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Abstract—Stream processing systems (SPS) have to deal with
highly dynamic scenarios where its adaptation is mandatory in
order to accomplish realistic applications requirements. In this
work, we propose a new adaptive SPS for real-time processing
that, based on input data rate variation, dynamically adapts
the number of active operator replicas. Our SPS extends Storm
by pre-allocating, for each operator, a set of inactive replicas
which are activated (or deactivated) when necessary without the
Storm reconfiguration cost. We exploit the MAPE model and
define a new metric that aggregates the value of multiple metrics
to dynamically changes the number of replicas of an operator.
We deploy our SPS over Google Cloud Platform and results
confirm that our metric can tolerate highly dynamic conditions,
improving resource usage while preserving high throughput and
low latency.

Keywords—Stream processing systems, Adaptive SPS, Multiple
metrics, Storm, Cloud.

I. INTRODUCTION

Nowadays, applications in Cloud Computing, social net-
works, sensor networks, or IoT (Internet of Things) produce
a large volume of data that require to be analyzed in real-
time [1]. Stream Processing Systems (SPS) meet this demand
offering an interface to process data ‘on the fly’, providing
timely answers to the users. They follow a processing model
based on Direct Acyclic Graph (DAG) model [2], where
vertices correspond to processing operators and the edges
correspond to dataflow. Operators are typically lightweight
tasks such as filtering, counting, merging, etc. They can be
replicated to increase processing parallelism and, therefore,
the system’s throughput. In runtime, the DAG is mapped to
physical machines or VMs, where the operator’s replicas are
assigned to threads. Many SPSs such as Heron [3] or Storm
[4] have been proposed in the literature in the last years.

Even if those frameworks are efficient to process dataflows,
they are subject to dynamic conditions where traffic can
suddenly change in terms of the number of events generated
per second or distribution. Such a variation creates challenging
scenarios because the SPS processing model has not been
conceived to adapt itself at runtime. Consequently, it may
happen that processing resources are either overestimated or
underestimate by the SPS. In the former, resources might be
wasted while the latter is even worst because relevant data may
be lost or processing latency may increase, compromising the
capacity of the SPS to provide timely responses.

One solution to tackle the above problem is to dynamically
increase the number of allocated resources, either physical [5]
or logical [6], whenever the processing demand of one or more
operators increases. The drawback of this strategy is the waste
of system resources if the workload decreases, i.e., the system
presents an overestimated amount of resources. Another exist-
ing approach is the elastic one, where the system increases
or decreases the number of required resources in runtime.
To this end, some SPS dynamically modify the number of
replicas of the threads based on some system metrics, such
as throughput [7], latency [8], or CPU usage [9]. However,
they often consider just one metric which does not necessarily
characterizes the real behavior of the application. For instance,
the CPU utilization does not take into account the behavior of
the traffic, being thus very sensitive to workload variation. On
the other hand, latency does not reflect the individual load of
each operator, making difficult to detect congested operators.
Finally, the throughput, although it analyzes the traffic of the
application, does not consider the workload.

In order to cope with the impact of the input rate stream
fluctuations in operator congestion, and, consequently, oper-
ator workload variation, this work proposes an adaptive SPS
that, according to a new metric that aggregates the current
value of multiple metrics, dynamically changes the number
of replicas of an operator. Our solution uses the Monitor,
Analyze, Plan, Execute (MAPE) model [10], often applied in
autonomic computing to control a system.

Our SPS implementation is an extension of Storm, ren-
dering it adaptive. We point out that Storm supports on-
demand resource scaling by unassigning all the operators
from the allocated resources and then reassigning them to the
new set of resources. However, such a mechanism is very
costly since it interrupts the streaming computation during
the reconfiguration. Contrarily, our SPS assigns, for each
operator, a set of replicas, which can be either in an active or
inactive state and are deployed at initialization by the Storm
scheduler. Inactive replicas do not consume CPU resources
but can be dynamically activated when the system detects the
need for increasing the resources for the operator in question.
Following the MAPE model, our SPS automatically increases
or decreases the number of active operator’s replicas based on
a new defined metric that adapts itself to scenario fluctuations.
Note that although the current implementation of our SPS was
developed for applications with stateless operators, it can be978-1-6654-9550-9/21/$31.00 ©2021 IEEE



easily extended to support stateful ones.
The current contributions of this work are:
• The definition of a new metric for adaptive SPS able to

improve the system response to highly dynamic scenarios.
• The implementation of an adaptive version of Storm

that avoids reconfiguration downtime and uses a newly
proposed metric that renders Storm adaptive.

• An evaluation of our SPS over Google Cloud Platform
(GCP) aiming at validating the effectiveness of our SPS
on a real cloud environment.

The rest of the document is organized as follows. Back-
ground concepts are presented in the Section II. Section III
presents our adaptive SPS proposal. Section IV presents our
experiments and results conducted on top of GCP with the
extended version of Storm. Section V discusses existing works
from the literature related to adaptive SPS. Finally, Section VI
concludes and presents our future work.

II. STREAM PROCESSING SYSTEMS

Unlike the traditional approach of processing large amounts
of data over long periods of time, SPS are designed to process
high volumes of data in real-time [11]. A DAG defines the
processing flow of the SPS where each vertex represents
an operator, and unidirectional edges between two nodes
represent the dataflow. An operator is usually a lightweight
task (e.g., filtering, counting, etc.), but there also exist heavy-
weight operators (e.g., classifiers based on Machine Learning
models). Based on the DAG, an operator receives one or more
dataflow, processes them, and sends the processed data over its
output DAG edges. Furthermore, an operator can have several
replicas, and each replica of the operator is associated with
a thread. A data source provides the input raw data stream
to be processed by the operators over the DAG. Raw data is
homogeneous, composed of key-value tuples.

The data flow should be distributed to each of the replicas,
and there are different approaches to do it [12]. For example, in
the Shuffle Grouping, tuples are sent randomly to each replica,
while in the Field Grouping, the tuple’s key determines which
replica will receive it. The drawback of these approaches is
the potential lack of load balance. To cope with this problem,
existing SPS propose other approaches such as hash-based data
partition [13], partial-key based [14] or executor-centric [15]
solutions.

Figure 1 shows an example of a SPS logical design (DAG),
composed of the input data source, four operators, and five
edges. The source is responsible for sending the raw data from
the environment to the first operator O1. After processing the
data, O1 should send its output stream to both O2 and O3.
Thus, there are two options: partition or duplication. After
processing their input data, O2 and O3 send their output to
O4, which terminates the workflow since it does not have an
adjacent out-vertex.

The DAG must be assigned to a physical environment for
deployment and subsequent execution. In addition, a schedul-
ing algorithm is in charge of mapping operators to each of
the physical resources. For instance, Storm maps each of the
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Fig. 1: The SPS logical architecture.

operators randomly to an available resource. This type of
algorithm can induce load imbalance when physical resources
are heterogeneous [16] or the application has complex tasks
[17].

A. Storm

Storm [4] is an SPS framework implemented in Java. It
enables the processing of unbounded dataflows following a
DAG, denoted topology, which represents a Storm application.

There are three types of components in a topology: Streams,
Spouts, and Bolts. Streams or dataflow are shared among
operators. They are composed of key-value tuples. Spouts
are responsible for capturing the input data of the topology
from external sources. They structure the information to send
through one or more Streams to the operators of the topology.
Bolts are the operators, and similarly to Spouts, Bolts send the
processed tuples through one or more Streams. At runtime,
operators of the topology are executed by several threads
called executors, which are instances of the operators.

The architecture is composed of Storm and Zookeeper clus-
ters. The Storm cluster contains a master node, called Nimbus,
and Supervisor nodes. The latter provides a fixed number of
processes, called workers, that run executors. The Nimbus is
responsible for distributing the application code across the
cluster, scheduling executors to available workers, monitoring
the state of nodes, and detecting failures. Zookeeper provides
a distributed coordination service enabling communication
among Storm cluster nodes, load balance, and fault tolerance.

Storm does not support runtime adaptation. On the other
hand, it provides a reconfiguration command that allows the
administrator to redefine the number of resources of a given
topology. However, such a reconfiguration requires stopping
the processing system and redeploying it, increasing process-
ing latency and message loss. Furthermore, messages arriving
during the reconfiguration will not be processed.

III. OUR SPS PROPOSAL

A. Adaptive Storm

Contrarily to Storm, our adaptive version of Storm allows to
dynamically increase/decrease operator replicas of the topol-
ogy without the need to stop the system. This is accomplished
by exploiting a pool of pre-allocated replicas as well as the
MAPE model proposed by [10], which is integrated into our
adaptive Storm.

MAPE model is a control loop that enables systems to
adapt themselves. It consists of 4 steps: Monitoring, Analysing,
Planning, and Execute. These four steps provide adaptability
to the system. The Monitoring module collects statistics, which
the Analysis module will analyze to determine the system’s



state. Then, based on the analysis results, a plan is put in place
by the Plan module. Finally, the Execute module executes, if
necessary, the actions to adapt the system. In our solution,
adaptation actions consist of increasing, reducing, or keeping
the number of replicas based on a set of metrics, introduced
in the following section.

Since our SPS needs to collect statistics from each operator,
the Monitoring module invokes the Storm API to obtain such
data. The collected statistics are updated over a configurable
time window. In order to avoid increasing communication
costs, both the adaptive SPS and the Storm API were deployed
on the same node where the Storm’s Nimbus master node runs.

As pointed out in Section II, Storm stops processing events
when topology resources reconfiguration takes place. In order
to overcome this drawback, we have defined, for each operator,
a set of pre-loaded replicas (denoted pool of replicas). These
replicas remain inactive until required: whenever the system
detects the need to increase (or decrease) the number of
replicas of an operator, it dynamically activates (or deactivates)
one or more replicas of the operator’s pool.

OA.1

OA.2

OA.3

OA.p

Input 
data

OB.1

OB.2

OB.3

OB.p

(a) One active replica per operator.
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(b) Activation of a replica.

Fig. 2: SPS with replica pool per operator.

Figure 2.(a) shows our SPS with two operators, OA and
OB . Each operator has p replicas, but only one is active:
OA.1 and OB.1, respectively. If the SPS requires to increase
the number of active replicas of an operator, as shown in
Figure 2.(b) for OA.1, an inactive replica is activated, in this
case, OA.2. Once active, OA.2 also receives/shares the input
data. We should emphasize that this approach considerably
reduces the reconfiguration cost compared to the traditional
Storm reconfiguration.

Similarly to Storm, the shuffle grouping approach (i.e.,
tuples are randomly distributed to operators) is used in our
SPS solution in order to distribute stream load among active
replicas of an operator. In this way, each of them will receive
almost the same number of events.

B. Metrics

An adaptive SPS should define metrics to characterize
the state of the operators at runtime on a given scenario.
Traditional metrics such as throughput, latency, and CPU
are the most used in literature. In this work, we propose to
integrate 3 metrics denoted Utilization (U ), Execution Time
(E), and Queue (Q).

U =
e× µ
r × twa

(1a)

E = 1− eb
e

(1b)

Q = 1− µ

q
(1c)

Utilization (U ): Defined by equation 1a where e represents
the average execution time of an event (or tuple) by an
operator, µ is the total number of processed tuples, and r is
the number of active replicas of the operator. Each of these
values is computed within a time window twa. This metric
characterizes the operator load: if its value is close to 1 (resp.,
0), the operator is overloaded (resp., underloaded).

Execution Time (E): Defined by equation 1b where e
represents the average execution time of an event (tuple) within
a time window twa and eb is the execution time of an event
processed by an operator without any extra load. The latter
is considered as a baseline, and it is estimated by previously
benchmark execution. The goal of the metric is to characterize
execution degradation of operators: if the value of e is greater
than eb, the physical machines are overloaded. It is a QoS
metric for the SPS which allows to detect struggle operators.

Queue (Q): Defined by equation 1c, where q is defined as
the total cumulative number of events (tuples) that arrive to
an operator but are not processed within twa. The objective of
this metric is to analyze the impact of the input queue on the
operator with respect to its current processing capacity. The Q
tackles the input traffic behavior (traffic shape). Sudden peaks
will increase the q value, generating higher values of Q. If Q
value is negative, its value is set to 0.

C. MAPE implementation

The MAPE loop control is in charge of providing the self-
adaptation capacity to the processing system. Figure 3 shows
our implementation architecture. Each of the four MAPE steps
performs a specific task:

Monitor

Analyze Plan

Execute

SPS

O1.1
Input 
data

O2.1

O2.2

O2.3

O3.1

Elastic adaptive model

Fig. 3: Self-adaptive Storm architecture

Monitor: The Monitor module collects and centralizes
statistics from all the operators by monitoring the nodes. These
statistics are required to determine the state of every operator.
In order to compute the statistics of each operator, all active
replicas are taken into account. Thus, µ and q correspond to



the sum of the respective statistics values of these replicas
while in the case of e, it is the average values of them.

Analyze: The Analyze module aims at determining the state
of an operator. For this purpose, the module computes a
new metric denoted δ, defined by Equation 2 where U , Q,
and E are the metrics previously defined by Equation 1. By
introducing weights (ωU , ωQ, and ωE), the impact of the 3
metrics (U , Q, and E) can be balanced, allowing, therefore,
the study of the relevance of each metric in different traffic
scenarios.

δ = U × ωU +Q× ωQ + E × ωE (2)

The δ value characterizes the overall state of an operator.
Following a threshold-based approach, two bounds are defined:
the upper bound δu and the lower bound δl. Considering these
bounds, an operator can be in one of the three following
states: overloaded, stable, or underloaded. These states give
information about an operator’s effectiveness and efficiency.
Effectiveness is the capacity to fully process the input data,
while efficiency is the capacity to process data by taking
advantage of the available resources. If an operator is over-
loaded, it is not capable of processing all the input data, losing
efficiency. On the other hand, if the operator is underloaded, it
processes the input data effectively but not efficiently. Finally,
an operator whose state is stable processes input data both
efficiently and effectively.

Plan: Based on the previous analysis, the Plan module
defines whether it is necessary or not to modify the system
resource capacity. If the operator is overloaded or underloaded,
the number of replicas should be increased or decreased
respectively by k replicas. Otherwise, if the operator state is
stable, the number of replicas will not change. In order to
ensure system stability, we define that an operator must remain
in the same state by at least two consecutive time windows
before carrying out any change in the number of replicas.

As physical resources (or machines) are bounded, it is also
necessary to limit the number of operator replicas that can be
allocated in those resources. Hence, to decide whether or not
it is possible to increase the replicas of an operator, the E
metric is used: if its value is greater than δE , the scheduler
cannot add more replicas.

Algorithm 1 presents the algorithm executed by the Plan
module for the Oi operator, deciding if the number of replicas
of Oi should be increased (or decreased) by k or remain the
same.

Execute: Finally, the Execute module is in charge of car-
rying out the change in the current number of replicas of an
operator, if required by the Plan module.

IV. PERFORMANCE EVALUATION

A. Testbed and parameters

The experiments were conducted on the Google Cloud
Platform (GCP) using seven Virtual Machines (VMs): three in
charge of Zookeeper, three as Supervisor nodes, and one for
running both the Nimbus and the adaptive SPS. Two types of

Algorithm 1 Adaptive Plan algorithm for operator Oi.

Require: Statistics Operator Oi in time window twa.
Ensure: Modifying the replicas of operator Oi.

1: Ui, Qi, Ei = calculateMetrics(Oi)
2: δi = calculateMetricGeneral(Ui , Qi , Ei)
3: if δi > δl then
4: ϕi ← overloaded
5: else if δi < δu then
6: ϕi ← underloaded
7: else
8: ϕi ← stable
9: end if

10: if ϕi is the same in twj and twj−1 then
11: if ϕi = overloaded then
12: if Ei > δE then
13: Add k active replicas for Oi

14: end if
15: else if ϕi = underloaded then
16: Remove k active replicas for Oi

17: end if
18: end if

machines were used: a n1-standard-1 (1 CPU, 2.2 GHz,
3.75 GB of RAM) machine for hosting Zookeeper VMs, the
Nimbus, and the adaptive system, and a n1-highcpu-16
(16 CPU, 2.2GHz, 14.4GB of RAM) machine for the Super-
visors VMs. Complementary, we used for some experiments
low priority machines, denoted Preemptible, which are cheaper
than the former ones, but they are only available for 24 hours.

Table I summarizes the system parameters and their respec-
tive values.

Parameter Description Value
twa Time window interval 25 sec
δu Operator state upper limit 0.7
δl Operator state lower limit 0.3
δE Limit for adding replicas 0.7
ωU U metric weight 0.45
ωQ Q metric weight 0.45
ωE E metric weight 0.1
k Number of active replicas to add/remove 1
p Replica pool size 50

TABLE I: Adaptive SPS parameter and their values.

B. Study case

We deployed an application composed of four operators
whose DAG is shown in Figure 4. It classifies events based
on a list of keywords. These events (tweets) were previously
collected from Twitter extracted with Twitter API. The four
operators classify every tweet by topic, subtopic, category, and
subcategory, respectively.

Detect
Topic

Detect
Subtopic

Detect
category

Detect
Subcategory

Twitter 
streaming

Fig. 4: Twitter application in SPS.



We consider two traffic scenarios: 1) a synthetic traffic that
follows a Gaussian distribution and 2) a traffic modeled from
real Twitter data related to COVID pandemic, composed of
237 million Tweets collected between March and September
of 2020 [18]. The latter is presented in Figure 5 where the
purple line represents the real data traces, while the green one
models the traffic peaks.
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Fig. 5: Traffic shape of Covid Twitter dataset.

C. Evaluation
Our experiments have three goals: (1) the evaluation of

the impact of using a pool of pre-allocated inactive operator
replicas for scaling in and out the number of operator replicas
when compared to Storm reconfiguration approach; (2) the
evaluation of the behavior of our SPS, having twitter stream
as input; (3) the evaluation of our SPS with a more complex
application.

Consequently, we have defined four evaluation metrics:
• Saved nodes: this metric described in [19] expresses the

difference in the number of used active replicas over
the number of overestimated replicas. It is defined by
1 − r

rover
, with r the number of active replicas, and

rover the overestimated number of replicas. If the value
of the metric is negative (resp., close to 1), the number
of resources is overestimated (resp., underestimated). If
it is close to 0, the number of resources is well sized.

• Throughput degradation: this metric, also described
in [19], aims at analyzing the behavior of the sys-
tem in terms of throughput stability. It is defined by
|inputrate−outputrate|

inputrate
. If the metric value is close to 0,

the system has good stability. On the other hand, if it is
close to 1, the system is not capable to process the input
rate, i.e., the system is unstable.

• Latency: is the average time taken by an event between
the moment it entered and left the SPS (end-to-end
latency). This metric is relevant since SPSs are supposed
to deliver real-time processed events.

• Difference in the number of processed events: is the
difference between the total number of processed events
and the total number of received events. It is an important
metric since SPSs are used to process high volumes of
data, i.e., it should process as much data as possible.

D. Pool of replica vs Storm reconfiguration
We compared Storm, denoted Storm-Default, with our mod-

ified version of Storm that uses the pool of replicas, denoted

Storm-Pool, described in Section III. For these experiments,
we used the Gaussian-based synthetic input traffic described
in Section IV-B. Note that Gaussian traffic shape allows to
evaluate the capacity of the system to scale-out and scale-in.

Saved
Nodes

Throughput
Degradation

Diff. Processed
Events Latency

Storm-Pool 0.2038 0.2039 0.9987 12121.92
Storm-Default 0.2041 0.4031 0.8627 913.10

TABLE II: Storm-Pool and Storm-Default metric values.

Figure 6 presents the number of replicas required by each
of the two systems. We observe that the difference between
both curves is not very significant. Furthermore, the difference
in Saved nodes values of both systems shown in Table II is
of 0.03% and, in terms of memory usage, Storm-Pool requires
only 2.6% of extra memory when compared to Storm-Default,
which is due to the pre-allocation of the pools of replicas when
deploying the application.
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Figure 7 shows the output data rate for each system. The
main drawback of Storm-Default is the need to restart the
system at each reconfiguration. We can observe that output
rates drop at each reconfiguration. On the other hand, Storm-
Pool exploits the preloaded replicas that enable the system
to process events continuously while adapting itself. We can
corroborate the difference in the system behaviors with the
throughput degradation metric (Table II) that shows a differ-
ence of almost 20% between both systems.
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The number of cumulative processed events is shown in
Figure 8. Once again, we can observe the impact of reconfig-
uration downtime over the performance of the Storm-Default:



there is a 13.6 % difference between both systems in terms
of the total number of processed events. We highlight that
message loss in real stream processing applications can be
critical (e.g., fraud detection systems).

Therefore, based on the above results and discussions, we
can conclude that Storm reconfiguration approach is not suit-
able for real-time applications that require timely responses.
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We should also point out that the MAPE integrated in
our SPS does not use much more extra resources since the
monitored information exploited by it is the same one collected
by Storm Nimbus. Furthermore, MAPE algorithms do not
require much computation time because they just consist in
simple mathematical calculations according to the formulas
presented in Section III-B

E. Adaptive system vs replicas

The current experiments aim at evaluating the performance
of our adaptive system under a real traffic scenario. To this
end, we used the metrics introduced in Section IV-C. Collected
from Twitter API, the input traffic rate trace is a real Twitter
dataset, which we have smoothed. Our adaptive system’s
control loop decisions are based in δ value. Furthermore, in
order to quantify the impact of U and Q in the adaptation
process, we also evaluate them independently. The results of
the 3 metrics are presented in Table III.

Saved
Nodes

Throughput
Degradation

Diff. Processed
Events Latency

δ 0.3996 0.1092 0.8907 39687.51
U -0.8934 0.2597 0.7402 23441.39
Q 0.4975 0.6830 0.3169 28799.60

TABLE III: Metric values of δ, U, and Q.

Figure 9 shows the number of active replicas for each
metric. A considerable increase in active replicas is observed
in the first third of the three experiments. Then, in the second
period, since the U experiment only analyzes if another replica
is necessary to improve operator utilization, it continues to
increase the active replicas, which generates a decrease in the
performance of the system, due to the overhead of managing
a high number of replicas. Likewise, in Table III, the Saved
nodes metric shows that the experiment with metric U requires
129.3% more active replicas than the one with δ metric. Note

that for the U metric, we observe a negative value of saved
nodes since sometimes the number of replicas becomes greater
than the overestimated value. On the other hand, the Q metric
has a 24.5% Saved nodes improvement over the δ metric but
it succeeds to process only less than 32% of events whereas
δ metric can process more than 89% of events.
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Fig. 9: Total number of active replicas of δ, U, and Q.

The behavior of δ, Q, U output rate as well as input rate
are shown in Figure 10. Regarding the three metrics, they are
similar in the first and second peaks but not in the third one,
since the Q experiment was not able to process events similarly
to the other two: the queue increased, generating an overload
in the system, which led the application to crash after the
fourth peak. On the other hand, both the δ and U experiments
continue to process events, until the eighth peak, which gen-
erates a saturation in the system of the U experiment, making
the application to crash after the ninth peak. As mentioned
above, a large number of active replicas induces an overhead
for handling them, decreasing the performance of the system.
We also observe that there is a 15.05% difference between the
δ and U regarding the Throughput degradation metric (Table
III), which indicates a higher stability of δ experiment then
U one. Also, due to the early instability of the Q experiment,
there is a difference of 57.38% with respect to the δ one.
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The total number of processed events is shown in Figure
11. Because of application crash, after t = 1600s (resp., t =
3300s) the curve is a constant for the Q (resp., U ) experiment.
The difference using δ instance with respect to U and Q is
15.05% and 57.3 % respectively (Table III).

Figure 12 presents the latency of the three metrics. At
t = 1600s, there is a strong rise in the latency for Q until
the application crashes. The same happens at t = 3300s
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Fig. 11: Total number of processed events of δ, U, and Q.

for the U experiment. Due to the number of events and
the system overload, the latest queued events can not been
processed. The system becomes then saturated and is not able
to continue processing. On the other hand, the latency with δ
is on average higher, but the system is capable of processing
a greater number of events. Therefore, although the δ instance
does not have better performance in terms of latency, it is
able of processing a greater amount of data without having to
cope with the problem of over or under estimated number of
per operator replicas, as in the case of U and Q experiments
respectively. The δ latency increase relative to U and Q is
69.3% and 37.8% respectively.
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F. A more complex application

We have also evaluated our SPS with a more complex
application. Figure 13 represents an application that analyzes
Twitter streaming that contains information such as news or
opinions. Depending on the type of information, the flow is
sent to different flows. Finally, the information is stored in a
database.
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Fig. 13: A Twitter more complex application in our SPS.

We have compared our SPS with an overprovisioning sys-
tem which always uses a fixed number of replicas per operator.

Saved
Nodes

Throughput
Degradation

Diff. Processed
Events Latency

δ 0.5023 0.4252 0.98 179.5401
Overprovisioning 0 0 1.00 132.0272

TABLE IV: Metric values of δ and overprovisioning.

Such numbers are fixed at the beginning of the data processing
and do not vary during the experiment.

Table IV presents the results of both our SPS and the
overprovisioning system experiments. Due to the time gap
to process events, we observe a 42.52% difference between
Throughput degradation values of the two systems. However,
such a difference is not a real problem since the numbers
of processed events of the two systems are quite close, as
shown in the same table. On the other hand, the difference in
latency is 26.46%. We should highlight that, even if our SPS
has higher values for the three previous metrics, it presents a
gain of 50.23% for the Saved nodes metric. In other words, our
SPS significantly increases the use of pre-allocated resources
which is one of the main objectives of our proposal. Also, in
this application, our SPS succeeded to process almost 98% of
the total events while consuming 2.7 times less CPU than
the static configuration which overestimates the number of
replicas.

V. RELATED WORK

There exist some SPSs, such as [20], [19], that provide
automatic scalability, being, thus, capable of dynamically
modifying resource allocation according to the needs of the
application.

The authors in [20] present a predictive approach called
AUTOSCALE which analyzes the SPS stream to predict traffic
congestion on tasks (operators). For such a prediction, a
queue theory principle is applied for gathering information
about utilization, arrival rate, and departure rate. A centralized
system then analyzes the statistics, predicting data congestion
in tasks according to a sliding window. Whenever the system
detects a possible congested operator, the number of replicas is
increased. However, contrarily to the current article, the work
does not present results in scenarios with significant variations
in data flow rate.

ELYSIUM [19], implemented in Storm, scales in and out
the number of replicas of the operators and, if necessary,
modifies the number of workers associated with the application
(horizontal and vertical scalability). It provides both a reactive
and predictive approach since it analyzes the load at each time
window and offers a prediction approach, based on an ANN
model. Unlike our work, it has not been evaluated with a real
prototype integrated in Storm.

In [21], the authors propose a hierarchical decentralized
adaptive SPS. Similarly to our SPS, the implementation has
been carried out in Storm, using the MAPE model in the solu-
tion. Regarding the scaling policy, the used metric is the CPU
utilization of the operator replicas, defining whether a system
adaptation is necessary or not. The proposed solution also
analyzes the costs associated with each reconfiguration. One



of their parameters is the downtime of the system. Although
the cost of re-balancing, i.e., downtime, is considered, it is
still a problem in terms of overhead.

There also exist some works that use other SPS frameworks,
such as Gesscale which is implemented in Flink [22]. In this
work, a model is proposed in order to compute the maximum
processing capacity of a physical node. For this purpose,
like our approach, the SPS defines multiple different metrics
which are the maximum sustainable throughput capacity of
a single node, maximum network delay, and parallelization
inefficiency. By applying these metrics, the model analyzes the
behavior of the system in every time window and, if necessary,
modifies the replicas elastically. One of the disadvantages of
Gesscale solution, that our SPS does not present, is that,
for reconfiguring the system, it is necessary to restart the
application, which takes a considerable time (120 seconds).

VI. CONCLUSION AND FUTURE WORK

In this article, we have proposed a DAG-based SPS for
real-time processing that, for coping with input data rate
fluctuation, dynamically adapts the number of active operator’s
replicas. Contrarily to Storm reconfiguration approach that
requires to stop the processing system to scale-in or scale-
out, our SPS pre-allocates, for each operator, a set of inactive
replicas which are activated (or deactivated) when necessary
without the Storm reconfiguration cost, as shown by the
performance results conducted on GCP.

We have defined three metrics, the average load of the
operator (U ), the average execution time of an event (E),
and the operator input queue (Q) for characterizing the state
of an operator at runtime. By assigning a weight to each
of these metrics, our SPS can decide whether the operator
is overloaded, underloaded or stable, respectively increasing,
reducing, or keeping the same number of active replicas.
Performance results with Twitter input data and different
evaluation metrics confirm the advantages of using the three
metrics compared to a single one.

As future work, in the short term, we intend to render the
parameter values of Algorithm 1 (Table I) adaptive, i.e., they
would vary according to the application execution state (e.g.,
operators load, input rate fluctuation, etc.). Another research
direction would be to implement a mechanism to predict input
rate and operator load variation and then dynamically assign
different weight values to the three metrics (U , Q, and E),
according to such predictions.
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