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Abstract

We develop a fictitious domain method to approximate a Dirichlet problem on a domain with small
circular holes (simply called a perforated domain). To address the case of many small inclusions
or exclusions, we propose a reduced model based on the projection of the homogeneous Dirichlet
boundary constraint on a finite dimensional approximation space. We analyze the existence of the
solution of this reduced problem and prove its convergence towards the limit problem without holes.
We next obtain an estimate of the gap between the solution of the reduced model and the solution of
the full initial model with small holes, the convergence rate depending on the size of the inclusion and
on the number of modes of the finite dimensional space. The numerical discretization of the reduced
problem is addressed by the finite element method, using a computational mesh that does not fit
to the holes. The approximation properties of the finite element method are analyzed by a-priori
estimates and confirmed by numerical experiments. elliptic differential equations, small inclusions,
asymptotic analysis, approximated numerical method

1 Introduction

Many engineering problems involve domains with small holes, for example for the description of mechan-
ical components with screws or bolts, for the modeling of heating or cooling systems by arrays of pipes,
for the description of fluid-particle interaction, just to mention a few examples. Although the solution
of partial differential equations (PDEs) on such domains is well understood, some challenges remain for
the application of well known numerical discretization techniques, such as the finite element method,
especially for the case of domains with many holes of small size. In such cases, a tradeoff between com-
putational complexity (including the pre-processing phase where the CAD model and the computational
mesh is generated) and accuracy of the results must be established. Several methods such as penalty
methods, Nitsche’s method, Lagrange multiplier methods have been proposed for addressing boundary
conditions at the discrete level, see for example [1] for a review and [2, 3, 4, 5, 6] for a non exhaustive
list of specific examples, which may represent a starting point for discretizing problems on domains with
holes. We have been inspired in particular by the fictitious domain methods [7], where a distributed
Lagrange multiplier is applied to impose the Dirichlet boundary conditions on the hole, while using a
regular unfitted grid for the finite element discretization of the problem. Although this method finds
its primary application in fluid-particle interaction problems, this technique has been studied also for
Dirichlet problems governed by elliptic equations [8].



From the standpoint of the numerical analysis, fundamental questions arise about the stability [9],
the error analysis [8] and the numerical solution [6, 10] of the proposed approach, which will be partially
addressed here. From the standpoint of mathematical analysis, this work is also related to the ones
on the analysis of the asymptotic extension of the Green’s function around small perturbations [11, 12]
which enables the computation of numerical solutions based on the problem without inclusion {13, 14, 15].
From the point of view of applications, this work is a first step towards the formulation of coupled three-
dimensional (3D) and one-dimensional (1D) models, in the framework of 3D-1D mixed-dimensional PDEs.
In this perspective, the present work addresses the simplified case of 2D-0D coupling. Several works by
the authors and co-workers have already addressed these topics. For example, the present work can be
regarded as an extension to the case of Dirichlet constraints of [16], where Robin boundary conditions
on holes were considered. The Robin-Neumann interface conditions on small cylindrical inclusions has
been later studied in [17] for 3D-1D mixed dimensional PDEs. Also Dirichlet-Neumann conditions were
later addressed in [18] in a similar modelling context. The present study extends the previous works to
a higher level of generality, as it will be explained later on.

In this work, we propose a new fictitious domain formulation that is particularly suited for modeling
small circular holes (also generally called inclusions). We combine the fictitious domain technique with
the idea of representing the holes as concentrated sources. It is well known that the latter approach gives
rise to ill-posed problems in computational mechanics, see [19] for a thorough discussion on these issues,
but it may still provide some answers at the level of numerical discretization. We look for a compromise
approach where the treatment of boundary conditions on the holes is simplified, but the mathematical
soundness of the problem is preserved. In this spirit, we name our approach as a reduced model.

Let Q be a convex polygonal domain of R? and w, an inclusion of size € defined for € > 0 by

We = EW

with w = B(0,1) the open ball of center 0 and radius 1. We denote the complementary of w. in
by Q. = Q\w:. We assume that w; < ), this assumption is easily verified for € small enough. Let
¢ € H2(09) and f € L2(Q) be the boundary and volume data of the following Poisson problem:

—Au. = f in Q.
Ue = ¢ on 0€2, (1.1)

u: =0 on Owse.

We also require that 0 ¢ suppf or equivalently that for € small enough w. n suppf = . This is a
standard [12] but crucial assumption to ensure that the solution of (1.1) is harmonic in the neighborhood
of the inclusion.

As previously pointed out, the numerical approximation of Problem (1.1) usually requires to use a
computational mesh that conforms to the holes and this can be computationally expensive, especially
in the case of many inclusions of small size. In our study, the model reduction approach mainly relies
on the approximation of the homogeneous Dirichlet condition on the hole by a finite number of scalar
constraints. As we will see, this operation will lead to the definition of a family of problems where, in the
N problem, we impose 2N +1 scalar constraints on dw,. For this family of problems, the implementation
of the numerical approximation does not need to resolve w. and the corresponding solutions represent a
good approximations of u. when € tends to 0. This setting also makes it possible to choose any balance
between accuracy and model complexity, giving rise to a computational framework that is extremely
flexible. These features represent a significant improvement with respect to the previously published
works [16, 17, 18| in the context of the approximation of 3D-1D or 2D-0D interface conditions.

We now present the organization of our article and the main results obtained. After introducing the
reduced approach in the next section, we focus in Section 3 on the analysis of the reduced problem. We
prove that the reduced problem is well posed, with a particular attention to the influence of the essential
parameters that characterize our approach, such as the dependency with respect to the size of the hole or
the number of approximation modes. We also study the limit case of vanishing inclusions, showing that
both full and reduced problems converge to the problem without inclusions as ¢ — 0. Most importantly,
we prove that the difference between the solutions of the reduced problem and of the full problem converges
to zero as € goes to zero and this convergence is exponential with respect to the number of modes V.
In other words, we derive estimates of the reduced model error which show that the convergence rate
to the full problem can be made arbitrarily fast, by suitably choosing the number of modes (the precise



statement is given in Theorem 3.6). Finally in Section 4, we address the numerical discretization of the
reduced problem by means of the finite element method. In the spirit of the fictitious domain approach,
we privilege the discretization on grids that do not fit with the inclusion. In this case, we derive error
estimates for the finite element method. As a result of the lack of regularity of solutions, the convergence
rate of Lagrangian finite elements is sub-optimal. We also identify suitable conditions under which the
expected optimal accuracy is restored. These results are illustrated by numerical experiments.

2 The Poisson problem in a perforated domain

2.1 Notation and first results

Throughout the paper, for a Lipschitz domain D in R™, we will use the classical notation (-, ) for the
inner product on L%(D), more generally, for an Hilbert space X defined on D, (,-)y denotes the inner
product on X. For a vector space V defined on D, we denote by V' its dual space and (-, )y is the
pairing between V/ and V. For 1 < p < o0 and m € N, the standard notation W#™ (D) is used to denote
the Sobolev space of functions on D with all derivatives up to the order m in LP(D). In the specific case
p = 2, we denote W2™(D) by H™(D). For o a multi-index such that |a| < m, the differential operator
D* is defined for f e H™(D) by
o“f
DYf = ————.

! oxTt ... dxyr
If we equip H™(D) with the scalar product

(.?')m,D = Z (Da'vDa')’Da (21)

lal<m

then H™ (D) is an Hilbert space. We write | - |,,,p the norm on H™ (D) arising from the scalar product
(2.1). We can generalize the definition of H™ (D) to all m € R. To do so, for 6 € (0,1), we introduce the
semi-norm [-]g p defined for f € L?(D) by

(J J, St dyf'

Let s > 0, if we set 0 = s — |s|, the space H*(D) is then given by

HA(D) = (£ KDY | sup [D"flop < 0}
The space H*(D) is a reflexive Banach space for the norm

op= HfosJ,D + Z [D*f15 -
lae=]s]

We have in particular for s = %,

171 = 17 Bo + 713 o (2.2)

For s > 0, the space H§(D) denotes the closure of Ci°(D) functions in H*(D). In the particular case of
the space H}(D), it is equal to the set {u € H}(D) | Topu = 0} where, for S a Lipschitz subset of D of
co-dimension one, Ts : H'(D) — Hz2(S) is the trace operator such that Tsv = v|s if v is regular enough.
The space H*(D ) for s < 0 is defined by H*® = (Hy®) .

In all the paper, C' will denote the constant of a generic upper bound a < Cb assumed to be inde-
pendent of the variables of the inequality and of the mesh size h, the size of the hole € and N which
characterizes the number of scalar constraints considered to approximate the homogeneous Dirichlet con-
dition on the hole. This generic upper bound being not necessarily the same from one occurrence to
another. When it is necessary, its dependency on some parameters will be made precise, for example, if
C' depends on a domain D, we will write C(D).

We now introduce some preliminary lemmas useful in the following sections and a first result on the
asymptotic behavior of u. when ¢ tends to 0.

The first lemma is a stability result on the behavior of the solution of the Poisson problem with a
small inclusion of size € > 0. As a reminder, the domain w denotes the unit open ball centered at the
origin.



Lemma 2.1. For ¢ € H2(0Q) and f € L*(Q) such that w. nsuppf = &, Problem (1.1) admits a unique
weak solution in H'(Q.). Moreover there exist constants C > 0 and p > 0 such that for all 0 < € < p,

el < C (I8l 00+ | floc)

with C independent of €.

The second lemma describes the behavior of the solution of the Poisson problem with a constant
Dirichlet boundary condition on Ows.

Lemma 2.2. For any L € R, the problem

—Av. =0 inQ,,
ve =0 on 011,
ve = L on 0w,

admits a unique weak solution in H'(€.). Moreover, there exist constants C > 0 and p > 0 such that for
all0 <e < p,

|vell1,0. < C(~log())~|L],
with C' independent of €.

The third lemma describes the behavior of the solution of the Poisson problem for a general Dirichlet
boundary condition on dwe.

Lemma 2.3. For any ¢ € Hz (Owe), the problem

—Av. =0 inQ,,
ve =0 on 011,
Ve = ¢ on 0w,

admits a unique weak solution in H'(€.). Moreover, there exist constants C > 0 and p > 0 such that for
all0 < e < p,

[vello. < Cle(ex)]y ows

with C independent of €.
For the convenience of the reader, the proofs of Lemma 2.1, Lemma 2.2 and Lemma 2.3 are given
in the Appendix. They are based on the results presented in [[20], Appendix A-D] themselves described

in [[21], Chapter 3| .
Let us now consider ug € H'(Q) the unique solution of

—Aug = in
up = f in Q, (2.3)
Uy = ¢ on 0€).
The function ug satisfies the following standard energy bound:
uolve < O (I8l3,00 + [7l0a) (2.4)

Problem (2.3) represents the limit case of Problem (1.1) for ¢ — 0. The following result gives the rate of
convergence of u. towards ug, namely an estimate of the difference u. — ug with respect to e.

Theorem 2.1. For ¢ € H%(GQ) and f € L?() such that w. N suppf = &, there exist constants C > 0
and p > 0 such that, for all 0 < e < p, the solution u. of Problem (1.1) satisfies

O,Q) )

[ue —uof1.0. < C(-log(e)) > <||¢H%,aﬂ + 171

with C independent of ¢.



The result presented in Theorem 2.1 is a classical result which can be seen as a consequence of the
fact that the H'-capacity of w. tends to 0 as (—log(¢))™!, see for example [22] for a discussion about
capacity. For the sake of completeness, we also present a proof of Theorem 2.1 in the Appendix.

Since the solution of Problem (1.1) tends to the solution of Problem (2.3) when ¢ — 0, to approximate
Problem (1.1), one may consider the limit problem without inclusion. In other words, one could just
ignore the presence of the inclusion. However, Theorem 2.1 shows that the convergence is very slow
with respect to the size of the inclusion. To give an idea, (=log(¢))~2 ~ 0.201 for ¢ = 1070, For this
reason, we introduce and analyse a family of problems whose solutions can approximate u. better than
ug, with an arbitrarily high accuracy when ¢ — 0.

Remark 2.1. We consider in this paper a circular obstacle centered in 0 with homogeneous boundary
conditions on Ow. but all the results can be generalized to an obstacle centered in z for all z € R? with
arbitrary constant boundary conditions on dw.. This construction is also easily generalized to multiple
perforations, provided that they do not intersect and do not intersect the support of f.

2.2 A reduced model for the boundary condition on the inclusion

To derive a family of reduced problems, we will first consider a weak formulation of Problem (1.1) where
the constraint on the boundary dw,. is imposed by a Lagrange multiplier. Problem (1.1) can be written:
find ue € H'(9).) and A. € H™2(dw.) such that

(Vue, Vo) + </\E,v>_%7aw5 =(fiv)q,, Yve HY(Q.),
<M7u8>—%,aw5 =0, Ve H_%(awe)v (2.5)
ue — ¢ =0, on 0,

where (-,-)_1 5, denotes the pairing between H ~2(0w,) and H? (dw.). We now apply a model reduction
method to Problem (2.5) based on the hypothesis that € is very small.

The first assumption consists in identifying the domain 2. with the entire domain 2. As a consequence,
we suppose that for u,v e H(),

(u,v)QE ~ (u,v)q - (2.6)

Let us note that this assumption alone is equivalent to extending the solution u. to the whole domain 2
by zero and this extension satisfies

{—Aue =0 in we,

u: =0 on Owe.

In particular, the solution of Problem (2.5) with assumption (2.6) remains unchanged in {2..

For the second assumption, we replace the trace equality on dw. by an approximation of the trace
operator on 0w, thanks to a projection operator in a finite dimensional space. This space will approximate
the trace space H 3 (Owe). To describe this space, we take advantage of the circular geometry of the hole
boundary and switch to cylindrical coordinates, that is for r € R™ and 6 € [0,2n[, if u is a function
defined in © and x = (cos(0),sin(d)), we write u(rx) = u(r,0). In particular, if x = (cos(#),sin(9)), for
6 e [0,2n[, we have u(x) = u(1,6). We then consider the space .#Z” of trigonometric polynomials of
degree less than or equal to N given by

N
MY = {ve L*(0w) | v(x) = ag + Z (an cos(nf) + b, sin(nh)), for a. e. x € dw,
n=1
with (an)osnsN € RN+1, (bn)lsnsN € RN}
The space .# " is seen here as an approximation space of L?(dw) but by rescaling we will see that it can
also be used to obtain an approximation space of L2(dw,) and H?2 (dw,).

We then denote by IV : L?(0w) — .#™ the L? projection on .#Z" given by

(MM u, v) a0 = (u,v)ow, Yu € L2(0w),Yv € 4N . (2.7)



We have for u € L?(0w) and 6 € [0, 27, if x = (cos(f), sin(6)),
N
(TN w)( Z ar, cos(nf) + by, sin(nh)),

where a,, and b,, are the n!* Fourier coefficients of u satisfying for n € N*,

27
—— 1
a0 = 5 . u(1,6)de,
1 27
ap = ff u(1,0) cos(nd)da,
T Jo

1 27
by, = *J u(1, 6) sin(nd)dé.

T Jo
Based on these notations, we introduce the following operators

A" L*(0w) - R A"(u) = ap, forneN,

2.8
B": L*(0w) - R B"(u) =b,, forneN* (28)

The next theorem justifies the good approximation properties of .Z”~ on L?(dw) and allows the intro-
duction of the Fourier series decomposition, see for example [23] for more details on this topic.

Theorem 2.2. Let u be a function of L?(6w) and IIYV be the operator introduced in equation (2.7), we
have
|lu — TN uo,00 — 0 as N — oo,

2 b2
Jim —2 oy o)) =
im [0V0f3 w(ao+2( +2)>

with for all1 <n < N, ag = Ay, a, = A™u, b, = Bu.

and

We have in particular that any function u € L?(0w) verifies, for 6 € [0, 27[, if x = (cos(8), sin()),
e}
= Z (@, cos(nb) + by, sin(6)),

with for all 1 < n < N, ag = A%, a, = A™u, b, = B*u. This decomposition is usually called the Fourier
series decomposition of u and (a,, cos(nf), b, sin(nf)) are the n'* Fourier modes of u. A consequence of
Theorem 3.3 is the stability of the operator IV on L?(ow).

))-

In our case, the space we want to approximate is H2 (dw). Since Hz(0w) — L?(dw), the elements of

H?z(0w) also admit a Fourier series decomposition. The norm usually employed on Hz(dw) is | - | 10w

Corollary 2.1. Let u e L?(dw),

I ull§ 5, = 27 (ao + Z (

with for all1 <n < N, a9 = A%, a, = A™u, b, = B"u.

w‘ﬁo
w\ﬁ%

defined in (2.2), however here we introduce a more suitable auxiliary norm | - | 1 6w O Hz (Ow) depending

,0w

on the Fourier coefficients and defined for all v € H2 (dw) by

2

0
v;,aw_< 2 1+mn) a +b,21)> ,



with for all 1 < n < N, ag = A%, a,, = A"u, b, = B"u. We have in particular

2

N
], ., ( NI ba>)
n=1

Both norms | - [|1 5, and 111 4, are equivalent on Hz(0w) (see [[24], Lemma 2.4.5] for example),
: 1 e
implying in particular that the norm | - || 100 18 well defined. Using the Fourier norm on H 2 (w) and the

equivalence result on the norm | - |1 5, and | - ||1 5,, we immediately obtain some stability properties on
: 3

IV described in the following proposition.

Proposition 2.1. For u e H2(dw) we have,

There exists a constant C' > 0 such that for u e H? (0w),

N uly 5, < Clluly .

with C independent of N.

Next we rescale these spaces to further define appropriate norms and approximate spaces of L?(dw.) and
Hz(0w.). Let ¥, : L?(dw.) —> L2(dw) defined, for all v € L%(dw.), by

U, (v)(x) = v(ex), for a. e. x € dw, (2.10)
in particular, U, satisfies
U (L?(0we)) = L*(0w),

and
U (H? (0w.)) = HE (dw).

We set, for € > 0,
///EN ={ve Lz(aws) | U .(v) € ///N},

and we define the operator 1Y : L2(0w.) — .#XN (vesp. A" : L?(0w.) — R and B : L%(dw.) — R) by
m¥ =vtomV oW, (2.11)

(resp. A" = A" o U, and B" = B" o ¥.). Note that .Z~ is equal to

N
MY = {ve L (0w.) | Uo(v)(x) = aco + Z (@e,n cos(nb) + b, sin(nd)), for a. e. x € dw,

n=1

with (as,n)OgnéN € RN+17 (bE,’ﬂ>1<’ﬂ<N € RN}7

and for v € L?(dw,), for 0 € [0, 2n[, if x = (cos(#),sin(f)) € dw,

N
(HN o U )(v)(x) = aeo + Z (@e,n cos(nb) + b. , sin(nd)),

n=1
with a. o = A%, ac,, = A%, b. ,, = BMv. We then consider the following norm on L?(dw:),
[vllo.e = 1¥e(®)lo.00,

and the associated scalar product (-,-)_ is defined by a rescaling of the scalar product (-,-),, in L?*(dw)

as

€

(1, 0). = (We (), Ue(v))gy, -

Due to the definitions of IIY and the scalar product on L?(dw.), we have the following proposition on
.



Proposition 2.2. The operator Hév is auto-adjoint for the scalar product (-,-)., that is, for any v €
Hz (0w,) and pe AN,
(1, 11N 0) = (¥ ) = (p,0)e.

In a similar way, on the space H2z (Ow.), we consider the rescaled norm
ol = 1)l 5 00

We also set H%ﬁ the norm on H? (dw,) defined by

Wl . = Tl o

Let us note that for all v € L?(dw.), we have

N, 12 2 o (a2 b2 2 2 SN EE b2
e,n e,n emn &,n

X ol =2m | a2o+ 3 | 5"+ 5" ) | and Jold. =2m (020 + 3 | 5" + = (2.12)
n=1

and if v € H? (0w, ),

N 0
— 9 —
[TINv| 1e= ag’o + Z (1+n) (ag’n + bgn) , and H'UH%,E = aZO + Z (1+n) (a?yn + b?n) (2.13)

n=1 n=1

with ac o = A%, ac , = A%, b. ,, = BMv. Since the norms | - I1 0., and H%,(%J are equivalent, the norms
Iy, and || 1 - are also equivalent. Moreover, since the constants appearing in the norm equivalence
are the same as the ones appearing for || - |1 5, and -1 1 o> they are independent of e. Thanks to the
last remark, equations (2.12) and equations (2.13), we can deduce some stability properties on Hév for

the L2 and H? rescaled norm described in the following proposition.

Proposition 2.3. For u e L?(dw.), we have

[T ufo.e < [ul

0,e-

For ue H2 (dw,), we have

[T

< ul

1.

1
3,€ €

M

There exists a constant C > 0 such that for u e H? (dw.),

I ully o < Clully .,

with C independent of N and ¢.

Now, taking into account the hypothesis that ¢ is small, for u € H*(£2.), we will substitute the constraint
Tow.u =0 by

Y o Tau,.u = 0, (2.14)

and look for a solution in
VN = {ve HY(Q) | T o Tau.u = 0}.

In other words, instead of imposing u equal to 0 on dw,, we just impose this constraint to its first (2N +1)
Fourier coefficients. In particular, for N = 0, the space .#." is the space of constant functions on ow.
and the constraint (2.14) is equivalent to substituting the trace constraint by a constraint on the average
of u on dw,.

From now on, we set 75 : H'(Q) — .#X the operator defined by T} = IIY o Ta,, and we
denote by ul¥ the solution of the reduced problem obtained under the assumptions (2.6) and (2.14). The
Lagrange multiplier \. is also approximated in .#Z¥ by a function A corresponding to the Lagrange
multiplier associated to the constraint (2.14). The space .2 is this time seen as an approximation space



of H™2 (dw.) equipped with the duality product (-, )1 - and the norm |- _ . defined for A € H™2 (0w,)
and p € Hz (0w.) by

,€

Oy

[N

Oy o= O s 0 and [Al_y .= sup (2.15)

EEH%(&U&) ”H‘

yE€

[N

Let us note that the duality product {-,-)_1 . verifies in particular for A € MY < L?(0w.) and p €
Hz (0w,),
-1
<)‘7ﬂ>7%,5 =€ ()‘>H)aw€ = ()‘7H)5'

The resulting reduced problem writes: find u € H1(Q2) and \Y € .#% such that

(VuéV,Vv)Q—F ()\év,’fajxgv)s = (f,%lxiv)n, Vv e HE(Q),
p Tay ul) =0, Ve AN, (2.16)
ul —¢ =0 on 09).

Let us note that the second equation of Problem (2.16) implies in particular uYY € V. Moreover according
to Proposition 2.2, we have for v € H}(Q) and p e .Z¥,

(Aé\[’?delxsv)e = ()\év’v)e and (N’%]xsué\[)s = (’u7ué\[)s’

as a consequence, we can omit the operator 7'5{\55 in the writing of Problem (2.16), what we will do from

now on. Eventually, notice that Problem (2.16) can be formally written in strong form: find v € H*(Q)
and \Y € .#Y such that

—Aul +e7\Vja,. = f  in Q,
Taﬁfsuév =0 on Owe, (2.17)
ull = ¢ on 02,

€

where the distribution vdg.,, is such that for all ¢ € C3°(2), (véow., Vo = (v, ¥)_1

3 Analysis of the reduced Poisson problem

3.1 Auxiliary results

Before studying the well-posedness of the reduced problem (2.16), we introduce some preliminary general
results that will be useful in what follows. Let D be a domain in R? and S be a Lipschitz subset of D of
codimension 1.

Theorem 3.1 (Poincaré inequality). There exists a positive constant Cp(D) such that for any v € H}(D),
[vllo.> < Cp(D)|V]o,p-

Theorem 3.2 (Trace theorem). For n > 0, there exists a positive constant Cr ,(D,S) such that for any
ve H2t1(D),
|Tsvlns < Crn(D,S)|v]l 3 4,0

For the next theorem, we introduce X an Hilbert space and @ a reflexive Banach space, a : X xX — R,

b: @ x X — R two bounded bilinear forms and ¢: X — R, d: @ — R two bounded linear forms. We
consider the problem: find u € X and A € Q such that

{a(u,v) +b(Av) =c(v) YveX, (3.1)

b(p, u) = d(p) Ve Q.

This problem has a so called saddle-point structure, the proof of its well-posedness relies on the following
theorem, see [25].



Theorem 3.3 ("Inf-sup" condition). Under the following conditions

Ja>0,Yve X, a(v,v)=alv%,

3.2
38 >0, infsupMZ ) 32
neQvex plqlvlx

the saddle-point problem (3.1) is well posed. Moreover we have the following estimates on u and A:

lulx < o™ el + 8711+ a™ al)|d], (3-3)

and

Mo < 87 (el + llallulx)- (3.4)

We now consider an extension of this theorem to the twofold saddle point problem discussed for
example in [26]. For the convenience of the reader, the proof of the following theorem is given in the
Appendix.

Theorem 3.4. Let Q1 and Q2 be two reflexive Banach spaces, a : X x X — R, by : Q1 x X — R,
ba : Q2 x X — R three bilinear forms, di : Q1 — R, da : Q2 — R two linear forms, we consider the
twofold saddle point problem: find (u, A1, A2) € X x Q1 x Qo such that

a(u,v) + b1 (A1,v) + ba(Ae,v) = c(v), Vve X,

bi(pr,u) = di(p), Vi € Q1,

ba(p2,u) = da(p2), Yo € Q.
Let

Zp, i={ve X |bi(p,v) =0V, e @i} cXi=1,2.

We suppose that conditions (3.2) are satisfied with Q = Q1 X Q2 and

b: (Ql X Qz) x X —->R b(l:/\l,)\z],u) = bl()\lau) + b2()\27u).
We also suppose that there exists B1 > 0 such that for all A1 € Q1,

sup b1 ()\1, ’U)
vezy, |vlx

= PilMles (3.5)

and that there exists B > 0 such that for all As € Q2,

ba (A
sup 2(A2, )

———= =[] Xalq.,- (3.6)
vezy, Ivlx

Then we have the following estimates on u, A1 and As:

lulx < a7 el + BT (1 + o al)dafl + B3 (1 + a7 al)d2,

and
Ml < B el + lallulx), IX2lq, < B2 (el + lalulx).

3.2 Well-posedness of problem (2.16)

To study the reduced problem, we introduce e = ul — ug where ug is the solution of (2.3). Then

eN e H(Q) and \Y € 4N satisfy

(VeéV,VU)Q + (/\év,v)s =0, Yve HiQ),
(u,eév)g = —(p,u0), , Vue #XN.
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We also introduce the space .#™V* defined by

N
MNF = {ve L(0w) | v Z an cos(nd) + b, sin(nd)), for a. e x € dw,

n=1

Wlth (an>1sns]\] € RN and (bn)ISnSN € RN},

and

MNF = {ve L (0w.) | Ue(v) e N*Y,

where W, is defined by (2.10). We further define the operators IIY* = W-! o [TV:* o U_ and 7:3]15* =
Y:* o Ta,. where IIV:* is the L? projector on .#N-*. For revealing the scaling of eX with respect to
g, we need to reformulate Problem (3.7). It is straightforward to show that there exists a unique pair
AL NN#Yy e 0 x N such that
AN = A0 4 AN

We then deduce that Problem (3.7) is equivalent to: find el¥ € H}(Q) and (A2, \N*) e 40 x #N-* such
that

(Vel, V), + (A2,0)_+ (\V*,0)_ =0, Yve Hi(Q),

(,U'Oa = )E = - (MO?UO)E ) VNJO € %507 (38)

(;U'Ny*veév)g = - (/’LN1*7U‘0)5 ) vFLN,* € '%EN,*'

This is a two-fold saddle point problem that can be analyzed using Theorem 3.4.
This section is devoted to the proof of the well-posedness of Problem (3.7) which is established in the
next theorem.

Theorem 3.5. Problem (3.7) is well-posed in H}(Q) x AN . Moreover there exist constants C > 0 and
p > 0 such that for all 0 < e < p,

10 < C(-10g(@))"* (16l 00 + Iflo) (3.9)

O,Q) )

e C(1og() 7 (16l 00 + 1/l0g)

e

and

IX_y.. < C(~log(e)) ™ (

A2
with C independent of N and ¢.

(3.10)

This theorem shows that the proposed reduced problem converges towards the problem without holes
and that the order of convergence with respect to € is the same that the rate of convergence of the solution
of the full problem, see Theorem 2.1. Moreover the norms of the two Lagrange multipliers, associated
to the constraints on the average and on the higher moments, converges to zero as € goes to zero. This is
not surprising since the obstacle disappears in the limit. To prove this result, we first need the following
three lemmas. The first lemma states a trace like estimate that gives an explicit dependency of the trace
continuity constant according to the size ¢ of the hole.

Lemma 3.1. There exists a constant C > 0 such that for all ve H (),
[vly e < Clvlhe.,

with C' independent of . In particular if ve HY(Q), we have

lolly e <

with C' independent of €.

Proof. According to [[27], Section 4.1.3], if we consider the norm defined for v € H? (dw.) by

Wy = et s (3.11)

11



then the norm ()1 5, and the norm |- |1 _ are equivalent independently of €. By definition of the norm
()1 ow, given in (3.11), we then have, for all v e HY(Q.),

1
Sl e < @y, <

v

snbg )

with C independent of . O

In the next lemma, we build a lifting of functions in Hz (dw.) over the whole domain . Such lifting
is endowed with a norm that only depends on | - | e

Lemma 3.2. There exist constants C' > 0 and p > 0 such that for any p € H%(ﬁwg), there exists
v, € HY(Q) satisfying v. = W on dwe and for all 0 < e < p,

< Clply e (3.12)
with C independent of €. Moreover, if u is constant on dwe, then
lvelh0 < C(—log(e)) "2 (3.13)

with C' independent of €.
Proof. Let p € Hz(0w.) and let us consider the problem: find v, € H}(Q) and A, € H~ 2 (dw.) such that

(Vys, V’U)Q + <)‘s> a> Owe T 0, Yve H(% (Q)7

0291 g, = <u,g>,%,aws7 Ve H % (0w.), (3.14)
ve = 0, on 0f).

By applying the inf-sup theorem, we can prove that (3.14) is well-posed, see [28] for a discussion about
this problem. Moreover v, satisfies

—Av, =0 in Qq,
—Av, =0 inuw,
v, = p on Owe,
v, =0 on 0€2.

We are now left with the estimates (3.12) and (3.13). To show them, we will consider v_ separately on
Q. and on w.. According to Lemma 2.3, for ¢ > 0 sufficiently small,

lvclhe. <

If p1 is constant on dw., then according to Lemma 2.2, for € > 0 sufficiently small, we have
1 1

lvcli0. < C(—log(e)) "2 |u = C(—log(e)) >

Next we look at the estimate on w.. Since u € Hz (0w,), p can be written for 6 € [0,2~[, if x =

(cos(6),sin(0)) € ow,

e}
p(ex) = az o + Z ey, cos(n) + be p sin(nh)) .

As v, is harmonic in w,, by the method of separation of variables, we have for 0 < r < e and 6 € [0, 27/,
if x = (cos(0),sin(0)) € dw,

v (rx) = aco + i (g)n (@e,n cos(nb) + be ,, sin(nh)) .

The proof of this expression can be found for example in [29]. We then deduce by orthogonality of the
basis functions sin(nf) and cos(n#) that

0]
\|y5|\§,w5 = a§707r52 + 2 re 2 (ain + bzn) L rtldr = o2 07rs + &2 Z 57D (a2 + bgn) ,

n=1

12



and

1 Ov, J- —on_ 2/ 2 2 © one1 N 2 2
Iy G e = 15 e, = X7 282, e = 3 2 ).

n=1

so for € > 0 sufficiently small,

el o, = l2el3

0
—2
+Vol3,, <C ( £ (n) (a2, + bi,n)> = Tl < Clul3 .
n

with C' independent of €. Similarly, in the case where p is a constant, ac, = b, = 0 for all n > 1, and
we deduce a more accurate estimate,

< Celpfo,e
with C' independent of €. We conclude the proof of the lemma noticing that

Nl=

locle = (Jueliw. + l2:li g.)

O

The next lemma addresses the trace of the solution of the limit problem on the boundary dw. and in
particular it details its behavior with respect to the radius ¢ of the inclusion.

Lemma 3.3. Let ug be the solution of Problem (2.3). There exist constants C > 0, p > 0 and T > 0
such that for all0 <e < p <Y, for allne N,

3o <Cet (lol

o] +1B2uol < € (=) (19l

o) AT ),

Proof. Let us consider T > 0 sufficiently small such that suppf nwy = . Such a T exists since we have
assumed that suppf nw. = J for € > 0 sufficiently small. The function u( is harmonic in wy, so by the
method of separation of variables, we have for 0 < r < T and 6 € [0, 27[, if x = (cos(#), sin(f)) € dw,

and

1T uollye < € (

with C independent of n, N and €.

[ee]

uo(rx) = Ay o + Z (Ay p cos(nd) + By, sin(nf))

with
AT,O = -AO’I‘ Uo,

A’r7n = WA%’LLO, Vn = 17
1
BT,n = WBZII'U'O? Vn = 11

where A% and B% are defined on HJ () in a similar way as A? and B?, see (2.8). We deduce that, for

al0<e < T,
€

[AZuo] = " Aral = (5) [Afuol-
Using Cauchy-Schwarz inequality, we then have

|AYuo| < |dwr[™2

Thus we get that, forall0 <e < T,

—1(E\"
|A?U0|<|aw’r| 2 (¥> HUOHO,(%JT'

Moreover, according to Theorem 3.2 on trace inequality, we have

luollo,owr < lluoll 1 o

< Cp 1 (wr, dwr) < Cp, 1 (wr, dwr)|uof1,0.
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Eventually, thanks to energy estimate (2.4), we get

9

Aol < € ()" (I

Lo0 + ]

and similarly,

o)
Bruol < € (2)" (191,00 + 1700

with C' independent of n, N and e. This concludes the proof of the lemma. O

Proof of Theorem 3.5. We will verify the assumptions of Theorem 3.3 to prove that Problem (3.7) is
well-posed. First, we set X = H}(Q), Q = .#2 and also define the following linear and bilinear forms:

a: H}(Q) x H}(Q) = R a(u,v) = (Vu, Vo),
b: N x Hy(Q) =R bp,u) = (p,u),

c: HY(Q) >R c(v) =0,

d: AN >R d(p) = = (1, uo). -

Let us note that for the sake of simplicity, we have deliberately omitted in the notation of b and d their
dependency in N and e. In addition, to verify the assumptions of Theorem 3.3, we will also need to
specify the dependency of the coercivity and the inf-sup constants (which will be denoted respectively
by oY and BY and which are defined by (3.2)), as well as the dependency of the norm of a and b with
respect to €, to obtain the desired estimates (3.9) and (3.10).

First, we notice that the forms a and b are bilinear and the function forms ¢ and d are linear and
bounded. The coercivity of a is a direct consequence of Lemma 3.1 on Poincaré inequality. Indeed, for
u € Hy (),

[ulf o (1 + Cp(Q) 72 < [Vulf o = alu, ).

As for the continuity property, it directly comes from Cauchy-Schwarz inequality: for all u,v € H}(Q),

la(u, v)| < Jul1,alv),0-

So a satisfies the first condition of (3.2) with o > (1 + Cp(2))~2, and the continuity bound of a is
a| <1.
l Let us now prove that the bilinear form b is bounded. By definition of the norm | - ||_1 _, for all
ue HY(Q) and pe 4N,
b, w)| = [ (o w) | < [l g clully e
According to Lemma 3.1, we have
lull1e < Clulio-

So we get that b is bounded with a bound independent of N and €. We are left to prove the inf-sup

condition. It consists in proving that there exists Y > 0 such that for all p e .ZN,

([L,'U)E
1,Q

)

sup

B e A
0

According to Lemma 3.2, for all u € H? (0w.), there exists v_ € H} () such that v, = 4+ on 0w, and for
€ > 0 sufficiently small,

lvelie < Clpl s o
We deduce that, for all pe .#ZN,
(1,0). L(mp), 1
sup > sup —=-—""52=—|pl_:,, (3.15)
Clly. ~ ClMl-e

€

Nl

UEHOI(Q) HUHLQ EEH%(E‘UE)

with C independent of N and . We conclude on the well-posedness of Problem (3.7) using Theorem
3.3 with oY = a and Y = 8 where a and 3 are independent of N and e. Besides, a is bounded
independently of € so according to (3.3) and (3.4), for £ > 0 sufficiently small,

e

Lo < C|Ta uoll s
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and
A1 < Clel|

1,9,

with C independent of N and e.
To prove estimates (3.9) and (3.10), we will apply Theorem 3.4 to Problem (3.8). We set Q; = .Z7,
QQ = /%EN’* and
by: A2 x Hy(Q) >R bi(po,u) = (po, ).,
by o MNF x HHQ) - R bo(pin,s,u) = (UN, 1),
dy: M0 —TR d(po) = — (po, uo). 5
dy 2 M - R d(pn ) = — (UN %, uo), -
The conditions (3.5) and (3.6) directly come from the inf-sup condition (3.15) which gives that: for ¢ > 0
sufficiently small and for all uy 4 € #N* and g € .42, we have

(e v), 1
sup A Te 5”#1\1,* |_%)E’
veH(Q), T3, v=0 lvl10
and ( | 1
Mo,V
sup v Ve > 6”/110”7%’57
very (@), T *0=0 V10

where C' is independent of N and e. However we can improve in this last estimate the constant that
appears in the right hand side. Indeed for ug € .Z2, according to Lemma 3.2, there exists v_ € H}(Q)
such that v, = pp on dw. and for € > 0 sufficiently small,

1
lvel1.0 < C(=log(e)) ™| ol

0,e-
We then get for g € 42,
’U 1 )
Sup (Mo )5 > i (o Mo)s
veri@), 7Y *o—0 [Vle — C(—log(e))~2 lroloe

N
C(log(2)) -

1 L
lnollo.e = 5 (~log(€))* o]l .

with C independent of €. Then, according to Theorem 3.4, for ¢ > 0 small enough, we have

1
2-€

_1
leX 1.0 < € ((—log(e) 21T, uolly - + 172 uoly ) -

Owe

and

|1,Q7
’ e
AV Ol

N 1. < C(-log(e)) "% e
< 1,9

1
1

with C independent of NV and . According to Lemma 3.3, we obtain for € > 0 sufficiently small,

leX |0 < € ((—log(e)~F (Il a0 + Iflo.c) + ¥ (161300 + I£los))

< C(-10g(@)) " (I8l 00 + 1flo) .
and
Mlye < C(-log(e) ™ (Il o0+ [fl0s) |
#y < Clog(e)E (I6ly.00 + 1fl0s)
with C independent of N and e. O

The estimates of Theorem 3.5 show that the approximation by the reduced problem (2.16) is robust
with respect to the size of the inclusion €, in the sense that the solution u¥ converges to ug the solution
of the limit problem (2.3) when ¢ — 0. Using that u = e + ug, we directly deduce from Theorem

3.5 the following corollary that states that the solution uY is bounded independently of € and N.
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Corollary 3.1. The reduced Poisson Problem (2.16) is well-posed in H'(Q) x .#N and there exist
constants C > 0 and p > 0 such that for all 0 < e < p,

[0 <€ (¢l

100t HfHo,Q) ,

with C independent of N and €. Moreover uY belongs to VV.

3.3 Convergence of the reduced problem towards the full problem

We analyze the convergence rate between the solution u. of Problem (1.1) and the solution u2 of Problem

(2.17) in Q.. To this purpose, we introduce the function e/ = u. — u¥ which is solution of

—AefN =0 in Qe,
ef'N = ¥ on dw, (3.16)

ef'N =0 on 092.

The convergence rate of e/’ is specified in the following theorem.

Theorem 3.6. There exist constants C > 0, p > 0 and T > 0 such that for all 0 < e < p < T, the
solution ef'N = u. — ul¥ of Problem (3.16) satisfies
1 c N+1
e e, <€+ N2 () (193,00 + 1 flos)

with C independent of N and €.

We see that the convergence rate in ¢ behaves as eV 1 where (N-+1) is the number of Fourier modes
that can thus be adjusted to ensure a good approximation. Before proving this theorem, we will first
state and prove two lemmas which will be useful in the proof. The first lemma gives an expression of \Y
as a function of the gradient jump of uY at the interface dw..

Lemma 3.4. Let (uN,\N) e HY(Q) x 4N be the solution of Problem (2.16), then for all ¢ € H= (dw,),

<7vugezt ! n+ + Vugznt : Il+, ¢>—%,(‘5w5 = - ()\i\l, ¢)E = 7571 (>‘£:Vv ¢)

owe ’
where nt is the exterior normal on dw..

Proof. For all ¢ € H}(Q2), we have

VulYVoda J VulVodr + | VullVedz,
Q Q.

We

== Auév(bdx - AU?’(bdl‘ + <_vué\jewt ' l’1+ + vui‘\,[znt : Il+7 ¢>—%,0w57

Qe We

and since —AulY = f in Q. and —AuY =0 in w, in a strong sense, we obtain the equality
L Vul' Vode = (~Vul -0t + Vally,, -0t ¢)_ 1 5, + L fode.
On the other hand, we have
L VulVedz = — (AN, ¢)_+ L foda.

Identifying the formulations, we get
<7vu£:\,fe:vt nt + vu?{mt : Il+, ¢>—%,8w5 == (}\é\f’ ¢)5

for all ¢ € HZ (). Thus, since the trace operator is surjective and continuous from HE(Q) on Hz (dw.),

we get that
N N N
<_vu£7eact n" + vus,int . Il+7 ¢>—%,8w5 == ()‘s a(b)e

for all € H2 (Owe). This concludes the proof of the lemma. O
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The second lemma describes the behaviour of u¥ on dw. which, according to Lemma 2.3, will allow
to obtain a H'-bound for eV in (..

Lemma 3.5. There exists a constant T > 0 such that for all 0 < e < Y, there exist (& n)n=n and
(Cen)n=n such that for 6 € [0,2x[, if x = (cos(8),sin(d)) € dw,

g

ul (ex) = i (¥)n (& n cos(nb) + (. sin(nd)) .

n=N+1

Moreover, there exists a constant C > 0 and p > 0 such that for alln > N+ 1 and 0 <e < p,

€l +I¢eml < € ( 2);

with C independent of n, N and €.

Proof. Let T > 0 be sufficiently small such that wy < Q and suppfnwy = &&. For 0 < ¢ < Y, the solution
ulY belongs to H*({) and is harmonic in w., so for 0 < r < ¢ and 0 € [0, 27[, if x = (cos(#), sin(0)) € dw,
we have

290

o8]
ul (rx) = A.o + Z Ag n cos(nb) + Be ,sin(nf)) , (3.17)

Asm = 0,

Be,n =0.
The solution v is also harmonic in the annulus wy\wz, so for e < 7 < Y and 6 € [0,2x], if x =
(cos(#),sin(f)) € dw, we have

with for 0 <n < N,

0
ui.v(rx) = Ce,0 + D. olog(r) + Z ent" + Depr ") cos(nfd) + (E&nr" + Fgmr_") sin(nd). (3.18)
n=1

with for 0 < n < N,
Cene™ + D pe™ =0,
B pe + F.pe ™ = 0.
We refer to [29] for the derivation of formulas (3.17) and (3.18). By applying for all n = N + 1 the

operators A” and B defined by (2.8) on equations (3.17) and (3.18), we obtain the following system
satisfied by A¢ n, Bens Ceny, Den, Eepn and F,

Asnn= Enn Den —n7 Vn =N + 7
n€ n€ + Denpe (3.19)
Bepe" = B pe + Fppe™™, Ynz= N+
Moreover, according to Lemma 3.4, we have
(=Vulp-nt +Vul,, - 0" é) 1 a, =~ (AN ¢). = =" (A, 9) - (3.20)
for all ¢ € Hz (0w.) with
auN' ]
vul,,, -nt = —=0 — Z nr" (A, cos(nf) + B. ,, sin(nf)),
' or =
and
N + aué\feﬂit - —n—1 n—1 —n—1y :
Vi, -t = = Z Cent" " — De pr ) cos(nb) + n(Ee ,r — Fe ot ) sin(n@).

By applying for all n > N + 1 operators A% and B on equation (3.20), we obtain the following system
satisfied by A¢ n, Bens Ceny Den,y Eepn and F;

Aene” = Cone™ — Do pe™"

n , , ’

B 0 n_p n (3.21)
en€ = Lign€ — Legp€ .
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From equations (3.19) and (3.21), we deduce that for alln > N + 1,

— — AE,’IL CE,’H,)
D, =F., =0and { Bp = E.n

By applying now for all n > N + 1 the operators A% and B% on equation (3.18), we obtain for n > N +1,

Ce,nTn + De,nTin A’rug )
Eep X" + Fo X" = Brul

Sl

and

As,n = Cs,n = ATuga
Be,n = Ee,n = B

Even if this result is not directly useful for the proof of the lemma, let us note that we can obtain an

expression of \Y as a function of A%u? and Biul'. Indeed, according to Lemma 3.4, we also have

—1\N _ N
—€ )\E - 7vus,ezt

nt + vul,,, -n" (3.22)

e,int
in H2(dw.), that is
N
Z e, cos(n) + be p, sin(nh)),

with for 0 <n < N,

) AL

0 = ;

7 (log(T) —log(e))
e Aul

Qe = Qn’rn _ 6271’}771’
e"Brul

be,n = Qn’rn _ EQn’}—n :

Let us now set &, = T"A.,, and (., = Y" B, ,. Using the same argument as we used for ug in the
proof of the Lemma 3.3, we have for all n > 0,

1
|ARu | < 0wy |™2[ul o0
e e Do ol (3.23)
U

< [wr |72 O 3 (wrr, dwr) fud

Eventually, Corollary 3.1 gives the existence of C' > 0 independent of n, N and e such that for all
n = N + 1 and for € > 0 sufficiently small,

Let us note that, by identification, we also have for all n > 1, for € > 0 sufficiently small,

a).

with C' independent of €. This concludes the proof of the lemma. O

el + Cenl < © (114,

AN < Clog(e) ™!
n n € "
ALY+ B2AY < O (=) (1],

We are now ready to prove Theorem 3.6 that gives the convergence rate with respect to € of the
reduced problem solution towards the solution of the full problem.

Proof of Theorem 3.6. Let us first note that according to Lemma 2.3, for ¢ > 0 sufficiently small,

lef M. < Clully . < Clul, .
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Then, according to Lemma 3.5, there exist T > 0 and p > 0 such that for 0 <& < p < YT and 6 € [0, 27,

if x = (cos(d),sin(f)) € dw, we have

u?’(sx) = Z (?)n (& n cos(nb) + (. p sin(nd))

n=N+1

with [€.0| + |Con] <0(\|¢\|%7 , )for all n > N + 1. It follows that

M, .
<C ( S an (T)Q("N”> ()" (19100 + 1£10)
n=N-+1
Since . .
> (1+m) (*)Q(n Y D(l+n+N+1) <T>2n
n=N+1 "0

|eF 10, < © (iun )2">2<1+N>%(;)N“(wg,mf|m)

o+ Mt (2)" (161300 + 1flos).

with C' independent of NV and e.

O

Remark 3.1. The parameter Y plays an important role in the extension of the method to several obstacles.
Indeed, it is bounded by the minimal distance of the inclusion to the boundary or to the nearest inclusion.
Theorem 3.6 shows that the closer the obstacles are, the worse the convergence in € will be observed.
The advantage of our approach is that the loss of precision in € can be compensated by increasing the

number of moments.

Remark 3.2. Let us also note that the minimal global reqularity H' is sufficient to obtain the estimates

ine and N of Theorem 3.6.

Remark 3.3. If we consider the weak form associated with the Problem (3.16) where the constraint on
Owe is imposed by Lagrange multipliers, as we did when we wrote the weak form of Problem (1.1) as
Problem (2.5), we can notice that the Lagrange multiplier associated to this Problem is Ao — e AN and

verifies
(Vel™, Vu)o + e —e N o)1 o, = 0, Yo e Hy(9),

or equivalently
(VefN, Vo), + (e — 6_1)\?’,@7%’5 =0, Yve H} (Q).

We write | A — 6_1)\5\\_%78 as

<)‘ - 5_1)‘5 7M>
H:U’”%,e

3

IV P pp—
MEH% (Owe)

For all p € H%(awe), if we take v defined in Lemma 3.2 such that v = p on dwe, we have for e > 0

sufficiently small,
1 Ae —e AN 0>

eme Ay, < s DTS AW

2 C veHE(Q)

7

with C' independent of €. We deduce that

1 Velf'N v 1
DoV < L YRV L

lef N0
eC veHL(Q) [l eC ’

=
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and conclude

L\ SEYY (1ol
e =AYy < C@+NE (=) (181300 + 1floa) (3.24)

with C independent of N and €. Note that for N = 0, the inequality (3.24) does not imply the convergence
of Ae —e AN in the H~= rescaled norm. However, by separating \N* and \° as we did for Theorem
3.5, it is possible to prove a convergence in log(e)*%. Moreover, using definition (2.15) of the H~=
rescaled norm, we can prove that for v e H~= (Owe), for e > 0 sufficiently small,

[oll-3

1
5,0We < Ce> Hva%,@

with C' independent of e, so, if we consider the standard norm | - |_1 o, instead of the norm | -

-1
we obtain

—1\N 1 € N+%
e =AYy, <CO+ N ()7 (915,00 + 1£l0g) -
with C' independent of N and €.

Before considering the finite element approximation of the reduced model we next derive some ad-
ditional regularity estimates of the reduced model and investigate their dependency with respect to the
size of the hole.

3.4 Additional regularity of the solution

Due to the presence of the Dirac source AYd,,,. in Problem (2.17), the global H? regularity for eV and

ulY cannot be recovered. However, we can prove a better regularity than H?! for el¥. To do so, let us first

note that if we consider the Lagrange multiplier associated to the solution of Problem (3.7), namely AV,
as a datum depending both on f and ¢, then e satisfies

—Ael = —1\Vjs,. inQ
eN =0 on 0f).
To analyze this problem we introduce an auxiliary lemma presented in [30].

Lemma 3.6. Let D be a generic bounded, convex domain in R2. Let v < D be a C2-surface such that
the distance between vy and 0D is positive. Consider the following problem

{—Ay =0, inD, (3.25)

y=0on oD,

where ¢ € L(y). Problem (3.25) admits a unique solution which belongs to H3~"(D) for any n > 0.
Furthermore there exists a constant C' such that

lyls —np < ClICoy |1y
with C' independent of ¢ and ~.

We will apply this lemma in order to prove the following theorem.

Theorem 3.7. For any 0 < n < %,

eN e H371(Q) and the following estimate holds true: there exists a constant C(e,n) > 0 such that

le s —pa < Clem)(16]3.00 + ]

the solution of Problem (3.7) satisfies the additional regularity

0,92)
with C(e,n) independent of N.

Proof. Since € a polygonal domain and ¢ 'A\Y € L?(dw.), we can apply Lemma 3.6 and get that
eN € H377(Q) and that there exists a constant C' > 0 such that

leXlls—no < Ce™ A dow. ]l 3.0 (3.26)

20



I\/TO eO\/el’ we IlaVe
>\ ow
( £ ”U)‘ E,. (3.2‘)

INbow -1 o= sup
e Oowe -1 —, HUH%-m,Q

vEHO% A (Q)
Note that here the considered scalar product on L?(dw,) is the standard one and not the rescaled one.

1
Using Cauchy-Schwarz inequality we have, for all v € H§ M (Q),

(Agvv)awe < ”)‘éVHOﬁwE

and according to equality (3.22) and estimate (3.23), there exist constants p > 0 and YT > 0 such that for
all 0 <e < p <7, we have
1
w ))2

1A 0,00, = (27€)? ( az o+ Z (
—Bﬂ)a

n=1
€
acnl + lbenl < Cn (5)" (181300 + 1flo0)
with C' independent of n and €. We then deduce that for 0 <e <p < 7T,

1Mo 0. < Ot (16].20 + 1 flog) <1og £ 3 (5) )
n=1
< Ce? (J¢l3.00 + flos)

with C independent of N and €. We obtain, using Theorem 3.2 on trace inequality, the following upper
bound for any v e H2*+7(Q):

2
€

with

lac.ol < C(~log(e) ™ (

and for n > 1,

(3.28)

vlo.0w. < Crp(€, dwe)|vlly 1 0- (3.29)
Gathering (3.26), (3.27), (3.28) and (3.29), we deduce that

€X 30 < CeCry (@ 2w2) (1] a0 + 1o

with C independent of N and . Note that the dependency with respect to € is not explicit here because
the behavior of the constant appearing in (3.29) coming from a trace inequality is not. O

Let 0 <n < %, we then have the following corollary on uX.

Corollary 3.2. If ¢ € H'™"(0Q) and f € L?(Q), then the solution uY of Problem (2.16) satisfies
uN e H3=(Q) and
lu )

with C(e,n) independent of N.

‘]SVH%fn,Q < C(Ea 77) (

Proof. This result is just a consequence of the fact that ul = e + ug and if ¢ € H'""(01) then
uo € H27(Q) and

luolls 0 < C) (I¢l-ne0 + [ flo.0)
with C'(n) independent of e. O

Finally, using and explicit representation of el inside and outside w. separately, we obtain the fol-
lowing result.

Theorem 3.8. Let e¥ solution of Problem (3.7), there exist constants C > 0 and p > 0 such that for all
0<e<p,

¥ 20. + X 2. < Ce™ (Ifloa + 16l 20) -

with C independent of N and €.
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The proof of this theorem can be found in the Appendix.

Remark 3.4. The statement of Theorem 3.7 does not give an estimate with respect to € of the constant
C(e,m). However, proceeding in the same way as for the proof of Theorem 3.8, we can obtain some
estimates for the H2 "-norm on each subdomain. Indeed, if eV is solution of (3.7), we can prove the
existence of constants C(n) > 0 and p > 0 such that for all 0 < e < p,

O,Q) P

1
XT3, + XT3 < Clm)e=2*7 (10l

where C(n) is independent of N and €.

Lon + ]

4 Numerical approximation

4.1 Finite Element discretization

In this section, we study the convergence behavior of a standard finite element method applied to the
variational Problem (2.16). We assume that the data f and ¢ are smooth as well as the solution ug of
the limit problem. We introduce a shape regular triangulation 7,2 of €2, where h is the characteristic size
of the mesh. We set for k£ > 1,

X5 (Q) = {vn, €C(Q) | vp|T e PF V7 € T},

where P* is the set of polynomials of degree less or equal than k. We look for uév ;, solution of the discrete
version of Problem (2.16): find ugh € XF(Q) and )\gh € .4~ such that

(Vuly Von)  + (Wsvn) = (Foonda, You € XE(Q) 0 HY(@),

(u, ui.vh) =0, Ve #N, (4.1)

>

ugh =T ¢ on 052,

where I}‘z is the Lagrange interpolant on 0€). We then write uév = eé\j n + uo,n where eé\f ,, s solution of

the following discrete problem: find egh € XF(Q) n HY(Q) and A?{h € .#Y such that

(Vegh, wh)Q + (Agh,vh)E — 0, Vo, XE(Q) n HE(9Q),

N N (4.2)
M’es,h)s = — (1, uo,n), Vue 42,
and ug , € XK (1) satisfies
(vuo’h, vvh)ﬂ = (f7 vh)Q ) V’Uh € XS(Q) N _IJ&(())7
uon = I on 9.
We then have
ul —ully = el — el +uo —uon. (4.3)

Let us note that for I,f(j) to exist, ¢ needs to be at least continuous, actually, in all this section, we will
suppose that ¢ is regular enough to have a lifting in C°(Q) n H*(£2), we then know from classical argument
(see [[31], Corollary 3.29]) that if ¢ € H**2(0Q) and f € LF~1(Q), then ug € H**1(Q) and

1o < Chuollkne < C (161ksg.00 + 1Flk-10) (4.4)

|uo — wo,nl

with C independent of h. As a consequence, we will focus on the well-posedness of Problem (4.2) and
the convergence in h of the difference eé\f B eN, admitting that the term ug — ug,;, does not deteriorate
the convergence in h.
We first introduce the discretized version of the standard existence Theorem 3.3 and some other pre-
liminary results useful in what follows. The discrete equivalent of Problem (3.1) consists in finding
up € Xp € X and A\p € Qp < @ such that

{a(uh,vh) + b(Ap,vp) = c(vy), Vo, € Xy, (4.5)

b(pen, un) = d(pn), Ypn € Qn,
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with a : X;, x X;, > Rand b: Qp x X;, — R two bounded bilinear forms, ¢c: X;, > Randd: Q, — R
two bounded linear forms. The discrete version of Theorem 3.3 reads as follows (see [[31], Proposition
4.14)) :

Theorem 4.1. Under the following conditions
dap >0, Vo, € Xy, a(’l}h,’Uh) = OéhHUhH%(,

b
36, > 0, inf sup U UR)
1n€Qn vyex, lnllxvnlq

> B, (4.6)

the discrete saddle point problem (4.5) is well-posed. Moreover for u solution of (3.1) and up, solution of
(4.5), we have

la] HbH lol .
uU—1u 1+— ) (14+—) inf |u—w + inf |\ — ,
I wllx < < - 5y ) ok, lu = vn] x o IA=pnlQ

la] la] 1oy . [l llal .
— <— 14+ — 1 f — 1 1 f — .
IA—Anlo 5 + - + — B v;?Xh, [w—vplx + (14 = 5 + — - HirelQh, [A— pnllo

If we look at Problem (4.2), we see that this problem actually writes: find @, € X}, and An € Q such
that

altin, vp) + b(An,vn) = c(vy), Yo € X, (47)
b(p, an) = dn(p), Ve Q.
where dp, : Q@ — R is a linear form on Q. We notice in particular that @, = Q and dj, # d. To prove the

convergence of eé\f , — e, we introduce a corollary of Theorem 4.5 more suited to the problem at hand.

Corollary 4.1. Under the conditions (4.6), the discrete saddle point problem (4.7) is well-posed. More-
over, for u solution of (3.1) and Gy, solution of (4.7),

: ) (1. 2) L ()
- 1+ 24 - 1+ 290 1d = g,
o= nle < (1419 (14 B0) ing a5 ld—di|

5 H H lal [y lal 1 Hall
- 1 1 f — 1+
1A=l < b ) (G ) it ol Id — dy.

Proof. The well-posedness of Problem (4.7) is a direct consequence of Theorem 4.1. Moreover, if we
set €, = up, — Uy, we see that é;, satisfies

and

a(éh,vh)+b()\h—5\h,vh) :07 vthXh, (4 8)
b(/héh) = (d - dh)(p‘)a VM € Q7
so according to Theorem 3.3,
_ 1 o
I L
B
. 1 fal (,  lol
~ a «@
A=A <—— |1 d—d
=l < - (1420 10,
We conclude by noticing that u — 4, = v — up + €, and A — )\h =A—Ap+ A — S\h. O

Moreover, if the inf-sup condition is verified in the continuous case, then the discrete inf-sup condition
can be directly derived by the definition of a Fortin operator by the following lemma.

Lemma 4.1 (Fortin’s trick). If the continuous inf-sup condition holds with the constant 8 for the operator
b and if there exists a linear operator 11}, : X — X}, such that

b(q,u — Tpu) = 0,
HHhUHXh < CHUHXa Vu e Xa Vq € Qv

then the discrete inf-sup condition holds and B, = B||IL4|| " where ||| denotes the operator norm.

23



4.2 Well-posedness of Problem (4.2)

Note that here the discretization space associated to the Lagrange multiplier is not a finite element space
but a Fourier space and does not depend on h. In particular, it is equal to the continuous space associated
to the Lagrange multiplier of the reduced model. However, any function of . is uniquely defined by

the values it takes on a finite dimensional space, more specifically, the computation of ()\f_.v h,d)) for
’ e

¢ € {1,cos(nh),sin(nb)}1<n<n is sufficient to determine )\é\fh. The inf-sup condition of Problem (4.2)
reads as follows: there exists 52% > 0 such that

(hnyvn)e o (4.9)

inf sup b

e o, cxi@nm@) |Hnlax lonlie =

The next theorem gives sufficient conditions such that this inf-sup constant can be bounded from below
by a strictly positive constant independent of the parameter NV, h and €.

Theorem 4.2. For all N € N, there exist constants p;1 > 0, po(N) > 0 and C > 0 such that for
O<e<p and0 < % < pa(N), the inf-sup condition (4.1) is satisfied and

B, = C, (4.10)

with C independent of N, h and €. In the specific case N < k, if we set r* = sup{r > 0, w, < Q} then if

h<r*—e, (4.11)
the inf-sup condition is satisfied with no further condition on h and €

Note that in the latter theorem, we have considered two cases depending on the degree of the polyno-
mial approximation and the number of Fourier modes. In the case where the degree is greater than the
number of Fourier modes, then the assumption (4.11) is sufficient for the inf-sup condition to be satisfied.
Note that this assumption is not very restrictive as it is equivalent to imposing the presence of at least
one tile in the region between the boundary of the hole and the boundary of the domain. In the general
case, which includes the case N < k, the condition on h and ¢ is more restrictive and requires that the
mesh size should be small compared to the size of the hole.

We now introduce some tools and lemmas used to prove Theorem 4.2. We denote by RY : H}(Q2) —
Xk (Q) n HY(2) the Scott-Zhang operator (see [32]), RF satisfies the following lemmas.

Lemma 4.2. There exists a constant C > 0 such that for ve H (),

|Ryvlie < Clo

|1,Qa
with C independent of h.

Lemma 4.3. For all ve XF(Q) n H} (),
Riv = .

Lemma 4.4. Let k € N* and s > 1, there exists a constant C > 0 independent of h such that for T € T
and v e H*(S,),

W[ Rfv — vlo.r + b2 [V(REv =)o < O 2 u]s, . 1 = min{k,s — 1},
where Sy is a domain made of the elements neighboring 7. Moreover, we have for v e HE(2),

v — REv|1.0 < Ch'* 3 |v|,q, | = min{k, s — 1}.

The next lemma ensures the existence of a linear extension operator from H*(w.) to H*(Q) with a
norm independent of . The proof of this lemma can be found in [[33], Theorem 6].
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Lemma 4.5. Let Q. a domain with a hole w. and Q = Q. U wz. Then there exists a linear extension
operator Eq which maps the space H*(w.) onto the space H¥(Q) for all k = 0 and satisfying for all
ve HF (w.),

€]

ko < O, k) |v]

k,we»
with C(2, k) independent of .
Now we are going to prove Theorem 4.2.

Proof of Theorem 4.2. To prove the discrete inf-sup condition (4.9), we use Lemma 4.1 which asserts
that, since the inf-sup condition has been proved in the continuous case, it is sufficient to provide a Fortin
operator TIY, : Hj(Q) — XF(Q) n HL(S) such that

M2, vle < Clvlva, Yve Hy(Q),

with C' independent of h and

(hsv). = (s thv)e , Yup e AN, (4.12)
We first consider the general case where k£ can be smaller or greater than N. Let T; such that wy, <
and 0 < e < Ty, we denote by ¢, and s, the harmonic lifting of the (N + 1) first Fourier modes on dw,

into w.. If we follow the same computations as we did for proving Lemma 3.2 and Theorem 3.8, we
can prove that, for ¢ > 0 sufficiently small,

lhw, SC(L+n)% and |enlow, + [$nl2w. < C(1+n)2e7), (4.13)

len ll,wg + |5

with C independent of n and €. Then, we extend ¢, and s, to wy, thanks to the extension operator
defined in Lemma 4.5 such that, for € > 0 sufficiently small,

N

ng*rl Cn |11WT1 + ngrl Sn |17WT1 < C(l + n) 1 (414)
e,

[N

and ngrlCnHZle + ngrl SnH2,wT1 <C(1+n)

with C' independent of n and . Eventually, we extend Ewrlcn and Elesn to all € with the harmonic
extension such that Hq(Euy, cn) = Ha(Euy, $n) = 0 0n 0Q, and Ha(Ewy, en) = Euy, cn and Ha(Euy sn) =
Ewy, Sn 0N Qwy, . Identifying ¢, with Hq(Euy, cn) and s, with Ho(Ewy sn), We have ¢, s, € Hy(Q) and
for € > 0 sufficiently small,

o < C(1+n)3.

lenlli + [lsn

For any v € H'(Q), we search H?{hv in the form

N
thv = ag’h(v)R,ﬁco + Z a?’h(v)Rﬁcn + b?’h(v)Rﬁsm (4.15)
n=1
such that ITY, verifies (4.12). When h tends to 0, we expect Ryc, and Rfs, to tend to the first (N +

1) Fourier modes on dw. and consequently Hg 5, to tend to Y for which we have the existence and the
uniqueness of the coefficients a ;,(v) and b, (v). In order to satisfy (4.12), the coefficients a ;,(v) and
b7 1, (v) defined by (4.15) have to verify, for all v € H' (), for all 1 <n < N,

A(E)[Hévhv] = .Ag’U,
A?[Hé\{hv] = .A?U,
B [Hé\fhv] = BM.
We can write these equations as a linear system of size 2IN + 1 given by
N xN N
Ps,th,h(/U) = e,h»

where for I <i< N,1<j <N, Pé\,’h € Man+1(R) is given by

(Pé\,[h)l,j = AS[RZCJ'L (Pgh)i,1 = «42 [RZCO] (4.16a)
(PY))2i2; = AL[Rjcj], (PY))2i2j41 = AL[Rys;], (4.16b)
(PY))2iv1,25 = BLRy ], (PY)2i+1,2541 = BLRYs;], (4.16¢)
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XN, e RPN+ is given by

(XZn (o)1 = al y(v), (X (v)2is1 = az p(v), (XTy(0))2i42 = L (v),

)

and QY € R*N*1 is given by

(Qé\,[h)l = ASU ( £, h) AZ 7(Q5 h)QH—l = B v.

Using the property of the Scott-Zhang projector we next show that PN tends to the identity matrix

12N+1 when 2 tends to 0. For 1 <i < N, 1 < j < N, the difference between the coefficient (21,25) of
PY e, and the 1dent1ty matrix writes

[(PY))2i,25 — 62i.25] = |AL(Ryc; — ¢5).

Using Cauchy-Schwarz inequality on the last term, we obtain an estimate which only depends of the value
of R¥c; —¢j on dw,,

‘Al (Rhcj —¢)l < |5w| z HRhCJ

Let 0 < T9 < T such that wy, < wy, and 2k < dlst(owyl,awn), according to Lemma 3.1, if we
consider(wy, \wz) instead of €. as exterior domain, we have

|Rcj = cills e < CIREes — ¢l wry a0
so noticing that for v e H? (dw,),

+ [v]3

ol3 . =&l

we deduce that

[olo.dw. <e2lvly.,

in particular

|Ryc; — <e?|Rfc; — Glly e

and we then obtain

‘(Pé\,[h)2i,2j — 89i.9;| < C|Rfej — @7)s (4.17)

with C independent of i, j and . For r > 0, we denote by (Tr’fl)év“h the tiles intersecting dw, and by T
the domain
Norh
= S
1=1

where S denotes the domain made of the elements neighboring 7 (see Figure 1 for an explicit description
Ny, n Ny, n
of J S , and U &, ,)- According to Lemma 4.4,
1=1 2 1=1 ’

|Rjc; —

o, (4.18)

\w2) S

Moreover, since 2h < dist(0wy, , dwr, ), then (wv,\wz) U T{LQ C wy,, and according to equation (4.14),
for € > 0 sufficiently small,

<C(1+j)2e . (4.19)

e ||2,(W2\w7)u:r¢2 <

Gathering equations (4.17), (4.18) and (4.19), we obtain

h
(PY))2i.2) — 02i2;] < C(1+ )% <€> 7

with C independent of 4, j, h and €. We can prove in a similar way that for all 0 < k,l < 2N +1, (Pgh)k,l
tends to dg; when (1 + N)% (7) — 0. Besides, the open ball of center Iox.1 and radius 2NV + 1 for the
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matricial infinity-norm belongs to the space of invertible matrix of dimension 2N + 1. So we deduce that
there exists p(N) > 0 proportional to (2N + 1)71(1 + N)~% such that for ¢ > 0 sufficiently small and
0<2<p), Pgh is invertible and that at N fixed, iiLnO(Pgh)*l = Ion+1. In particular, we have for

0<n<N,
lim af n(v) = Alv and lim b2 (v) = Blv.
h_,0

-0 c

From now on, for the sake of simplicity, the dependence in N of the constant p(/N) will be implied in the
formulation for g > 0 sufficiently small. Let us now prove that Hé\{ 5, is bounded independently of h, N

and e. Let v e H}(Q), for ¢ > 0 and % > 0 sufficiently small, we have

lag p(v)| < 2|AZv| and [b7 ), (v)| < 2[Bv|, VO <n < N. (4.20)

By linearity of the operator R’,fb, we have

Hehv—RfL(O CO—I—Za (v)en + b7, (v)s >,

so we deduce from Lemma 4.2 that

IIY,v]1.0 < Clal ,(v)eo + Z agp(v)en + b2, (v)snl1,0-
n=1

As well, the extension operator Hq o Ewy, from we into (1 is linear, so we have in {2

N
agh(v)co + Z a?,h(”)cn + bg,h(v)sn

n=1
N

= ( )HQ(Ele co) + Z a?,h(v)HQ(gwrl cn) + b?,h(U)HQ(Ewrlsn)

n=1

=’HQ<&JT1< 00+Za v)en + b7, (v)s ))v

and we deduce from the continuity of the harmonic extension and Lemma 4.5 that

N
IHa < o, (ag,h(U)CO + ) alp(v)en + b?,n(ﬂ)Sn)) (Fe!

n=1

N
< Cféur, <a2,h(v)00 + Z az p(v)en + b?,h(v)8n> I,

CHash v)co + Z aZ p(v)en + b2, (v )snl1w.-

In the same way, the harmonic lifting from dw. into w, is linear, so following the same computations as
we did for proving Lemma 3.2, we have for € > 0 sufficiently small,

Ha's n(v)co + Z aZp(v)en + b2 (v)sn 1w, < CHaa n(v)eo + Z al p(v)en + b?,h(v)an%,e:

and we deduce that

jr < Clal (v co+2a V)en + b2 (0)sall




with C independent of h, N and e. Eventually, according to inequality (4.20) and Proposition 2.3, for
e >0 and % > 0 sufficiently small, we have

1
2 2

N
<C (Ag(v)2 + > (1+n) (A2 (v)* + Bg(@?)) ,
n=1

n=1

N
<a27h(v)2 + > (14 n) (a2 4(0) + b?,h(v)2)>

<ol

L. <Clly
so Lemma 3.1 allows to conclude
HHéV,hv

19 < Clol

1,9,

with C' independent of h, N and e. Let us now consider the case N < k. For 6 € [0,27[ and 0 < 7 < ¢,
if x = (cos(d),sin(h)) € dw, since ¢, and s, are harmonic in w., we have ¢, (rx) = (g)ncos(nt?) and
sn(rx) = (£)" sin(nf) in w.. Moreover, if 7x = (z,y), then ¢, and s, can be written as polynomials of

2 and y of degree smaller than n. Indeed using Chebyshev polynomials, for 0 < r < e and 6 € [0, 2~[, if
x = (cos(#),sin(f)), then

cn(rx):(£>ncos(n0)= 3 <i>n(;j)(—1)jy2jxn2j, (4.21)

0<2j5<n

and

sn(rx)=(£)nsin(n9)= 3 C)n(2j711)(—1)jy2j+1x”—2j—1. (4.22)

0<2j+1<n

To get rid of the invertibility condition on Pg 1> we would like to have for all 0 <n < IV,

becn = ¢, and besn =5, on Ows. (4.23)

The harmonic or even the HF-extension defined in Lemma 4.5 of ¢,, and s,, on €. are not sufficient
this time because they do not ensure that ¢, and s, are polynomials on all tiles spanning dw.. Let r*
as defined in Theorem 4.2 and let suppose h < r* — ¢ such that w-;; < €, we extend ¢, and s, in
weth such that for 6 € [0,27 and 0 < r < & + h, if x = (cos(d),sin(d)) € dw, c,(rx) = (g)ncos(ne)
and s,(rx) = (g)nsin(ne). We also extend ¢, and s, outside wp,. such that ¢, and s, are harmonic
in Qpte = Nwegp, and ¢, = s, = 0 on Q. Consequently, for 0 < I < N, C”'Q’.h and S"‘Tel.h are
respectively equal to (4.21) and (4.22) and condition (4.23) is satisfied. The proof of the continuity of
the operator Hg 5, With this definition of ¢, and s, is then similar to the case N > k. This concludes the
proof of the existence of the Fortin operator and also the proof of the existence of the inf-sup condition
with, for € > 0 and g > 0 sufficiently small,

B2 = AN = c.

where 5?,[11 is the inf-sup constant of the continuous bilinear form b and C' is independent of i, N and
E. 0

Remark 4.1. Let us note that the dependence in N of po(N) in Theorem 4.1 implies that the more
modes there are, the larger the number of points on dw. must be, which is consistent with the fact that
the number of constraints on the solution increases.

Theorem 4.3. For all N € N, there exists a constant py > 0, p2(N) > 0 such that, for 0 < e < p; and
0 < 2 < ps(N), Problem (4.1) is well-posed in X (Q) x AN . Moreover, if uY is solution of Problem
(2.16) and u?{h is solution of Problem (4.1), then for k = 1 and 1 < s < 3, if ¢ € H*=2(0Q) and
f e L3(Q), there exists a constant C(s,e) > 0 such that

[0 =yl < C(s, )0 (16)img00 + 1 floc)

with C(s,e) independent of N.
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Nry,n Nrgy,n
Figure 1: Geometric configuration of domain wy, and sets { {J S . U ™)
1=1 2= '

Proof. First, let us verify the assumptions of Theorem 4.1 in order to prove that Problem (4.2) is
well-posed. The continuity of the bilinear forms a and b and of the linear forms ¢ and d, as well as the
coercivity constraint on a, are a direct consequence of the fact that X () n H(Q) = HL() as well as
the estimates

lal <€, o] < C, ol = C,

where aé\f ,, is the coercivity constant of @ and C' is a constant independent of h, N and €. Moreover if we

set

dn: AN — R,
= (/’L7 uO,h)£7

it is straightforward to show that
ld = dn[ < [b]lluo = uo.nl,0,

where ||b| is bounded independently of N and e. According to Theorem 4.2, for ¢ > 0 and % >0
sufficiently small, the inf-sup condition is satisfied so we can conclude on the well-posedness of Problem
(4.2) and, according to Corollary 4.1, we have

N N : N
€. —e o< C inf e. —v
H € E’hHL = (UhEX;,f(Q)"\Hé(Q) ” : "

Lo+ Juo — Uo,h||1,Q> ; (4.24)
with C independent of h, N and . Then according to Lemma 4.4,

1o < el — Riel 1o < Ch* el

inf leN — v
vRhEXE(Q)NHL(Q)

3
5’Q7v1<8<§.

We deduce thanks to equations (4.3) and (4.4) that, for £ > 0 and 2 > 0 sufficiently small,

[uY = w100 < O (e s + 6oy o0 + 1 floc)

with C' independent of h, N and €. We conclude using Theorem 3.7. O
Remark 4.2. Let us note that due to the low regularity of the solution uY described in Subsection 3.4,
the convergence rate in h in Theorem 4.3 is less than the mazximum convergence rate reachable with Py

elements. This result is similar to the one obtained for the discretization of the full problem (2.5) with
classical finite element methods (see [28] for more details on this topic).
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4.3  mesh

We can prove a convergence result better than the one stated in the previous corollary under some
additional restrictions of the mesh. Let 7;19 be a d-resolving with respect to the interface dw,, that is the
boundaries of the submesh corresponding to w. and 2. have a maximum distance of ¢ to the interface.
This condition is in particular fulfilled with § = O(h?) when the nodes of the mesh 7;* fall on the interface
Ow.. With little abuse of notation, in the numerical simulations we call this case the conforming mesh
configuration. In the case of conforming meshes we obtain the following theorem.

Theorem 4.4. Let u¥ be the solution of Problem (2.16) and ugh be the solution of Problem (4.1) with

k=1.If pc H2(3Q) and f € L*(Q), for all N € N, there exist constants p; > 0, p(N) >0 and C > 0
such that for 0 <e < p; and 0 < % < pa(N),
|0,Q)a

h
o=c(2) (1o

Huév - Ué\,[h 300 T If

with C independent of h, N and €.
Proof. By using a modified Clément operator S.; presented in [34] we get
le2" = Senel |10 < C (h* (le .. + le 13...) + 0 (le 3.0, + leX3.0.)) »

with C independent of h. We deduce thanks to equations (4.3), (4.4) and (4.24), and the hypothesis
§ = O(h?) that, for € > 0 and g > 0 sufficiently small,
|0,Q) )

with C independent of A, N and €. Then, using Theorem 3.8, we can conclude on the proof of the
theorem. O

1o < Ch (Je

[ul =l 2. el 2.0, +16]3 00 + |f

Remark 4.3. We can this way obtain an estimate of the difference between the discrete solution u?{h
obtained with a 6-mesh and the continuous solution u. in . with respect to h and e: there exists T > 0
such that for e > 0 and % > 0 sufficiently small,

o, < Jue —ul 0. + [ul —ulyl10;

<o+ M (2) (19l

|ue — ué\,[h

o+ 1fl0a) +€ (2) (1l g0+ 17lo).

with C' independent of h, N and €.

4.4 Numerical experiments

4.4.1 Convergence in ¢

In this section, we consider a rectangular domain €2 of width L and and height [ with an hole located
in (zg,y0). For simplicity we set L = | = 1, (z9,y0) = (0.2,0.1) and we make e vary in the set
{0.05,0.04,0.03,0.02,0.01}. The boundary conditions of the problem are defined in Figure 2. We
compute the convergence rate with respect to € of the reduced problem towards the full problem using
increasing values of N in the definition of .Z~ for the enforcement of the internal boundary condition.
In the general case, these solutions are not known a priori. Therefore, we verify Theorem 3.6 using the
linear finite element approximation of the reduced and full problem. The convergence rates of the different
solutions are given in Figure 3 where ef, 2, eg }11 and 65 i correspond to the discrete differences between
the full Poisson problem and the reduced Poisson problems where the internal boundary conditions are
respectively approximated by N =0, N = 1 and N = 2 moments. The numerical solution of the reduced

Poisson problem and the discrete model errors ef), ef'} and ef? are reported in Figure 4.
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= 0.1y Q =0.1y

u(z,y) = —0.1z

Figure 2: Boundary conditions for the inclusion in a square exterior domain.
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H1 error

6.5 L h L
0.05 0.04 0.03 0.02 0.01

Radius of the inclusion

Figure 3: Numerical modelling errors for different radii and different numbers of moments for a single
circular inclusion.
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Figure 4: Contour plots of the solution u. and of the discrete model errors 65: 0. eg }, and el on a log-scale
axis for a circule of radius € = 0.05.
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Figure 5: Numerical modelling errors for different radii and different numbers of modes for multiple
circular inclusions.

4.4.2 Convergence in ¢ for multiple obstacles

As mentioned in the introduction, the proposed approach can be easily extended to multiple obstacles
with different sizes and not necessarily centered in (0,0). To test this assumption, we consider a rect-
angular computational domain Q = [—0.5,0.5] x [—0.5,0.5] with four inclusions positioned respectively
in (0.2,0.1), (—=0.3,0.1), (=0.2,0.2), (0.1,—0.2) and of respective initial sizes 0.05, 0.04, 0.06 and 0.03.
Boundary conditions on 02 are the same as those of Figure 2. The results obtained for N = {1, 2,3}
are reported in Figure 5. There, the parameter ¢ corresponds then to the size of the first inclusion and
all the other holes are scaled proportionally. The numerical solution of the reduced Poisson problem and

: : FO _F1 F2 T
of the discrete corresponding model errors e ps €, and e are reported in Figure 6.

4.4.3 Convergence in h

We now test the convergence results obtained in Theorem 4.3 and Theorem 4.4. For the convergence
test in h, we consider a single source and a single mode N = 1, the obstacle has radius € = 0.2 and center
z = (0,0). As computational domain, we choose the rectangle Q = [—0.5,0.5] x [—-0.5,0.5]. Setting the
appropriate Dirichlet boundary conditions, the exact solution u. . of this problem is the following

rcos(f) + rsin(f) — 0.5le-logle) ¢ 5 R

r cos(0) + rsin(f) if r <R,
Uee(r,0) =
log(e)

The computed errors and the corresponding h-convergence rates are given in Figure 7.

4.4.4 Behavior of the model error for close obstacles

We consider here a last test case to illustrate Remark 3.1. The exterior domain is the same as in Figure
2 with uniform Dirichlet boundary conditions equal to 1 and two holes of radius 0.05 initially centered in
(=0.1,0) and (0.1,0). The values imposed on each inclusion are respectively 0.5 and 1.5 and are enforced
using 3 modes. The numerical solution of such problem is displayed in Figure 8 panel (a). Then,
the distance between the two inclusions is gradually reduced. The numerical solution with inclusions
separated by a gap of 0.01 is shown in panel (b). The comparison of the two top panels shows that the
solution in the circle deviates from the constant as the two inclusions get closer. More quantitative results
are given in Figure 8 panel (c).

We see that the model error increases as the distance between the two obstacles decreases, as predicted
by the inverse dependence on T of Theorem 3.6. We also notice that this effect becomes more severe
as the number of modes increases.
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Figure 6: Contour plots of the solution u. and of the discrete model errors e£,, e£'} and ef7 on a log-scale

axis for multiple obstacles of radius ¢ = 0.05.
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Figure 7: H'-norms of ul — uY, and convergence rates for two different meshes (uniform, d-resolving).

34



—

l 5.0e-01

(a) Distance between the obstacles equal to 0.2.
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(b) Distance between the obstacles equal to 0.01.
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(c) Evolution of the error with respect to the distance between the obstacles.

Figure 8: Effect of the inter-inclusions distance on the model error.
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Conclusions

In this work we have considered a second order PDE defined on a domain with small circular holes
subject to Dirichlet boundary conditions. This problem can be seen as a template for different families
of applications. It may represent solid mechanics problem where the holes play the role of small supports
of a mechanical part, but it may also be used as a prototype problem for fluid-structure interaction
applications where the small inclusions represent particles or fibers immersed into a fluid. To address
these challenging applications using computational models, a thorough mathematical understanding of
the fundamental mathematical aspects of the problem is extremely useful. As highlighted in [19], a
mathematically-informed approach is a prerequisite for safe and reliable computations.

For these reasons, we focused on the fundamental aspects of the approximation of the problem. On
one hand, we addressed the approximation of the Dirichlet boundary conditions on the inclusion by means
of a reduced modeling approach based on the projection on Fourier modes. On the other hand we have
studied the properties of the finite element method used for the approximation of the reduced model.

A particularly important question to be addressed is the robustness of this approach with respect to
the size of the holes, which may become arbitrarily small with respect to the domain. To this purpose,
we have studied three relevant problems: i) the full problem, corresponding to the standard enforcement
of Dirichlet boundary conditions on the holes by means of Lagrange multipliers; ii) the reduced problem,
characterized by the approximate weak enforcement of Dirichlet boundary conditions by projection on
Fourier modes; iii) the limit problem obtained when the diameter of the holes vanishes. Understanding
the mutual interaction of these problems characterizes what we call the modeling error in terms of the
size of the holes. By means of suitable a priori estimates of the modeling error and of the finite element
approximation error, we provide guidelines to optimally balance the approximation parameters of the
proposed reduced modeling approach. These theoretical results will be particularly useful in view of
forthcoming applications of this methodology to fluid-structure interaction problems.
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A Appendix

In this appendix, we prove several results presented in the previous sections. We recall the statements of
these results to facilitate the reading of this part.

A.1 Proofs of Lemmas 2.1, 2.2 and 2.3

Lemma 2.1. For ¢ € H2(0Q) and f € L2(Q) such that w. ~ suppf = &, the following problem

—Ave. = f  in Q.
Ve =@ on OS2, (A.1)

v, =0 on Owe,

admits a unique weak solution in H'(Q.). Moreover there exist constants C > 0 and p > 0 such that for
all0 < e < p,
0,Q> P

Proof. The proof is similar to the proof of [[20], Lemma C.1] for the Stokes equations which is itself
based on the results of [[21], Chapter 3]. In this proof, we will consider two cases, the first where f =0
and the second where ¢ = 0 and conclude by linearity.

Let us first suppose that f = 0. For gy > 0, we consider v, the solution of (A.1) for € = gg. It satisfies:

o= (]
Q

Now consider 7., € H!(Q) the extension by 0 of v, to all Q. Notice that if ¢ < g¢ then ew < gow and
Q.. < Qe, so for all € € (0,¢p), by minimization of energy, we have

[lve |

10, <C (16l.00 + 1f1

with C' independent of €.

Nl

Ve Ve, |2dl’> < Cleo)l9ly 00 (A-2)

€0

‘vs|1,ﬂs < |550‘1,Q€ = |vso|1,52507

and thanks to equation (A.2),

|UE

19, < C(e)l9ly o0 (A-3)

Let ug be the solution of Problem (2.3). Since 9. —ug € H (), we can apply Theorem 3.1 on Poincaré
inequality, we get

|veflo.0. = 19c]0.2 < [Te — uolo.a + |uollo.o < Cp(Q) ([ve]1,0. + [uoli.0) + [uolo.o-

The well-posedness of Problem (2.3) also gives the existence of a constant C' > 0 independent of € such
that

Lo < CQ)]¢]
Combining equations (A.3) and (A.4) finally gives us

lo.0. < Ce0, Q)[4

luol 1,00 (A4)

[ve 1,00

Now, let us suppose that ¢ = 0. Let us note that for all v € HZ (£2.), denoting by © the extension by zero
of v to 2, we have

lo.o = Cp(Q)[Vv

Using this inequality and Lax-Milgram theorem, we get the existence of a constant C' > 0 independent
of € such that

v 0,0 < Cp(Q)|VD lo,0. -

0,0. = 0

lvello. < Clfloq-

This concludes the proof of the lemma. O
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Lemma 2.2. For any L € R, the problem

—Av. =0 inQ,,
ve =0 on 011,
ve = L on Owe,

admits a unique weak solution in H(2.). Morevover, there exist constants C > 0 and p > 0 such that
forall0 < e < p,

0. < C(~log(e))"2|L],

v
with C' independent of €.

Proof. As for the previous lemma, the proof is adapted from [[20], Lemma C.3| for the Stokes equations
itself presented in [[21], Chapter 3|. Let us consider the following quantity:

p =sup{r > 0| w, c Q},
and, for all 0 < € < p, let us define w. the unique solution of the system
—Aw, =0 inw,,\w,

we =0 on 0wp/e,
we = L on ow.

We also consider the function v, defined on %\w by ¥c(x) = ve(ex) for all x € %\w The function o,
satisfies
—Ab. =0 in $\w,
e =0 on %(’)Q, (A.5)
V. = L on ow.

Notice that we have w c w,/. © % Now we consider w,. the extension of w. to %\w by zero in the outer
part of the extended domain. Therefore, by the principle of minimization of energy, we have

vel1,0. = |{}6|1,%\w < |u~’6|1,%\w = |w6|1,wp/5\5' (A.6)

A computation provides for all x € w), /. \@,

we(x) = 1 log(p/e) —log(|x])
log(p/e)
and for € > 0 sufficiently small,
el w, 1 < C(—log(e)) "% |,
with C' independent of €. So we get that for ¢ > 0 sufficiently small,

v:]1,0. < C(—log(e))"2|L], (A7)

with C independent of . Finally, we consider . the extension of v. to 2 by L. Since this extension is
in H}(Q), we can use the Poincaré inequality given by Theorem 3.1:

[vello.0. < [[2efo.0

< CP(Q)“}E‘LQ < CP(Q)|U€

1,0.-

Using equation (A.7), we get the result. O

Lemma 2.3. For any ¢ € H2(dw.), the problem

—Av. =0 inQ,,
ve =0 on 011,
Ve = ¢ on 0w,

admits a unique weak solution in H'(Q.). Moreover, there exist constant C > 0 and p > 0 such that for
all0 < e < p,

[vellio. < Cle(ex)]y o

with C' independent of €.
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Proof. Once again, this proof is adapted from a similar proof conducted in [[20], Lemma B.2 and
Lemma 4.2] for the Stokes problem which is itself inspired from a proof described in [[21], Chapter 3].
Lax-Milgram theorem allows to prove that the problem

(A.8)

—AV =0 in R%\@,
V =p(ex) indw,

is well posed and has a unique solution in
Wy (B*\®) = {ue D' (R\®) | log(p) 'u e L2, (R*\@), Vu e L*(R*\@)}

where )
p(x) = (1+[x[*)2

and
L2, (R*\@) = {ue D' (R*\®) | p'u e L (R*\W)},

(see [35] for example). We will try to give an explicit representation of V. By setting —AV = 0 in w,
Problem (A.8) has a unique solution in R? and we have that

—AV =VV -n*d,,
in D'(R?) where n' is the exterior normal on dw. Now let us define
W =Ex*(VV-n"da,)
where E is the fundamental solution of the Laplace equation given for x € R*\{0} by

B(x) = — log2(7|rx|) ’

and * is the convolution product. We have
—AW =VV -n'td,,

in D’ (R?). Then V — W is a harmonic tempered distribution. A classical result of Fourier analysis states
that harmonic tempered distribution are polynomials (see [36] for example). Then V = L+ W with L a
polynomial and for y € R?\w,

W(y) = | 0By —x)astx)
with t(x) = VV - n™. Using a Taylor development for E, we get
E(y —x) = E(y) - VE(y —ax) -x

for some « € (0,1). We then have

W(y) = E(y) ﬁ t(x)ds(x) — ﬁ t(x)VE(y — ax) - xds(x).

Let us denote
Uly) = f t(x)VE(y — ax) - xds(x).
ow
By computation, we get that U(y) = o(1/|y|) when |y|] — o so (log(p))~'U € L2,(R*\w). As
(log(p))~1V € L% (R*\w) and (log(p))~! ¢ L%, (R*\w), we necessarily have that

Lw t(x)ds(x) =0

and that L is a constant. By computation, we have that for |y| sufficiently large,

1
1 —_—
2%y

1
W(y)l < C”SD(EX)H%,(%)M and [VW (y)| < Clp(ex)]
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Let A > 0 such that the previous inequality is satisfied for |y|| > A. We have for |y| > A,

1
IL] < [V(y)| + Clp(ex) H%,awm

Integrating for ||y| > A, we get

Y VOR N\ o, RS
. (LA 1og<|y|>2||y|2> s (LA log(|y1>2y2> + Clle(ly o (flA 1og<|y|>z|y4>

The fact that A is independent of ¢ and the well-posedness of the problem (A.8) give
L] < Clo(ex) |y
Using similar computations as in [[37], Lemma 7.1| for € > 0 small enough, we also have
HW(;HLQE < Cefe(ex)]y o0
We then define z. := v. — W(%), z. satisfies

—Az. =0 in €,
ze =—W(%) on0dQ,

ze =L on Owe.

Using Lemma 2.1 and Lemma 2.2 we get that

X _1
2o, < CUW )]y o + (~log(e) LI,
< C (elp(ex)l .00 + (~1og(e)) (X)) -

So finally, for e > 0 small enough, we get

Lo, + [W(Z)I

[vello. < =]

X
g 1,99

< C (elp(ex)l 3,00 + (~log(e) Hlp(ex)l 3,00 + ()3 )

1,0. < Clp(ex) H%,aw

HUS

with C independent of €. 0

A.2 Proof of Theorem 2.1

Theorem 2.1. For ¢ € H%(éﬁ) and f € L*(Q) such that w. N suppf = &, there exist constants C' > 0
and p > 0 such that, for all 0 < & < p, the solution u. of the problem (1.1) satisfies

O,Q) )

10, < C(~1og(#)) " (16l .00+ 1f]

|ue — uo

with C independent of ¢.

Proof. We first define ¢ = u. — ug. It is solution of

0 _ .
—Ael =0 in Q,
09— —uy  on dws,

eE
e =0 on 092.

The function ug(ex) belongs to Hz (dw), so if we set x = (cos(6), sin(#)), we can write its Fourier series
decomposition on dw as follows:

a0
up(ex) = ac o + Z (@g,n cos(nb) + be , sin(nh)),

n=1
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with ac o = A% and for all n > 1, a.,, = A%ug,be n, = Bug where A" and B? are defined in (2.11).
Then by linearity, we can decompose €? into €2 = €% + ¢ where € and e are respectively solution of

0_0 i 20 — i

—Ael =0 in Q. —Ae, =0 in .,

Qg = —ac0 oOn Jwe, and Eg =ac0—up On 0w,
0 _ =0 _

e, =0 on 092 e. =0 on 082

According to Lemma 2.2, there exists a constant C' > 0 such that, for £ > 0 sufficiently small,

1€2]1,0. < C(—log(e)) % azl.

According to Lemma 2.3, there exists a constant C' > 0 such that, for £ > 0 sufficiently small,

@ 3
[€2]l1,0. < Clluo(ex) — acolly 00 < C (Z (1 +n)((ae,n)? + (bs,n)2)> :
n=1

Moreover, following the proof of Lemma 3.3 which does not interact with this proof, we get the existence
of constants C' > 0, p > 0 and T > 0 such that forall 0 <e <p< T andn > 1,
o) -

a0l < € (I8l3.00 + Ifl00) and Jazn] + bl < € ()" (10

T
079) )

) 2(n—1) z
|£hm<&(g¥H%N§) >(¢;m+ua@<c4wgm+fa@,

with C' independent of . O

1o+ |f

with C independent of n, N and e. We deduce that

Ie2]1.0.. < C(~log(e)) " (o]

oo 1 f

1
2

and

A.3 Proof of Theorem 3.4

Theorem 3.4. Let Q1 and Qo be two reflexive Banach spaces, a : X x X - R, by : Q1 x X — R,
b : Q2 x X — R three bilinear forms, di : Q1 — R, ds : Q2 — R two linear forms, we consider the
twofold saddle point problem: find (u, A1, 2) € X x Q1 x Q2 such that

a(u,v) + b1 (A1, v) + ba(Ae,v) = ¢(v), Vve X,

bi(p1,u) = di(p), Vi € Q1, (A.9)
ba(p2,u) = da(p2), Yo € Q.
Let
Zbi = {’UEX ‘ bi(ui,v) :OV/MGQZ*}CXZ': 1,2. (AIO)

We suppose that conditions (3.2) are satisfied with Q = Q1 X Q2 and
b: (Ql X Qg) xX >R b([)\l,)\g],u) = bl()q,u) + b2()\27’u,).
We also suppose that there exists $1 > 0 such that for all A\y € Q1,

b1 (A1, v
sup 2 - g1 g, (A1)
VEZp, HUHX
and that there exists B > 0 such that for all As € Q2

ba (A
sup 2( 2,11)

i = P2l Aallq.: (A.12)
vezy,  [vlx

Then we have the following estimates on u, A1 and As:

lulx < a7 el + BT (1 +a al)da]l + B (1 + a7 al)d2, (A.13)

and
M, < By el + lallulx), [X2lq. < 85 (le] + lalllu]x)-
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Proof. We begin by noticing that condition (A.11) implies that there exists w; € Zp, such that

by (p1, w1) = di(p1), Y1 € Qu,

and
Jwi ] x < By tdal.

Similarly, we deduce from (A.12) that there exists wy € Zp, such that

ba (2, we) = da(p2), Yus € Qo,

and
Jwa|lx < By da].
Setting now
K=u—w (A.14)

with w = wy + wa, we have for all 1 € Q1, p2 € Qo2,

b1(pa, k) = br(pa, w) — br(pa, wr) — bi(pa, we) = di(pa) — di(p)

0,
ba (2, k) = ba(pz, u) — ba(po, w1) — ba(pe, wa) = da(pa) — da(p) =0

We then deduce that k € Z, n Z;,. Besides we have for all v e Zy, n Zy,,
a(k,v) = a(u,v) —a(w,v) = c(v) — a(w, v).
The continuity assumption on a and ¢, as well as the coercivity assumption on a, imply

ofslx < sp AW, d)-alwy)
VEZY, N Zpy ,v#0 HUHX WEZyy Ly ,v#0 HUHX

< el + lafllwlx-

We get
I6lx < a™ (e + fal|w]x)-

Applying triangular inequality to equation (A.14), we eventually obtain
lulx < lI6lx + lw|x <o He| + 87 @™ al + Ddi] + Bz (o« Hal +1)[da,
which corresponds to (A.13). Taking v € Z,, in the first equation of system (A.9), we have
ba(Ag,v) = c¢(v) — a(u, v).
By continuity of a and ¢, and the inf-sup condition (A.10) on be, we get

Bolalg, < swp 22O gy, ) alwy)

< lel + alllul x-
w0 Tolx  wezmro ol

Thus, we eventually obtain
IMall@. < Bz (el + llalllul x),

and we have in a similar way
I\l <87 (el + llalllulx)-

This concludes the proof of the lemma. O

A.4 Proof of Theorem 3.8

Theorem 3.8. Let €Y solution of Problem (3.7), there exist constants C' > 0 and p > 0 such that for all
O<e<p,

e

20. + e 2. < C=7 (Iflog + 16ly.00)

with C' independent of N and .
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In order to prove Theorem 3.8, we will consider separately the regularity of el¥ in . and in w,, eX¥
is solution of

—Ael =0 in €.,
—AelN =0 in we,
7'810\55 N T on Owe,
eV =0 on 0f).

Thus, e is harmomc in w, and €. and in particular e € H?(Q.) and e € H?(w.). The estimates on
the H2-norm of e on €. and w. will then depend on the value of ug on dw,. and in particular on f and
¢. Let 0 < e < Ty < Y3 such that w. € wy, < wy, = Q. We will consider separately the regularity of e~
in the disk w, in the annulus wy, \we and in the exterior domain Qv , the space wy, being introduced
only for the proof. We will then introduce two lemmas describing the behavior of el on wy, and Q.

Lemma AA1. There exist constants C > 0 and p > 0 such that for all 0 < e < p,

+ e

e @ < Ce(

with C independent of N and €.

Proof. In the beginning of the proof, we proceed as in Lemma 3.5. Since e is harmonic in w., we have
for 0 <r < e and 6 € [0,27], if x = (cos(d),sin(h)) € dw,

o8]
eN(rx) = Ao + Z A cos(nb) + Be ,, sin(6)), (A.15)
with for 1 <n < N,

As,o = —A2uo,
1

Aa n = _7/4?”07
7

Bs,n = TB?U'O

The solution being also harmonic in wy, \@s, for € < r < Y7 and 0 € [0, 27, if x = (cos(h), sin(d)) € dw,
we have

o0
eN(rx) = C. o + D. glog(r Z ent" + Depr™ ") cos(nb) + (B ™ + Fe ,r~ ") sin(nd).  (A.16)

In the same way as we did in the proof of Lemma 3.5, we use the continuity of the Fourier coefficients
of €Y on dw. and the gradient jump of Ve given in equation (3.20) to obtain for 1 <n < N,

Ceo + D.olog(e) = —Alup,
Cene™ + Do pe™™ = —Aluo,
Eene" + Fepe™ ™ = —Blug,

and forn > N + 1,
A -
D., = F., =0and { = Cem,

en = Es,n~

Applying for all n > 0 the operators A%} and By defined in (2.8) on equation (A.16), we get for
1<n<N,

CE o+ DE 0 IOg( ) -A 7

Cen X'+ D, ,X7" = ATl :

E TP+ F., X" = ’fleév,
and forn > N + 1,

Ae,n = Cs,n = 7A’r1 £

BS,’!L = EE,’I'L = BTl e -

Tn
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We deduce an expression of €)Y in w. and in wy,\wz. For 0 < 7 < € and 0 € [0, 27[, if x = (cos(#), sin(0)) €

Oow,
N
Z < ) A ug cos(nb) + B Ug 51n(n0))

+ 2 < > el cos(nd) + By el sin(nf)), (A.17)

n=N+1
and for e <r <Yy and 0 € [0, 2x[, if x = (cos(f),sin()) € dw,

N
eév(rx) = Ce,0 + D.olog(r) + Z ent + Eopr ”) cos(nf) + (Ds,nr” + Fs,nr*”) sin(nd)

n=1
+ 2 Ce ncos(nd) + D, sin(nf)), (A.18)
n=N+1
with
o  log(e) AL, e +1og(T1)Alug
= log(<) — log(T1) ’ (A.19)
-A'rl E +A (N ’
Do T
~ log(Ty) — log(e)’
for1<n <N,
AN el + TTTAL
Ck71 = 2 uoa
’ T”e n— T "en
e " +T "By
Den = T"s n_ Y "en
1 -1y
o AT 4 TR A (4.20)
en €"T n Tn -n
e"By e + T"B”uo
sz,n e = Ype
1 1
and forn > N + 1,
Cs,n = ATl £
11 (A.21)

DE,TL = WBrles .

Now we look more closely to regularity of XY on the domain w,., where el is given by (A.17). We see that
we cannot compute the successive derivatives according to ey and to e, because there are not defined
in 0, then we will write eV in Cartesian coordinates thanks to Chebyshev polynomials which write for
n =1,

cos(nf) = Z <27;€> (—=1)% cos"2%(9) sin?*(0),
0<2k<n
n

2k+1

sin(né) ) (—1)% cos"2*=1(9) sin?* 1 (9).

0<2k+1<n <

If we write (z,y) the Cartesian coordinates in the map centered in 0, for 8 € [0, 27|, if x = (cos(#), sin(8)),
we have rx = (x,y) and

0<2k+1<n

0] n
+ Z <T11) (( ?165) : (27;)( 1)Fg2kyn=2k (B%leé\') Z <2kil>(_1)kx2k+1yn—2k—1
0<2k<n

0<2k+1<n
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We have for K1, K5 € N such that K1 + Ko =2 and n > 2

2%)! (n — 2k)! ke ok

aKlaKz 2k, n—2k ( 2k— K1, n—2k— Ko VO < Qk <

w0y (7Y ) = (2k — K1)l (n — 2k — K)! Y ’ "
2k +1)! (n —2k—1)! _ ok 1

aKl aKg 2k+1, n—2k—1Y\ _ ( 2k+1-K;,n—2k—1—K> V0 < 2k 1<

210 @y U7 oy pr oA TR Y ’ Fisn

and for n < 2,
aKlaKrz( 2k, n— Qk) aKlaK2($2k+1 n—2k—1) = 0.

Yy Y

After computation we have for n > 2, for € > 0 sufficiently small,
oty o, < O mE
Hleﬁ-lyn—Qk—ln2 b, <O+ ’I’L)%En_l,

with C' independent of n and e. Noticing that

2 (2T;>+ 2 <2krjr 1>_2n’

0<2k<n 0<2k+1<n

we have for € > 0 sufficiently small,

[e¢] n
— n n Son_— € n
o < (2 (LR (Aunl + B+ 3 (et (£) (A3,e]+ 1By E|>>.

n=N+1

Moreover, taking T = T; in the proof of Lemma 3.3, we have, for € > 0 sufficiently small,

€
|AZug| + |Blug| < C <T1) (

with C independent of n and . Using the same arguments as in the proof of Lemma 3.3, we can also
prove that, for e > 0 sufficiently small,

A%, e + 1B, e < C (161 00 + 1/ lo0) (A.23)

with C independent of n, N and e. We then conclude that for 0 <e < £ < Ty,

«) (i ({) (L+ n>3> <ce (I9l3.0

=2

) (A.22)

e

o)

with C' independent of N and ¢. Using the estimates we have on the H'-norm of ¢¥ given by Theorem
3.5, we can conclude that, for € > 0 sufficiently small,

e 2w, < C™ (I8l 20+ | floa)

with C independent of N and e. We will now look at the regularity of ¥ in wy, \wz where X is given by

(A.18). If we set a0 = Cey0, Beo0 = Deg, for 1L <n < N, ey =€"Cep, §en = € "Een, Ben = €"De s
Con=¢"F;pandforn>N+1, a., = T7Ce p, Ben = YDy, we have for e <7 < Ty and 6 € [0, 2],
if x = (cos(0),sin(0)) € ow,

(%) = e+ Bealon(r) + D) (e (£)" + € (5)"Y eostnt) 4 (B (£) 4 o ()" sinton),

n=1
+ Z () (cee n cos(nb) + Be nsin(nd)) .
T,) :
n=N+1

We then deduce, using inequality (A.22) and (A.23) themselves derived from Lemma 3.3, and looking
at the expression (A.19), (A.20) and (A.21), that for € > 0 sufficiently small,

A

lacol < C (Il
B0l < C(—log(e)) ™ (

o),
(A.24)
)
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for1<n <N,

n
€
el + 16enl + 10l +1n < () (I603.00+ 1la).

cinl + [Eenl + Bl + Gl < € (I8l 3.00 + Iflo0) -

with C independent of n and . We see that the dependence of the H2-norm of e with respect to e can
be directly deduced from the limiting term fy defined for € < r < Y1 by

and for n > N + 1,

fO(T) = Qg0 + 55,010g<7’).

For K € {1,2} and e <7 < Ty,
k-1 (K —1)!

() = Bo(~1) L

where féK) is the K-th derivative of fy. The L?-norm of féK) in wy, \we: writes

r

T
e = 20— )07 |

€

K
185

P2 = 7(80)2((K — DY((K = 2)!) (7200 - 2000,
It follows from equations (A.24) that for e > 0 sufficiently small,

1780wz < Ce=E B0 (1) l0.0) < Ce ' (~10g(e)) " (61300 + 1 flo)

with C' independent of €. O

1o+ |f

Let us now look at the domain 2y, on which we have the following result.
Lemma AA2. There exist constants C > 0 and p > 0 such that for all 0 < e < p,
¥ 2.0, < C (I6l3.00 + 1/l0g)
with C independent of N and ¢.

Proof. Let us first note that by elliptic regularity, we have

e

290, < Clelg (A.25)

0wy, )

with C independent of N and ¢. Proceeding as in Lemma A A1, as ¢¥ is harmonic in wy,\wy,, we have
for 0 € [0, 2x[, if x = (cos(f),sin(P)) € dw,

0 T n ]
eN(T1x) = . + 2 (T;) (0 n cos(nb) + Be pnsin(nd)) ,
n=1

with for n > 1,

—_ An N
as,n - ’r265 9
_ Rrn N
Bs,n - BTzeg 9

and for € > 0 sufficiently small,

e+ 1BE,eX| < C (6] .00+ 1S

O,Q) )

1
2

with C independent of n, N and €. We then deduce

o) (i (3) s n>3> ,

n=0

|O,Q) )

with C independent of N and €. We can conclude on the proof of the lemma using estimate (A.25). O

[V

€23 e, < C (I9l13.00 + 11

Al
€

€23 5, <€ (I9]3.00+ 1S

Gathering results of Lemma A A1 and Lemma A A2, we can conclude on the proof of the theorem.
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