Lie algebra for rotational subsystems of a driven asymmetric top - Archive ouverte HAL Access content directly
Journal Articles Journal of Physics A: Mathematical and Theoretical Year : 2022

Lie algebra for rotational subsystems of a driven asymmetric top

(1, 2) , (3) , (2, 1) , (1, 2) , (4, 5)
1
2
3
4
5

Abstract

We present an analytical approach to construct the Lie algebra of finite-dimensional subsystems of the driven asymmetric top rotor. Each rotational level is degenerate due to the isotropy of space, and the degeneracy increases with rotational excitation. For a given rotational excitation, we determine the nested commutators between drift and drive Hamiltonians using a graph representation. We then generate the Lie algebra for subsystems with arbitrary rotational excitation using an inductive argument.

Dates and versions

hal-03515595 , version 1 (06-01-2022)

Identifiers

Cite

Eugenio Pozzoli, Monika Leibscher, Mario Sigalotti, Ugo Boscain, Christiane P. Koch. Lie algebra for rotational subsystems of a driven asymmetric top. Journal of Physics A: Mathematical and Theoretical, 2022. ⟨hal-03515595⟩
23 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More