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Context and goals
Common in the literature to estimate µ = E[T ] with
T = inf{t ≥ 0 : X (t) ∈ A}, hitting time of A

But what about the distribution F of T , in a rare event context?
I May be required to estimate q-quantiles (0 < q < 1) of hitting times:

ξ = F−1(q) ≡ inf{t : F (t) ≥ q}
I and the conditional tail expectation (CTE)

γ = E [T | T > ξ].

We designed two (exponential and convolution) estimators in a
regenerative context Glynn, Nakayama & T., WSC 2018

And even 3 variations not particularly producing improvements
Glynn, Nakayama & T., WSC 2020

Our Goals:

1/ Recall the exponential and convolution estimators and their efficiency
2/ Illustrate their respective power on a simple example.

B. Tuffin (Inria) Risk Measures RESIM 2021 2 / 19



Context and goals
Common in the literature to estimate µ = E[T ] with
T = inf{t ≥ 0 : X (t) ∈ A}, hitting time of A

But what about the distribution F of T , in a rare event context?
I May be required to estimate q-quantiles (0 < q < 1) of hitting times:

ξ = F−1(q) ≡ inf{t : F (t) ≥ q}
I and the conditional tail expectation (CTE)

γ = E [T | T > ξ].

We designed two (exponential and convolution) estimators in a
regenerative context Glynn, Nakayama & T., WSC 2018

And even 3 variations not particularly producing improvements
Glynn, Nakayama & T., WSC 2020

Our Goals:

1/ Recall the exponential and convolution estimators and their efficiency
2/ Illustrate their respective power on a simple example.

B. Tuffin (Inria) Risk Measures RESIM 2021 2 / 19



Outline

1 Model: regenerative process

2 Estimators
Exponential Approximation Estimator
Convolution Estimator

3 Numerical efficiency

4 Analysis on a toy example

5 Conclusions

B. Tuffin (Inria) Risk Measures RESIM 2021 3 / 19



Regenerative system

Regeneration times 0 = Γ0 < Γ1 < · · · ,
with iid cycles ((τk , (X (Γk−1 + s) : 0 ≤ s < τk) : k ≥ 1)

t

S

A

τ1 τ2 τ3 T4
Γ1 Γ2 Γ3

X (t)

τk = Γk − Γk−1, length of the kth regenerative cycle

Tk = inf{t ≥ 0 : X (Γk−1 + t) ∈ A} first hitting to A after
regeneration Γk−1

M = sup{i > 0 : Ti > τi} (# cycles before first hitting A)
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We can express

T = S + V ≡
M∑
i=1

τi + TM+1,

where the geometric sum S is independent of V .
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Rare event and exponential limit

Context: p = P(T < τ) is small (rare event)

I Model indexed by ε, rarity parameter, such that p ≡ pε → 0

Ex: GI/G/1 queue

I buffer size b ≡ bε = d1/εe
I A = Aε = {bε, bε + 1, . . . }

Ex: Highly Reliable System (HRS; HRMS in the Markovian case)

I Multicomponent system with component j failure rate λj = cjε
dj

(dj > 0)
I Repair distributions independent of ε
I Set A: states with combinations of components down.

Theorem (Renyi’s)

In the above contexts, if pε → 0 as ε→ 0, Tε/µε converges weakly to an
exponential

lim
ε→0

Pε(Tε/µε ≤ t) = 1− e−t , ∀t ≥ 0.
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Exponential Approximation Estimator Glynn, Nakayama and T., WSC’18

F (t) = Pε(Tε < t) = Pε(Tε/µε < t/µε) ≈ 1− e−t/µε

“Just” estimate the mean µε

Use the expression

µε =
Eε[Tε ∧ τε]
Pε(Tε < τε)

≡ ζε
pε

Measure-specific IS (MSIS): simulate n cycles Shahabuddin et al. (1988)

I nCS ≡ γn cycles to estimate by crude simulation (CS): ζ̂n ≈ ζε
I nIS ≡ (1− γ)n cycles to estimate by importance sampling (IS): p̂n ≈ pε

Resulting estimator µ̂n =
ζ̂n
p̂n
.

Estimator

The exponential estimator of the cdf F (t) of T is

F̂exp,n(t) = 1− e−t/µ̂n
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Exponential estimators

Remarkably, estimating the distribution is reduced to estimating its
mean.

From

F (t) = P(T ≤ t) = P(T/µ ≤ t/µ) ≈ 1− e−t/µ ≡ F̃exp(t),

we get
I ξ̃exp = F̃−1

exp(q) = −µ ln(1− q)

I γ̃exp = ξ̃exp + µ = µ[1− ln(1− q)].

Using an efficient estimator µ̂ of µ from the literature
L’Ecuyer & T., Annals of OR 2011

ξ̂exp = F̂−1
exp(q) = −µ̂ ln(1− q)

γ̂exp = ξ̂exp + µ̂ = µ̂[1− ln(1− q)]
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Convolution Estimator Glynn, Nakayama and T., WSC’18

From T = S + V , the cdf F can be expressed as the convolution

F = G ? H with S ∼ G and V ∼ H.

Exponential approximation for G when for p ≈ 0: Kalashnikov (1997)

For each t ≥ 0, G (t) ≈ G̃exp(t) = 1− e−t/η where
η = E[S ] = E[M] · E[τ | τ < T ].

Estimator (CS): Ĝexp,n(t) = 1− e−t/η̂n with η̂n =
1

p̂n nCS

nCS∑
i=1

τiI(τi < Ti ).

Estimator (IS) of H: Ĥn(x) =
1

p̂n nIS

nIS∑
i=1

I(T ′i ∧ τ ′i ≤ x ,T ′i < τ ′i )L′i

Estimator (For cdf F (t); estimators of quantile and CTE deduced)

F̂conv,n(t) = (Ĝexp,n ? Ĥn)(t) = 1− 1

p̂n · nIS

nIS∑
i=1

I(T ′i < τ ′i ) L′i e
−(t−(T ′i ∧τ

′
i ))+/η̂n .
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Estimator (CS): Ĝexp,n(t) = 1− e−t/η̂n with η̂n =
1

p̂n nCS

nCS∑
i=1

τiI(τi < Ti ).

Estimator (IS) of H: Ĥn(x) =
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Numerical example
Highly reliable Markovian system with three component types

five components of each type

15 repairmen

system up whenever at least two components of each type work

Each component has failure rate ε and repair rate 1.

With ε = 10−2
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Numerical results

Quantile estimators (CPU in sec.)
ε q Empirical 95% CI CPU Exp. Est. Exp. 95% CI CPU

0.01 0.1 (1.701e+05, 1.971e+05) 890 1.830e+05 (1.764e+05, 1.896e+05) 0.3
0.01 0.5 (1.206e+06, 1.271e+06) 890 1.204e+06 (1.161e+06, 1.247e+06) 0.3
0.01 0.9 (3.958e+06, 4.135e+06) 890 4.000e+06 (3.856e+06, 4.143e+06) 0.3

10−4 0.1 N/A N/A 1.757e+13 (1.756e+13, 1.758e+13) 0.3 sec

10−4 0.5 N/A N/A 1.155e+14 (1.154e+14, 1.157e+14) 0.3 sec

10−4 0.9 N/A N/A 3.840e+14 (3.838e+14, 3.842e+14) 0.3 sec

CTE estimators (CPU in sec.)
ε q Empirical 95% CI CPU Exp. Est. Exp. 95% CI CPU Convol.

Est.
CPU

0.01 0.1 (1.701e+05, 1.971e+05) 890 1.830e+05 (1.764e+05, 1.896e+05) 0.3 1.865e+05 0.4
0.01 0.5 (1.206e+06, 1.271e+06) 890 1.204e+06 (1.161e+06, 1.247e+06) 0.3 1.227e+06 0.4
0.01 0.9 (3.958e+06, 4.135e+06) 890 4.000e+06 (3.856e+06, 4.143e+06) 0.3 4.075e+06 0.4

10−4 0.1 N/A N/A 1.757e+13 (1.756e+13, 1.758e+13) 0.3 1.762e+13 0.4

10−4 0.5 N/A N/A 1.155e+14 (1.154e+14, 1.157e+14) 0.3 1.159e+14 0.4

10−4 0.9 N/A N/A 3.840e+14 (3.838e+14, 3.842e+14) 0.3 3.850e+14 0.4

I Very efficient
I But biased.... for small ε, it does not seem a problem in practice.
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Simple (Q + 2)-states example (discrete time)

0 1 2 · · · Q + 1

1 ε

1− ε

1 1

1

With Q = bε−wc (w ≥ 0) increasing as ε→ 0

Mixes both asymptotic regimes; what about the convergence to an
exponential?

Only two possibilities for paths of T ∧ τ .

We have p = P(T < τ) = ε and

T = 2M + Q + 1,

with S = 2M and V = Q + 1 with M number of cycles between 0
and 1,

P(M = m) = (1− ε)mε (m = 0, 1, . . . )

B. Tuffin (Inria) Risk Measures RESIM 2021 14 / 19



On the weak convergence of Sε/Eε[Sε] to an exponential

M geometric with starting value 0; E[Sε] = 2(1− ε)/ε

Sε/Eε[Sε] converges to an exponential whatever w ≥ 0.

P

(
S

E[S ]
≤ y

)
= P

(
M ≤ y(1− ε)

ε

)
= P

(
M + 1 ≤ y(1− ε)

ε
+ 1

)
= 1− P

(
M + 1 >

y(1− ε)

ε
+ 1

)
= 1− (1− ε)d

y(1−ε)
ε
e+1

= 1− e
log(1−ε)

(
d y(1−ε)

ε
e+1

)

= 1− e
−(ε+o(ε))

(
d y(1−ε)

ε
e+1

)
= 1− e−y+o(1).
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On the weak convergence of Tε/Eε[Tε] to an exponential

Recall that T = 2M + Q + 1 and E[T ] = 2(1− ε)/ε+ 1/εw + 1.

P

(
T

E[T ]
≤ x

)
= P

(
M + 1 ≤ x

(
(1− ε)

ε
+

Q + 1

2

)
− Q + 1

2
+ 1

)
= 1− (1− ε)

dx
(

(1−ε)
ε

+ Q+1
2

)
− Q+1

2
+1e

= 1− e
log(1−ε)dx

(
(1−ε)

ε
+ ε−w +1

2

)
− ε−w +1

2
+1e

.

Tε/Eε[Tε] converges to an exponential if and only is 0 ≤ w < 1.

Basically, the exponential approximation to T = S + V is valid when V is
negligible compared to S .
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Plots of CDFs

IS: replacing transition probability ε from state 0 to state 1 by α = 0.5.

With ε = 0.0001 and w = 0.5 (left) and ε = 0.1 and w = 2 (right)
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The convolution estimator is the only one always matching the true
distribution.
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Conclusions

Rare-event estimation often focuses on determining a mean

But other measures are of interest: quantiles, conditional tail
expectation, etc.

For rare events, not so many existing techniques

We have described two estimators making use of an exponential limit
for regenerative systems.

The convolution estimator is
I more robust to asymptotic settings
I and expected to be less biased.

Thank you!
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