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Visual Servoing in Autoencoder Latent Space
Samuel Felton, Pascal Brault, Elisa Fromont, Eric Marchand

Abstract—Visual servoing (VS) is a common way in robotics to
control a robot motion using information acquired by a camera.
This approach requires to extract visual information from the
image to design the control law. The resulting servo loop is built
in order to minimize an error expressed in the image space. We
consider a direct visual servoing (DVS) from whole images. We
propose a new framework to perform VS in the latent space
learned by a convolutional autoencoder. We show that this latent
space avoids explicit feature extraction and tracking issues and
provides a good representation, smoothing the cost function of the
VS process. Besides, our experiments show that this unsupervised
learning approach allows us to obtain, without labelling cost, an
accurate end-positioning, often on par with the best DVS methods
in terms of accuracy but with a larger convergence area.

Index Terms—Visual Servoing, Machine Learning for Robot
Control

I. INTRODUCTION

V ISUAL servoing (VS) uses the information provided by
a vision sensor to control the movements of a dynamic

system [1]. VS can be used for tasks such as end-effector posi-
tioning, object picking or target tracking. It is especially useful
in the cases where the current and target poses (positions and
orientations) of the robot are not directly obtainable. This is the
case when the scene may change in time and is not perfectly
known. VS has applications in industrial settings for assembly
operations, where the considered objects may not always be
perfectly placed, making visual sensing a requirement for
accurate operations. VS is framed as an optimisation process,
where one seeks to minimise the difference between two sets
of features that correspond to what is seen by the camera at the
current pose and what is seen at the goal pose. The features
that are used are often handcrafted. They can be 2D features
(points, lines, ...) or 3D features (camera pose, 3D points).
These features must be tracked over time and a matching
process between features in the current and desired images
is required. When the scene is not well structured (no tags,
no well defined features), features tracking and matching is a
difficult problem, which is often the cause of the failure of VS
applications.

Photometric VS [2] or DVS (Direct Visual Servoing) has
been formulated to work directly on the photometric informa-
tion. By considering the whole image, these approaches do
not require any tracking or matching process. They display
very high positioning accuracy, but suffer from a small con-
vergence area due to the fact that the optimisation problem is
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highly non-linear. To alleviate this issue, more compact image
representations such as photometric moments [3], projections
on an orthogonal basis (PCA [4] or DCT [5]) or Gaussian
mixtures [6]) can be considered.

In the last decade, the effectiveness of learning-based meth-
ods on unstructured data has soared, in big part thanks to Deep
Learning (DL). Neural networks, and especially Convolutional
Neural Networks (CNNs) have achieved state of the art results
in a variety of problems, encompassing classification [7], [8],
optical flow regression [9] or pose estimation [10] among other
tasks. This success comes in big part from the fact that deep
networks learn a hierarchical representation of the input, each
layer extracting the features relevant to the downstream layers
and the final task to be solved. These models alleviate the need
for hand-crafted features, as they are learned directly from the
data. DL is often used in a supervised setting, where the labels
are provided during training and the learned representation is
optimised directly for the task. In the unsupervised setting,
one can for example train a network to learn to reconstruct the
original input with some constraints. This network is called an
autoencoder (AE). AEs aim to learn a ”good” representation
of the data. This representation is often low dimensional,
following the manifold hypothesis stating that the input data
is generated from a much lower number of variables than
its own dimensionality. AEs have been shown to be able to
compress the information into a very small code, with better
reconstruction than their linear counterparts, e.g. PCA [11].

Deep learning has previously been applied to VS. In some of
these approaches [12], [13], [14], a deep neural network is used
to estimate either the camera pose or the pose difference be-
tween two cameras, from which the control law can be derived.
In [15], the camera velocity is directly regressed. This requires
data labelling in the form of an image-pose correspondence
and simulation is often used to train before transferring to the
real world. These methods show a good convergence area, but
the end positioning is not always accurate. A classical DVS
method can be applied at the end of the process, to correct
the remaining positioning error.

In this paper, we propose a novel visual servoing control
law, based on photometric information in combination with
a deep network. The network, an autoencoder, is trained
in an unsupervised fashion, learning to compress the given
input. Based on a convolutional architecture, it can extract
richer features than other previous dimensionality reduction
approaches. We establish the link between the learned rep-
resentation and the camera motion, allowing for the control
of robot in the latent space. We show through experiments,
both in simulation and on a real robot, that servoing in the
latent space is effective, with a very accurate positioning
and a better convergence domain than other dimensionality
reduction-based methods. This approach contrasts with other
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works combining DL and VS in that it does not require
supervision. Moreover, it is less sensitive to the gap between
simulation and real world, which is problematic in other
DL works [15]. It also differs from reinforcement learning
litterature [16], [17], [18], [19], where the control law (policy)
is learned from the data and from a reward signal. This
contrasts with our approach, in which we derive an analytical
control law on a new, learned feature space. Moreover, it is
complementary to visual planning approaches such as [20],
[6] that use latent representations to generate subgoals in the
form of images. In this case, the control/planning is still done
w.r.t. images, while our method has no generation step, as we
remain in the latent space.

The paper is structured as follows: we first give an overview
of VS and how features extracted from images can be used to
move in the cartesian space. We then detail how servoing can
be done in the low dimension latent space of an autoencoder
with our method, going from training a network to deriving the
control law associated to a neural network. Finally, we validate
the servoing scheme in experiments, both in simulation and
deployed on a real robot.

II. VISUAL SERVOING

The goal of visual servoing is to control the motion of a
robot with information extracted from images acquired by a
camera, either looking at or mounted on the robot end-effector
[1]. It is designed as a minimisation problem between the
image features s(r), extracted at the current pose r, and s∗,
the desired features at the desired pose r∗. The error e to be
minimized is then:

e = s(r)− s∗. (1)

If the feature are correctly chosen, when the error is minimized
in the image space, the robot has reached the desired position
r∗ in the 3D space.

To design the control law, the relationship between the
motion of the features s in the image and the camera velocity
v must be known. This is done thanks to the interaction
matrix Ls (also known as image jacobian), which contains
the partial derivatives of the features w.r.t. to the pose ∂s

∂r . The
link between the time variation (motion) ṡ of s and the camera
velocity v is given by:

ṡ = Lsv. (2)

When the camera is mounted on the end-effector of the
robot, the control law is directly deduced from (Eq. 1) and
(Eq. 2). The camera velocity v which allows the error e to be
minimised is obtained with:

v = −λL+
s e (3)

where λ is a gain parameter, which ensures an exponential
decrease of the error, and L+

s is the pseudo inverse of Ls. VS
is realised in a closed loop scheme, with v being computed
for each new image acquired by the camera.

One interaction matrix of interest to us is that of a 2D point
x = (x, y). It is given as

Lx =

−1

Z
0

x

Z
xy −(1 + x2) y

0
−1

Z

y

Z
1 + y2 −xy −x

 (4)

where Z is the depth of the point. Many types of features can
be considered for VS, as long as their interaction matrix is
available [1].

Recently, some approaches have tried to move away from
handcrafted features by considering the pixel intensities [2].
It is known as Direct (or photometric) VS. In this setting, the
feature is the image itself s(r) = vec(I(r)). The interaction
matrix of the intensity Ix of a given pixel at the point x is
[21]:

LIx = −∇I>x Lx (5)

where ∇Ix is the spatial gradient at x. To consider an image I
of dimensions N ×N as the servoing features, the interaction
matrix at every point of the image is computed and then are
stacked to form the N2 × 6 Jacobian LI.

This leads to a very precise positioning, but suffers from a
very small convergence domain and an unpredictable trajec-
tory. To overcome the former problem, multiple approaches
have been developed that aim at reducing the nonlinearity
of the cost function by reducing the dimensionality of the
input image while keeping the majority of the information. A
possible solution is to project the image on an orthogonal basis
to obtain a feature set of lower dimension. This basis can be
learnt (eg, using Principal Component Analysis (PCA) [4]) or
predetermined (eg, using a DCT [5]). For example, as far as
a PCA is considered, a set of images is used to compute the
basis (training). At run-time, the images are projected onto this
pre-computed basis. The projection is a linear transformation,
expressed as a matrix U of size N2 × D, with D a chosen
low dimension. With U, one can project an image onto the
eigenspace as w = UT (I− I). Then, to perform servoing, the
associated interaction matrix can be defined as:

Lw = U>LI. (6)

In a similar way, the Discrete Cosine Transform (DCT) [5]
can be considered to define the basis. The DCT allows for the
image to be represented in the frequency domain by a sum of
cosines of different frequencies and amplitudes. In both cases,
PCA or DCT, reducing the dimensionality of the features
allows to focus on the low frequencies of the images and
discard the high frequencies which are shown to be unhelpful
for the task.

[4] is our main source of inspiration. We also use learning
as a way to compress the image, but we do so with a non-
linear function, unlike PCA which is linear and projects on
an orthogonal basis. Here, we use a more powerful learning
algorithm: an autoencoder, capable of learning a non-linear
representation of the data, leading to a better compression of
the information.
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III. AEVS: SERVOING ON LEARNED FEATURES

In this section we detail the inner workings of AEVS,
an Auto-Encoder Visual Servoing method, and describe how
to perform visual servoing on the features extracted by a
neural network. We start by giving some background on
autoencoders (AE). AE typically achieve better compression
and reconstruction than other linear learning-based methods.
They also have the ability to better approximate the non-
linear manifold from which the data was generated. For these
reasons, we argue that they are an ideal fit for reducing the
dimensionality of Photometric VS, improving the convergence
rate while retaining an accurate end positioning. AEVS, de-
tailed afterwards, is based on the analytical computation of the
interaction matrix of a neural network.

A. Background on autoencoders

Autoencoders (AE) [22] are neural networks composed of
two distinct parts: an encoder h, which aims at projecting the
learning data into a latent space (or bottleneck) with interesting
properties and a decoding part d which decodes samples from
the latent space into the original data space. Similarly to other
neural networks, AE are trained by gradient descent and the
parameters are updated in order to minimise a loss function,
which is specific to the task at hand. Since gradient descent
requires computing the gradients w.r.t. to the parameters and
inputs of each layers, all the operations are differentiable. As
for other neural networks, the most common layers of the
AE apply a linear processing (convolutional or not), followed
by a non-linear activation function. These non-linearities give
its discriminatory and learning capabilities to neural networks,
allowing them to form a non-linear mapping between the input
and the output.

However, AE are particularly appealing since they do not re-
quire labelled data to be trained. This comes from the fact that
they seek to learn the identity function f(x) = d(h(x)) = x.
While this might be trivial to learn, constraints are added
in order for the AE to learn a meaningful representation
(latent space). The simplest one is to impose an undercom-
plete representation that has a low dimensionality [11] and
cannot conserve the full information of the data. AE compare
favourably to their linear counterparts, e.g. PCA, in that they
can achieve a lower error on the reconstruction task and
encode into fewer variables the main factors of variations
of the data, making their representation ideal for clustering
and other downstream tasks. The reconstructed input is then
x̃ = d(h(x)). The latent, compressed information stemming
from applying h is denoted as z = h(x). To minimise the
reconstruction error, a loss function must be introduced. Two
common choices are the mean squared error

L(x, x̃) = ‖x− x̃‖2 (7)

in the case of real unbounded values or the binary cross-
entropy (BCE)

L(x, x̃) = − 1

N

N∑
i

xi log(x̃i) + (1− xi) log(1− x̃i) (8)

when the inputs are binary or in the range [0, 1]. Both losses
seek to maximise p(x|z), the probability of x being recovered
from z.

AEs can also learn a representation that is robust to noise
and small perturbations. This can be done by an explicit
regularisation term as done in [23], or by corrupting the
input [24] while encouraging the reconstruction to be close
to the uncorrupted input. These approaches enforce a small
degree of invariance to small changes in the data, making the
representation more robust.

AE have also previously been used for control. In reinforce-
ment learning, they are useful to reduce the dimensionality of
the input data, making easier to learn a policy afterwards [17],
[19]. Given an appropriate architecture, they can extract spatial
features such as points that can be used for control [25], [26].

In the following, we will consider an AE that is trained to
reconstruct an input image I. This AE, based on a convolu-
tional architecture, must learn the parameters during training,
so that the error between the reconstructed image Ĩ and I is
minimised. Using a convolutional encoder allows us to learn
a powerful and high level representation, which can be used
for control purposes. Inspired by [5], we propose to guide our
AE to learn a representation that is robust to changes in high
frequencies and small photometric variations.

B. Learning a representation for visual servoing

In previous works approaching DVS through the prism of
dimensionality reduction [4], [5], it has been shown that con-
sidering the main factors of variation in the data or their low
frequency components improves the servoing convergence. In
these approaches, this knowledge is explicit, as the explained
variance/frequency of each of the extracted features is known.
However, in the case of an AE, the latent space must be guided
towards the goal of prioritising lower frequencies. Indeed,
the traditional losses presented in Eq. (7) and Eq. (8) consider
all pixels equally and independently and as such cannot
incorporate such constraints. With these objective functions,
the AE will try to fit both low and high frequencies and may
learn a latent representation that is in part tied to the higher
frequencies.

To remedy this, we propose to reformulate our reconstruc-
tion loss in the frequential domain. Applying the DCT to the
original image I and its AE reconstruction Ĩ, we obtain their
frequential representations F and F̃. F is an N×N matrix, in
which the energy of the different frequencies of the signal x
is stored. The frequencies are ordered and go from low (F0,0)
to high (FN−1,N−1). Since there is an explicit ordering, we
can choose which frequencies to prioritise in the loss. This is
done by adding a weighting in the loss like so:

LDCT (F, F̃) =
1

N2

N∑
i=0

N∑
j=0

Mi,j |Fi,j − F̃i,j | (9)

The elements of the weighting mask M are defined as
Mi,j = 1

i+j+1 , placing more emphasis on having a correct
reconstruction of the lower frequencies and mostly discarding
the higher ones. Although the zigzag ordering [5] is usually
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used to have a vectorized representation of the frequencies, we
found that considering the elements of a diagonal of F − F̃
works equally well. We evaluate the impact of the loss function
of the latent space and the performance improvements in
Section IV.

C. Computing the interaction matrix of a neural network

In our method, we propose to perform VS in the latent
space and reformulate the error (Eq. (1)) as a function of the
encoding of an AE:

e = z(r)− z∗ (10)

For the robot to be controllable (by applying Eq. (3)), the
variation of z w.r.t. to the camera velocity must be known,
i.e the interaction matrix Lz must be computed. We choose
as our servoing features the information bottleneck z. Because
the network will process an input image I, its learned repre-
sentation is dependent on I and LI (see Eq. (5)) is required to
compute Lz. Computing Lz from LI is a matter of chain rule
derivations of the Jacobians:

Lz =
∂z

∂r
=
∂z

∂I

∂I

∂r
=
∂z

∂I
LI (11)

where LI is derived from equation (5). In the case of a
simple one-layer linear autoencoder where z = WI + b, with
W,b the learned encoder parameters, The interaction matrix
is equivalent to the one presented in [4] and detailed in Eq. (6):

Lz =
∂WI + b

∂r
= W

∂I

∂r
+
∂W

∂r
I = WLI (12)

Linear autoencoders and PCA are tightly linked [27], [28]:
they optimise the same objective and project into the same
subspace. The projection W learned with a linear AE does
not have the orthogonality constraint. However, the principal
directions can be recovered from W by applying a singular
value decomposition.

To extend the process to the case of a nonlinear layer, one
must take into account the activation function that is com-
monly applied after the linear transformation of the layer. A
traditional fully connected layer is of the form z = a(WI+b),
with a the activation function, typically applied element-wise.
To find the interaction matrix associated to this nonlinear
operation, we must derive w.r.t. to the pose r:

Lz =
∂z

∂r
=
∂a(WI + b)

∂r
(13)

Applying the chain rule, we get:

Lz =
∂a(WI + b)

∂WI + b

∂WI + b

∂r
(14)

And using the same process than for the PCA-based interaction
matrix computation, which relies on the fact that W and b
are independent of the pose r (they are learned offline), the
final result is:

Lz =
∂a(WI + b)

∂WI + b
WLI (15)

The projection operation WLI performs a linear combina-
tion of the gradient of the pixels with respect to pose and does

Fig. 1: Overview of our VS process. Given an image I and its
associated interaction matrix LI, we project the information onto a
low dimensional embedding z and compute its interaction matrix Lz,
with the dashed lines representing forward differentiation.

not influence their direction. The derivative of the activation
∂a(WI+b)
∂WI+b impacts the modelling of the interaction matrix. In

the case of the ReLU activation, defined as a(x) = max(x, 0),
∂a(x)
∂x = 1x>0. Thus, when computing Lz, this activation will

act as a binary selection, keeping only the information of the
filters that were activated.

Moreover, a deep network is a stack of layers. To compute
the interaction matrix of the final representation, we apply the
chain rule recursively, from the input to the output. Consid-
ering a stack of n layer outputs l0, ..., ln and the associated
weights W1, ...,Wn and biases b1...,bn:

Ll0 = LI

Lli =
∂ai(Wili−1 + bi)

∂Wili−1 + bi
WiLli−1

(16)

This process is a direct application of the forward automatic
differentiation [29]. Computing the gradient in this manner
is not recommended when the dimension of the output is
less than that of the input, as it is less efficient than reverse
differentiation. However, we are deriving a vector z in RD

w.r.t the pose r, where D ≥ 6. D cannot be inferior to 6, or it
will incur the loss of a degree of freedom of the camera when
servoing. Thus, using forward differentiation makes sense in
our case and allows us to compute Lz and z in parallel. The
integration of the network into the servoing loop is detailed in
Figure 1.

Note that the transformation of the interaction matrix is
linear, as seen in Eq. (11). However, unlike PCA, it is sample-
dependent because of the nonlinearities.

While we have developed the case for a multilayer per-
ceptron, it is straightforward to extend it to other types of
networks, such as CNNs. One must simply compute the Jaco-
bian of the involved transformations, such as the convolution
operation ∗. Considering a convolution in an intermediate
layer i, Ci = Ci−1 ∗ W, where Ci−1 is a feature map
tensor of dimensions Ci−1 ×H ×W with Ci−1 the number
of features, W a set of learned filters, given the interaction
matrix associated to Ci−1, LCi−1 , as a tensor of dimension
6 × Ci−1 × H × W then, computing the interaction matrix
LCi amounts to convolving each tensor associated to a pose
component with the learned filter:

j : 0 ≤ j < 6,LCi,j = LCi−1,j ∗W (17)
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Fig. 2: Simulated data generation process. Focus points, x are
sampled from the blue zone. A pose r looking at the point x is
then generated in the red zone, above the scene.

IV. EXPERIMENTS

In this section, we evaluate the performance of our approach
for VS. We use a well known convolutional architecture and
train in simulation. In the same environment, we compare
our results with other photometric-based VS approaches and
explore the impact of different hyperparameters on the final
results. Finally, experiments on a real robot are conducted to
demonstrate the capabilities of AEVS in a real world setting,
both on a scene used for training and on a novel one.

A. Implementation details

To deploy our method, we train an autoencoder tasked with
minimising the reconstruction error. We use ResNet-18 [8]
for both our encoding and decoding networks. We found that
this relatively small and robust architecture (using residual
connections) is sufficient for our task, although more recent
ones such as EfficientNets [30] could have also been used. In
the decoding part, we ”flip” the standard ResNet, replacing the
downsampling operations with upsampling ones. The weights
between the two networks are not shared. We observed that
Batch Normalization (BN) [31] had a detrimental impact on
servoing. We therefore replace it with another normalization
scheme, Weight Normalization (WN) [32]. WN encourages
the norm of the parameters to grow, which is not the case
for BN. When computing Lz, the values coming from LI will
typically be orders of magnitude smaller than the intensities in
I: using BN may cause precision issues as we iterate through
the layers. Moreover, we replace the classically used global
average pooling at the end of the network with a grouped
convolution, since the invariance induced by the pooling is
not helpful for our task, and leads to poorer control at test
time. After the last convolution, we project the features onto
an embedding of the desired size with a linear fully connected
layer.

Finally, the last requirement for training is a dataset : we use
a simple simulation, similar to [12], [15], where the considered
scene is planar. Training then requires a single image of the
scene. To get a varied sampling of the scene, we randomly
draw a point x near the center of the scene (so as to avoid
seeing the edges, which are not of interest). We then sample
a camera pose r above the scene, directly looking at x and
with a random rotation around the focal axis (see Figure 2).

The network is trained for 50 epochs, on a dataset of 20k
images for training and validated on 10K images, with a batch
size of 50. We use the Adam optimiser, with a learning rate
of 10−3. Training on a RTX 2080Ti takes around three hours
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Fig. 3: The servoing loss landscape for (a) DVS (b) DCT-VS (c)
AEVS, on an x/y translation motion around the desired pose.

with deterministic algorithms (used in all our experiments),
and an hour without, making deployment fast. At inference,
computing z and Lz takes about 7ms on the GPU.

When performing servoing, we choose a Levenberg-
Marquardt-based control law and replace the traditional ve-
locity computation (Eq. (3)) with

v = −λ(H + µdiag(H))−1L>z (z− z∗) (18)

with H = LT
z Lz and µ = 0.01. This control law has

been shown to vastly improve the results when considering
photometric information for VS [2], [4], [5].

B. Experiments on simulated data

The first validation of our method is shown in Fig. 3. We
study the loss landscape of the error function e = z − z∗.
To visualise this, we compute the euclidean norm of the
error at different offsets from the desired pose. Our nonlinear
representation effectively smoothes the servoing cost function,
leading to a better convergence area at test time.

To study our method and compare it with other approaches,
we develop two test sets, corresponding to different scenarios.
In the first one, we generate poses r, r∗, so that they look
around the same point of the scene. We add noise (up to 10cm
displacements) to the points observed by r to add difficulty
to the test cases. This scenario will create large displacements
(with some far from the training set) in translation (on all
axes) and in rotation on the x/y axes to compensate for the
translation. The translation is sampled uniformly in a 3D
box above the scene of dimensions [1.2m, 1.2m, 0.3m]. The
rotation around the z axis is kept small (few degrees). The
average starting error is of 47cm±15cm and 37°±11°. In
the second scenario, we study the convergence on screwing
motions, where the displacement is on the z axis. For r, we
create displacements with translations in [−30cm, 30cm] and
rotations in [−70◦, 70◦]. The desired poses r∗ are located
60cm above the scene, with a random rotation around the
z axis. For the two scenarios, we generate 500 test cases
r, r∗. We chose those test cases because they feature large
overlap between the images, and are the cases where using
direct VS schemes makes the most sense. When the overlap
is small, our method has a low convergence rate, as do the
other direct VS methods. We first look at the performance
of the loss function proposed in Section III-B and compare it
with a standard reconstruction loss, the pixel-wise binary cross
entropy (BCE, Eq. (8)). The results, displayed in Figure 4,
show that our proposed loss greatly improves the results on
the screw motion test case, allowing a convergence rate of
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up to 91% and overall improves the results when compared
to PCA (detailed below). When using BCE, the convergence
rate is 82.52% ± 0.4%, while it is 88.84% ± 1.5% with the
frequential loss. In the look at test case, the results are similar
(92.76% ± 1.75% for BCE, 92.56% ± 0.8% for the frequential
loss), with a slight advantage for the BCE loss in terms of
median and maximum convergence but with a higher variance
overall.

Fig. 4: Convergence rate of AEVS for two loss functions on the two
test cases. We report median, minimum and maximum convergence
rate across 5 different seeds.

Next, we evaluate the results of our method in comparison
to other direct VS approaches, namely DVS [2], DCT-based
VS [5] and PCA-based VS [4], as well as an end-to-end deep
learning approach, Siame-se(3) [15]. The latter demonstrates
much higher convergence areas (beyond the ones tested here)
but a much lower precision. The results are reported in Table I.
For DCT-VS, PCA-VS and the two AEVS variants, we project
the input to a latent space of size 32. For AEVS, we select our
best-performing networks from the experiment of Figure 4 (in
terms of convergence rate), trained with the two losses (BCE
and the frequential domain loss presented in Section III-B) and
show their results. We study the convergence rate, as well as
the end error for the cases that converge to the desired pose.
In all cases, the impact of dimensionality reduction is evident
(second line against all four of the last lines in the table) and
leads to a better convergence. In the first test case (”look at”),
our method achieves better convergence than other methods,
while maintaining a precise positioning. The best results are
achieved when trained with the common pixel-wise BCE loss.
This may indicate that in this case, learning a representation
that conserves more high frequency information is helpful. For
DVS, convergence is far slower and servoing must be run for
more iterations than other methods, due to the shape of the
cost function. Indeed, when there are compensations between
translations and rotations on the x/y axes, servoing drives the
process towards flat valleys of the cost function, leading to a
slow convergence. Siame-se(3) manages to converge close to
the desired pose in every case, but exhibits lower accuracy.
For the screw motion test, our method sensibly improves
convergence when compared to other methods if it is trained
with the frequential loss presented in Section III-B. When
using a standard pixel-wise loss, the performance falls behind
other methods. Siame-se(3) produces a high error, but even in
cases that did not converge, it reduces the pose error so that it

reaches around 2.5 cms/°in average. For AEVS, All samples
that reach a near zero velocity (they settle in a minimum of the
cost function) find the global minimum, i.e the desired pose.
This illustrates that the learned latent space is discriminative
and the cost function smooth, leading to a correct optimization.

Look-at test Screw motion test
Convergence End error Convergence End error

% mm, ° % mm, °
Siame-se(3) [15] 100 9.2, 0.67 87 14.9, 1.5
DVS [2] 59.0 0.0004, 0.0 79.4 0.0001, 0.0
DCT-VS [5] 82.4 0.04, 0.004 86.2 0.04, 0.003
PCA-VS [4] 90.0 0.03, 0.003 87.4 0.02, 0.002
AEVS, pixel
loss (Eq. 8) 94.6 0.03, 0.003 83 0.1, 0.01

AEVS, frequential
loss (Eq. 9) 93.2 0.02, 0.002 91 0.06, 0.006

TABLE I: Comparative results of different VS methods on two test
cases. The convergence rate, as well as the end positioning error for
the cases that converge are reported.

We then study the impact of the network hyper-parameters
on the results for AEVS, trained with the frequential loss
(Eq. (9)). We first evaluate the impact of the latent size
dimension (Figure 5a). It can be seen that VS works slightly
better with lower dimensional representations, although using
larger ones is also effective. When using a bottleneck of size 6,
which is the true dimensionality of the manifold (images only
depend on the pose), servoing works especially poorly in the
look-at test. This may indicate that the retained information
is not enough to disentangle the ambiguities between the
x/y translations and y/x rotations that are present in those
cases. Finally we evaluate the impact of the encoder depth
on servoing (Figure 5b). To do this, we train a series of 8
ResNets. For Resnet i, only the i first residual blocks of the
encoder are active and the remaining blocks only retain their
skip projections. We also keep the end projection so that we
reach a latent space of the same dimension. A similar operation
is applied to the decoder, where the i last blocks are kept as
is. It can be seen that while VS works for a linear projection
of the low level features, mid/high level non-linear features
acquired in the later residual blocks are impactful in learning
a good representation for servoing.
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Fig. 5: Servoing results, depending on (a) latent space size and (b)
network depth.

More experiments can be found in our supplementary ma-
terial [33], where we study the impact of additional learning
parameters, as well as perform experiments on different ob-
jects.
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C. Robot experiments
Finally, we deploy AEVS on an 6 DOF gantry robot,

to test on real scenes. First, we study the convergence of
our method. To do so, we generate samples with increasing
difficulty, sampling from Gaussian distributions with 0 means
and growing standard deviations. For the x/y translations, the
standard deviations are 0.02/0.05/0.1/0.2/0.4m and halve
these for the z. The orientations of the cameras are such that
the initial viewpoints have a large overlap with the desired
one, but we also add noise ∈ [−0.1m,−0.1m] to the focal
point in the scene in order to increase the difficulty. We
also add rotations around the focal axis, in the [−30◦, 30◦]
range. For each difficulty batch, we generate 25 samples. We
ensure that the starting poses lie in the robot workspace. The
results can be seen in Figure 6. Our method exhibits a strong
convergence rate and, for batches 3 and 4, the only failing
cases are due to large specular reflections appearing in the
starting image. This is not unexpected, as specularities are
particularly impactful on photometric methods, built on the
hypothesis that the scene is lambertian. For the last batch, with
standard deviation 0.4m on the x/y axes, 3 out of the 6 failure
cases are also due to speculars, while in the other 3, AEVS
either converges to a suboptimal pose far from the desired one
or leads the robot out of its workspace. Figure 6b shows the
trajectories accomplished by the robot during servoing. The
samples tend to be generated in a half volume, with a positive
y displacement, due to a joint limit of the robot that constrains
the workspace. The trajectories show a distinct pattern: a
large translation on the z axis is first produced. Then, it is
corrected in the following iterations, along with the remaining
displacement on the other axes. This, however, is not tied
to our method but seems to be a common behaviour across
photometric methods, as can be seen in our next experiment.
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Fig. 6: Results of the large scale robot experiment. (a) Convergence
rate for batches with growing difficulties. (b) Servoing trajectories.
Each color corresponds to a difficulty batch and points indicate
diverging samples.

Our first detailed example (Figure 7) evaluates the method
on the scene on which it was trained. We start with an
initial displacement of ∆r0 = (-32.78cm, 18.07cm, -6.16cm,
18.41°, 27.51°, 16.98°) and run our method for 1.5k iterations.
Minimising the error in the latent space (Figure 7f) leads
to a correct minimisation of the pose error and convergence
is successful, with a final positioning error of ∆rfinal =
(0.03cm, 0.05cm, 0.01cm, 0.05°, 0.03°, -0.14°). DVS, how-
ever, fails to converge. In a similar way as other photometric

methods, AEVS first tends to correct the error on the z axis
(although it does overestimate the translational motion in the
first iterations), which accounts for the largest error in the
image space. It finishes by correcting the displacement on the
x/y axes. The trajectory (blue in Figure 7h) remains similar
to the other methods.

In the second experiment, we study whether our method
can handle novel scenes on which the AE is not explicitly
trained. To do so, we train AEVS with the frequential loss
on 100k images, from 10 different scenes. We train for 25
epochs, with a learning rate of 10−4. We select our scenes
from the ”car” class of the ImageNet [34] dataset. They thus
should have common semantic characteristics that we will try
to exploit by servoing in the real world on a toy RC car.
The starting displacement is (8.74cm, -23.67cm, -1.08cm, -
18.55°, -17.92°, -32.62°), and the displacement in the image
(Figure 8c) is fairly large. This scene, visible in Figure 8a
and Figure 8b introduces 3D information that is not present
in the first experiment. Moreover, it is quite challenging, as it
contains specularities on the body and the windshield of the
car, as well as high frequency patterns, such as the wheels,
the checkered pattern of the decal and the added objects.
Despite this, the method manages to reach a final displacement
∆rfinal of (0.31cm, -0.11cm, 0.07cm, -0.09°, -0.34°, 0.0°).
There is a small remaining error, shown in Figure 8d, and
is the minimum achievable error with AEVS. In this case,
we still consider our method successful, considering the shift
between the training set (planar images of modern cars) and
the presented scene.

More experiments, including servoing on industrial objects,
can be found in our supplementary material [33] (Section IV)
to show the versatility of our method.

V. CONCLUSION

We have presented a novel way to perform visual servoing,
controlling the camera motion in the latent space of an
autoencoder. The method features a broad convergence area, as
well an accurate positioning. The representation provided by
the autoencoder is compact, and the camera motion required in
order to minimise the latent error is computed analytically. The
unsupervised method allows us to avoid using costly labelled
data and our experiments also show that our method has a great
generalization potential on unseen data. The ability to compute
the interaction matrix for a generic neural network paves the
way to other venues of research. The flexibility of neural
networks, both in their architecture and their objective function
could allow us to introduce new interesting constraints in the
latent space to obtain smoother robot trajectories and improve
the convergence of our method in complex cases.
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