the largest ASR.

We now discuss how GR deals with a non-vulnerable node v that influences no
vulnerable nodes. Adding v into Si makes the objective function of GR equal to
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Algorithm: GR (GReedy heuristic)
Input: N ⊆ V , V ⊆ V , graph G, parameter k, constant c
Output: Subset S ⊆ N of size |S| ≤ k

1 i← 0 // Iteration counter
2 Si ← {}
3 while i < k do

4 u ∈ argmax
v∈N\{Si}

σN (Si|v) + c

σV(Si|v) + c

5 Si+1 ← Si ∪ {u}
6 i← i+ 1

7 return S ← argmax
S′∈{S1,...,Sk}

ASR(S ′, c)

σN (Si|v)+c
c

(see Step 4), since Si does not influence more vulnerable nodes after the
addition of v (i.e., σV(Si|v) = 0). If σN (Si|v) is small, it is better to add a different
node v′ which influences few vulnerable nodes but “through” these vulnerable
nodes reaches out to many more non-vulnerable nodes than v. In fact, GR adds v′

instead of v if σN (Si|v′)+c
σV (Si|v′)+c >

σN (Si|v)+c
c , and uses the parameter c to control the bias

towards nodes such as v′. Such a node v′ influences a small number of vulnerable
nodes but many more non-vulnerable nodes than u, as shown in Example 1 and
experimentally in Section 8.

Example 1. In iteration i = 0, the non-vulnerable nodes u1 to u4 in Table 1a are
considered and the node u ∈ {u1, . . . , u4} with the largest σN (S0|u)+c

σV (S0|u)+c is added
into S0 = {}. As shown in Table 1b, the node c determines the added node. For
c = 0.01, u1 that influences no vulnerable and few non-vulnerable nodes is added,
for c = 1, u3 that influences one vulnerable and many non-vulnerable nodes is
added, and for c = 10, u4 that influences more vulnerable and non-vulnerable
nodes than u2 is added.

To improve the efficiency of GR, we propose a variant, GRMB (MB stands
for Maximum influence arborescence Batch-update). Unlike GR which computes
spread exactly by adapting the method of [25] to the IC model, GRMB estimates the
spread efficiently using the MIA method [24] (see Section 2). MIA estimates the
probability PS(u) for a node u and seed-set S based on the union of paths from
S that have the largest probability to influence u, instead of all paths, and this
may lead to a different value of spread (see Example 2). Since GRMB computes
the activation probability based on generally fewer paths, it is faster than GR.
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Node u1 u2 u3 u4

σV 0 0.01 1 10
σN 3 5 150 300

(a)

c 0.01 0.02 1 10

Added Node u1 u2 u3 u4

(b)

Table 1: (a) Non-vulnerable nodes u that are considered for addition into S0 = {}, and
the expected number of vulnerable and non-vulnerable nodes they influence. (b) The node
that is added into S0 for different values of c.

Specifically, our experiments in Section 8 show that GRMB is more efficient than
GR by two orders of magnitude on average.

Example 2. Consider the graph in Fig 3, where the set of non-vulnerable nodes is
N = {a, b, c, d, e} and the set of vulnerable nodes is V = {f}. When the seed-set
is S = {a}, GR computes the probability that e is activated as PS(e) = 1 − [1 −
p((a, b))·p((b, c))·p((c, e))]·[1−p((a, b))·p((b, d))·p((d, e))] = 0.0694, where the
expression in the first (respectively, second) pair of square brackets corresponds
to the probability that a does not activate e through the path {(a, b), (b, c), (c, e)}
(respectively, {(a, b), (b, d), (d, e)}). That is, GR computes PS(e) based on both
paths from a to e. On the other hand, GRMB computes the probability PS(e) using
MIA as PS(e) = [p((a, b)) · p((b, d)) · p((d, e))] = 0.06, which corresponds to
the probability that a activates e through the path {(a, b), (b, d), (d, e)}. This is
because the path {(a, b), (b, d), (d, e)} has a larger probability to activate e com-
pared to that of the path {(a, b), (b, c), (c, e)}. Since the activation probabilities
are different, GR and GRMB compute a different value of spread σN , as shown in
Figure 3b. The value of spread σV in Figure 3b is the same, because there is a
single path from a to the vulnerable node f .

a

  

b

v1

 f

 

0.5
c

ed

0.2 0.2

0.1

0.3

0.4

(a)

GR GRMB

σN (S) 0.87 0.86
σV(S) 0.02 0.02

(b)

Figure 3: (a) Example graph. N = {a, b, c, d, e}, V = {f}, and each edge probability
is shown as an edge label. (b) The spread σN over N = {a, b, c, d, e} and the spread σV
over V = {e} for GR and GRMB, when the seed-set S = {a} in the graph of Figure 3a.
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5. The SAS Algorithm for Maximizing ASR

This section presents SAS (Sandwich Approximation algorithm with Spread
bounds), starting from the bound functions of ASR that the algorithm employs.
Lower and Upper Bound Function of ASR. ASR(S, c) is non-monotone non-
submodular for any subset S (see Section 3) and, thus, it is difficult to approximate
directly. Our SAS algorithm finds a seed-set S with approximately maximum
ASR(S, c), using two submodular functions ASRL and ASRU that bound ASR from
below and from above, respectively. These functions are defined as follows:

ASRL(S, c) =
σN (S) + c

|V|+ c

ASRU(S, c) =
σN (S) + c

c
.

ASRL is obtained by replacing σV(S) in ASR with |V|. Since the expected
number of influenced vulnerable nodes is at most |V|, the following holds for any
S ⊆ N :

σV(S) ≤ |V|. (4)

Thus, ASRL is a lower bound of ASR.
ASRU is obtained by removing σV(S) from the denominator of ASR (i.e., re-

placing σV(S) with 0). Since σV(S) > 0 be definition, for each S ⊆ N , ASRU is
an upper bound of ASR.

The reader can easily verify that both ASRL and ASRU are non-negative. We
now show that ASRL and ASRU are monotone submodular. These properties are
important for designing our SAS algorithm, based on the SA strategy.

Lemma 1. ASRL, as well as ASRU, is monotone submodular with respect to a
seed-set S for any given k and c > 0.

Proof. We first consider ASRL. The monotonicity of ASRL follows directly from
the monotonicity of σN (i.e., σN (S) ≤ σN (S

′), for all subsets S ⊆ S ′ ⊆ N ) and
from the fact that |V|+ c is a fixed positive number.

We now show the submodularity of ASRL. Since σN is submodular [1], the
following inequality holds for any S ⊆ S ′ ⊆ N and u ∈ N \ S ′:

σN (S ∪ {u})− σN (S) ≥ σN (S
′ ∪ {u})− σN (S ′). (5)

17



By adding and subtracting c to each part of Equation 5 and then dividing it by
|V|+c > 0, we obtain the following inequalities, which hold for any S ⊆ S ′ ⊆ N
and u ∈ N \ S ′

(σN (S ∪ {u}) + c)− (σN (S) + c)

|V|+ c
≥ (σN (S

′ ∪ {u}) + c)− (σN (S
′) + c)

|V|+ c

σN (S ∪ {u}) + c

|V|+ c
− σN (S) + c

|V|+ c
≥ σN (S

′ ∪ {u}) + c

|V|+ c
− σN (S

′) + c

|V|+ c

The latter inequality gives:

ASRL(S ∪ {u}, c)− ASRL(S, c) ≥ ASRL(S ′ ∪ {u}, c)− ASRL(S ′, c),

which implies that ASRL is submodular.
We now consider ASRU. The monotonicity of ASRU follows directly from the

monotonicity of σN and the fact that c is a fixed positive number.
By adding and subtracting c to each part of Equation 5 and then diving it by c,

we obtain the following inequalities:

(σN (S ∪ {u}) + c)− (σN (S) + c)

c
≥ (σN (S

′ ∪ {u}) + c)− (σN (S
′) + c)

c
σN (S ∪ {u}) + c

c
− σN (S) + c

c
≥ σN (S

′ ∪ {u}) + c

c
− σN (S

′) + c

c
.

The latter inequality holds for any S ⊆ S ′ ⊆ N and u ∈ N \ S ′ and implies
that ASRU is submodular.

SAS Algorithm. As can be seen from the pseudocode, the algorithm works in
three phases: (I) dummy element creation; (II) construction of three candidate
seed-sets (one using ASR, a second using ASRL and a third using ASRU); and (III)
selection of the best candidate seed-set and removal of dummy elements from it.
Phase I (Steps 2 to 5): A set D of k dummy elements, whose addition into any
seed-set S does not change σN (S) and σV(S), are created. Then, a dummy el-
ement u′ /∈ D is added into a subset N ′ (initially containing all non-vulnerable
nodes), until |N

′|
k

is an integer.
Phase II (Steps 6 to 15): A random sample of |N

′|
k

elements fromN ′ and a dummy
element is created. Next, a node in the sample causing the largest marginal gain
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Algorithm: SAS (Sandwich Approximation algorithm with Spread bounds)
Input: Set of non-vulnerable nodes N ⊆ V , set of vulnerable nodes V ⊆ V , graph G,

parameter k, constant c
Output: Subset S ⊆ N of size |S| ≤ k

1 Scur ← N
// Phase I

2 D ← set of k dummy elements {u1, . . . , uk} such that, for each element ui, i ∈ [1, k],
and every set S ⊆ N : σN (S ∪ {ui}) = σN (S) and σV(S ∪ {ui}) = σV(S)

3 N ′ ← N
4 while |N ′|

k is not an integer do
5 Add into N ′ a dummy element u′ /∈ D such that σN (S ∪ {u′}) = σN (S) and

σV(S ∪ {u′}) = σV(S)
// Phase II

6 i← 0; SO ← {}; SL ← {}; SU ← {}
7 while i < k do
8 R ← uniform random sample of N ′ with |N ′|

k elements
9 Add intoR a random element from D

10 uO ∈ argmaxu∈R(ASR(SO ∪ {u}, c)− ASR(SO, c))

11 SO ← SO ∪ {uO}
12 uL ∈ argmaxu∈R(ASRL(SL ∪ {u}, c)− ASRL(SL, c))

13 SL ← SL ∪ {uL}
14 uU ∈ argmaxu∈R(ASRU(SU ∪ {u}, c)− ASRU(SU, c))

15 SU ← SU ∪ {uU}
// Phase III

16 Scur ← argmaxS∈{SO,SL,SU} ASR(S, c)
17 Scur ← Remove all dummy elements from Scur
18 return Scur

with respect to ASR, ASRL, and ASRU is added into the candidate subset SO, SU,
and SL, respectively.
Phase III (Steps 16 to 18): The best candidate subset with respect to ASR is se-
lected as Scur, and all dummy elements are removed from it. After that, Scur is
returned.

We now establish that the SAS algorithm offers the following approximation
guarantee.

Theorem 3. SAS constructs a seed-set S satisfying

E[ASR(S, c)] ≥σV(S
∗) + c

|V|+ c
· (1− 1

e
) · ASR(S∗, c) (6)

where S∗ = argmaxS⊆N ,|S|≤k ASR(S, c) is an optimal seed-set of size at most
k with respect to ASR, e is the base of the natural logarithm, and E[ASR(S, c)]
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denotes the expectation of ASR over every possible S constructed by SAS.

Proof. Since ASRL bounds ASR from below, we have ASR(SL, c) ≥ ASRL(SL, c),
for any SL ⊆ N . Also, from the monotonicity of expectation, this inequality can
be written as

E[ASR(SL, c)] ≥ E[ASRL(SL, c)], (7)

where the expectation is over every SL. Let SL,∗ = argmaxS⊆N ,|S|≤k ASRL(S, c) be
an optimal seed-set of size at most k with respect to ASRL. We observe that:

E[ASRL(SL, c)] ≥ (1− 1

e
) · ASRL(SL,∗, c)

≥ (1− 1

e
) · ASRL(S∗, c)

≥ ASRL(S∗, c)

ASR(S∗, c)
· (1− 1

e
) · ASR(S∗, c)

≥ σV(S
∗, c) + c

|V|+ c
· (1− 1

e
) · ASR(S∗, c).

(8)

(9)

(10)

(11)

Equation 8 holds because SL is constructed based on the Subsample Greedy al-
gorithm [31] with ASRL, which is a monotone submodular function according to
Lemma 1 (recall from Section 2 the guarantee of Subsample Greedy in the case of
a monotone submodular function). Equation 9 holds from the definition of SL,∗

and of S∗. Equation 10 holds, because ASR(S∗, c) is positive. Equation 11 holds
from the definition of ASRL(S∗, c) and ASR(S∗, c).

Thus, from Equations 7 and 11, we obtain:

E[ASR(SL, c)] ≥ σV(S
∗, c) + c

|V|+ c
· (1− 1

e
) · ASR(S∗, c). (12)

We now prove the following:

ASR(SU, c) =
σN (S

U) + c

σV(SU) + c
· c
c

= ASRU(SU, c) · c

σV(SU) + c

≥ ASRU(SU, c) · c

|V|+ c
.

(13)

(14)

(15)
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Equations 13 and 14 follow from the definition of ASR and ASRU, respectively,
and Equation 15 follows from σV(S

U) ≤ |V|.
In addition, we show the following:

E[ASR(SU, c)] ≥ E
[

ASRU(SU, c) · c

|V|+ c

]
≥ c

|V|+ c
· E
[
ASRU(SU, c)

]
≥ c

|V|+ c
· (1− 1

e
) · ASRU(SU,∗, c)

≥ c

|V|+ c
· (1− 1

e
) · ASRU(S∗, c)

≥ c

|V|+ c
· (1− 1

e
) · ASR(S∗, c)

(16)

(17)

(18)

(19)

(20)

where the expectation is over each SU and SU,∗ = argmaxu∈N ,|S|≤k ASRU(S, c)

is an optimal seed-set of size at most k with respect to ASRU. Equation 16 follows
from Equation 15 and the linearity of expectation. Equation 17 holds because the
fraction in this equation is a constant which is independent of SU. Equation 18
holds because SU is constructed based on the Subsample Greedy algorithm [31]
with ASRU, which is a monotone submodular function according to Lemma 1.
Equation 19 holds from the definitions of SU,∗ and of S∗, and Equation 20 holds
because ASRU upper-bounds ASR.

The statement follows from Equations 12 and 20, the fact that σV(S∗, c)+ c ≥
c, and the fact that the output seed-set

S ∈ argmax
S′∈{SO,SL,SU}

ASR(S ′, c)

(see Step 16 of SAS).

We now show the number of the evaluations of the spread function performed
by SAS in the proposition below.

Proposition 1. SAS performs O(|N |) evaluations of the spread function.

Proof. The statement follows directly from the fact that Subsample Greedy per-
forms O(|N |) evaluations of the spread function [31] and from the fact that SAS
executes this algorithm on three functions (ASR and the bound functions).
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We express the computational cost of SAS in terms of evaluations of the spread
function, as the specific cost of evaluating the spread function heavily depends on
the influence diffusion model and on the algorithm for computing spread. For
example, the cost of evaluating the spread function (i.e., σN or σV using the dy-
namic programming algorithm of [25] is O(|N |2|E|) [25]. However, this cost is
pessimistic [25], as it assumes a complete graph. Thus, by Proposition 1, when
spread is computed using the dynamic programming algorithm of [25], the cost of
SAS is O(|N |3|E|).

The strategy of selecting seeds from a sample of N of size approximately N
k

,
instead of the entire set N , is inspired from Subsample Greedy (see Section 2).
The difference is that Subsample Greedy is applied to a single submodular func-
tion and therefore it uses one random sample per iteration. On the other hand,
SAS is applied to two functions and uses a single random sample in Phase II for
all three functions for efficiency.

It is possible, however, to select seeds from the entire set N . In this case,
an algorithm, referred to as SASGr, applies Greedy instead of Subsample Greedy,
with ASRL, ASR, and ASRU. Thus, SASGr essentially employs the SA strategy
(see Section 2); using the functions ASRL, ASR, and ASRU as functions lf , f , and
uf , respectively. We now show that SASGr offers the following approximation
guarantee.

Lemma 2. SASGr constructs a seed-set S satisfying

ASR(S, c) ≥ max

{
c

σV(SU, c) + c
,
σV(S

∗, c) + c

|V|+ c

}
· (1− 1

e
) · ASR(S∗, c) (21)

where S∗ = argmaxS⊆N ,|S|≤k ASR(S, c) is an optimal seed-set of size at most k
with respect to ASR, e is the base of the natural logarithm, and SU is the seed-set
obtained by applying Greedy with ASRU.

Proof. Given a non-negative non-submodular function f : 2U → R≥0, non-
negative monotone submodular functions lf : 2U → R≥0 and uf : 2U → R≥0 such
that lf (S) ≤ f(S) ≤ uf (S) for each subset S ⊆ U , and a parameter k, the SA strat-

egy finds a seed-set S that satisfies f(S) ≥ max
{

f(Suf
)

uf (Suf
)
,
lf (S

∗)

f(S∗)

}
· (1− 1

e
) ·f(S∗),

where S∗ = argmaxS⊆U,|S|≤k f(S) is an optimal subset of size at most k with
respect to f [32]. SASGr applies the SA strategy with ASRL, ASR, and ASRU as
functions lf , f , and uf , respectively. Thus, it achieves the following guarantee
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ASR(S, c) ≥ max

{
ASR(SU, c)

ASRU(SU, c)
,

ASRL(S∗, c)

ASR(S∗, c)

}
· (1− 1

e
) · ASR(S∗, c). (22)

The statement of the lemma follows from Equation 22 and the definitions of
ASRL, ASR, and ASRU.

The algorithm in Lemma 2 performs O(|N | · k) [1] evaluations of the spread
function, hence it is much slower than SAS in practice when k is large.

6. The ISS Algorithm for Maximizing ASR

This section presents ISS (Iterative Subsample with Spread bounds), starting
from the bound functions of ASR that ISS employs.
Lower and Upper Bound Function of ASR. Our ISS algorithm employs the
following two functions that bound ASR from below and from above, respectively:

ÃSRL(S, c, Y ) =
σN (S) + c

σ̂V,Y (S) + c
=

σN (S) + c

σV(Y ) +
∑

u∈S\Y

σV({u})−
∑

u∈Y \S

(σV(Y )− σV(Y \ {u})) + c

ÃSRU(S, c, πY ) =
σN (S) + ĉ
σV,πY (S) + c

=
σN (S) + c∑

u∈S
(σV,Y,πY (u)) + c

where Y ⊆ N is the parameter in each bound function, and

σV,Y,πY (u) =

{
σV(π

Y
u )− σV(πYu−) , if u ∈ Y

0 , otherwise.

ÃSRL is obtained by replacing σV(S) in ASR with its modular upper bound

σ̂V,Y (S) (see Equation 1) and using the fact that σV({}) = 0. ÃSRU is obtained by
replacing σV(S) in ASR with its modular lower bound

̂
σV,πY (S) (see Equation 2).

These bound functions differ from those used in SAS in that their denomina-
tors are modular functions that depend on a parameter (Y for the upper bound
function and πY for the lower bound function, respectively). Also, they differ in
that they are non-monotone non-submodular, as shown below. These properties
are important for designing our ISS algorithm.
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Lemma 3. ÃSRL, as well as ÃSRU, is non-monotone and non-submodular.

Proof. We first prove that ÃSRL is non-monotone by means of a counterexam-
ple. Consider the graph in Figure 2 and let c = 1 and Y = S ′ = {}. Since

ÃSRL(S1, 1, S
′) = 4/4 > ÃSRL(S1∪{u1}, 1, S ′) = 5/6, ÃSRL is non-monotone.

We now prove that ÃSRL is non-submodular by means of a counterexample.
Consider the graph in Figure 4a, whose set of nodes is partitioned into N =
{u1, . . . , u4} and V = {v1}. Let c = 1 and Y = {u4}. Let also S = {u1} ⊆ S ′ =

{u1, u2} and u = u3 ∈ N \ S ′. Since ÃSRL(S ∪ {u}, c, Y ) − ÃSRL(S, c, Y ) =
3+c
2+c
− 3+c

1+c
= −2

3
< ÃSRL(S ′ ∪ {u}, c, Y ) − ÃSRL(S ′, c, Y ) = 3+c

3+c
− 3+c

2+c
= −1

3
,

ÃSRL is non-submodular with respect to a seed-set S.

We also prove that ÃSRU is non-monotone by means of a counterexample.
Consider the graph in Figure 4b, whose set of nodes is partitioned into N =
{u1, u2, u3} and V = {v1, v2, v3}. Let c = 1, Y = {u3, u2}, and πY = (u3, u2).

Let also S = {u1} ⊆ S ′ = {u1, u3} and c = 1. Since ÃSRU(S, 1, πY ) = 2+c
c

=

3 > ÃSRU(S ′, 1, πY ) = 3+c
2+c

= 4
3
, ÃSRU is non-monotone.

Last, we prove that ÃSRU is non-submodular by means of a counterexample.
Consider the graph in Figure 4b, whose set of nodes is partitioned into N =
{u1, u2, u3} and V = {v1, v2, v3}. Let c = 1, Y = {u3, u2}, and πY = (u3, u2).

Let also S = {u1} ⊆ S ′ = {u1, u3} and u = u2 ∈ N \ S ′. Since ÃSRU(S ∪
{u}, c, πY ) − ÃSRU(S, c, πY ) = 2+c

1+c
− 2+c

c
= −3

2
< ÃSRU(S ′ ∪ {u}, c, πY ) −

ÃSRU(S ′, c, πY ) = 3+c
3+c
− 3+c

2+c
= −1

3
, ÃSRU is non-submodular with respect to a

seed-set S.

Operation of ISS. The algorithm works iteratively, as can be seen from the pseu-
docode. In each iteration (i.e., execution of the while loop in Step 3), it creates
a seed-set Scur in three phases: (I) dummy element creation; (II) construction of

three candidate seed-sets (one using ASR, a second using ÃSRL and a third using

ÃSRU); and (III) selection of the best candidate seed-set and removal of dummy
elements from it. The iterations stop when Scur is not better than the previously
created seed-set Spr in terms of ASR (Steps 21-22). This guarantees that the algo-
rithm terminates [20].
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Figure 4: (a) Example graph. N = {u1, u2, u3, u4}, V = {v1}, and each edge probability
is equal to 1. (b) Example graph. N = {u1, u2, u3}, V = {v1, v2, v3}, and each edge
probability is equal to 1.

Phase I (Steps 4 to 7): This phase is identical to Phase I of SAS. Note that a dummy
element cannot be thought of as a node with no edges. This is because adding such
a node into any S would increase σN (S) by 1, whereas adding a dummy node into
any S does not change σN (S).
Phase II (Steps 8 to 18): A random sample of |N

′|
k

elements fromN ′ and a dummy
element is created. Next, a node in the sample causing the largest marginal gain

with respect to ASR, ÃSRL, and ÃSRU is added into the candidate subset SO
i , SU

i ,

and SL
i , respectively. The parameter of ÃSRL is the seed-set Spr, constructed in

the previous iteration and that of ÃSRU is a random permutation πSpr of Spr.
Phase III (Steps 19 to 23): The best candidate subset with respect to ASR is se-
lected as Scur, and all dummy elements are removed from it. If Scur is not better
than Spr in terms of ASR, the while loop in Step 3 is terminated and Scur is re-
turned. Otherwise, another iteration is performed with the aim of generating a
seed-set with larger ASR, due to the use of different (and often better [20]) lower
and upper bounds (i.e., a lower bound with a different parameter Spr and upper
bound with a different parameter Spr and random permutation πSpr).
Relation of ISS to Other Methods. Alike SAS, ISS selects seeds from a sample
ofN of size approximately |N |

k
, instead of the entire setN . This is different from

GR which selects seeds from the entire set N and thus scales worse with k.
However, ISS differs from SAS in that it is iterative and in that it, in each

iteration, its bound functions have a different seed-set as parameter. In our exper-
iments, we observed that more iterations result in seed-sets with larger ASR. This

is because the parameter Spr of the lower bound function ÃSRL, as well as Spr and
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Algorithm: ISS (Iterative Subsample with Spread bounds)
Input: Set of non-vulnerable nodes N ⊆ V , set of vulnerable nodes V ⊆ V , graph G,

parameter k, constant c
Output: Subset S ⊆ N of size |S| ≤ k

1 Spr ← {}
2 Scur ← N
3 while true do

// Phase I
4 D ← set of k dummy elements {u1, . . . , uk} such that, for each element ui,

i ∈ [1, k], and every set S ⊆ N : σN (S ∪ {ui}) = σN (S) and
σV(S ∪ {ui}) = σV(S)

5 N ′ ← N
6 while |N ′|

k is not an integer do
7 Add into N ′ a dummy element u′ /∈ D such that σN (S ∪ {u′}) = σN (S) and

σV(S ∪ {u′}) = σV(S)
// Phase II

8 i← 0; SO
0 ← {}; SL

0 ← {}; SU
0 ← {}

9 while i < k do
10 R ← uniform random sample of N ′ with |N ′|

k elements
11 Add intoR a random element from D
12 uO ∈ argmaxu∈R(ASR(SO

i ∪ {u}, c)− ASR(SO
i , c))

13 SO
i+1 ← SO

i ∪ {uO}

14 uL ∈ argmaxu∈R(ÃSRL(SL
i ∪ {u}, c, Spr)− ÃSRL(SL

i , c, Spr))

15 SL
i+1 ← SL

i ∪ {uL}

16 uU ∈ argmaxu∈R(ÃSRU(SU
i ∪ {u}, c, πSpr )− ÃSRU(SU

i , c, π
Spr ))

17 SU
i+1 ← SU

i ∪ {uU}
18 i← i+ 1

// Phase III
19 Scur ← argmaxS∈{SO

k ,S
L
k ,S

U
k } ASR(S, c)

20 Scur ← Remove all dummy elements from Scur
21 if ASR(Scur, c) ≤ ASR(Spr, c) then
22 break
23 Spr ← Scur
24 return Scur

πSpr of the upper bound function ÃSRU, are updated in every iteration which often
improves the bound functions [20]. We also observed that ISS needed at most 4
iterations to terminate.
Cost of ISS. The number of evaluations of the spread function performed by ISS
is given in the proposition below, where I denotes the number of iterations.

Proposition 2. ISS performs O(|N | · I) evaluations of the spread function.
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Proof. The statement follows directly from the fact that Subsample Greedy per-
forms O(|N |) evaluations of the spread function [31] and from the fact that ISS
executes this algorithm on three functions (ASR and the bound functions) once per
iteration.

As discussed in Section 5, the cost of evaluating the spread function depends
on the method used for computing the spread, and this cost is O(|N |2|E|) when
the method of [25] is used. Thus, by Proposition 2, when spread is computed using
the dynamic programming algorithm of [25], the cost of ISS is O(|N |3 · |E| · I).
As mentioned above, ISS always terminates, so I is bounded.

7. Variations of ISS

In the following, we discuss two variations of ISS that explore different trade-
offs between efficiency and effectiveness.

ISSU Algorithm. We consider a variation of ISS that applies Subsample Greedy

only to the upper bound function ÃSRU of ASR. We refer to this algorithm as ISSU.
ISSU was inspired by a heuristic [32] that applied Greedy only to the upper bound
function uf used in the SA strategy (see Section 2).

The benefit of ISSU is that it is more efficient than ISS. This is mainly be-

cause ISSU executes Subsample Greedy once (with ÃSRU), whereas ISS executes

Subsample Greedy three times (with ÃSRU, ÃSRL, and ASRU). In fact, in our
experiments, we show that ISSU is one order of magnitude faster than ISS on
average.

ISSGr Algorithm. ISSGr is a variation of ISS in which Greedy is used instead of
Subsample Greedy. Although applying Greedy to non-monotone non-submodular

functions, such as ASR, ÃSRU and ÃSRL, still provides no approximation guar-
antees, ISSGr performs very well in practice (see Section 8). This experimen-
tal finding agrees with several studies demonstrating that Greedy can be consid-
ered as an effective heuristic for non-monotone and/or non-submodular functions
(e.g., [34, 35]) because influence functions tend to be “close” to being submodular
(e.g., [36, 37]).

8. Experimental Evaluation

In this section, we evaluate our methods GR, GRMB, SAS, ISS, ISSU, and
ISSGr, in terms of effectiveness and efficiency, by comparing them against TIM [6],
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a heuristic for finding a seed-set S with size at most k and large σN (S) − σV(S),
and two baselines that employ Greedy [14]: RB, which applies Greedy [14] to the
subset of non-vulnerable nodes that do not influence vulnerable nodes, and RB′,
which applies Greedy with the objective function σN . RB creates a seed-set S with
σV(S) = 0 and was used to see whether S can have large σN (S). RB′ creates a
seed-set S with large σN (S) and was used to see whether S can have small σV(S).
RB′ found seed-sets that influenced many more vulnerable nodes than those of all
other methods, thus, we omit its results. Since the bound functions used in SASGr

only depend on σV , SASGr finds the same seed-set as RB′. Hence, we do not
present results for SASGr.

Dataset # of nodes # of edges avg in-degree max in-degree # of vuln. nodes max prob. threshold
(|V |) (|E|) (|V|) θ

WI 7115 103689 13.7 452 100 0.01
TW 235 2479 10.5 52 25 0.01
POL 1490 19090 11.9 305 100 0.003
AB 840 10008 11.9 137 10 0.01

Table 2: Characteristics of the datasets we used and default values for the maximum
probability threshold θ.

All algorithms were implemented in C++ and applied to the Wiki-vote (WI),
Twitter (TW), and PolBlogs (POL) datasets (see Table 2)2. We also used synthetic
datasets, generated by the Albert-Barabasi model, as in [8], with a varying number
of edges in [500, 10000]. We refer to the dataset with 10000 edges as AB. We set
p(u′, u) = 1

|n−(u)| for each edge (u′, u) as in [38, 8]. We also set θ, the maximum
probability threshold for a path, to a small value (see Table 2), so that all methods
achieve a good accuracy/efficiency trade-off by discarding paths that have smaller
than θ probability to influence a node, as in [39]. The default value for k was 5
and for c was 1.

The set of vulnerable nodes V was constructed by selecting nodes: (a) ran-
domly, (b) based on their out-degree, and (c) based on their PageRank score. We
consider setting a unless otherwise specified. In settings b and c, the nodes with
the largest out-degree or PageRank score were selected. Nodes with large PageR-
ank scores can influence many other nodes when activated [8], and the same holds
for nodes with large out-degree [1]. Thus, the settings b and c are challenging,
because it is difficult to reduce the spread of such vulnerable nodes while achiev-

2POL is available at http://www-personal.umich.edu/˜mejn/ and all other
datasets at http://snap.stanford.edu/data.
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Figure 5: Spread of vulnerable and non-vulnerable nodes: (a) POL vs. c, (b) TW vs. c, (c)
POL vs. k, and (d) TW vs. k.

ing a large spread for the non-vulnerable nodes. The default number of vulnerable
nodes |V| for each dataset is shown in Table 2.

To improve the efficiency of ISS, we used the CELF optimization [1] for the
submodular bound functions (Steps 14 and 16). The results for all randomized
algorithms (e.g., SAS and ISS) were averaged over 10 runs.

All experiments ran on an Intel Xeon CPU E5-2640 @2.66GHz with 64GB
RAM. For brevity, we omit some results that were qualitatively similar to the
reported ones (e.g., results for varying |V| in the WI dataset).
Comparison to RB. GR constructs seed-sets that influence at least 5.5 and up to
38 times more non-vulnerable nodes than those constructed by RB, for different
values of c (see Figures 5a and 5b) and k (see Figures 5c and 5d). The reason is
that, for all c and k values, vulnerable nodes were distributed across the graph.
So, the seed-sets constructed by RB did not influence vulnerable nodes, but they
also did not influence many non-vulnerable nodes which defeats the main pur-
pose of influence maximization that is to inform many non-vulnerable users. On
the other hand, the seed-sets constructed by GR influenced a small number of vul-
nerable nodes but could reach to and influence many more non-vulnerable nodes.
Moreover, TIM, GRMB, SAS, and ISS outperformed RB (the results for them are
omitted). Thus, in all subsequent experiments, we omit results for RB, since it
does not construct practically useful solutions and set c = 1 because this allows
all methods to construct seed-sets with good σN /σV trade-off.
ASR with c = 1. All our algorithms substantially outperform TIM in terms of
ASR for varying k (see Figures 6a, 6b, and 6c) and varying number of vulnerable
nodes |V| (see Figure 6d). ISS outperformed all other methods, being 3, 1.7, 2 and
1.6 times better than TIM, GR, GRMB and SAS on average (over all datasets and
k values), respectively. ISS was also 8.9, 3.3, 1.9 and 4.7 times better than TIM,
GR, GRMB and SAS on average (over all |V| values in Figure 6d), respectively. We
omit the results for GR and TIM for the largest dataset WI from all subsequent
experiments, since GR and TIM did not finish within 3 days. We also omit the
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Figure 6: ASR with c = 1 vs. k for (a) POL, (b) TW, and (c) WI. (d) ASR with c = 1
vs. |V|.
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imply better protection and utility, respectively). Spread of non-vulnerable nodes vs. k
for (c) POL, and (d) TW.

results for SAS from all subsequent experiments, since it performed worse than
ISS on average. The better performance of ISS compared to SAS is attributed to
its bound functions, which depend on the seed-set and improve as more iterations
are performed.
Spread of Vulnerable and Non-vulnerable Nodes. We demonstrate that all
our algorithms substantially outperform TIM in terms of σN and/or σV . First,
we report Figures 7a and 7b, where each point (x, y) corresponds to the values
(1 − σV (S)

|V| ,
σN (S)
|N | ), referred to as protection and utility of a seed-set S. Note that

larger values in protection and utility are preferred. ISS outperformed TIM with
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Figure 8: Spread of non-vulnerable nodes vs. k for (a) TW, and (b) WI. Spread of vulner-
able nodes vs. k for (c) POL. Spread of vulnerable nodes for (d) TW, and (e) WI.
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respect to both protection and utility. Also, ISS achieved overall better protec-
tion than GR and better utility than GRMB. We also report σN and σV in Fig-
ures 7c to 8d. GR and TIM constructed seed-sets that influence too many vul-
nerable nodes. GRMB performed inconsistently (e.g., its seed-sets influenced few
vulnerable nodes in Figure 8b and too many vulnerable nodes in Figure 8c). ISS
influenced few vulnerable nodes and a moderate number of non-vulnerable nodes,
achieving a good σN/σV trade-off.
Impact of Vulnerable Node Selection. We demonstrate that our algorithms sub-
stantially outperform TIM in terms of ASR for different strategies of selecting vul-
nerable nodes. This can be seen from Figures 9a and 9b (respectively, Figures 9c
and 9d), which report ASR when the vulnerable nodes were selected as the nodes
with the largest PageRank scores (respectively, out-degree). In these experiments,
ISS was 4.4, 2.2, and 2.1 times on average better in terms of ASR than TIM, GR,
and GRMB, respectively. In addition, GR and GRMB outperformed TIM by 2.02
and 2.57 times on average, respectively. The results are qualitatively similar to
those in Figure 6.

We also demonstrate that ISS is the only algorithm that achieves large spread
of non-vulnerable nodes σN and well as small spread of vulnerable nodes σV
(i.e., it achieves a good trade-off). This can be seen from Figures 10a and 10b,
which report the spread of non-vulnerable nodes, and from Figures 10c and 10d,
which report the spread of vulnerable nodes. This is an encouraging result because
all other algorithms either influenced a large (expected) number of vulnerable
nodes, or did not influence a large (expected) number of non-vulnerable nodes. In
both cases, the result is less useful for viral marketing. Specifically, the seed-sets
constructed by GR had a smaller σN than those of ISS by 35.4% on average. Thus,
GR influenced a smaller (expected) number of non-vulnerable nodes compared to
ISS. On the other hand, TIM and GRMB have a larger σV than that of ISS by 9.8
and 7.55 times on average, respectively. Thus, these two algorithms influenced a
larger (expected) number of vulnerable nodes compared to the ISS algorithm.
Impact of Number of Iterations in ISS. We demonstrate that ISS can find a better
seed-set in terms of ASR by performing iterations with different lower bounds (see
the while loop in Step 3 of ISS and note that the parameter Spr changes in Step 23).
In particular, we measured the relative improvement in terms of ASR from the first
to the last iteration of ISS, which is defined as

RI =
ASR(Slcur, c)− ASR(S1

cur, c)

ASR(S1
cur, c)

,

where Slcur (resp., S1
cur) is the seed-set constructed by ISS in the last (resp., first)

31



k

A
S

R
(S

,1
)

5 10 25 50 100

1
0

2
0

3
0

4
0

5
0 GR

GRMB

ISS
TIM

(a) POL

k
A

S
R

(S
,1

)
5 10 20 30 40 50

1
0

2
0

3
0

4
0 GR

GRMB

ISS
TIM

(b) TW

k

A
S

R
(S

,1
)

5 10 25 50 100

1
0

3
0

5
0

7
0

GR
GRMB

ISS
TIM

(c) POL

k

A
S

R
(S

,1
)

5 10 20 30 40 50

1
0

2
0

3
0

4
0

5
0 GR

GRMB

ISS
TIM

(d) TW

Figure 9: ASR with c = 1 vs. k when vulnerable nodes are selected as the nodes with the
largest PageRank scores for (a) POL, and (b) TW. ASR with c = 1 vs. k when vulnerable
nodes are selected as the nodes with the largest out-degree for (c) POL, and (d) TW.
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Figure 10: Spread of non-vulnerable nodes vs. k for POL when the vulnerable nodes are
selected as the nodes with the largest (a) PageRank score, and (b) out-degree. Spread of
vulnerable nodes vs. k for POL when the vulnerable nodes are selected as the nodes with
the largest (a) PageRank score, and (b) out-degree.

iteration and c = 1. Table 3a shows the maximum RI, which varies from 27.7%
to 93.85%. On average (over all k values and datasets) the maximum RI was
46%. Table 3b shows the average RI, computed over 10 different runs of ASR,
which varies from 13.8% to 48.31% and has an average value of 24.3% (over
all k values and dataset). The fact that the maximum and average RI increase
substantially implies that the iterative scheme in ISS (see Step 3) is able to trade-
off efficiency for effectiveness.
Efficiency. All our methods are much faster than TIM for varying k (see Fig-
ures 11a and 11b). TIM required 10 hours when k = 50 in the case of TW which
only has 235 nodes, and 17 days when k = 25 in the case of POL. GR was faster
but did not terminate within 3 days in the case of WI, and GRMB was the fastest
due to its efficient spread estimation function [24]. ISS was significantly faster
than GR and TIM and the most scalable method with respect to k. Figure 11c
shows the runtime for varying |V|. All our algorithms become faster with |V|,
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TW POL WI
k Max. RI # iterations Max. RI # iterations Max. RI # iterations
5 36.17% 3 31.06% 4 27.7% 3
10 33.74% 3 49.06% 4 43.12% 3
50 58.66% 3 93.85% 3 43.06% 3

(a)
TW POL WI

k Avg. RI # iterations Avg. RI # iterations Avg. RI # iterations
5 13.8% 3 13.49% 3 23.43% 2
10 20.32% 2 21.09% 2 25.45% 3
50 26.26% 2 48.31% 3 27.87% 2

(b)

Table 3: (a) Maximum and (b) Average RI with c = 1 as well as number of iterations
performed by ISS vs. k, for TW, POL and WI.
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Figure 11: Runtime vs. k for (a) POL, and (b) TW. Runtime vs. (c) number of vulnerable
nodes for POL, and (d) number of edges for AB.

since fewer nodes can be selected as seeds and are at least three orders of mag-
nitude faster than TIM on average. Figure 11d shows the runtime for varying
number of edges using the synthetic dataset AB. Our algorithms were faster than
TIM by up to three orders of magnitude. Results on other datasets were similar
(omitted for brevity).
Comparison of ISS to ISSU and ISSGr. We demonstrate that ISS is comparable
to ISSGr in terms of effectiveness, while being much more efficient. Specifically,
the ASR scores for ISS are approximately 12% on average lower (worse) than those
for ISSGr, but ISS is 5 times faster on average, and it scales better with k. The
ISSU algorithm was faster than ISS by one order of magnitude on average, but it
performed much worse in terms of ASR; its scores were 2 times lower on average,
over all k values and datasets than those of ISS. Thus, the experiments demonstrate
that ISS offers a good balance between the slightly more effective but much slower
ISSGr algorithm and the much less effective but faster ISSU algorithm.
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Figure 12: ASR with c = 1 vs. k for (a) POL, (b) TW, and (c) WI.
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Figure 13: Runtime vs. k for (a) POL, (b) TW, and (c) WI.

9. Related Work

The problem of influence maximization has attracted substantial research in-
terest (see [9] for a survey). However, no existing work aims to address influence
maximization when there are vulnerable nodes. The most related works to ours
are [6] and [8].

The work in [6] aims to maximize the difference between the expected number
of influenced users who belong to a target group and the expected number of
all other influenced users. Our work differs from [6] along three dimensions.
First, [6] can select target nodes as seeds, but we cannot do the same for vulnerable
nodes, as this would harm them. Second, our ASR measure has desired properties
unlike the measure σN (S)− σV(S) in [6] (see Section 3). Third, our methods are
substantially more effective and efficient than the heuristic in [6] (see Section 8),
while SAS also offers approximation guarantees.

The work in [8] is applied after influence maximization (i.e., it considers a
given seed-set), and it also has different objectives and influence diffusion model
compared to our work. Thus, it is orthogonal to our work. Specifically, it seeks
to delete edges in order to limit the activation probability of vulnerable nodes in
the Linear Threshold (LT) model [1]. Since edge deletion corresponds to blocking

34



communication between users, the approach of [8] is more invasive than our ap-
proach which simply selects an appropriate seed-set. However, an approach based
on edge deletion for the IC model would be interesting to develop and apply after
our approach, in cases where the activation probability of each vulnerable node
should be limited.

There are many works on targeted viral marketing (e.g., [40, 41, 42, 43, 6]).
The work in [40] studied the problem of influence maximization in the presence of
target nodes, under the IC model, and proposed greedy-based heuristics to tackle
the problem. The work in [41] considered influence maximization when each tar-
get node has a constant profit, and [42] considered the impact of the location and
login time of target nodes. The work in [43] considered the problem of revenue
maximization under the IC and LT models. In this problem, a social network
provider aims to perform the campaigns of different organizations wanting to pro-
mote complimentary products while maximizing its revenue. Unlike ours, the
works in [41, 43, 42, 6, 40] do not consider vulnerable nodes.

There are also works on influence maximization considering nodes with neg-
ative impact on the influence diffusion process [38, 44]. The work in [38] studied
influence maximization under a model where each node can diffuse information
of opposite content to the information that is being spread from the seed-set. The
work in [44] studied influence maximization, when some nodes reject the diffused
information. Different from these works, no node negatively impacts the influence
diffusion process in our approach.

Last, there are works considering fairness in influence maximization (e.g., [45,
46]). In these works, there are multiple groups of users, and the goal is to influence
all of these groups in a “balanced” way, so that none is disadvantaged. The work
in [45] aims at maximizing the influence over all groups, while lower-bounding
the influence of a specified group, or alternatively, maximizing the influence of
the specified group, while lower-bounding the influence of all groups. The work
in [46] aims at maximizing the minimum fraction of influenced users within each
group. Different from these works, we aim at minimizing the spread of a group of
users while maximizing the spread of the other. Thus, the methods in [45, 46] are
not alternatives to ours.

10. Concluding Remarks

In this paper, we study influence maximization when there are vulnerable
nodes. We first propose a measure for limiting the influence to vulnerable nodes,
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which is obtained by applying additive smoothing to the ratio between the ex-
pected number of influenced non-vulnerable nodes and the expected number of
influenced vulnerable nodes. Based on the measure, we define a new influence
maximization problem that seeks to find a seed-set of size at most k that max-
imizes the measure. To solve our influence maximization problem, we propose
two greedy baseline heuristics, the SAS approximation algorithm, as well as the
ISS heuristic and two variations of it. We evaluate our methods on synthetic and
real-world datasets and show that our methods outperforms the method of [6] in
terms of effectiveness and efficiency, while the variations of ISS offer differing
trade-offs between effectiveness and efficiency.

In the future, we plan to study the ASR-Maximization problem under different
influence diffusion models. These include time-aware models, such as [47], in
which an activated node tries to influence its inactive out-neighbors after a random
delay, as well as other models in which some activated nodes do not try to activate
their out-neighbors [4].
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