

Flow simulations in large scale discrete fracture networks with the hybrid high-order (HHO) method.

Alexandre Ern, Florent Hédin, Géraldine Pichot, Nicolas Pignet

▶ To cite this version:

Alexandre Ern, Florent Hédin, Géraldine Pichot, Nicolas Pignet. Flow simulations in large scale discrete fracture networks with the hybrid high-order (HHO) method.. EFEF 2021 - 18th European Finite Element Fair, Sep 2021, Paris, France. hal-03520472

HAL Id: hal-03520472 https://inria.hal.science/hal-03520472

Submitted on 11 Jan2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Flow simulations in large scale discrete fracture networks with the hybrid high-order (HHO) method.

Alexandre Ern², Florent Hédin¹, <u>Géraldine Pichot¹ and Nicolas Pignet³</u>

¹Inria SERENA & ENPC

² ENPC & Inria SERENA

³EDF

Work in collaboration with

Patrick Laug (Inria GAMMA3, Saclay)

Simon Legrand (Inria SED Paris)

Caroline Darcel and Romain Le Goc (ITASCA S.A.S)

Philippe Davy (Geosciences Rennes, CNRS)

UFM (Unified Fracture Model)

growth and arrest, and consequences for fracture density and scaling, Journal of Geophysical Research: Solid Earth, 118(4), 1393-1407 de Dreuzy, J.-R., et al., Synthetic In 2012, benchmark for modeling flow in 6,845 fractures 3D fractured media. Computers & Geosciences (2012), **DFN test cases** L=200 m provided by the **Coal cleats** 1,176,566 fractures LabCom fractory (Australia) Granite 5 cm 2,410,539 intersections Sweden Transmissivity range (one value per fracture): 11 [3.35-06; 25.8] 100 MAP 7: H = 370m, Area = 720m x 720m 50 andstones (Norway) 0 -50 ·100 zoom 100 The largest fracture: 100 0 O 100 -100 11,710 intersections

Davy, P., R. Le Goc, and C. Darcel (2013), A model of fracture nucleation,

The flow problem

Assumptions:

- The rock matrix is impervious: flow is only simulated in the fractures
- Study of steady state flow
- There is no longitudinal flux in the intersections of fractures

J. Erhel, J.-R. de Dreuzy, and B. Poirriez. SIAM J. Sci. Comput. (2009)

J. Maryska, O. Severyn, and M. Vohralik, Computational Geosciences (2004)

Flow equations within each fracture f_i with κ_i a positive definite tensor

 $\begin{aligned} \nabla \cdot \mathbf{u}_{i}(\mathbf{x}) &= g_{i}(\mathbf{x}), & \text{for } \mathbf{x} \in f_{i}, & (\text{Continuity equation}) \\ \mathbf{u}_{i}(\mathbf{x}) &= -\kappa_{i} \, \nabla p_{i}(\mathbf{x}), & \text{for } \mathbf{x} \in f_{i}. & (\text{Poiseuille's law}) \\ p_{i}(\mathbf{x}) &= p_{i}^{D}(\mathbf{x}), & \text{for } \mathbf{x} \in \Gamma^{D} \cap \Gamma_{i}, & (\text{Dirichlet boundary conditions}) \\ \mathbf{u}_{i}(\mathbf{x}) \cdot \mathbf{n} &= q_{i}^{N}(\mathbf{x}), & \text{for } \mathbf{x} \in \Gamma^{N} \cap \Gamma_{i}, & (\text{Neumann boundary conditions}) \\ \mathbf{u}_{i}(\mathbf{x}) \cdot \mathbf{n} &= 0, & \text{for } \mathbf{x} \in \Gamma_{i} \setminus (\Gamma_{i} \cap (\Gamma_{D} \cup \Gamma_{N})). & (\text{Impervious rock matrix}) \end{aligned}$

Continuity conditions at each intersection I_m with I_m the mth intersection, $m = 1, ..., N_I$ N_I total number of intersections

$$p_k^{m,+} = p_l^{m,+} = p_k^{m,-} = p_l^{m,-}, \text{ on } I_m,$$

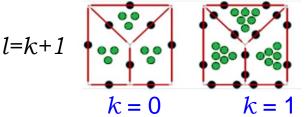
$$\sum_{\in S_m} \mathbf{u}_j \cdot \mathbf{n}_{j,m}^+ + \mathbf{u}_j \cdot \mathbf{n}_{j,m}^- = 0, \quad \text{on } I_m.$$

(Continuity of the hydraulic heads)

(Conservation of fluxes)

The Hybrid High Order (HHO) method

- Discrete unknowns on each finite element are:
 - On mesh faces
 - Inside the elements
- Algebraically, we obtain a Schur complement system for only the faces unknowns, and known to be symmetric positive definite.
- Local gradient reconstruction from cell and face unknowns
- A stabilization term ensures that the traces of the cell unknows and the face unknowns match in a least-squares sense.
- Conservative fluxes are built from the sum of two terms
 - \checkmark the normal component of the reconstructed gradient
 - \checkmark A correction term coming from the stabilization
- Main advantages of HHO:
 - ✓ Feature 1: Globally and locally mass conservative method (whatever $k \ge 0$)
 - ✓ Feature 2: Face polynomials of order $k \ge 0$
 - ✓ Feature 3: Support general meshes (polygonal/polyhedral cells)
 - Software:
 - □ Library Disk++ for HHO (open-source)
 - □ NEF++ (Inria) for an application to DFNs
 - □ Prune (Inria) for automatic parameter studies



Di Pietro, D.A and Ern, A. and Lemaire, S. Computational Methods in Applied Mathematics (2014)

Cicuttin, M. and Di Pietro, D.A. and Ern, A. Journal of Computational and Applied Mathematics (2018)

Cockburn, B. and Di Pietro, D.A. and Ern, A. ESAIM: M2AN (2016)

Choice of the basis functions

- HHO unknowns are polynomial coefficients
- On mesh faces: scaled monomials x_F^{α} with $\alpha = 0, ..., k$ and

$$x_F = 2 \, \frac{(x - \bar{x}_F)}{|F|}$$

On every mesh cell T: we compare two choices of monomials

$$\alpha, \beta = 0, \dots, l = k + 1, \alpha + \beta \le l$$

[Cartesian]
$$x_T^{\alpha} y_T^{\beta}$$

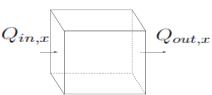
 $x_T = 2 \frac{(x - \bar{x}_T)}{h_x^T}, \qquad y_T = 2 \frac{(y - \bar{y}_T)}{h_y^T}$

[Rotated]
$$\xi_T^{\alpha} \zeta_T^{\beta}$$

 $\xi_T = 2 \frac{(x - \bar{x}_T, y - \bar{y}_T) \cdot a_1^T}{h_1^T}$
 $\zeta_T = 2 \frac{(x - \bar{x}_T, y - \bar{y}_T) \cdot a_2^T}{h_2^T}$

nts		$ Q_{in,x} + Q_{out,x} $			
	k	[Cartesian]	[Rotated]		
L100	0	1.44e-07	9.82e-11		
	1	1.66e-4	5.26e-10		
	2	2.31e-2	4.63e-09		
	3	15.21	4.20e-08		
L150	0	3.12E-07	7.32e-10		
	1	1.58e-3	1.31e-08		
	2	38.22	1.85e-08		
	3	45.73	4.85e-08		
Mass	consei	rvation $Q_{in,x}$	Qout.x		

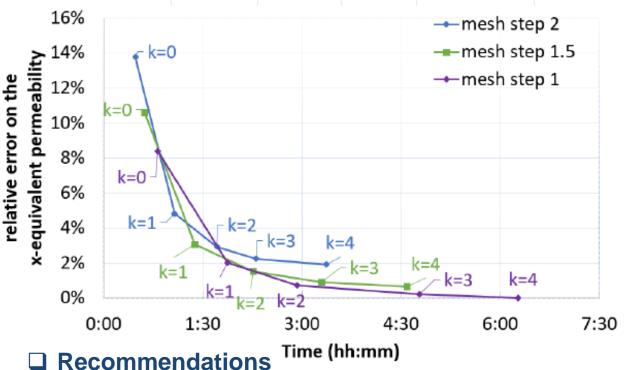
- × [Cartesian]
- ✓ [Rotated]



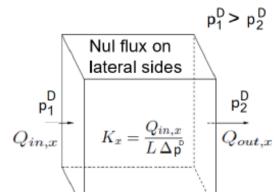
Global and local mass

conservation ensured whatever k

Trade-off between polynomial order and mesh refinement

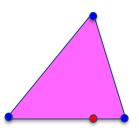


Evaluation of the equivalent permeability

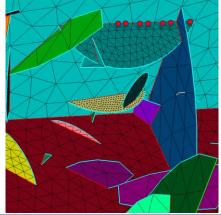


- ✓ use a face polynomial order k at least equal to 1, instead of refining a mesh while keeping k = 0
- \checkmark choose k = 1 on a mesh fine rather than k > 1 on a coarser mesh

How to take advantage of polygonal cells?



- Vertices of the triangles
- Extra vertices to create a polygon



20,522,575 triangles All fractures → mesh step of 1.5					18,648,084 triangles (-9%) Most contributing fractures → step of 1.5 The others → mesh step of 2.				
k	#dofs	Total Time (hh:mm :ss)	RAM (GiB)	Rel. Error <i>Kx</i>	k	#dofs	Total Time (hh:mm :ss)	RAM (GiB)	Rel. Error <i>Kx</i>
0	31,711,430	1:28:45	100	10.7%	0	28,685,198	01:18:01	93	11.7%
1	63,422,860	3:16:14	246	2.6%	1	57,370,396	03:12:49*	223	3.3%
2	95,134,290	6:19:46	481	0.9%	2	86,055,594	05:24:48	435	1.5%
3	126,845,720	9:44:50	784	0.3%	3	114,740,792	08:16:42	732	0.8%
4	158,557,150	14:39:47	1186	0.0%	4	143,425,990	12:10:58	1087	0.5%

Comparison with the fine mesh flow simulation: -12% to -16% time and -7% to -10% RAM

Conclusion

- We have successfully tested the HHO method on large scale DFN (more than 1 million of fractures)
- □ The implementation of the method is locally and globally conservative (whatever k ≥0) thanks to the basis functions
- □ The use of high order is an advantage to compute a more accurate flow in DFN
- We have shown that the use of non-matching meshes, the channelling effect of DFN flow and the polygonal feature of the HHO method allows to reduce the number of #dofs and therefore the RAM requirements in DFN flow simulations.

Perpectives

- Further reduction of the #dofs by using the additional recent features of HHO (Unfitted HHO; merging triangles in polygons)
- □ Studying an iterative solver to reduce the RAM requirements

Thanks a lot for your attention !

E. Burman and A. Ern, An unfitted hybrid high-order method for elliptic interface problems, SIAM J. Numer. Anal., 56(3), 1525-1546 (2018)

A. Miraçi, J. Papež, and M. Vohralík
(2020)
A Multilevel Algebraic Error
Estimator and the Corresponding
Iterative Solver with <i>p</i> -Robust
Behavior. SIAM J. Numer.
Anal., 58(5), 2856–2884.

