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Abstract. As more and more data are available as RDF graphs, the
availability of tools for data analytics beyond semantic search becomes
a key issue of the Semantic Web. Previous work require the modelling of
data cubes on top of RDF graphs. We propose an approach that directly
answers analytical queries on unmodified (vanilla) RDF graphs by ex-
ploiting the computation features of SPARQL 1.1. We rely on the N<A>F
design pattern to design a query builder that completely hides SPARQL
behind a verbalization in natural language; and that gives intermediate
results and suggestions at each step. Our evaluations show that our ap-
proach covers a large range of use cases, scales well on large datasets,
and is easier to use than writing SPARQL queries.

1 Introduction

Data analytics is concerned with groups of facts whereas search is concerned
with individual facts. Consider for instance the difference between Which films
were directed by Tim Burton? (search) and How many films were produced each
year in each country? (data analytics). Data analytics has been well studied in
relational databases with data warehousing and OLAP [2], but is still in its in-
fancy in the Semantic Web [3,9,15]. Most of the existing work adapts the OLAP
approach to RDF graphs. Typically, data administrators first derive data cubes
from RDF graphs by specifying what are the observations, the dimensions, and
the measures [4]. End-users can then use traditional OLAP-based user interfaces
for cube transformations and visualizations. More recently, other kinds of user
interfaces have been proposed to ease analytical querying: natural language in-
terfaces [16,9,1]; guided query construction, for instance based on pre-defined
query templates [11]; and high-level query languages that can be translated to
SPARQL [13]. The main drawback of using data cubes is that end-users have no
direct access to the original RDF graphs, and can only explore the cubes that
have been defined by some data administrator. This drawback is mitigated in [3]
by an Analytical Schema (AnS), from which end-users can derive themselves
many different cubes. However, there is still the need for a data administrator to
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Fig. 1. Principle of the N<A>F design pattern

define the AnS. A consequence of the lack of direct access is a limited expres-
sivity for the end-user, compared to the direct use of SPARQL 1.1 [10]. Indeed,
every OLAP view can be expressed as a SPARQL aggregation query (where each
SPARQL result corresponds to a cube cell), while each data cube allows for a
limited range of questions. Each new question may require the definition of a
new data cube, which can generally be done by the data administrator only. The
counterpart of SPARQL’s expressivity is that it is much more difficult for an end
user to write SPARQL queries than to interact with an OLAP user interface.
Another drawback is that SPARQL engines are not optimized for data analytics
like OLAP engines. However, they are already usable in practice as we show in
this work, their optimization is out of the scope of this paper.

In this paper, we propose an alternative approach that exploits the com-
putation features of SPARQL 1.1 (aggregations, expressions) to directly answer
analytical queries on vanilla RDF graphs, i.e. RDF graphs not customized to data
analytics. We rely on the N<A>F design pattern [5] to design a query builder user
interface that is user-friendly and responsive. In particular, it is user-friendly
by completely hiding SPARQL behind a verbalization of the built queries in
natural language. It is also made responsive by giving intermediate results and
suggestions for refining the query, at each step, not only at the end of the build-
ing process. Therefore, the user interface of our approach shares features with
QA (verbalization of queries and suggestions in natural language), and OLAP
(interactive visualization of results).

The paper is organized as follows. Section 2 shortly explains and illustrates
the N<A>F design pattern, which serves as a formalization framework for this
work. Section 3 formalizes the building of analytical queries as a new instance of
N<A>F. Section 4 presents an evaluation of the expressivity, responsiveness, and
usability of our approach. A Web application' is available online, and includes
the permalinks of about 70 analytical queries, and some screencasts.

2 The N<A>F Design Pattern

The purpose of the N<A>F design pattern [5] is to bridge the gap between natu-
ral languages (NL) and formal languages (FL, here SPARQL), as summarized in
Figure 1. The user stands on the NL side, and does not understand the FL. The
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machine, here a SPARQL endpoint, stands on the FL side, and does not under-
stand the NL. The design pattern has already been instantiated to three tasks
with different FLs [5]: (a) semantic search with SPARQL basic graph patterns
(including cycles), and their combination with UNION, OPTIONAL, and MINUS (here-
after called simple graph patterns (SGP)) [7], (b) semantic authoring with RDF
descriptions [3], and (c) ontology design and completion with OWL class expres-
sions [6]. The central element of the bridge is made of the Abstract Syntax Trees
(AST) of an Intermediate Language (IL), which is designed to make translations
from ASTs to both NL (verbalization) and FL (formalization) as simple as possi-
ble. IL has no proper concrete syntax, NL and FL play this role, respectively for
the user and the machine. ASTs are tree structures where the nodes represent
query components and subqueries. Each node X = C(X3,...,X,,) is character-
ized by a construct C, the type of the node, and a tuple of nodes Xi,..., X,
the children of X. N<A>F follows the query builder approach, where the structure
that is incrementally built is precisely an AST. Unlike other query builders, the
generated query (FL) and the displayed query (NL) may strongly differ in their
structure thanks to the mediation of IL. The AST is initially the simplest query,
and is incrementally built by applying transformations. A transformation may
insert or delete a query component at the focus. The focus is a distinguished
node of the AST that the user can freely move to control which parts of the
query should be modified. Transformations are suggested by the machine based
on query semantics and actual data, and controlled by users after they have been
verbalized in NL.
We illustrate N<A>F on simple graph patterns (SGP). The AST

That(A(:Film), Has(:director, Term(:Spielberg)))

is a nesting of constructs inspired by NL syntactic constructs, with RDF terms
as atomic components (e.g., class :Film, term :Spielberg). The tree structure of
the AST is traversed recursively to generate its translations to FL and NL.

— SPARQL: ?x a :Film. ?x :director :Spielberg.

— English: ‘a film whose director is Spielberg’
The AST is built through the following sequence of transformations and AST's
(the current focus is underlined):

(0) initial AST : Something

(1) class :Film : A(:Film)

(2) prop. :director : That(A(:Film), Has(:director, Something))

(3) term :Spielberg: That(A(:Film), Has(:director, Term(:Spielberg)))
(4) move focus : That(A(:Film), Has(:director, Term(:Spielberg)))

The transformations are suggested according to the focus and actual results of
the current query. For example, at step (2) only properties having a film as sub-
ject or object are suggested, and at step (3) only film directors are suggested as
terms. At each step, the user interface shows: (a) the verbalization of the cur-
rent query with the focus highlighted, (b) the results of the generated SPARQL
query, and (c) the lists of suggested transformations.



3 Guided Building of Analytical Queries on RDF Graphs

The contribution of this paper is to fill the gap between the end-user and the
computation features of SPARQL 1.1 (expressions, filters, bindings, and aggre-
gations) to the purpose of the direct data analytics of vanilla RDF graphs. We
realize this by designing a new instance of the N<A>F design pattern, i.e. new
kinds of ASTs, along with their transformations, their formalization, and ver-
balization. Starting from the instance on simple graph patterns (see Section 2),
this new instance introduces two new kinds of ASTs that cover the computation
features of SPARQL, in addition to graph patterns: tables and expressions. The
ASTs of analytical queries are table ASTs, and are composed of graph pattern
ASTs and expression ASTs. A simple graph pattern AST P evaluates to a set
of mappings M (P), where each mapping u € M(P) is a partial function from
variables of the graph pattern to RDF terms. An expression AST E evaluates
to an RDF term, computed as eval(E). A table AST T evaluates to a tabu-
lar structure with a set of columns C(T'), and a set of rows R(T) where each
row r € R(T) is a partial mapping from columns to RDF terms.

In the following subsections we progressively cover the computation features
of SPARQL by defining new AST constructs. Each subsection presents one or
two use cases to motivate the new feature, and then formally defines the new
construct. Use cases are based on a concrete dataset, MONDIAL [12], that con-
tains geographical knowledge (e.g., countries, cities, continents, bodies of water)
with a lot of numerical data (e.g., population, area).

The constructs of expression ASTs are defined at once in Section 3.2. For
each new construct of a table AST T, we define:

C(T): the set of columns,

— R(T): the set of rows (defined with relational algebra),
— sparql(T): the formalization in SPARQL,

nl(T): the verbalization in NL (here English),

a set of transformations to build the construct.

An important note is that function spargl() is not always applied to the table
AST itself but sometimes to a variation of it that depends on the focus. Varia-
tions are explained below where needed. The global formalization of a table T
is SELECT * WHERE { sparql(T’) } where T" is the focus-dependent variant of T'.

3.1 Primitive Tables

All of our computation constructs define a table as a function of another table,
and so we need primitive tables to start with. Possible candidates for a primitive
table are a table of a relational database, an OLAP data cube or a spreadsheet.
However, in order to allow direct analytics of vanilla RDF graphs, we propose to
use SPARQL simple graph patterns (SGP) to extract arbitrary tables of facts.
Indeed, the results of a SPARQL SELECT query are returned as a table. We can
then reuse previous work on the N<A>F-based building of SGPs, implemented in
the Sparklis tool [7], to help users build those primitive tables.



Definition 1. Let P be a simple graph pattern AST, and sparql(P) its transla-
tion to SPARQL. The table AST T = GetAnswers(P) represents the primitive
table whose columns are the variables of sparql(P), and rows are the solutions.

— C(T) = Vars(sparql(P)) — sparql(T) = sparql(P)
— R(T) = Sols(sparql(P)) — nl(T) = ‘give me nl(P)’

For example, if a user wants to build a primitive table of countries along with
their population and area, four steps are enough to build the following AST:

T0 := GetAnswers(That(A (:Country),
And(Has(:population, Something), Has(:area, Something))))

which translates to SPARQL: ?7x1 a :Country. ?x1 :population ?x2. ?x1 :area
7x3. and to English: ‘give me every country that has a population and that
has an area’.

3.2 Expressions in Bindings and Filters

Use case (E): Give me the population density for each country, from population
and area. SPARQL expressions (e.g., ?pop / 7area) are used in two kinds of
contexts: filterings (FILTER) and bindings (SELECT, BIND, GROUP BY). Given a table,
a filtering performs a selection on the set of rows based on a Boolean expression.
Given a table, a binding adds a column and computes its value for each row with
an expression. In both cases, the expression can only refer to the columns of the
table. In data analytics, filterings are important to select subsets of data, and
bindings are important to derive information that is not explicitely represented,
e.g. population density in use case (E).

We first define expression ASTs as they are a component of filterings and
bindings. We define them in a classical way, as a composition of constants, vari-
ables, and operators/functions.

Definition 2 (expression). An expression AST E is composed of RDF terms
(constants), table columns (variables), and SPARQL operators/functions. We
add the undefined expression construct 77 to allow for the incremental building
of expressions. An expression E is said defined when it does not contain ?7. We
note C(E) the set of columns refered to in the expression.

The evaluation of an expression AST E is denoted by eval,.(E), where r
is the row on which the evaluation is performed. eval,.(F) and sparql(E) are
defined in the obvious way, but are only defined when F is defined itself. If the
focus is on a subexpression E’, then only that subexpression is evaluated and
formalized in SPARQL in order to show the value at focus. The verbalization of
expression ASTSs results from the nesting of the verbalization of its functions and
operators. It mixes mathematical notations and text depending on which is the
clearer: ‘F; + E»’ is clear to everybody and less verbose than ‘the addition of
E; and E5’,while ‘E; or FE»’ islessobscure than ‘E; || E’ for non-IT people.



The verbalization of columns is derived from the names of classes and properties
used in the graph pattern that introduce them as variables: e.g., in sparql(T0),
‘the population’ for x5, ‘the area’ for x3. The parts of the expression that are
not under focus are displayed in a different way (e.g., gray font) to show that
they are not actually computed.

The transformations used to build expression ASTs are the following: (a)
insert an RDF term at focus, (b) insert a column at focus, (¢) apply an operator
or a function at focus. When an operator/function is applied, the focus is au-
tomatically moved to the next undefined expression if any (e.g., other function
arguments), and to the whole expression otherwise. For instance, the sequence
of ASTs and transformations that builds the expression of use case (E), which
computes population density from population and area, is the following (the
focus is underlined):

(0) inital expression

(1) insert column p (population):
(2) apply operator / (division) : E=p / 7?
(3) insert column a (area) :E=p/a

There are constraints on which transformations are applicable so as to avoid mis-
formed expressions. Only columns that are in scope can be inserted. That scope
is defined by table AST constructs that contain expressions. Type constraints
are also used to determine which operators and functions can be applied, and for
which datatypes RDF terms can be inserted. In previous example, at step (2)
only numeric operators/functions can be applied because p is an integer, and at
step (3) only numeric columns and terms can be inserted.
We now define the two table constructs that contain an expression.

Definition 3 (filtering). Let Ty be a table AST, and E be a Boolean expression
AST s.t. C(E) C C(Ty). The table AST T = SelectRows(T1, E) represents a
filtering of the rows of Ty that verify E.

- C(T)=C(T)
— R(T) = {r|re R(T1),eval,(E) = true} if E is defined,
N R(Th) otherwise
— sparql(T) = sparql(Ty) FILTER ( sparql(E) ) if E is 'deﬁned
sparql(Th) otherwise

— nl(T) = “nl(T1) where nl(E)’

Definition 4 (binding). Let 171 be a table AST, = be a column s.t. © ¢
C(Ty), and E be an expression AST s.t. C(E) C C(T1). The table AST
T = AddColumn(Ty,z, E) represents the addition of a column x to Ty, and
the binding of x to E.

- CT)=C(h)U{z}
~ R(T) = {ru{z— eval.(E)} |r € R(TV)} if E is defined,
| R(TY) otherwise (x is unbound)



sparql(Ty) BIND ( spargl(E) AS 7z ) if E is defined,
sparql(Ty) otherwise

— sparql(T) = {

—nl(T) = ‘nl(Ty) and give me name(x) = nl(E)’ if name(x) is defined,
| “nl(T1) and give me ni(E)’ otherwise

In both constructs, the columns that are in scope of the expression are
the columns C(7Ty). If the focus is on a subexpression E’, then function
sparql() is applied respectively to T = SelectRows(T},E’) and T =
AddColumn(Ti,z, E’), thus ignoring the rest of the expression in the com-
putation. It suffices to move the focus upward in the AST in order to recover
the complete computation.

Filterings and bindings are introduced in the AST by putting the focus on a
column, and by applying a function or operator, this initiates the building of an
expression. The choice between SelectRows and AddColumn is based on the
type of the whole expression under the assumption that Boolean expressions are
primarily used to select rows. However, another transformation allows to force
the choice of AddColumn to allow a column of Boolean values. Finally, there
is a transformation to give a user-defined name name(x) to the new column,
which can be used in the verbalization. For instance, starting from the primitive
table T0 defined in Section 3.1, use case (E) can be built through the following
sequence of transformations and ASTs:

(0-3) ... : T =T0 (see Section 3.1)
(4) focus on z5 (population):
(5) apply operator / : T = AddColumn(T0, x4,z / 17)
(6) insert column x3 (area) : T'= AddColumn(T0,z4, 2 / x3)
(7) name column x4 as ‘population density’:

The resulting table AST can be translated to SPARQL:
?x1 a :Country. ?xl1 :population 7x2. 7xl1 :area 7x3. BIND (7x2/7x3 AS 7x4)
and to English:
‘give me every country that has a population and that has an area,
and give me the population density = the population / the area’.

3.3 Aggregations

We call a basic aggregation the application of an aggregation operator on a set of
entities or values, resulting in a single value. Use case (Al): How many countries
are there in Europe?. A simple aggregation consists in making groups out of a set
of values according to one or several criteria, and then applying an aggregation
operator on each group of values. A multiple aggregation extends simple aggre-
gation by having several aggregated values for each group. Use case (A2): Give
me the average population and the average area of countries, for each continent.
An aggregation corresponds to an OLAP view, where the grouping criteria are
its dimensions, and where the aggregated values are its measures. In SPARQL,
aggregations rely on the use of aggregation operators in the SELECT clause, and



on GROUP BY clauses. We introduce a new construct for table ASTs that cover all
those aggregations.

Definition 5 (aggregations). Let T} be a table AST, X C C(T1) be a set
of columns (possibly empty), and G = {(9;,Y;,%;)}jc1.m be a set of triples
(aggregation operator, column, column) s.t. for all j € 1.m, y; € C(Th)\ X
and z; ¢ C(T1). The table AST T = Aggregate(T1, X, G) represents the table
obtained by grouping rows in Ty by columns X, and for each (g;,y;,%;) € G, by
binding z; to the application of g; to the multiset of values of y; in each group.

- O(T) =X U{z}jerm
R(T) = {rxU{z; = g;(Vj)}je1r.m | rx € nxR(T1), for each (g;,y;,2;) € G,
Vi={{r(y;) |r € R(Th),mxr =rx}} }
— sparqgl(T) = { SELECT ?x7...7%, (91(?y1) AS ?21) ... (gm(?Ym) AS ?2)
WHERE { sparql(Ty) } GROUP BY ?7x...7x, }
— nl(T) = “nl(T1) and [for ...each nl(x;),...] give me ...nl(z)...’

In C(T), the y-columns disappear and are replaced by the aggregated z-
columns. In the definition of R(T), the notation {{...}} is for multisets (a.k.a.
bags), and the distinction with sets is important for aggregators such AVG or
SUM. Because other table constructs generate a SPARQL graph pattern, we here
use a subquery in the definition of sparql(T) to allow the free combinations of
different kinds of computations (see Section 3.4 for examples). If the focus is in T}
then both R() and spargl() are applied to T; instead of T', hence ignoring the
aggregation. In this way, the columns that are hidden by the aggregation (C(17)\
X) can be temporarily accessed by moving the focus in Tj. The verbalization
of each aggregated column z; is the verbalization of g;(y;): e.g., ‘the number of
nl(y;)’, ‘the average nl(y;)’. The brackets around ‘for each...’ indicate an
optional part, in the case where X = ().

Similarly to bindings and filters, an aggregation is introduced in the AST by
moving the focus on a column, and by applying an aggregation operator. Then,
other columns can be selected, either as grouping criteria or as an additional
aggregated column. Type constraints are also used here to restrict which aggre-
gator can be applied to which column. Here is the sequence of transformations
that leads to use case (A2) from primitive table T0:

(0-4) .. : T =T0 (see Section 3.1)

(5) property continent :7T =T1= GetAnswers(...,Has(:continent,...)

(6) move focus on z2 (populatlon)

(7) apply aggregation AVG : T = Aggregate(T'1,{}, {(AVG, z2,z5)})

(8) group by x4 (continent): T' = Aggregate(T'1,{z4}, {(AVG, z2,z5)})

(9) apply AVG on z3 (area) : T' = Aggregate(T'1,{z4}, {(AVG, z2, z5), (AVG, 3, z6) })

Different sequences are possible, elements can be introduced in almost any
order, and it is also possible to remove query parts. For example, in (A2), it
is possible to first build the query without column x4 in T'1 (continent), and
without grouping by z4. This computes the average population and area over
all countries. Then the focus can be moved back in T'1 on z; (country), insert



property :continent to add column x4 in 71, and finally move the focus back
on the aggregation to group by continent. The resulting AST for (A2) can be
translated to SPARQL:
{ SELECT ?x4 (AVG(?x2) AS ?7x5) (AVG(?x3) AS ?7x6)
WHERE { ?x1 a :Country. ?x1 :population 7x2.
?7x1 :area ?x3. 7x1 :continent 7x4. }
GROUP BY 7x4 }
and to English:
‘give me every country
that has a population and that has an area and that has a continent
and for each continent,
give me the average population and the average area’

3.4 Combinatorics of Table Constructs

The real power of our approach lies in the combinatorics of the above table
constructs (GetAnswers, SelectRows, AddColumn, Aggregate), which can
be chained arbitrarily to build more and more sophisticated tables. We illustrate
this with three new use cases.

Aggregation of bindings. Use case (Cl): What is the average GDP per
capita, for each continent?. This use case requires to retrieve information about
countries, to compute the GDP per capita as (total GDP x10°/ population) for
each country, and to average the GDP per capita over each continent. The query
can be built in 11 steps, producing 3 nested table constructs.

Comparison of aggregations. Use case (C2): Which continents have an
average agricultural GDP greater than their average service GDP?. This use case
requires to retrieve information about countries, to compute two aggregations
for the same grouping (multiple aggregation), and then to express an inequality
between the two aggregations (filtering). It can be built in 9 steps, and a nesting
of 3 table constructs.

Nested aggregations. Use case (C3): Give me for every number of islands
in an archipelago, the number of archipelagos having that number of islands. This
use case requires to retrieve islands and their archipelagos, to compute the num-
ber of islands per archipelago (simple aggregation), and then to compute for each
number of islands, the respective number of archipelagos (simple aggregation).
The query can be built in 6 steps, and 3 nested table constructs.

3.5 Implementation

We have fully implemented our approach into Sparklis. Its previous version cov-
ered all simple graph patterns, and therefore provided everything needed for the
building of our primitive tables. Thanks to the genericity of N<A>F, no change
was required in the user interface. The impact of our approach appears to users
only through a richer query language, and additional suggestions. This makes it
easy for users to transit to the new version. On the implementation side, how-
ever, a major refactoring of the intermediate language was necessary with the



introduction of the new kinds of ASTs for tables and expressions in addition to
simple graph patterns. Entirely new components were also introduced, e.g., type
inference and type checking for computing some of the new suggestions.

4 Evaluation

We conducted two evaluations. The first evaluates expressivity and responsive-
ness from our participation to the QALD-6 challenge. The second evaluates
usability with a user study comparing Sparklis to a SPARQL editor.

4.1 Evaluation on the QALD-6 Challenge

The QALD-6 challenge (Question Answering over Linked Data) introduced a
new task on “Statistical question answering over RDF datacubes” [16]. The
dataset contains about 4 million transactions on government spendings all over
the world, organized into 50 datacubes. There are about 16M triples in total.
Note that, although this dataset is represented as a set of datacubes, we answered
the challenge questions by building primitive tables from graph patterns, like we
would do for any other RDF dataset. We officially took part in the challenge
and submitted the answers that we obtained from Sparklis by building queries.

Expressivity. We evaluated expressivity by measuring the coverage of
QALD-6 questions. Out of 150 questions (training+test), 148 questions are basic
or simple aggregations, and are therefore covered by our approach; and 2 ques-
tions (training Q23 and test Q23) are comparisons of two aggregations, and are
not covered by our approach. The reason is that the two aggregations use dis-
connected graph patterns, whereas our approach is limited to a single connected
graph pattern. In the challenge, we managed to answer 49/50 test questions,
out of which 47 were correct, hence a success rate of 94% (official measure:
Fy =0.95). The two errors come from an ambiguity in questions Q35 and Q42,
which admit several equally plausible answers (URIs with the same label).

Responsiveness. We evaluated responsiveness by measuring the time
needed to build queries in our implementation by a user mastering its user in-
terface (the author of this paper). The measures include user interactions and
are therefore an upper bound on the system runtime. The query building time
ranged from 31s to 6min20s, and half of the queries were built in less than
1min30s (median time). Most QALD-6 questions need 5-10 steps to build the
query. It shows that our implementation is responsive enough to satisfy real
information needs on large datasets.

4.2 Comparison with Writing SPARQL Queries in Yasgui

Methodology. The objective of this user study is to evaluate the benefits of our
approach compared to writing SPARQL queries directly. The subjects were 12
pairs of post-graduate students in Computer Science applied to Business Man-
agement. They all recently attended a Semantic Web course with about 10h of



teaching and practice of SPARQL. Their task was to answer two similar series
of 10 questions on the MONDIAL dataset, covering all kinds of SPARQL compu-
tations. The subjects had to use a different system for each series of questions:
Yasgui [14], a SPARQL query editor improved with syntax highlighting, and
our Sparklis-based implementation. The subjects had only a short presentation
of Sparklis before, and no practice of it. Each subject was randomly assigned
an order (Yasgui first vs Sparklis first) to avoid bias. For each system/series,
they were given 10min for setup, and 45min for question answering. To help the
writing of SPARQL queries, they were given the list of classes and properties
used in MONDIAL. Finally, the subjects filled in a questionnaire to report their
feelings and comments.

Objective results. With Yasgui, only the first question was correctly an-
swered by the majority, instead of 5 questions (out of 10) for Sparklis. On av-
erage, the number of subjects who correctly answered a question was 3.8 times
higher for Sparklis compared to writing SPARQL queries. With Yasgui, the
subjects managed to produce answers for 1-3 questions, 1.67 on average. The
rate of correct answers is 71%. The best subject answered 3 questions, all cor-
rectly, and with an average of 15min per question. In comparison, with Sparklis,
the subjects managed to produce answers for 3-10 questions, 6.17 on average.
This is 3.7 more questions, and the weakest result for Sparklis is equal to the
strongest result for Yasgui. The rate of correct answers is also higher at 85%.
Most errors (8/13) were done by only two subjects out of 12. The most com-
mon error is the omission of groupings in aggregations, suggesting to make them
more visible in the user interface. The best subject answered 10 questions, 8 of
which correct, and with an average of 4.5min per question. The time spent per
question is generally higher for the first 2 questions, and generally stays under
10min for the other questions, although they are more complex, and can be as
low as 2-3min. Those results demonstrate that, even with practice of SPARQL
query writing and no practice of Sparklis, subjects quickly learn to use Sparklis,
and are much more effective with it. The weakest subject on Sparklis is still
as good as the strongest subject on Yasgui. Moreover, all subjects had better
results with Sparklis than with Yasgui.

Subjective results. Over the 12 subjects, 9 clearly prefer Sparklis and 3
would rather use Sparklis, hence unanimous preference for Sparklis. On a 0-10
scale, Yasgui got marks between 2 and 8, 4.8 on average, and Sparklis got marks
between 7 and 10, 8.3 on average (half of the subjects gave 9-10 marks).

5 Conclusion

We have shown how SPARQL 1.1 can be leveraged to offer rich data analyt-
ics on vanilla RDF graphs through a guided query builder user interface. We
have implemented the approach in Sparklis, and validated its expressivity, re-
sponsiveness, and usability through the QALD-6 challenge and a user study.
The extended Sparklis has been officially adopted as a query tool by Persée?,

2 http://data.persee.fr/


http://data.persee.fr/

a French organization that provides open access to more than 600,000 scientific
publications to researchers in humanities and social sciences.

References

10.

11.

12.

13.

14.

15.

16.

. Atzori, M., Mazzeo, G., Zaniolo, C.: QA3: a natural language approach to statisti-

cal question answering (2016), http://www.semantic-web-journal.net/system/
files/swj1847.pdf, submitted to the Semantic Web journal

Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology.
ACM Sigmod record 26(1), 65-74 (1997)

Colazzo, D., Goasdoué, F., Manolescu, 1., Roatig, A.: RDF analytics: lenses over
semantic graphs. In: Int. Conf. World Wide Web. pp. 467-478. ACM (2014)
Cyganiak, R., Reynolds, D., Tennison, J.: The RDF data cube vocabulary (2013)
Ferré, S.: Bridging the gap between formal languages and natural languages with
zippers. In: Sack, H., et al. (eds.) Extended Semantic Web Conf. (ESWC). pp.
269-284. Springer (2016)

Ferré, S.: Semantic authoring of ontologies by exploration and elimination of pos-
sible worlds. In: Int. Conf. Knowledge Engineering and Knowledge Management.
LNAI 10024, Springer (2016)

Ferré, S.: Sparklis: An expressive query builder for SPARQL endpoints with guid-
ance in natural language. Semantic Web: Interoperability, Usability, Applicability
8(3), 405-418 (2017), http://www.irisa.fr/LIS/ferre/sparklis/

Hermann, A., Ferré, S., Ducassé, M.: An interactive guidance process supporting
consistent updates of RDFS graphs. In: ten Teije, A., et al. (eds.) Int. Conf. Knowl-
edge Engineering and Knowledge Management (EKAW). pp. 185-199. LNAI 7603,
Springer (2012)

Hoffner, K., Lehmann, J., Usbeck, R.: CubeQA - question answering on RDF data
cubes. In: Int. Semantic Web Conf. pp. 325-340. Springer (2016)

Kaminski, M., Kostylev, E.V., Cuenca Grau, B.: Semantics and expressive power
of subqueries and aggregates in SPARQL 1.1. In: Int. Conf. World Wide Web. pp.
227-238. ACM (2016)

Kovacic, 1., Schuetz, C.G., Schausberger, S., Sumereder, R., Schrefl, M.: Guided
query composition with semantic OLAP patterns. In: EDBT/ICDT Workshops.
pp. 67-74 (2018)

May, W.: Information extraction and integration with FLORID: The MONDIAL case
study. Tech. Rep. 131, Universitdt Freiburg, Institut fiir Informatik (1999), avail-
able from http://dbis.informatik.uni-goettingen.de/Mondial

Papadaki, M.E., Tzitzikas, Y., Spyratos, N.: Analytics over RDF graphs. In: Int.
Work. Information Search, Integration, and Personalization. pp. 37-52. Springer
(2019)

Rietveld, L., Hoekstra, R.: YASGUI: Not just another SPARQL client. In: The
Semantic Web: ESWC 2013 Satellite Events, pp. 78-86. Springer (2013)
Sherkhonov, E., Grau, B.C.,; Kharlamov, E., Kostylev, E.V.: Semantic faceted
search with aggregation and recursion. In: d’Amato, C., et al. (eds.) Int. Semantic
Web Conf. (ISWC). pp. 594-610. LNCS 10587, Springer (2017)

Unger, C., Ngomo, A.C.N., Cabrio, E.: 6th open challenge on question answering
over linked data (QALD-6). In: Sack, H., et al. (eds.) Semantic Web Evaluation
Challenge. pp. 171-177. Springer (2016)


http://www.semantic-web-journal.net/system/files/swj1847.pdf
http://www.semantic-web-journal.net/system/files/swj1847.pdf
http://www.irisa.fr/LIS/ferre/sparklis/
http://dbis.informatik.uni-goettingen.de/Mondial

	Analytical Queries on Vanilla RDF Graphs with a Guided Query Builder Approach

