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ABSTRACT
In Intelligent Tutoring Systems (ITS), methods to choose
the next exercise for a student are inspired from generic rec-
ommender systems, used, for instance, in online shopping
or multimedia recommendation. As such, collaborative fil-
tering, especially matrix factorization, is often included as a
part of recommendation algorithms in ITS.

One notable difference in ITS is the rapid evolution of users,
who improve their performance, as opposed to multimedia
recommendation where preferences are more static. This
raises the following question: how reliably can we use matrix
factorization, a tool tried and tested in a static environment,
in a context where timelines seem to be of importance.

In this article we tried to quantify empirically how much in-
formation can be extracted statically from datasets in edu-
cation versus datasets in multimedia, as the quality of such
information is critical to be able to accurately make pre-
dictions and recommendations. We found that educational
datasets contain less static information compared to multi-
media datasets, to the extent that vectors of higher dimen-
sions only marginally increase the precision of the matrix
factorization compared to a 1-dimensional characterization.
These results show that educational datasets must be used
with time information, and warn against the dangers of di-
rectly trying to use existing algorithms developed for static
datasets.
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1. INTRODUCTION
Knowledge tracing tries to model the knowledge of students
as they learn, and is a key component of Intelligent Tutoring
Systems (ITS). In such systems, the aim is to recommend re-

sources, such as exercises (or “problems”), to students in the
most effective way, that is, to recommend resources which
correspond to their learning needs. These resources can be
of various forms, but in this article we focus solely on rec-
ommending new problems for the student to solve. In order
to perform any recommendation, we believe that we should
be able to predict the outcome of one particular student try-
ing to solve one particular problem; we call this a (student,
problem) pair. Ideally, we have perfect information for all
such (student, problem) pairs, whether that information is
actual (extracted from observation) or deduced (based on
previous observation). This would allow us, for instance, to
skip problems that are predicted as being too easy or too
hard for a student.

Each (student, problem) pair could reflect a level of “diffi-
culty” indicating the student’s proficiency. In such a system,
one would derive existing difficulty levels from known inter-
actions, for instance through how much time was required for
a student to solve a problem, or how many attempts it took
to successfully solve it. A “good” system would then predict
difficulty levels for interactions that did not happen, possi-
bly with a confidence measure of the outcome prediction. It
would also provide an understanding of the structure of the
problem set. For example, it would enable the recognition
of problems that train similar skills or use similar knowl-
edge, without relying on expert knowledge components that
require human expertise.

Historically, the field of knowledge tracing has been inde-
pendent of recommender systems. With expert knowledge
components, one can explicitly measure student proficiency
with simple models like Item Response Theory and Bayesian
Knowledge Tracing [2]. Using data mining on large datasets,
it is possible to relax the knowledge components to be latent
features that do not require human experts to partition the
domain into explicit student skills [11]. Techniques in ed-
ucational data mining are inspired from techniques used in
collaborative filtering [1], such as factorization methods [20,
18], but also from techniques used in deep learning such as
deep knowledge tracing [11, 19, 20, 13].

In this article, we will focus on matrix factorization methods.
These are traditionally used in contexts where the available
data is not very sensitive to time, for instance movie tastes
and shopping habits. In contrast, students learn each time



they practice and should normally improve with time, so it
would make sense to take history into account when analyz-
ing datasets, making predictions and doing structural stud-
ies. However, we do not know how much impact this has on
the results. The question that we would like to raise here is
whether taking history into account is that important or if
it is still possible to make good predictions when consider-
ing datasets as timeless. Recommending a good problem in
terms of teaching is not an easy task, but it is even more dif-
ficult when we cannot reliably predict whether the student
will succeed or fail, and how long it will take them to do so.
In the rest of this article, we will study how the matrix fac-
torization algorithm behaves in three datasets from the ed-
ucational data mining community compared to one dataset
from the traditional collaborative filtering community. We
will often deliberately leave out chronological information in
the educational datasets to see how much information can
still be extracted, compared to a traditional dataset.

This article makes two main claims:
• Educational datasets contain much less static informa-

tion than usual datasets found in multimedia recommen-
dation. Hence, treating educational datasets without any
dynamic method should be avoided;
• The little static information they contain amounts to a

one-dimensional value per student or problem.

We also propose in Section 3 a pre-processing procedure
for educational datasets meant to facilitate prediction, even
though we could not find any variable that is accurately pre-
dicted among all tested datasets, as well as a filtering pro-
cedure to try to find clusters among students and problems
that are particularly accurately predicted in Section 5.

2. RELATED WORK
2.1 Data Pre-processing
It is sometimes necessary or advantageous to perform pre-
processing of the data before trying to extract information.
For example, it was possible to improve the classification
error in the MNIST database from 12% to 8%, keeping the
same linear classifier, by using deskewing pre-processing [8].
Regarding our knowledge tracing problem, many corrections
to the ASSISTment dataset [4] are proposed by Xiong et
al. [19]. They are now included in the public dataset that
we use later. We also propose some more pre-processing in
Section 3.

2.2 Matrix Factorization
Matrix factorization (MF) is a widely used technique in rec-
ommender systems, as illustrated by its extgensive usage in
the 2009 Netflix Prize Competition [7]. We consider a set
U of N users, a set I of M items, and a set of ratings R.
These sets are usually given as records (u, i, ru,i), represent-
ing how much (ru,i) a given user u likes item i. From these
we can build a sparse rating matrix X ∈ RN×M . The goal
of matrix factorization is to find two matrices W ∈ RN×k

and H ∈ RM×k (usually with low rank k � N,M) such
that X is close to WHᵀ. This is an optimization problem
written as:

argmin
W∈RN×k

H∈RM×k

∑
(i,j)∈Ω

(Xij − wih
ᵀ
j )2 + λ(‖W‖2F + ‖H‖2F ) (1)

Where λ is a regularization meta-parameter and ‖.‖2F is the
Frobenius norm [21]. Equation 1 may vary in regularization
terms (bias, sparsity penalty. . . ) and can incorporate a loss
function between Xij and wih

ᵀ
j . We can now estimate un-

known ratings within the product WHᵀ. In other words,
we look for signatures for users and items in the same la-
tent space of dimension k (i.e., vectors of rank k), such that
the outcome of the user rating an item is close to the dot
product of these signatures.

This optimization problem is non-convex in general, but
different methods exist [7]. The Alternating Least Square
(ALS) method is the most popular method as it converges
better than the Stochastic Gradient Descent (SGD) method
due to non-convexity. When large-scale data is needed, as
ALS is not easy to parallelize, and Coordinate Descent is
preferred [6, 21]. In a knowledge tracing setting, users are
students and items are problems [20, 16, 18]. Problems are
usually split into smaller components that are the problem
steps. We will see in subsection 3.1 why we recommend a
first regrouping pass in order to work with whole problems.

2.3 Cold Start Problem and Online Settings
The cold start problem is a typical problem in recommender
systems that corresponds to the initial phase of a ”nude”
system (no data collected yet). The lack of data makes the
prediction accuracy unreliable at that early stage. MF tech-
niques are not designed to tackle the cold start problem but,
some extensions seek to solve it partially [22, 10]. As we
are not focused on prediction accuracy, we will not consider
these extensions in this article but we will try to evaluate
when the cold start problem ends in Section 4, that is, when
there is enough data for MF to start giving results. Trivedi
et al. [17] try to solve a cold start problem in an ITS environ-
ment with spectral clustering to help refine raw prediction,
but they work on the raw features of datasets without stu-
dent or item signatures.

Even after the cold start, the system usually benefits from
new data in general. This is referred to as online recom-
mendation, and MF is widely studied in such a context [5,
9, 12]. These works consider extremely large datasets, about
the order of millions of users and items, but it is still fea-
sible to redo a factorization after adding a few elements, as
we will see for instance in Section 4 and 5.

3. FLAT PREDICTION AND AGGREGATION
In this section we studied matrix factorization (MF) on four
different datasets, and found that not all datasets were di-
rectly usable without some pre-processing, compared to clas-
sical datasets. We use the basic version (L2 regularization)
of Equation 1 with a fixed rank of 20 (apart from the last
section where we measure the impact of rank variation).
We use coordinate descent for the optimization [21] because
some experiments in sections 4, 5, and 6 require numerous
factorizations.

3.1 Educational Datasets and Pre-processing
We will use three common educational datasets for the rest
of the article: Algebra I 2006–2007 [14], Bridge to Algebra I
2006–2007 [15] (both of these come from the Cognitive Tu-
tor problem set) and ASSISTment09 (we use the corrected



Table 1: Raw data sets overview

Data set Users Problems Steps Steps occurring once Mean samples per step Samples

Algebra I 2006-2007 1338 5644 418 060 314 198 5.4 2 270 384
Bridge to Algebra I 2006-2007 1146 14 787 202 672 46 935 18.1 3 679 199
ASSISTment09 4217 17725 26 688 3123 13.0 346 660
ML-1M 6040 3706 N/A N/A 269.9 1 000 209

Table 2: Preprocessed data sets overview

Data set Users Problems Samples Density Mean samples per problem Success percentage

Algebra I 2006-2007 1147 3111 152 709 0.043 49.1 0.79
Bridge to Algebra I 2006-2007 1068 8736 235 147 0.025 26.9 0.91
ASSISTment09 2025 12587 238 746 0.009 19.0 0.98
ML-1M 6040 3706 1 000 209 0.045 269.9 N/A

and collapsed version of the dataset) [4]. All three datasets
record scaffolding problem statistics (also called steps in
Cognitive Tutor datasets – we will use both terms here).
For each record (also named sample), we extract:

1. A student and a main problem ID;
2. A scaffolding problem ID;
3. A timestamp when a student starts a step and the

duration to complete the step;
4. If the student succeeded at his first attempt: Correct-

First-Attempt (CFA);
5. The number of hints and errors of the student for this

step.

To our surprise, these datasets are not very usable without
pre-processing in comparison with well-established recom-
mender system datasets like the MovieLens dataset. We will
compare most experiments with the ML-1M version of this
dataset, which will act as a “control” dataset: multimedia
recommendation datasets being the canonical use of matrix
factorization for recommender systems. The two main rea-
sons for this poor usability that we try to mitigate with
pre-processing are the following:

• The notion of scaffolding problem is not standardized
between the datasets and is hard to use as is. Some of
them are optional, which makes the number of steps for
a main problem vary between students. The step order
may also change between users, which makes matching
between users more difficult at the problem level.
• There is no guarantee of the minimum number of occur-

rences for a student or a step. Moreover, many steps
are done by a single student across the whole dataset,
as seen in Table 1 (especially for the Algebra I dataset,
where steps can be generated for a student from a tem-
plate, and are thus unique. These constitute up to 3
quarters of the steps).

Our first pre-processing pass, which is motivated by the
very low number of samples per step on average, corre-
sponds to aggregating all the steps of a common main (stu-
dent/problem) pair together. Aggregating timestamps and
durations is straightforward (the beginning of a problem is
the beginning of the first step and the total duration is the
sum of the steps’ durations). To aggregate “Correct-First-
Attempt” we take the mean across a (student/problem) pair
so we obtain a floating point value between 0 and 1 instead
of a boolean value.

Simply aggregating hint and error counts by summing them
is not satisfactory because ultimately we want to have an
idea of how much a student struggled on a problem. Sum-
ming these quantities is not sufficient to access some basic
information such as “Has the given student reached the end
of the problem or given up?” This information is not pro-
vided in the datasets, so we had to build a proxy variable.
To answer this question, we need to know, for a given prob-
lem, the number of basic steps it decomposes into. To find
this quantity, which we call the problem size, we counted
for each problem/student pair the number of samples. For a
student who succeeded (possibly with hints and intermediate
mistakes), the problem size and this number should match.
We assumed that for a given problem, the most represented
number (among all students) was the actual problem size.
We believe that this high representativeness comes from the
fact that the ITS providing the datasets give enough hints
for most students to reach the end of the problem before
giving up. This makes the number of hints and errors valu-
able information to measure the difficulty of a problem for
a given student.

Once we have a boolean proxy indicating success by reaching
the end of a problem, we can derive two variables: reaching
the end without errors and reaching the end without hints.
We can also build a difficulty variable to aggregate the hint
and error counts: we sum the two counts with a 0.5 coeffi-
cient for hints. We represent failure by assigning a difficulty
value of twice the maximum value.

After aggregation, we have six variables (called target vari-
ables or simply targets from now on) of interest for each stu-
dent/problem interaction: duration (0-1 scale value), diffi-
culty (0-1 scale value), correct-first-attempt (0-1 scale value)
and success-reached (boolean value), success-no-error (boolean
value), success-no-hint (boolean value). The first three are
normalized per problem so that for each problem, the ”worst”
student gets a value of 0, and the best one a value of 1 (giving
rise to what we called above a 0-1 scale value). ML-1M has
a single target which is the movie rating (also normalized
for comparison). After aggregation, we filter out users who
have done fewer than 20 problems and problems that are
done fewer than 5 times (same threshold than for ML-1M).
Table 2 shows the size of the datasets after pre-processing.

3.2 Influence of Aggregation on Datasets
Figures 1, 2, and 3 report the ability of a factorization to
accurately model the different target variables on the four
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datasets and compare the effect of aggregation. For 0-1 scale
variables we use the root mean square error (RMSE – the
smaller the better) as the error metric, and for boolean vari-
ables we use Receiving Operating Curve Area Under Curve
(ROC AUC – the closer to 1 the better). For ML-1M, the
only possible target variable is the movie rating. We report
it in Figure 2 as a horizontal line.

In Figure 1, we see that the aggregation and filter proce-
dure improve the prediction quality of the Cognitive Tutor
datasets in a notable way, but only by a small margin for the
ASSISTment dataset. We believe that if the pre-processing
removed about one third of the problems and half of the
students, the density would still be very low compared to
the others. In all the remaining experiments, we will use
the aggregated versions of the datasets.

It is hard to find any trend regarding the RMSE differ-
ences in Figure 2. Variations seem to indicate that different
datasets favor different target variables. MF can have about
the same prediction capability for educational datasets and
multimedia datasets if the target variables are chosen care-
fully, which suggests that situations call for pre-analyses in
order to select the target variable which will be the most
accurately predicted.

In Figure 3 we can see that accuracy on success classifica-
tion is reasonably good. However, we cannot explain the
difference in ASSISTment between success-reached and the
two other success target variables. This might stem from the
aggregation procedure that relies on approximated methods
to obtain the number of steps in a problem. We will not do
any further experiments on these target variables (which are
boolean), as they are barely comparable with the 0-1 scale
variable of the ML-1M dataset.

4. ONLINE PREDICTION
In this section, we will try to evaluate the point at which
there is enough information to predict reasonably well with
MF techniques. This allows the system to stop using what-
ever bootstrapping technique it was using to solve the cold
start problem.

To evaluate this we start by getting either the full student set
(and no problem) or the full problem set (and no student).
We then progressively add new problems in the first case and
new students in the second case, adding 20 new elements at

each iteration. At each iteration we redo a full factorization
and evaluation as if the system was complete.

We independently measure RMSE of correct-first-attempt
and difficulty variables. To evaluate whether the order in
which new elements are added makes a difference or not, we
considered three orders: (i) elements sorted by their number
of occurrences either in decreasing (high density first); (ii) or
in increasing (low density first) order; (iii) and following the
chronological order (chrono). Only the chronological order
makes sense in an online context, but we still use the number
of occurrence orders to evaluate whether or not we benefit
from a higher density.

We report in Figure 4 the results of this experiment. We can
see that for three out of four datasets (not ASSISTment),
adding elements by highest density makes the system con-
verge really fast (about 200 elements for Bridge), which was
to be expected as those elements carry the most informa-
tion. For all datasets, adding elements by lowest density, as
we might expect, makes the system converge really slowly.
We believe that the extremely accurate prediction on some
of the curves for the first few iterations of the growing pro-
cess is due to overfitting (recall that the factorization uses a
rank of k = 20 in those experiments).

Still, there are some artifacts to these results. In Figure 4e,
the previous claims are reversed for difficulty target. Maybe
this is a hint that this aggregated variable may not be robust
enough on all systems. Our advice is to systematically test
target variables on a system to make sure that the ones we
choose are consistent and can be trusted.

Finally, we do not observe any“dramatic”drop of the RMSE
in curves representing the chronological order that we could
clearly label as the “cold start” (although it sometimes takes
a few “adds” to stabilize). Of course, the highest accuracy is
obtained whenever all the data is used, but this suggests that
MF accuracy starts to get close to the maximum early in the
process. However, bear in mind that we only evaluated our
ability to model existing data (we evaluate on the matrix
we factorize), but did not evaluate our ability to predict
(by evaluating on the remaining, not factorized, part of the
matrix).
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Figure 4: RMSE evolution for student and problem set growing on the four data sets
If not specified the legend is the same as (b).

5. STUDENT OR PROBLEM PREDICTION
KERNELS

In this section we search for a subset of students and prob-
lems where the prediction is more accurate than on the rest
of the dataset. Having such a subset can be of interest in
various ways: further analysis like signature clustering might
work better on a subset with high accuracy prediction, or
this can be a first step towards building a confidence mea-
sure for new predictions using a similarity measure with this
accurate subset.

Note that we briefly tried some clustering algorithms on the
student and problem signatures given by MF, but they were
not promising. We will explain in Section 6 how the sig-
natures we can obtain with MF may not be appropriate to
such a study.

5.1 Iterative Filtering
We describe an iterative procedure to filter students and
problems that have the least accurate predictions.

We alternately remove students and problems: at each iter-
ation we remove the 8% of the considered set that are the
least accurately predicted in terms of RMSE (or 15 elements
if 8% is lower than 15). We report in Figure 5 and Figure 6
the evolution of the density of the rating matrix and RMSE
for the difficulty target variable.

Figure 5 presents the variations in density as we progres-
sively remove students and problems. Interestingly, remov-
ing items usually increases the density while removing stu-
dents decreases it in the three educational datasets, mean-
ing that the students that solved many problems are viewed
as “problematic” by the system. This behavior is not ob-
served in the reference ML-1M dataset. Figure 6 confirms
the tendency that removing students in the beginning tends
to improve prediction accuracy. This result is disturbing

as it means that, for the educational datasets, MF prefers
less dense matrices with regard to the users, i.e., less in-
formation for a given student. This suggests that MF per-
forms best when a problem was done by many students,
but when the students have done few problems. What is
interesting here is that this scenario is the one that resem-
bles most closely the ML-1M dataset: by having students
that did fewer problems, we are indeed eliminating students
that likely progressed during the experiment, hence whose
behavior cannot be represented by a single vector across all
their interactions. This is a first solid hint that MF alone
does not seem suited to educational datasets, as it shuns
chronological subtleties.

6. INFLUENCE OF RANK VARIATION
In this section we repeat the experiments from previous sec-
tions with different rank values. In addition to rank k = 20
that we already measured, we use rank 5 and a rank of 1. We
deliberately choose a rank of 1 to mimic a Whole History
Rating (WHR) [3]. Even though it is not an exact corre-
spondence, we believe that the information extracted by a
MF with rank 1 can also be extracted by a WHR.

We see in Figures 7, 8, 9 and 10 a clear difference between
the educational datasets and ML-1M regarding the influ-
ence of ranks. This benefit from rank increase agrees with
the intensive use of MF techniques in multimedia recom-
mender systems. However, the benefit of such an increase
for educational datasets is almost negligible. This is par-
ticularly apparent in Figure 10, where the ML-1M RMSE
curves get lower with increasing rank while all other curves
are nearly indistinguishable by rank. This shows that, when
the chronological information is not used, vectors of size 5
or 20 do not improve accuracy compared to a simple vector
of size 1, i.e., a single float. This suggests that we can-
not do better than assign a single number to problems and
students, which could be interpreted as having a “difficulty”
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Figure 10: Evolution of RMSE during filtering with various target

rating for problems and a“skill” rating for students, mimick-
ing a WHR rating system. This is a second strong hint that
educational datasets do not have the same structural prop-
erties as datasets from multimedia recommenders, and that
if we want to extract more information and discover a better
characterization of students and problems, it is necessary to
consider chronological information.

7. CONCLUSION
We applied preprocessing to common educational datasets
to try to improve the accuracy of MF techniques. While
these did improve the results, we also showed that when
MF techniques from the collaborative filtering community
are directly applied, they do not benefit from having ranks

higher than 1, meaning that the attribution of a single value
to students and problems is about as effective as we can get.
This seems to indicate that MF techniques might not be
the most efficient model to extract static information from
these datasets, or, more probably, that static information
is scarce. We believe that this stems from the fact that,
unlike users in multimedia recommender systems, students
change over time as they are faced with new problems but
also from outside interactions not recorded in ITS, hence
chronological information needs to be taken into account
in order to improve accuracy and make predictions. Still,
in the eventual absence of more sophisticated analyses in a
recommender system, MF can be used to extract a crude
measure of what could be labeled as a level of difficulty of a
problem and a level of proficiency or skill of a student.
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